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Abstract

In this thesis, we design and analyze algorithms for robust combinatorial optimization
in various settings.

First, we consider the problem of simultaneously maximizing multiple objectives,
all monotone submodular, subject to a cardinality constraint. We focus on the case
where the number of objectives is super-constant yet much smaller than the cardi-
nality of the chosen set. We propose several algorithms (including one with the best
achievable asymptotic guarantee for the problem). Experiments on synthetic data
show that a heuristic based on our more practical and fast algorithm outperforms
current practical algorithms in all cases considered.

Next, we study the problem of robust maximization of a single monotone sub-
modular function in scenarios where after choosing a feasible set of elements, some
elements from the chosen set are adversarially removed. Under some restriction on the
number of elements that can be removed, we give the first constant factor approxima-
tion algorithms as well as the best possible asymptotic approximation in certain cases.
We also give a black box result for the much more general setting of deletion-robust
maximization subject to an independence system.

Lastly, we consider a robust appointment scheduling problem where the goal is to
design simple appointment systems that try to achieve both high server utilization
as well as short waiting times, under uncertainty in job processing times. When the
order of jobs is fixed and one seeks to find optimal appointment duration for jobs, we
give a simple heuristic that achieves the first constant factor (2) approximation. We
also give closed form optimal solutions in various special cases that supersede previous
work. For the setting where order of jobs is also flexible and under-utilization costs
are homogeneous, it was previously shown that an EPTAS exists. We instead focus
on simple and practical heuristics, and find a ratio based ordering which is 1.0604
approximate, improving on previous results for similarly practical heuristics.
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Chapter 1

Introduction

Advances in computing, communication and data collection have created opportuni-

ties to optimize almost every aspect of modern life. To leverage these opportunities,

one needs good algorithms. For absent well designed algorithms, problems that are

currently solved in seconds would take eons even on a modern computer. But what

constitutes a good algorithm? Two important criteria are accuracy – output should

be feasible and close to optimal, and time – execution should take as little time as

possible. Indeed, designing fast and approximately optimal algorithms continues to

be a major area of study in Computer Science, Operations Research and many other

fields today. In this thesis, we design and analyze algorithms for various combinato-

rial optimization problems, with a focus on both good approximation guarantee and

practical runtime.

The optimization problems we consider are robust reformulations of settings re-

lated to two classical problems in combinatorial optimization – monotone submodular

function maximization [NWF78, NW78], and scheduling [Smi56]. The motivation be-

hind considering such reformulations stems from the fact that traditional optimization

models often do not account for the uncertainty in model parameters which are input

to algorithms. As a result, algorithms that are well designed in theory do not work

well in practice. A traditional way of accounting for such uncertainty has been to

remodel the problem through the lens of stochastic optimization. By approaching the

issue from a different perspective, robust optimization has emerged as a versatile and
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tractable alternative in the last couple of decades [BTEGN09, BS04a, BS03, BS04b].

In robust optimization, one models uncertainty in a deterministic sense by positing

that uncertain parameters belong to a structured uncertainty set. Given this as-

sumption, one seeks a solution that is optimal in the worst possible realization of

uncertainty from the assumed set of possibilities.

We study three different instances of robust combinatorial optimization, in each

of which the uncertainty manifests solely through the objective function. In all three

settings, we find algorithms that have good theoretical guarantees and are also fast

(nearly linear time) and easy to implement. We now introduce each of these settings

and discuss motivations behind the specific formulations that we consider here. The

first two settings involve maximization of monotone submodular functions and are

presented in Section 1.1, followed by an appointment scheduling problem in Section

1.2.

1.1 Maximizing Monotone Submodular Functions

under Uncertainty

First, recall that a set function 𝑓 : 2𝑁 → R on the ground set 𝑁 is called submodular

when 𝑓(𝐴 + 𝑎) − 𝑓(𝐴) ≤ 𝑓(𝐵 + 𝑎) − 𝑓(𝐵) for all 𝐵 ⊆ 𝐴 ⊆ 𝑁 and 𝑎 ∈ 𝑁 ∖ 𝐴. The

function is monotone when 𝑓(𝐵) ≤ 𝑓(𝐴) for all 𝐵 ⊆ 𝐴. We assume 𝑓(∅) = 0 w.l.o.g.,

and combined with monotonicity this implies that the function is non-negative.

Many well known objectives in combinatorial optimization exhibit two common

properties: the marginal value of any given element is non-negative and it decreases as

more and more elements are selected. The notions of submodularity and monotonicity

nicely capture this property, resulting in the appearance of constrained monotone

submodular maximization in a wide and diverse array of modern applications in

machine learning and optimization, including feature selection ([KG05, TCG+09]),

network monitoring ([LKG+07]), news article recommendation ([EAVSG09]), sensor

placement and information gathering ([OUS+08, GKS05, KGGK06, KLG+08]), viral
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marketing and influence maximization ([KKT03, HK16]), document summarization

([LB11]) and crowd teaching ([SB14]). In many of these settings, the objective is often

uncertain and traditional algorithms have been demonstrated to perform poorly in

practice (discussed further in Chapters 3 and 4). We study two formulations that

deal with different forms and sources of uncertainty.

1.1.1 Multi-objective Maximization

Here we are interested in scenarios where multiple objectives, all monotone submod-

ular, need to be maximized simultaneously, subject to a cardinality constraint. This

problem has an established line of work in both machine learning [KMGG08] and

the theory community [CVZ10]. As an example application, in robust experimental

design one often seeks to maximize a function 𝑓𝜃, which is monotone submodular for

every value of 𝜃. The function is very sensitive to the choice of 𝜃 but the parameter

is unknown a priori and estimated from data. Therefore, one possible approach to

finding a robust solution is to maximize the function 𝑚𝑖𝑛𝜃∈Θ𝑓𝜃(.), where Θ is a set

that captures the uncertainty in 𝜃. If Θ is assumed to be a finite set of discrete

values, like [KMGG08], we have an instance of multi-objective monotone submodular

maximization. More generally, we consider the following problem,

𝑀𝑂1 : max
𝐴⊆𝑁,|𝐴|≤𝑘

min
𝑖∈{1,2,...,𝑚}

𝑓𝑖(𝐴),

where 𝑓𝑖(.) is monotone submodular for every 𝑖 ∈ {1, . . . ,𝑚}. The problem also has

an alternative formulation due to [CVZ10], which we discuss is Chapter 3. Broadly

speaking, there are two ways in which this has been applied:

When there are several natural criteria that need to be simultaneously op-

timized: such as in network monitoring, sensor placement and information gathering

[OUS+08, LKG+07, KLG+08, KMGG08]. For example in the problem of intrusion

detection [OUS+08], one usually wants to maximize the likelihood of detection while

also minimizing the time until intrusion is detected, and the population affected by

intrusion. The first objective is often monotone submodular and the latter objec-
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tives are monotonically decreasing supermodular functions [LKG+07, KLG+08]. As

a result the problem is often formulated as an instance of cardinality constrained

maximization with a small number of submodular objectives.

When looking for solutions robust to the uncertainty in objective: such

as in feature selection [KMGG08, GR06], variable selection and experimental design

[KMGG08], robust influence maximization [HK16]. In these cases, there is often

inherently just a single submodular objective which is highly prone to uncertainty

either due to dependence on a parameter that is estimated from data, or due to

multiple possible scenarios that each give rise to a somewhat different objective.

Therefore one often seeks to optimize over the worst case realization of the uncertain

objective, resulting in an instance of multi-objective submodular maximization.

In some applications the number of objectives is given by the problem structure

and can be larger even than the cardinality parameter. However, in applications

such as robust influence maximization, variable selection and experimental design,

the number of objectives is a design choice that trades off optimality with robustness.

The regime 𝑚 = 𝑜(𝑘) includes several of the applications we referred to above.

For instance, in network monitoring and sensor placement, the number of objectives

is usually a small constant [KMGG08, LKG+07]. For robust influence maximization,

the number of objectives depends on the underlying uncertainty but often ends up

being small [HK16]. And in settings like variable selection and experimental design

[KMGG08], where the number of objectives considered is a design choice. We fo-

cus on this regime (𝑚 = 𝑜(𝑘)) and show three algorithmic results with asymptotic

approximation guarantees: (i) A practical 𝑂( 𝑛
𝛿3
log𝑚 log 𝑛

𝛿
) time algorithm that has

an asymptotic guarantee of (1 − 1/𝑒)2 − 𝛿. (ii) A (1 − 1/𝑒) approximation with in-

creased runtime of 𝑂(𝑛8) and (iii) A deterministic (1 − 1/𝑒) − 𝜖 approximation for

constant 𝑚, with runtime 𝑘𝑛𝑚/𝜖4 . All other algorithms are randomized. Previously,

[KMGG08] showed that 𝑀𝑂1 is inapproximable (to within any non-trivial factor)

when 𝑚 = Ω(𝑘), unless P=NP. They also gave a bi-criterion approximation that

violates the cardinality constraint. In contrast, [CVZ10] gave a (1 − 1/𝑒) − 𝜖 ap-

proximation with query complexity 𝑂(𝑛8+𝑛𝑚/𝜖3). While this offers the best possible
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approximation for constant 𝑚, the algorithm is infeasible to use in practice. Note

that our results imply a sharp transition from constant factor approximability for

𝑚 = 𝑜(𝑘) to inapproximability for 𝑚 = Ω(𝑘).

1.1.2 Deletion-robust Maximization

Consider the problem of maximizing a single monotone submodular function subject

to a cardinality constraint,

𝑆𝑂 : max
𝐴⊆𝑁,|𝐴|≤𝑘

𝑓(𝐴).

Now, suppose that given our choice of a set 𝐴 with cardinality 𝑘 for the above max-

imization problem, 𝜏 elements are adversarially removed from 𝐴. Then the problem

of finding a set that has maximum function value subject to removal of 𝜏 elements

can be formulated as,

𝐷𝑅𝑂 : max
𝐴⊆𝑁,|𝐴|≤𝑘

min
𝑍⊆𝐴,|𝑍|≤𝜏

𝑓(𝐴− 𝑍).

Note that the parameter 𝜏 controls the degree of robustness of the chosen set

since the larger 𝜏 is, the larger the size of subset 𝑍 that can be adversarially removed

from the chosen set 𝐴. For 𝜏 = 0, 𝐷𝑅𝑂 reduces to 𝑆𝑂. This problem was also

introduced in [KMGG08], and below we discuss two practical scenarios of 𝑆𝑂 that

motivate 𝐷𝑅𝑂.

Sensor Placement [GKS05, KGGK06, LKG+07, KMGG08]: Given a large number

of locations, we would like to place a relatively small number sensors at certain

locations so as to maximize the coverage. Many commonly used coverage functions

measure the cumulative information gathered in some form, and are thus monotone

(more sensors is better) and submodular (decreasing marginal benefit of adding a new

sensor).

As highlighted in [KMGG08], it is important to ask what happens if some sensors

were to fail. Will the remaining sensors have good coverage regardless of which sensors

failed, or is a small crucial subset responsible for most of the coverage?
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Feature Selection [TCG+09, LWK+13, GR06, KMGG08]: In many machine learn-

ing models, adding a new feature to an existing set of features always improves the

modeling power (monotonicity) and the marginal benefit of adding a new feature de-

creases as we consider larger sets (submodularity). Given a large set of features, we

would like to select a small subset such that, we reduce the problem dimensionality

while retaining most of the information.

However, as discussed in [GR06, KMGG08], in situations where the nature of

underlying data is uncertain, leading to non-stationary feature distributions, it is

important to not have too much dependence on a few features. Taking a concrete

example from [GR06], in document classification, features may take not standard

values due to small sample effects or in fact, the test and training data may come

from different distributions. In other cases, a feature may even be deleted at some

point, due to input sensors failures for example. Thus, similar questions arise here

too and we would like to have an ‘evenly spread’ dependence on the set of chosen

features.

𝐷𝑅𝑂 addresses the concerns above and in others applications, by seeking a set

robust to the worst case manifestation of uncertainty. A natural variation is to opti-

mize the average case failure scenario [GK11]. However, this is not suitable for some

applications. For instance, we may have no prior on the failure/deletion mechanism.

Moreover, in critical applications such as sensor placement for outbreak detection

[KMGG08, LKG+07], we want protection against the worst case.

Here we give the first constant factor guarantees for 𝐷𝑅𝑂 with combinatorial,

‘greedy like’ algorithms. To ease presentation, we usually ignore factors of the form(︀
1− 𝑂(1)

𝑘

)︀
in the approximation guarantees but note that most of the results presented

here are asymptotic in 𝑘. We first focus on 𝜏 = 1, for which we propose a fast

and practical 0.5547 approximation and later an asymptotically (1− 1/𝑒)− 1/Θ(𝑚)

algorithm (with runtime exponential in 𝑚, which is an input parameter). Then

using ideas from the 𝜏 = 1 case and our multi-objective maximization algorithm

for 𝑚 = 𝑜(𝑘), we give a (1 − 1/𝑒) approximation for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

. This algorithm

gives the best possible approximation guarantee (asymptotically), but is impractical.
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So, we give a fast algorithm but with worse approximation guarantee – 0.387. The

algorithm is designed for 𝜏 = 𝑜
(︀√︁

𝑘
𝑐(𝑘)

)︀
and gives a guarantee of 0.387

(︀
1 − 1

Θ(𝑐(𝑘))

)︀
,

where 𝑐(𝑘)
𝑘→∞−−−→ ∞ is an input parameter that governs the trade off between how

large 𝜏 can be and how fast the guarantee converges to 0.387. Finally, for more general

constraints where we seek deletion-robust solutions that belong to an Independence

system 1, we extend some of the ideas from the cardinality case into an enumerative

procedure with runtime scaling as 𝑛𝜏+1. This yields an 𝛼/(𝜏+1) approximation using

an 𝛼 approximation algorithm for 𝜏 = 0 as a subroutine.

1.2 Robust Appointment Scheduling

Consider the problem of scheduling appointments in service operations where cus-

tomers are served sequentially by a single server. Service times of customers are

uncertain, and we wish to assign time slots for serving the customers in advance.

A key practical setting where this problem arises is in health care services, where

there are numerous instances that require efficient scheduling of appointments, such

as scheduling outpatient appointments in primary care and specialty clinics, and

scheduling surgeries for operating rooms.

Modern health care involves several high-cost devices and facilities such as MRI

installations, CT scanners and operation rooms as well as highly trained personnel.

An appointment scheduling system must ensure high utilization of these resources,

while simultaneously offering small wait times and high quality of service to patients.

For instance, if one assigns a very small time interval for a surgery, then a delay

in the surgery could delay the start of the next surgery and so on. The costs and

inconvenience due to delays, for both the patients and the staff, are captured in the

overage cost of that surgery. On the other hand, if a surgery is assigned a large

time duration but finishes much sooner, the hospital incurs an underage cost in the

form of idle operation room and equipments until the next surgery commences. We

1An Independence system ℐ over a ground set 𝑁 is a collection of subsets such that the empty set
belongs to ℐ, and every subset of an independent set (a set that belongs to ℐ) is also independent.
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would like to design an appointment schedule that can achieve the desired trade-

off between overage and underage costs. As discussed in [MRZ14], appointment

systems in health care are often more involved and include a two-stage scheduling

process. A preliminary booking stage where patients and surgeons select preferred

dates and time windows for their appointments or surgeries. Then, given a group of

appointments booked within a day (or equivalent a schedule block in the first stage),

each appointment is assigned required resources (e.g., different operating rooms and

surgeons) and alloted a starting time. The latter step is typically performed a few

days in advance of the appointment dates from the first step, and it is this second

step that our formulation addresses.

We consider a robust formulation of this problem that was first introduced in

[MSS14]. For jobs 𝑖 ∈ {1, . . . , 𝑛}, let 𝑢𝑖, 𝑜𝑖 denote the per unit time underage and

overage costs respectively. Suppose that service time 𝑡𝑖 for job 𝑖 takes a value in the

uncertainty set [𝑝𝑖 − 𝛿𝑖, 𝑝𝑖 + 𝛿𝑖]. For now let us assume that jobs are scheduled for

service in a fixed order, which is the reverse order of their index. So job 𝑛 is served

first and job 1 last. We would like to appoint starting times 𝐴𝑖 for 𝑖 ∈ {0, 𝑛 − 1}.

With 𝐶𝑖 denoting the service completion time of job 𝑖, the problem can be formulated

as,

𝑅𝐴𝑆 : min
𝐴0,...,𝐴𝑛−1

max
𝑡𝑖∈[𝑝𝑖−𝛿𝑖,𝑝𝑖+𝛿𝑖] ∀𝑖∈[𝑛]

𝑛∑︁
𝑖=1

max{𝑜𝑖(𝐶𝑖 − 𝐴𝑖−1), 𝑢𝑖(𝐴𝑖−1 − 𝐶𝑖)}.

We further consider the problem where the order of jobs is not fixed a priori

and also a part of the decision process, and call this the 𝑅𝐴𝑆𝑆 problem (Robust

Appointment Scheduling and Sequencing).

Many existing models in the literature for appointment scheduling consider stochas-

tic formulations of the problem. There are several issues related to solving these

models in practice that [MSS14, MRZ14] discuss in great detail. For example, the

models assume full knowledge of the distributions and the proposed algorithms often

use sophisticated subroutines or sometimes lack analytical guarantees. The robust

formulation and algorithms we consider here circumvent these issues. Previously
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[MSS14] focused on the special case of 𝑅𝐴𝑆 where underage costs 𝑢𝑖 are identi-

cal/homogeneous for all 𝑖. We consider the general case and give a compact LP that

achieves the first constant factor (2) approximation. We also give closed form opti-

mal solutions in various special cases that supersede previous work. For the case of

𝑅𝐴𝑆𝑆 (where order of patients is interchangeable/flexible) with homogeneous under-

age costs, we show a simple ratio based heuristic that achieves a 𝛽 approximation

where 1.06036 < 𝛽 < 1.06043, improving the 2+𝜖 approximation in [MSS14]. Finally,

for the fully general case of flexible job order and arbitrary costs, we show a Θ(𝑛)

approximation.

1.3 Outline

The outline for the rest of the thesis is as follows.

In Chapter 2, we establish some common background for Chapters 3 & 4 by

reviewing relevant previous work on monotone submodular function maximization.

In Chapter 3, we focus on the problem of multi-objective maximization of mono-

tone submodular functions subject to a cardinality constraint. We show that as long

as the number of functions is much smaller than the cardinality parameter, the prob-

lem is approximable up to a factor of (1 − 1/𝑒) ≈ 0.632. We also give a fast and

practical algorithm with guarantee approaching (1− 1/𝑒)2 ≈ 0.399. Finally, we offer

a derandomization result for constant 𝑚 and outline some related open problems.

In Chapter 4, we focus on a robust formulation of the classical cardinality con-

strained single objective monotone submodular function maximization problem. Here

we seek solutions that are robust to adversarial removal of some number of elements.

We show the first constant factor approximation algorithms for the problem. In

fact, when the number of elements removed is suitably smaller than the cardinality

parameter, our algorithm approaches the best possible approximation guarantee of

(1 − 1/𝑒). Importantly, we also give a fast and practical algorithm with guarantee

0.387. Finally, we present a generic black box result for robust maximization of a

monotone submodular function subject to more general Independence system con-
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straint. We conclude with some open problems and a brief summary of more recent

work by others that addresses some of the open questions.

In Chapter 5, we study the robust version of an appointment scheduling problem

relevant to service systems in health care. We consider two different settings. In the

first setting, the order of jobs is fixed and the goal is to allocate time for the service

of each job. Previous work considered a special case of the problem and gave a closed

form optimal solution. We consider the general case and offer the first constant factor

guarantee via a simple LP. Moreover our algorithm is optimal and reduces to a closed

form optimal solution for special cases that supersede previous work. In the second

setting, the order of jobs is flexible and also a part of the decision process. Here we

show a simple ratio based heuristic is within ≈ 6% of the optimal for an important

special case, and we show a Θ(𝑛) approximation for the much harder general case.

Finally, in Chapter 6 we finish with some concluding remarks.
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Chapter 2

Monotone Submodular Function

Maximization

In this chapter we review existing work on the maximization of monotone submod-

ular functions 1. Recall, the problem of maximizing a single monotone submodular

function subject to a cardinality constraint,

𝑆𝑂 := max
𝐴⊆𝑁,|𝐴|≤𝑘

𝑓(𝐴).

Notice that if we remove the cardinality constraint, the unconstrained problem has

a trivial optimal solution: the ground set 𝑁 . Therefore, 𝑆𝑂 is perhaps the simplest

non-trivial problem one could study in this setting. The first theoretical result for this

problem goes back to [NWF78, NW78], where they showed that the greedy algorithm

(which we review here) gives a guarantee of (1 − 1/𝑒), and this is best possible in

the value-oracle model. Later, [Fei98] showed that this is also the best possible

approximation unless P=NP. While this settled the hardness and approximability of

the problem, finding faster approximations remained an open line of inquiry. Notably,

[BV14] found a faster algorithm for 𝑆𝑂 that improved the quadratic 𝑂(𝑛𝑘) query

complexity of the classical greedy algorithm to nearly linear complexity, by trading

1Recall, a set function 𝑓 : 2𝑁 → R on the ground set 𝑁 is submodular if, 𝑓(𝐴+𝑎)−𝑓(𝐴) ≤ 𝑓(𝐵+
𝑎)−𝑓(𝐵) for all 𝐵 ⊆ 𝐴 ⊆ 𝑁 and 𝑎 ∈ 𝑁 ∖𝐴. The function is monotone if 𝑓(𝐵) ≤ 𝑓(𝐴) for all 𝐵 ⊆ 𝐴
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off on the approximation guarantee. This was further improved by [MBK+15].

For the more general problem max𝐴∈ℐ 𝑓(𝐴), where ℐ is the collection of indepen-

dent sets of a matroid 2; the greedy algorithm is only 1
2
approximate [NWF78]. In

a breakthrough, [CCPV11, Von08] achieved a tight (1− 1/𝑒) approximation by (ap-

proximately) maximizing the multilinear extension of submodular functions, followed

by suitable rounding. Based on this framework, tremendous progress was made over

the last decade for a variety of different settings [CCPV11, Von08, FNS11, Von13,

VCZ11, CVZ10, DV12]. In the rest of this chapter, we review some of these algo-

rithms and their analysis where relevant. Our review is by no means comprehensive,

but geared towards enabling a better understanding of our contributions in Chapters

3 and 4.

2.1 The Greedy Algorithm and Variants

In this section we discuss two algorithms for 𝑆𝑂, the greedy algorithm [NWF78,

NW78] and the faster thresholding algorithm [BV14]. But first, we introduce some

notation which will be useful in Chapters 3 and 4 as well.

Recall, we use 𝑁 to denote our ground set of 𝑛 elements. Given set 𝐴 define the

marginal increase in value of function 𝑓 due to inclusion of set 𝑋 as,

𝑓(𝑋|𝐴) = 𝑓(𝐴 ∪𝑋)− 𝑓(𝐴).

We generally refer to singleton sets without braces {} and use +,− and ∪, ∖ inter-

changeably. Let 𝛽(𝛼) = 1− 1
𝑒𝛼

∈ [0, 1] for 𝛼 ≥ 0. The function increases monotonically

with 𝛼 and note that 𝛽(𝛼) ≤ 1 − (1 − 1
𝑘
)𝛼𝑘. This function appears naturally in our

analysis and will be useful for expressing approximation guarantees. In fact, as shown

in [NWF78, NW78], the natural greedy algorithm (below) achieves the best possible

guarantee of 𝛽(1) = (1− 1/𝑒).

2A matroid ℳ over a ground set 𝑁 is given by a collection of independent sets ℐ such that the
empty set belongs to ℐ, and every subset of an independent set (a set that belongs to ℐ) is also
independent. Further, if 𝐴 and 𝐵 are two independent sets and |𝐴| > |𝐵|, then there exists 𝑥 ∈ 𝐴∖𝐵
such that 𝐵 + 𝑥 ∈ ℐ.
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Algorithm 1 Greedy Algorithm

1: Input: 𝑘, 𝑓 and initialize 𝐴 = ∅

2: while |𝐴| < 𝑘 do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴)

3: Output: 𝐴

Starting with ∅, at each step the algorithm chooses an element that adds the

maximum marginal value to the current set, until 𝑘 elements are chosen. We use

the terms Algorithm 1 and the greedy algorithm interchangeably, both to refer to the

algorithm above. Below we state and prove a generalized version of the approximation

guarantee shown in [NWF78, NW78].

Lemma 1. [NWF78, NW78] Given ground set 𝑁 , monotone submodular function

𝑓 , let 𝑂𝑃𝑇 denote an optimal solution of 𝑆𝑂 with cardinality 𝑘. For all 𝛼 ≥ 0,

Algorithm 1 executed for 𝛼𝑘 steps yields a set 𝐴 with 𝑓(𝐴) ≥ 𝛽(𝛼)𝑓(𝑂𝑃𝑇 ).

Proof. Let 𝐴𝑖 be the set at iteration 𝑖 of the greedy algorithm. Then by monotonicity

we have, 𝑓(𝐴𝑖 ∪𝑂𝑃𝑇 ) ≥ 𝑓(𝑂𝑃𝑇 ). Further, by submodularity,

∑︀
𝑒∈𝑂𝑃𝑇∖𝐴𝑖

𝑓(𝑒|𝐴𝑖) ≥ 𝑓(𝑂𝑃𝑇 |𝐴𝑖)

= 𝑓(𝐴𝑖 ∪𝑂𝑃𝑇 )− 𝑓(𝐴𝑖)

≥ 𝑓(𝑂𝑃𝑇 )− 𝑓(𝐴𝑖)

Hence, there exists an element 𝑒* in 𝑂𝑃𝑇∖𝐴𝑖 such that, 𝑓(𝑒*|𝐴𝑖) ≥ 𝑓(𝑂𝑃𝑇 )−𝑓(𝐴𝑖)
𝑘

. This

gives us the recurring inequality,

𝑓(𝐴𝑖+1) ≥ 𝑓(𝐴𝑖 + 𝑒*) ≥ 𝑓(𝐴𝑖) +
𝑓(𝑂𝑃𝑇 )− 𝑓(𝐴𝑖)

𝑘
∀𝑖 ∈ {0, . . . , 𝛼𝑘 − 1}.

Therefore, 𝑓(𝑂𝑃𝑇 )− 𝑓(𝐴𝑖+1) ≤ (1− 1
𝑘
)(𝑓(𝑂𝑃𝑇 )− 𝑓(𝐴𝑖)). After 𝛼𝑘 iterations,

𝑓(𝑂𝑃𝑇 )− 𝑓(𝐴𝛼𝑘) ≤
(︁
1− 1

𝑘

)︁𝛼𝑘

𝑓(𝑂𝑃𝑇 )

=⇒ 𝛽(𝛼)𝑓(𝑂𝑃𝑇 ) ≤ 𝑓(𝐴𝛼𝑘)
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Notice that in each step, Algorithm 1 makes 𝑂(𝑛) queries to the oracle. There-

fore, it has an overall query complexity of 𝑂(𝑛𝑘), which is 𝑛2 in the worst case. A

remarkable improvement, that leads to a (1−1/𝑒)(1− 𝜖) approximation with runtime

𝑂(𝑛
𝜖
log 𝑛

𝜖
) was shown in [BV14]. Their thresholding algorithm is described below.

Algorithm 2 Thresholding Algorithm

1: Input: 𝑘, 𝑓, 𝜖 and set 𝐴 = ∅

2: Find 𝑤* = max𝑥∈𝑁 𝑓(𝑥)

3: 𝑤 = 𝑤*

4: while 𝑤 ≥ 𝜖
𝑛
𝑤* do

5: for all 𝑥 ∈ 𝑁∖𝐴 do

6: if |𝐴| == 𝑘 then output 𝐴 and terminate

7: else if 𝑓(𝑥|𝐴) ≥ 𝑤 then 𝐴 = 𝐴+ 𝑥

8: end for

9: 𝑤 = 𝑤(1− 𝜖)

10: end while

Similar to the greedy algorithm above, the thresholding algorithm is also 𝛽(𝛼)

approximate after 𝛼𝑘 elements are chosen. Unless mentioned otherwise, the thresh-

olding algorithm can be used as a subroutine in the algorithms discussed in Chapters 3

and 4, in place of the greedy algorithm. This improves the runtime of our algorithms,

at the cost of a multiplicative factor of (1− 𝜖) in the guarantee.

2.2 Continuous Greedy Framework

Recall that Algorithm 1 is 1
2
approximate for the more general problem max𝑆∈ℐ 𝑓(𝑆),

where ℐ is the collection of independent sets of a matroid. The continuous greedy

framework evolved as a means of improving this bound to (1 − 1/𝑒) for matroid

constraints [CCPV11, Von08]. It has found numerous other applications since then,

such as in multi-objective maximization of submodular functions [CVZ10], showing
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hardness results for various settings [Von13, DV12] and also for maximizing non-

monotone submodular functions [FNS11], to name a few. The overall idea is similar

to the relax-and-round framework employed for finding approximations to hard opti-

mization problems. However, unlike the usual application of relax-and-round, in this

instance it is not obvious what problem one should relax to, and moreover the right

relaxation is non-trivial to solve. To describe the framework we will need some more

notation first.

We use x𝑆 to denote the support vector of a set 𝑆 (1 along dimension 𝑖 if 𝑖 ∈ 𝑆

and 0 otherwise). We also use the short hand |x| to denote the ℓ1 norm of a vector

x. Let 𝑃 (ℳ) denote the matroid polytope 3 corresponding to the matroid ℳ with

collection of independent sets ℐ and rank4 𝑑. Given 𝑓 : 2𝑁 → R, its multilinear

extension over x = {𝑥1, . . . , 𝑥𝑛} ∈ [0, 1]𝑛 is defined as,

𝐹 (x) =
∑︁
𝑆⊆𝑁

𝑓(𝑆)
∏︁
𝑖∈𝑆

𝑥𝑖

∏︁
𝑗 ̸∈𝑆

(1− 𝑥𝑗).

The function can also be interpreted as the expectation of function value over sets

obtained by including element 𝑖 ∈ 𝑁 independently with probability 𝑥𝑖, for every 𝑖.

2.2.1 The Continuous Greedy Algorithm

𝐹 acts as a natural replacement for the original function 𝑓 in the continuous greedy

algorithm [CCPV11]. The algorithm always moves in a feasible direction that best

increases the value of function 𝐹 , similar to the greedy algorithm. So starting at the

origin with x0 = 0, the algorithm traces a trajectory {x𝑡}𝑇𝑡=0 in the matroid polytope

𝑃 (ℳ) such that,

x𝑡+1 = x𝑡 +
1

𝑇
argmax
y∈𝑃 (ℳ)

y.∇𝐹 (x𝑡).

Where 𝑇 = 𝑂(𝑑2) is a suitably chosen discretization. Note that while evaluating the

exact value of 𝐹 and its gradient is naturally hard in general, for the purpose of using

3This is the convex hull of the maximally independent sets of a matroid (also called the bases of
a matroid).

4The size of a maximial independent set.
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this function in optimization algorithms, approximations obtained using a sampling

based oracle suffice [BV14, CVZ10, CCPV11]. When the algorithm terminates, we

have a vector x𝑇 in the matroid polytope such that 𝐹 (x𝑇 ) ≥ (1 − 1/𝑒)𝑂𝑃𝑇 , where

𝑂𝑃𝑇 = max𝑆∈ℐ 𝑓(𝑆). By using pipage rounding [AS04] the point x𝑇 can be rounded

to a set 𝑋 ∈ ℐ such that, 𝑓(𝑋) ≥ 𝐹 (x𝑇 ). A key property that follows from mono-

tonicity and submodularity, and enables the above result is that at each step, there

exists some vector y ∈ 𝑃 (ℳ) such that y.∇𝐹 (x𝑡) + 𝐹 (x𝑡) ≥ 𝑂𝑃𝑇 .

Next, we briefly discuss how the framework enables simultaneous maximization

of multiple multilinear extensions of monotone submodular functions.

2.2.2 Maximizing Multiple Functions

Consider multilinear extensions 𝐹𝑖 for monotone submodular functions 𝑓𝑖, with 𝑖 ∈

{1, . . . ,𝑚}. Suppose there exists a set 𝑆 such that 𝑓𝑖(𝑆) ≥ 𝑂𝑃𝑇 for every 𝑖. Then

given arbitrary point x ∈ 𝑃 (ℳ), there also exists a vector y ∈ 𝑃 (ℳ) such that,

y.∇𝐹𝑖(x) + 𝐹𝑖(x) ≥ 𝑂𝑃𝑇 for every 𝑖. One can find such a vector by solving the LP,

𝐿𝑃 (x) := {max 0 | y.∇𝐹𝑖(x) + 𝐹𝑖(x) ≥ 𝑂𝑃𝑇 ∀𝑖, y ∈ 𝑃 (ℳ)}

If no such vector exists, we get a certificate of infeasibility from the dual of the LP.

Using this property, we have an algorithm for simultaneously maximizing multiple

multilinear extensions of monotone submodular functions. As before, starting at the

origin with x0 = 0, the algorithm traces a trajectory {x𝑡}𝑇𝑡=0 in the matroid polytope

𝑃 (ℳ) such that, x𝑡+1 = x𝑡 +
1
𝑇
y, where y is now a solution to 𝐿𝑃 (x𝑡). The final

point x𝑇 is such that 𝐹𝑖(x𝑇 ) ≥ (1− 1/𝑒)𝑂𝑃𝑇 for every 𝑖.

We formally summarize this the lemma below and refer the interested reader to

[CVZ10] for further details (which will not be necessary for subsequent discussion).

Lemma 2. ([CVZ10] Lemma 7.3) Given matroid ℳ, submodular functions 𝑓𝑖 and

values 𝑉𝑖, the continuous greedy algorithm finds a point x ∈ 𝑃 (ℳ) such that 𝐹𝑖(x) ≥

(1− 1/𝑒)𝑉𝑖,∀𝑖 or outputs a certificate of infeasibility.
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Note that rounding is not straightforward anymore. Using pipage rounding one

find a set 𝑋 such that 𝑓𝑖(𝑋) ≥ 𝐹𝑖(x𝑇 ) for a specific 𝑖, but not for every 𝑖. This is

where swap rounding comes into the picture [CVZ10]. This technique is discussed

further in Chapter 3.

2.2.3 Runtime

A straightforward implementation of the continuous greedy algorithm for a single

objective can take up to Θ(𝑛8) steps [CCPV11]. This was reduced to 𝑂(𝑛𝑘4/𝜖3) in

[FW14] and subsequently to �̃�(𝑛2) in [BV14]. However, the last two improvements

do not obviously translate when solving for multiple functions. Further, unlike the

case of a single submodular function, where the LP at each step is an instance of

the max weight independent set problem over matroids (which lends itself to a fast

greedy solution), with multiple functions, one needs to solve the LP with a matroid

separation oracle, exacerbating the runtime problem.
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Chapter 3

Multi-objective Maximization of

Monotone Submodular Functions

In this chapter we study the following problem,

𝑀𝑂1 : max
𝐴⊆𝑁,|𝐴|≤𝑘

min
𝑖∈{1,2,...,𝑚}

𝑓𝑖(𝐴).

Each function 𝑓𝑖 is monotone submodular. We refer the reader to Chapter 1, Section

1.1.1 for a discussion on applications. Our focus will be on finding algorithms for the

problem when the number of objectives 𝑚 is super-constant but much smaller than

the cardinality parameter 𝑘 i.e., 𝑚 = 𝑜(𝑘). We start by discussing related work.

3.1 Related Work

[KMGG08] amalgamated various applications and formally introduced 𝑀𝑂1. They

refer to is as the Robust Submodular Observation Selection (RSOS) problem and

show that when 𝑚 = Ω(𝑘) the problem is inapproximable (no non-trivial approxi-

mation possible) unless P=NP. Consequently, they proceeded to give a bi-criterion

approximation algorithm which achieves the optimal answer by violating the cardi-

nality constraint.

On the other hand, [CVZ10] showed a randomized (1 − 1/𝑒) − 𝜖 approximation
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for constant 𝑚 in the more general case of matroid constraint, as an application of

a new technique for rounding over a matroid polytope, called swap rounding. The

runtime scales as 𝑂(𝑛𝑚/𝜖3 + 𝑛8) 1. Note, [CVZ10] consider a different but equivalent

formulation of the problem that stems from the influential paper on multi-objective

optimization [PY00]. The alternative formulation, which we review in Section 3.3, is

the reason we call this a multi-objective maximization problem (same as [CVZ10]).

To the best of our knowledge, when 𝑚 = 𝑜(𝑘) no constant factor approximation

algorithms or inapproximability results were known prior to this work.

3.2 Our Contributions

Our focus here is on the regime 𝑚 = 𝑜(𝑘), where we show three algorithmic results.

1. Asymptotically optimal approximation algorithm: We give a (1 −

1/𝑒 − 𝜖)(1 − 𝑚
𝑘𝜖3

) approximation, which for 𝑚 = 𝑜
(︀

𝑘
log3 𝑘

)︀
and 𝜖 = min{ 1

8 ln𝑚
, 4
√︀

𝑚
𝑘
}

tends to 1 − 1/𝑒 as 𝑘 → ∞. The algorithm is randomized and outputs such an

approximation w.h.p. Observe that this implies a steep transition around 𝑚, due to

the inapproximability result (to within any non-trivial factor) for 𝑚 = Ω(𝑘).

We obtain this via extending the matroid based algorithm of [CVZ10], which relies

on the continuous greedy approach, resulting in a runtime of 𝑂(𝑛8). Note that there

is no 𝜖 dependence in the runtime, unlike the result from [CVZ10]. The key idea

behind the result is quite simple, and relies on exploiting the fact that we are dealing

with a cardinality constraint, far more structured than matroids.

2. Fast and practical approximation algorithm: In practice, 𝑛 can range

from tens of thousands to millions [OUS+08, LKG+07], which makes the above run-

time intractable. To this end, we develop a fast 𝑂( 𝑛
𝛿3
log𝑚 log 𝑛

𝛿
) time (1− 1/𝑒)2(1−

𝑚/𝑘𝜖3)− 𝜖− 𝛿 approximation. Under the same asymptotic conditions as above, the

guarantee simplifies to (1− 1/𝑒)2 − 𝛿. We achieve this via the Multiplicative-Weight-

Updates (MWU) framework, which replaces the bottleneck continuous greedy process.

This is what costs us the additional factor of (1 − 1/𝑒) in the guarantee but allows

1The 𝑛8 term could potentially be improved to 𝑛5 by leveraging subsequent work [BV14, FW14].
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us to leverage the runtime improvements for 𝑆𝑂 achieved in [BV14, MBK+15].

MWU has proven to be a vital tool in the past few decades [GK94, AK07, Bie06,

Fle00, GK04, GK07, KY07, You95, You01, PST91, AHK12]. Linear functions and

constraints have been the primary setting of interest in these works, but recent ap-

plications have shown its usefulness when considering non-linear and in particular

submodular objectives [AG12, CJV15]. Unlike these recent applications, we instead

apply the MWU framework in vein of the Plotkin-Shmoys-Tardos scheme for lin-

ear programming [PST91], essentially showing that the non-linearity only costs us a

another factor of (1−1/𝑒) in the guarantee and yields a nearly linear time algorithm.

3. Finding a deterministic approximation for small 𝑚: While the above

results are all randomized, we also show a simple greedy based deterministic (1 −

1/𝑒 − 𝜖) approximation with runtime 𝑘𝑛𝑚/𝜖4 . This follows by establishing an upper

bound on the increase in optimal solution value as a function of cardinality 𝑘.

Outline: We start with definitions and preliminaries in Section 3.3, where we also

review relevant parts of the algorithm in [CVZ10] that are essential for understand-

ing the results here. In Section 3.4, we state and prove the main results. Since the

guarantees we present are asymptotic and technically converge to the constant fac-

tors indicated as 𝑘 becomes large, in Section 3.5 we test the performance empirically.

A heuristic closely inspired by our MWU based algorithm achieves improved perfor-

mance over previous heuristics, even for small 𝑘 and large 𝑚. Finally, we conclude in

Section 3.6 with some open problems.

3.3 Preliminaries

3.3.1 Definitions & review

Let us start by introducing the alternative formulation of the multi-objective max-

imization problem that we alluded to earlier. Introduced in [CVZ10], we call this

formulation 𝑀𝑂2. Given a target value 𝑉𝑖 (positive real) with every function 𝑓𝑖, the

goal in𝑀𝑂2 is to find a set 𝑆* of size at most 𝑘, such that 𝑓𝑖(𝑆
*) ≥ 𝑉𝑖, ∀𝑖 ∈ {1, . . . ,𝑚}
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or certify that no 𝑆* exists. More feasibly, one aims to efficiently find a set 𝑆 of size

𝑘 such that 𝑓𝑖(𝑆) ≥ 𝛼𝑉𝑖 for all 𝑖 and some factor 𝛼, or certify that there is no set

𝑆* of size 𝑘 such that 𝑓𝑖(𝑆
*) ≥ 𝑉𝑖, ∀𝑖. W.l.o.g., assume 𝑉𝑖 = 1 for every 𝑖 (since we

can consider functions 𝑓𝑖(.)/𝑉𝑖 instead). Therefore, 𝑀𝑂2 is equivalent to the decision

version of 𝑀𝑂1: Given 𝑡 > 0, find a set 𝑆* of size at most 𝑘 such that min𝑖 𝑓𝑖(𝑆
*) ≥ 𝑡,

or give a certificate of infeasibility.

In𝑀𝑂2 we can always consider the modified submodular objectives min{𝑓𝑖(.), 𝑉𝑖}.

So w.l.o.g., assume that 𝑓𝑖(𝑆) ≤ 𝑉𝑖 for every set 𝑆 and every function 𝑓𝑖. To avoid

any confusion we highlight this assumption below,

Assumptions. W.l.o.g. given target values 𝑉𝑖, assume 𝑓𝑖(𝑆) ≤ 𝑉𝑖 for every set 𝑆 ⊆

𝑁 , for every 𝑖 ∈ {1, . . . ,𝑚}.

For both 𝑀𝑂1,𝑀𝑂2 we use 𝑆𝑘 to denote an optimal/feasible set (optimal for

𝑀𝑂1, and feasible for 𝑀𝑂2) to the problem and 𝑂𝑃𝑇𝑘 to denote the optimal value

for formulation 𝑀𝑂1. Given two vectors x,y ∈ [0, 1]𝑛, let x∨y denote the component

wise maximum. Then we define marginals for 𝐹 as,

𝐹 (x|y) = 𝐹 (x ∨ y)− 𝐹 (y).

We now give an overview of the algorithm from [CVZ10], which is based on 𝑀𝑂2. To

simplify the description we focus on cardinality constraint, even though it is designed

more generally for matroid constraint. We refer to it as CVZ, and it has three stages.

Recall, the algorithm runs in time 𝑂(𝑛𝑚/𝜖3 + 𝑛8).

Stage 1: This stage is necessary for technical reasons associated with the rounding

procedure in Stage 3. Intuitively, this is a pre-processing stage with the purpose of

picking a small initial set consisting of elements with ’large’ marginal values, i.e.

marginal value at least 𝜖3𝑉𝑖 for some function 𝑓𝑖.

Given a set 𝑆 of size 𝑘, index elements in 𝑆 = {𝑠1, . . . , 𝑠𝑘} in the order in which

the greedy algorithm would pick them. Now, there are at most 1/𝜖3 elements such

that 𝑓𝑖(𝑠𝑗|{𝑠1, . . . , 𝑠𝑗−1}) ≥ 𝜖3𝑉𝑖 for any fixed 𝑖, otherwise by monotonicity we have

that 𝑓𝑖(𝑆) > 𝑉𝑖 (violating our w.l.o.g. assumption that 𝑓𝑖(𝑆) ≤ 𝑉𝑖 ∀𝑖). In fact, due to
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decreasing marginal values we have, 𝑓𝑖(𝑠𝑗|{𝑠1, . . . , 𝑠𝑗−1}) < 𝜖3𝑉𝑖 for every 𝑗 > 1/𝜖3.

Therefore, we focus on sets of size≤ 𝑚/𝜖3 (at most 1/𝜖3 elements for each function)

to find an initial set such that the remaining elements have marginal value ≤ 𝜖3𝑉𝑖

for 𝑓𝑖, for every 𝑖. In particular, one can try all possible initial sets of this size (i.e.

run subsequent stages with different starting sets), leading to the 𝑛𝑚/𝜖3 term in the

runtime. Stages 2 and 3 have runtime polynomial in 𝑚 (in fact Stage 3 has runtime

independent of 𝑚). Hence, Stage 1 is really the bottleneck. For the more general

case of matroid constraint, it is not obvious at all if one can do better than brute

force enumeration over all possible starting sets and still retain the approximation

guarantee. However, we will show that for cardinality constraints one can easily

avoid enumeration.

Stage 2: Given a starting set 𝑆 from stage one, this stage works with the ground

set 𝑁 − 𝑆 and runs the continuous greedy algorithm. Suppose a feasible set 𝑆𝑘

exists for the problem, then for the right starting set 𝑆1 ⊂ 𝑆𝑘, this stage outputs a

fractional point x(𝑘1) ∈ [0, 1]𝑛 with |x(𝑘1)| = 𝑘1 = 𝑘− |𝑆1| such that 𝐹𝑖(x(𝑘1)|x𝑆1) ≥

(1 − 1/𝑒)(𝑉𝑖 − 𝑓𝑖(𝑆1)) for every 𝑖. Where 𝐹𝑖 is the multilinear extension of 𝑓𝑖 and

we used the notation for marginals 𝐹𝑖(.|.), introduced in Chapter 2 Section 2.2. This

stage is computationally expensive and takes time 𝑂(𝑛8). For additional details, we

refer the reader to Chapter 2 Section 2.2.2, and [CVZ10].

Stage 3: For the right starting set 𝑆1 (if one exists), Stage 2 successfully outputs

a point x(𝑘1). Stage 3 now follows a random process that converts x(𝑘1) into a set

𝑆2 of size 𝑘1 such that, 𝑆2 ∈ 𝑁 − 𝑆1 and 𝑓𝑖(𝑆1 ∪ 𝑆2) ≥ (1− 1/𝑒)(1− 𝜖)𝑉𝑖, ∀𝑖 as long

as 𝜖 < 1/8 ln𝑚. The rounding procedure is called swap rounding and we include a

specialized version of the formal lemma below.

Lemma 3. ([CVZ10] Theorem 1.4, Theorem 7.2) Given 𝑚 monotone submodular

functions 𝑓𝑖(.) with the maximum value of singletons in [0, 𝜖3𝑉𝑖] for every 𝑖; a frac-

tional point x with |x| ∈ Z and 𝜖 < 1
8𝛾 ln𝑚

. Swap Rounding yields a set 𝑅 with
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cardinality |x|, such that,

∑︁
𝑖

Pr[𝑓𝑖(𝑅) < (1− 𝜖)𝐹𝑖(x)] < 𝑚𝑒−1/8𝜖 < 1/𝑚𝛾−1.

Remark: For any 𝛾 > 1, the above can be converted to a result w.h.p. by standard

repetition. Also this is a simplified version of the matroid based result in [CVZ10].

The condition in Lemma 3 that requires that the value of every singleton is at

most 𝜖3𝑉𝑖 is the reason behind Stage 1 of the algorithm. For the right starting set

𝑆1, all elements which could possibly violate the condition in Lemma 3 have been

included in 𝑆1 and are thus absent from the support of x(𝑘1).

3.3.2 Some Simple Heuristics

Before we present the main results, let us take a step back and examine some variants

of the standard greedy algorithm. To design a greedy heuristic for multiple functions,

what should the objective for greedy selection be?

One possibility is to split the selection of 𝑘 elements into 𝑚 equal parts. In part

𝑖, pick 𝑘/𝑚 elements greedily w.r.t. function 𝑓𝑖. It is not difficult to see that this

is a (tight) 𝛽(𝑘/𝑚) approximation. Second, recall that the convex combination of

monotone submodular functions is also monotone and submodular. Therefore, one

could run the greedy algorithm on a fixed convex combination of the 𝑚 functions.

It can be shown this does not lead to an approximation better than 1/Θ(𝑚). This

is indeed the idea behind the bi-criterion approximation in [KMGG08]. Third, one

could select elements greedily w.r.t. the objective function ℎ(.) = min𝑖 𝑓𝑖(.). A

näıve implementation of this algorithm can have arbitrarily bad performance even for

𝑚 = 2. We show later in Section 3.4.3, that if one greedily (w.r.t. ℎ(.)) picks sets of

size 𝑘′ instead of singletons at each step, for large enough 𝑘′ one can get arbitrarily

close to (1− 1/𝑒).
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3.4 Main Results

3.4.1 Asymptotic (1− 1/𝑒) Approximation for 𝑚 = 𝑜
(︀

𝑘
log3 𝑘

)︀
We replace the enumeration in Stage 1 with a single starting set, obtained by scanning

once over the ground set. The main idea is simply that for the cardinality constraint

case, any starting set that fulfills the Stage 3 requirement of small marginals will be

acceptable (not true for general matroids).

New Stage 1: Start with 𝑆1 = ∅ and pass over all elements once in arbitrary

order. For each element 𝑒, add it to 𝑆1 if for some 𝑖, 𝑓𝑖(𝑒|𝑆1) ≥ 𝜖3𝑉𝑖. Note that we

add at most 𝑚/𝜖3 elements (at most 1/𝜖3 for each function). When the subroutine

terminates, for every remaining element 𝑒 ∈ 𝑁∖𝑆1, 𝑓𝑖(𝑒|𝑆1) < 𝜖3𝑉𝑖,∀𝑖 (as required by

Lemma 3). Let 𝑘1 = 𝑘 − |𝑆1| and note 𝑘1 ≥ 𝑘 −𝑚/𝜖3.

Stage 2 remains the same as CVZ and outputs a fractional point x(𝑘1) with

|x(𝑘1)| = 𝑘1. While enumeration over all starting sets allowed us to find a starting

set such that 𝐹𝑖(x(𝑘1)|x𝑆1) ≥ (1 − 1/𝑒)(𝑉𝑖 − 𝑓𝑖(𝑆1)) for every 𝑖; with the new Stage

1 we will need to further exploit properties of the multilinear extension to show a

similar lower bound on the marginal value of x(𝑘1).

Corollary 4. Given a point x ∈ [0, 1]𝑛 with |x| = 𝑘 and a multilinear extension 𝐹

of a monotone submodular function, for every 𝑘1 ≤ 𝑘,

𝐹
(︁𝑘1
𝑘
x
)︁
≥ 𝑘1

𝑘
𝐹 (x).

Proof. Note that the statement is true for concave 𝐹 . The proof now follows directly

from the concavity of multilinear extensions in positive directions (Section 2.1 of

[CCPV11]).

Lemma 5. 𝐹𝑖(x(𝑘1)|x𝑆1) ≥ 𝛽(1)𝑘1
𝑘
(𝑉𝑖 − 𝑓𝑖(𝑆1)) for every 𝑖.

Proof. Recall that 𝑆𝑘 denotes a feasible solution with cardinality 𝑘, and let x𝑆𝑘
denote

its characteristic vector. Clearly, |x𝑆𝑘∖𝑆1| ≤ 𝑘 and 𝐹𝑖(x𝑆𝑘∖𝑆1 |x𝑆1) = 𝑓𝑖(𝑆𝑘|𝑆1) ≥

(𝑉𝑖 − 𝑓𝑖(𝑆1)) for very 𝑖. And now from Corollary 4, we have that there exists a point
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x′ with |x′| = 𝑘1 such that 𝐹𝑖(x
′|x𝑆1) ≥ 𝑘1

𝑘
𝐹𝑖(x𝑆𝑘∖𝑆1|x𝑆1) for every 𝑖. Finally, using

Lemma 2 we have 𝐹𝑖(x(𝑘1)|x𝑆1) ≥ 𝛽(1)𝐹𝑖(x
′|𝑆1), which gives the desired bound.

Stage 3 rounds x(𝑘1) to 𝑆2 of size 𝑘1, and final output is 𝑆1 ∪ 𝑆2. The following

theorem now completes the analysis.

Theorem 6. For 𝜖 = min{ 1
8 ln𝑚

, 4
√︀

𝑚
𝑘
} we have, 𝑓𝑖(𝑆1 ∪ 𝑆2) ≥ (1 − 𝜖)(1 − 1/𝑒)(1 −

𝑚/𝑘𝜖3)𝑉𝑖 ∀𝑖 with constant probability. For 𝑚 = 𝑜
(︀
𝑘/ log3 𝑘

)︀
the factor is asymptoti-

cally (1− 1/𝑒).

Proof. From Lemma 5 and applying Lemma 3 we have, 𝑓𝑖(𝑆2|𝑆1) ≥ (1−𝜖)(1−1/𝑒)(1−

𝑚/𝑘𝜖3)(𝑉𝑖 − 𝑓𝑖(𝑆1)),∀𝑖. Therefore, 𝑓𝑖(𝑆1 ∪ 𝑆2) ≥ (1 − 𝜖)(1 − 1/𝑒)(1 − 𝑚/𝑘𝜖3)𝑉𝑖,∀𝑖.

Note that the runtime is now independent of 𝜖. Stage 1 has runtime 𝑂(𝑛) and

Stages 2 and 3 have runtime polynomial in 𝑛,𝑚. To refine the guarantee, we choose

𝜖 = min{ 1
8 ln𝑚

, 4
√︀

𝑚
𝑘
}, where the 1

8 ln𝑚
is due to Lemma 3 and the 4

√︀
𝑚
𝑘

term is to

balance 𝜖 and 𝑚/𝑘𝜖3. The resulting guarantee becomes (1 − 1/𝑒)(1 − ℎ(𝑘)), where

the function ℎ(𝑘) → 0 as 𝑘 → ∞, so long as 𝑚 = 𝑜
(︀

𝑘
log3 𝑘

)︀
.

3.4.2 Fast, Asymptotic (1− 1/𝑒)2 − 𝛿 Approximation for 𝑚 =

𝑜
(︀

𝑘
log3 𝑘

)︀
While the previous algorithm achieves the best possible asymptotic guarantee, it

is infeasible to use in practice. The main underlying issue was our usage of the

continuous greedy algorithm in Stage 2 which has runtime 𝑂(𝑛8), but the flexibility

offered by continuous greedy was key to maximizing the multilinear extensions of all

functions at once. To improve the runtime we avoid continuous greedy and find an

alternative in Multiplicative-Weight-Updates (MWU) instead. MWU allows us to

combine multiple submodular objectives together into a single submodular objective

and utilize fast algorithms for 𝑆𝑂 at every step.

The algorithm consists of 3 stages as before. Stage 1 remains the same as the

New Stage 1 introduced in the previous section. Let 𝑆1 be the output of this stage

as before. Stage 2 is replaced with a fast MWU based subroutine that runs for
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𝑇 = 𝑂( ln𝑚
𝛿2

) rounds and solves an instance of 𝑆𝑂 during each round. Here 𝛿 is an

artifact of MWU and manifests as a subtractive term in the approximation guarantee.

The currently fastest algorithm for 𝑆𝑂, in [MBK+15], has runtime 𝑂(𝑛 log 1
𝛿′
) and

an expected guarantee of (1− 1/𝑒)− 𝛿′. However, the slightly slower, but still nearly

linear time 𝑂( 𝑛
𝛿′
log 𝑛

𝛿′
) thresholding algorithm in [BV14], has (the usual) deterministic

guarantee of (1 − 1/𝑒) − 𝛿′. Both of these are known to perform well in practice

and using either would lead to a runtime of 𝑇 × �̃�(𝑛/𝛿) = �̃�( 𝑛
𝛿3
), which is a vast

improvement over the previous algorithm.

Now, fix some algorithm 𝒜 for 𝑆𝑂 with guarantee 𝛼, and let 𝒜(𝑓, 𝑘) denote the

set it outputs given monotone submodular function 𝑓 and cardinality constraint 𝑘 as

input. Note that 𝛼 can be as large as 1 − 1/𝑒, and we have 𝑘1 = 𝑘 − |𝑆1| as before.

Then the new Stage 2 is,

Algorithm 2 Stage 2: MWU

1: Input: 𝛿, 𝑇 = 2 ln𝑚
𝛿2

, 𝜆1
𝑖 = 1/𝑚, 𝑓𝑖(.) =

𝑓𝑖(.|𝑆1)
𝑉𝑖−𝑓𝑖(𝑆1)

2: while 1 ≤ 𝑡 ≤ 𝑇 do 𝑔𝑡(.) =
∑︀𝑚

𝑖=1 𝜆
𝑡
𝑖𝑓𝑖(.)

3: 𝑋 𝑡 = 𝒜(𝑔𝑡, 𝑘1)

4: 𝑚𝑡
𝑖 = 𝑓𝑖(𝑋

𝑡)− 𝛼

5: 𝜆𝑡+1
𝑖 = 𝜆𝑡

𝑖(1− 𝛿𝑚𝑡
𝑖)

6: 𝑡 = 𝑡+ 1

7: Output: x2 =
1
𝑇

∑︀𝑇
𝑡=1𝑋

𝑡

The point x2 obtained above is rounded to a set 𝑆2 in Stage 3 (which remains

unchanged). The final output is 𝑆1 ∪ 𝑆2. Note that we abuse notation and used 𝑋 𝑡

to denote sets as well as the respective support vectors. We continue to use 𝑋 𝑡 and

x𝑋𝑡 interchangeably in the below.

This application of MWU is unlike [AG12, CJV15], where broadly speaking the

MWU framework is applied in a novel way to determine how an individual element is

picked (or how a direction for movement is chosen in case of continuous greedy). In

contrast, we use standard algorithms for 𝑆𝑂 and pick an entire set before changing
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weights. Also, [CJV15] uses MWU along with the continuous greedy framework to

tackle harder settings, but for our setting using the continuous greedy framework

eliminates the need for MWU altogether and in fact, we use MWU as a replacement

for continuous greedy.

Now, consider the following intuitive schema. We would like to find a set 𝑋 of size

𝑘 such that 𝑓𝑖(𝑋) ≥ 𝛼𝑉𝑖 for every 𝑖. While this seems hard, consider the combination∑︀
𝑖 𝜆𝑖𝑓𝑖(.), which is also monotone submodular for non-negative 𝜆𝑖. We can easily

find a set 𝑋𝜆 such that
∑︀

𝑖 𝜆𝑖𝑓𝑖(𝑋𝜆) ≥
∑︀

𝑖 𝜆𝑖𝑉𝑖, since this is a single objective problem

and we have fast approximations for 𝑆𝑂. However, for a fixed set of scalar weights 𝜆𝑖,

solving the 𝑆𝑂 problem instance need not give a set that has sufficient value for every

individual function 𝑓𝑖(.). This is where MWU comes into the picture. We start with

uniform weights for functions, solve an instance of 𝑆𝑂 to get a set𝑋1. Then we change

weights to undermine the functions for which 𝑓𝑖(𝑋
1) was closer to the target value and

stress more on functions for which 𝑓𝑖(𝑋
1) was small, and repeat now with new weights.

After running many rounds of this, we have a collection of sets 𝑋 𝑡 for 𝑡 ∈ {1, . . . , 𝑇}.

Using tricks from standard MWU analysis ([AHK12]) along with submodularity and

monotonicity, we show that
∑︀

𝑡
𝑓𝑖(𝑋

𝑡|𝑆1)
𝑇

' (1 − 1/𝑒)(𝑉𝑖 − 𝑓𝑖(𝑆1)). Thus far, this

resembles how MWU has been used in the literature for linear objectives, for instance

the Plotkin-Shmoys-Tardos framework for solving LPs. However, a new issue now

arises due to the non-linearity of functions 𝑓𝑖. As an example, suppose that by some

coincidence x2 = 1
𝑇

∑︀𝑇
𝑡=1 𝑋

𝑡 turns out to be a binary vector, so we easily obtain

the set 𝑆2 from x2. We want to lower bound 𝑓𝑖(𝑆2|𝑆1), and while we have a good

lower bound on
∑︀

𝑡
𝑓𝑖(𝑋

𝑡|𝑆1)
𝑇

, it is unclear how the two quantities are related. More

generally, we would like to show that 𝐹𝑖(x2|x𝑆1) ≥ 𝛽
∑︀

𝑡
𝑓𝑖(𝑋

𝑡|𝑆1)
𝑇

and this would then

give us a 𝛽𝛼 = 𝛽(1 − 1/𝑒) approximation using Lemma 3. Indeed, we show that

𝛽 ≥ (1 − 1/𝑒), resulting in a (1 − 1/𝑒)2 approximation. Now, we state and prove

lemmas that formalize the above intuition.

Lemma 7. 𝑔𝑡(𝑋 𝑡) ≥ 𝑘1
𝑘
𝛼
∑︀

𝑖 𝜆
𝑡
𝑖,∀𝑡.

Proof. Consider the optimal set 𝑆𝑘 and note that
∑︀

𝑖 𝜆
𝑡
𝑖𝑓𝑖(𝑆𝑘) ≥

∑︀
𝑖 𝜆

𝑡
𝑖,∀𝑡. Now
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the function 𝑔𝑡(.) =
∑︀

𝑖 𝜆
𝑡
𝑖𝑓𝑖(.), being a convex combination of monotone submodular

functions, is also monotone submodular. We would like to show that there exists a set

𝑆 ′ of size 𝑘1 such that 𝑔𝑡(𝑆 ′) ≥ 𝑘1
𝑘

∑︀
𝑖 𝜆

𝑡
𝑖. Then the claim follows from the fact that

𝒜 is an 𝛼 approximation for monotone submodular maximization with cardinality

constraint.

To see the existence of such a set 𝑆 ′, greedily index the elements of 𝑆𝑘 us-

ing 𝑔𝑡(.). Suppose that the resulting order is {𝑠1, . . . , 𝑠𝑘}, where 𝑠𝑖 is such that

𝑔𝑡(𝑠𝑖|{𝑠1, . . . , 𝑠𝑖−1}) ≥ 𝑔𝑡(𝑠𝑗|{𝑠1, . . . , 𝑠𝑖−1}) for every 𝑗 > 𝑖. Then the truncated set

{𝑠1, . . . , 𝑠𝑘−|𝑆1|} has the desired property, and we are done.

Lemma 8. ∑︀
𝑡 𝑓𝑖(𝑋

𝑡)

𝑇
≥ 𝑘1

𝑘
(1− 1/𝑒)− 𝛿 , ∀𝑖.

Proof. Suppose we have,

∑︀
𝑡 𝑓𝑖(𝑋

𝑡)− 𝛼

𝑇
+ 𝛿 ≥ 1

𝑇

∑︁
𝑡

∑︁
𝑖

𝜆𝑡
𝑖∑︀
𝑖 𝜆

𝑡
𝑖

(𝑓𝑖(𝑋
𝑡)− 𝛼),∀𝑖. (3.1)

Then assuming 𝛼 = (1− 1/𝑒), the RHS above simplifies to,

1

𝑇

∑︁
𝑡

𝑔(𝑋 𝑡)∑︀
𝑖 𝜆

𝑡
𝑖

− (1− 1/𝑒) ≥ (1− 1/𝑒)(
𝑘1
𝑘

− 1) (using Lemma 7)

And we have for every 𝑖,

∑︀
𝑡 𝑓𝑖(𝑋

𝑡)− (1− 1/𝑒)

𝑇
+ 𝛿 ≥ (1− 1/𝑒)(

𝑘1
𝑘

− 1)∑︀
𝑡 𝑓𝑖(𝑋

𝑡)

𝑇
≥ 𝑘1

𝑘
(1− 1/𝑒)− 𝛿.

Now, the proof for (3.1) closely resembles the analysis of Theorem 3.3 and 2.1 in

[AHK12]. We will use the potential function Φ𝑡 =
∑︀

𝑖 𝜆
𝑡
𝑖. Let 𝑝𝑡𝑖 = 𝜆𝑡

𝑖/Φ
𝑡 and
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𝑀 𝑡 =
∑︀

𝑖 𝑝
𝑡
𝑖𝑚

𝑡
𝑖. Then we have,

Φ𝑡+1 =
∑︁
𝑖

𝜆𝑡
𝑖(1− 𝛿𝑚𝑡

𝑖)

= Φ𝑡 − 𝛿Φ𝑡
∑︁
𝑖

𝑝𝑡𝑖𝑚
𝑡
𝑖

= Φ𝑡(1− 𝛿𝑀 𝑡) ≤ Φ𝑡𝑒−𝛿𝑀𝑡

After 𝑇 rounds, Φ𝑇 ≤ Φ1𝑒−𝛿
∑︀

𝑡 𝑀
𝑡
. Further, for every 𝑖,

Φ𝑇 ≥ 𝑤𝑇
𝑖 = 1

𝑚

∏︀
𝑡(1− 𝛿𝑚𝑡

𝑖)

ln(Φ1𝑒−𝛿
∑︀

𝑡 𝑀
𝑡
) ≥

∑︀
𝑡 ln(1− 𝛿𝑚𝑡

𝑖)− ln𝑚

𝛿
∑︀

𝑡 𝑀
𝑡 ≤ ln𝑚+

∑︀
𝑡 ln(1− 𝛿𝑚𝑡

𝑖)

Using ln( 1
1−𝜖

) ≤ 𝜖 + 𝜖2 and ln(1 + 𝜖) ≥ 𝜖 − 𝜖2 for 𝜖 ≤ 0.5, and with 𝑇 = 2 ln𝑚
𝛿2

and

𝛿 < (1− 1/𝑒) (for a positive approximation guarantee), we have,

∑︀
𝑡 𝑀

𝑡

𝑇
≤ 𝛿 +

∑︀
𝑡 𝑚

𝑡
𝑖

𝑇
,∀𝑖.

Lemma 9. Given monotone submodular function 𝑓 , its multilinear extension 𝐹 , sets

𝑋 𝑡 for 𝑡 ∈ {1, . . . , 𝑇}, and a point x =
∑︀

𝑡𝑋
𝑡/𝑇 , we have,

𝐹 (x) ≥ (1− 1/𝑒)
1

𝑇

𝑇∑︁
𝑡=1

𝑓(𝑋 𝑡).

Proof. Consider the concave closure of a submodular function 𝑓 ,

𝑓+(x) = max
𝛼

{
∑︁
𝑋

𝛼𝑋𝑓(𝑋)|
∑︁
𝑋

𝛼𝑋𝑋 = x,
∑︁
𝑋

𝛼𝑋 ≤ 1, 𝛼𝑋 ≥ 0 ∀𝑋 ⊆ 𝑁}.

Clearly, 𝑓+
𝑖 (x) ≥

∑︀
𝑡 𝑓𝑖(𝑋

𝑡)

𝑇
. So it suffices to show 𝐹𝑖(x) ≥ (1 − 1/𝑒)𝑓+

𝑖 (x), which in

fact, follows from Lemmas 4 and 5 in [CCPV07].

Alternatively, we now give a novel and direct proof for the statement. We abuse
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notation and use x𝑋𝑡 and 𝑋 𝑡 interchangeably. Let x =
∑︀𝑇

𝑡=1𝑋
𝑡/𝑇 and w.l.o.g.,

assume that sets 𝑋 𝑡 are indexed such that 𝑓(𝑋𝑗) ≥ 𝑓(𝑋𝑗+1) for every 𝑗 ≥ 1. Further,

let 𝑓(𝑋 𝑡)/𝑇 = 𝑎𝑡 and
∑︀

𝑡 𝑎
𝑡 = 𝐴.

Recall that 𝐹 (x) can be viewed as the expected function value of the set obtained

by independently sampling element 𝑗 with probability 𝑥𝑗. Instead, consider the al-

ternative random process where starting with 𝑡 = 1, one samples each element in

set 𝑋 𝑡 independently with probability 1/𝑇 . The random process runs in 𝑇 steps

and the probability of an element 𝑗 being chosen at the end of the process is exactly

𝑝𝑗 = 1 − (1 − 1/𝑇 )𝑇𝑥𝑗 , independent of all other elements. Let p = (𝑝1, . . . , 𝑝𝑛), it

follows that the expected value of the set sampled using this process is given by 𝐹 (p).

Observe that for every 𝑗, 𝑝𝑗 ≤ 𝑥𝑗 and therefore, 𝐹 (p) ≤ 𝐹 (x). Now in step 𝑡, suppose

the newly sampled subset of𝑋 𝑡 adds marginal value Δ𝑡. From submodularity we have,

E[Δ1] ≥ 𝑓(𝑋1)
𝑇

= 𝑎1 and in general, E[Δ𝑡] ≥ 𝑓(𝑋𝑡)−E[
∑︀𝑡−1

𝑗=1 Δ𝑗 ]

𝑇
≥ 𝑎𝑡 − 1

𝑇

∑︀𝑡−1
𝑗=1 E[Δ𝑗].

To see that
∑︀

𝑡 E[Δ𝑡] ≥ (1 − 1/𝑒)𝐴, consider a LP where the objective is to

minimize
∑︀

𝑡 𝛾
𝑡 subject to 𝑏1 ≥ 𝑏2 · · · ≥ 𝑏𝑇 ≥ 0;

∑︀
𝑏𝑡 = 𝐴 and 𝛾𝑡 ≥ 𝑏𝑡 − 1

𝑇

∑︀𝑡−1
𝑗=1 𝛾

𝑗

with 𝛾0 = 0. Here 𝐴 is a parameter and everything else is a variable. Observe that

the extreme points are characterized by 𝑗 such that,
∑︀

𝑏𝑡 = 𝐴 and 𝑏𝑡 = 𝑏1 for all

𝑡 ≤ 𝑗 and 𝑏𝑗+1 = 0. For all such points, it is not difficult to see that the objective is

at least (1− 1/𝑒)𝐴. Therefore, we have 𝐹 (p) ≥ (1− 1/𝑒)𝐴 = (1− 1/𝑒)
∑︀

𝑡 𝑓(𝑋
𝑡)/𝑇 ,

as desired.

Theorem 10. For 𝜖 = min{ 1
8 ln𝑚

, 4
√︀

𝑚
𝑘
}, the algorithm makes 𝑂( 𝑛

𝛿3
log𝑚 log 𝑛

𝛿
) queries,

and with constant probability outputs a feasible (1−𝜖)(1−1/𝑒)2(1− 𝑚
𝑘𝜖3

)−𝛿 approximate

set. Asymptotically, (1− 1/𝑒)2 − 𝛿 approximate for 𝑚 = 𝑜
(︀
𝑘/ log3 𝑘

)︀
.

Proof. Combining Lemmas 8 & 16 we have, 𝐹𝑖(x2) ≥ (1 − 1/𝑒)
∑︀

𝑡 𝑓𝑖(𝑋
𝑡)

𝑇
≥ 𝑘1

𝑘
(1 −

1/𝑒)2 − 𝛿 , ∀𝑖. The asymptotic result follows just as in Theorem 6. For runtime,

note that Stage 1 takes time 𝑂(𝑛). Stage 2 runs an instance of 𝒜(.), 𝑇 times,

leading to an upper bound of 𝑂((𝑛
𝛿
log 𝑛

𝛿
) × log𝑚

𝛿2
) = 𝑂( 𝑛

𝛿3
log𝑚 log 𝑛

𝛿
), if we use the

thresholding algorithm in [BV14] (at the cost of a multiplicative factor of (1−𝛿) in the
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approximation guarantee). Finally, since we have a decomposition of x2 into 𝑇 sets

of size 𝑘1 each from Stage 2, swap rounding takes time 𝑇𝑘1, leading to total runtime

𝑂( 𝑘
𝛿2
log𝑚) for Stage 3. Combining all three we get a runtime of 𝑂( 𝑛

𝛿3
log𝑚 log 𝑛

𝛿
).

3.4.3 Variation in Optimal Solution Value and Derandom-

ization

Consider the problem 𝑆𝑂 with cardinality constraint 𝑘. Given an optimal solution 𝑆𝑘

with value 𝑂𝑃𝑇𝑘 for the problem, it is not difficult to see that for arbitrary 𝑘′ ≤ 𝑘,

there is a subset 𝑆𝑘′ ⊆ 𝑆𝑘 of size 𝑘′, such that 𝑓(𝑆𝑘′) ≥ 𝑘′

𝑘
𝑂𝑃𝑇𝑘. For instance,

indexing the elements in 𝑆𝑘 using the greedy algorithm, and choosing the set given

by the first 𝑘′ elements gives such a set. This implies 𝑂𝑃𝑇𝑘′ ≥ 𝑘′

𝑘
𝑂𝑃𝑇𝑘, and the

bound is easily seen to be tight.

This raises a natural question: Can we generalize this bound on variation of

optimal solution value with varying 𝑘, for multi-objective maximization? A priori, this

isn’t obvious even for modular functions. In particular, note that indexing elements

in order they are picked by the greedy algorithm doesn’t suffice since there are many

functions and we need to balance values amongst all. We show below that one can

indeed derive such a bound.

Lemma 11. Given that there exists a set 𝑆𝑘 such that 𝑓𝑖(𝑆𝑘) ≥ 𝑉𝑖, ∀𝑖 and 𝜖 < 1
8 ln𝑚

.

For every 𝑘′ ∈ [𝑚/𝜖3, 𝑘], there exists 𝑆𝑘′ ⊆ 𝑆𝑘 of size 𝑘′, such that,

𝑓𝑖(𝑆𝑘′) ≥ (1− 𝜖)
(︁𝑘′ −𝑚/𝜖3

𝑘 −𝑚/𝜖3

)︁
𝑉𝑖,∀𝑖.

Proof. We restrict our ground set of elements to 𝑆𝑘 and let 𝑆1 be a subset of size

at most 𝑚/𝜖3 such that 𝑓𝑖(𝑒|𝑆1) < 𝜖3𝑉𝑖,∀𝑒 ∈ 𝑆𝑘∖𝑆1 and ∀𝑖 (recall, we discussed the

existence of such a set in Section 2.1, Stage 1). The rest of the proof is similar to the

proof of Lemma 5. Consider the point x = 𝑘′−|𝑆1|
𝑘−|𝑆1| x𝑆𝑘∖𝑆1 . Clearly, |x| = 𝑘′ − |𝑆1|, and

from Corollary 4, we have 𝐹𝑖(x|x𝑆1) ≥
𝑘′−|𝑆1|
𝑘−|𝑆1| 𝐹𝑖(x𝑆𝑘∖𝑆1 |x𝑆1) =

𝑘′−|𝑆1|
𝑘−|𝑆1| 𝑓𝑖(𝑆𝑘∖𝑆1|𝑆1) ≥

𝑘′−|𝑆1|
𝑘−|𝑆1| (𝑉𝑖 − 𝑓𝑖(𝑆1)),∀𝑖. Finally, using swap rounding Lemma 1, there exists a set 𝑆2
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of size 𝑘′ − |𝑆1|, such that 𝑓𝑖(𝑆1 ∪ 𝑆2) ≥ (1− 𝜖)𝑘
′−|𝑆1|
𝑘−|𝑆1| 𝑉𝑖,∀𝑖.

For large 𝑘, 𝑘′−𝑚/𝜖3

𝑘−𝑚/𝜖3
tends to 𝑘′

𝑘
. As we show next, this implies that for large

enough 𝑘′, we can choose sets of size 𝑘′ (𝑘′-tuples) at each step to get a determin-

istic (asymptotically) (1 − 1/𝑒) − 𝜖 approximation with runtime 𝑂(𝑘𝑛𝑚/𝜖4) for the

multi-objective maximization problem, when 𝑚 is constant (all previously known

approximation algorithms, as well as the ones presented earlier, are randomized).

Theorem 12. For 𝑘′ = 𝑚
𝜖4
, choosing 𝑘′-tuples greedily w.r.t. ℎ(.) = min𝑖 𝑓𝑖(.) yields

approximation guarantee (1− 1/𝑒)(1− 2𝜖) for 𝑘 → ∞, while making 𝑘𝑛𝑚/𝜖4 queries.

Proof. The analysis generalizes that of the standard greedy algorithm in [NW78,

NWF78]. Let 𝑆𝑗 denote the set at the end of iteration 𝑗. 𝑆0 = ∅ and let the final

set be 𝑆⌊𝑘/𝑘′⌋. Then from Theorem 11, we have that at step 𝑗 + 1, there is some set

𝑋 ∈ 𝑆𝑘∖𝑆𝑗 of size 𝑘′ such that

𝑓𝑖(𝑋|𝑆𝑗) ≥ (1− 𝜖)
𝑘′ −𝑚/𝜖3

𝑘 −𝑚/𝜖3
(︀
𝑉𝑖 − 𝑓𝑖(𝑆𝑗)

)︀
,∀𝑖.

To simplify presentation let 𝜂 = (1− 𝜖)𝑘
′−𝑚/𝜖3

𝑘−𝑚/𝜖3
and note that 𝜂 ≤ 1. Further, 1/𝜂 →

∞ as 𝑘 → ∞ for fixed 𝑚 and 𝑘′ = 𝑜(𝑘). Now, we have for every 𝑖, 𝑓𝑖(𝑆𝑗+1) ≥

𝑓𝑖(𝑆𝑗) + 𝜂(𝑉𝑖 − 𝑓𝑖(𝑆𝑗)). Therefore, 𝑉𝑖 − 𝑓𝑖(𝑆𝑗+1) ≤ (1 − 𝜂)(𝑉𝑖 − 𝑓𝑖(𝑆𝑗)), which gives

us 𝑉𝑖 − 𝑓𝑖(𝑆⌊𝑘/𝑘′⌋) ≤ (1− 𝜂)⌊𝑘/𝑘
′⌋𝑉𝑖. Rearranging terms,

𝑓𝑖(𝑆⌊𝑘/𝑘′⌋) ≥ (1− (1− 𝜂)⌊𝑘/𝑘
′⌋)𝑉𝑖

≥ 𝛽(𝜂⌊𝑘/𝑘′⌋)𝑉𝑖 ≥ (1− 1/𝑒)(𝜂⌊𝑘/𝑘′⌋)𝑉𝑖.

Where the last inequality follows from the fact that for 𝛼 ≤ 1, 𝛽(𝛼) = (1− 𝑒1−𝛼/𝑒) ≥

(1− 1/𝑒)𝛼. Let 𝜖 = 4
√︀

𝑚
𝑘′
, then we have,

𝜂⌊𝑘/𝑘′⌋ ≥ (1− 𝜖)
1−𝑚/𝑘′𝜖3

1−𝑚/𝑘𝜖3

(︁
1− 𝑘′

𝑘

)︁
≥

(︁
1− 4

√︀
𝑚
𝑘′

)︁2

1− 1
𝑘

4

√︁
𝑚

(𝑘′)3

(︁
1− 𝑘′

𝑘

)︁
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As 𝑘 → ∞ we get the asymptotic guarantee (1 − 1/𝑒)
(︁
1 − 4

√︀
𝑚
𝑘′

)︁2

= (1 − 1/𝑒)(1 −

𝜖)2.

3.5 Experiments on Kronecker Graphs

We choose synthetic experiments where we can control the parameters to see how

the algorithm performs in various scenarios, esp. since we would like to test how

the MWU algorithm performs for small values of 𝑘 and 𝑚 = Ω(𝑘). We work with

formulation 𝑀𝑂1 of the problem and consider a multi-objective version of the max-k-

cover problem on graphs. Random graphs for our experiments were generated using

the Kronecker graph framework introduced in [LCK+10]. These graphs exhibit several

natural properties and are considered a good approximation for real networks (esp.

social networks [HK16]).

We compare three algorithms: (i) A baseline greedy heuristic, labeled GREEDY,

which focuses on one objective at a time and successively picks 𝑘/𝑚 elements greedily

w.r.t. each function (formally stated below). (ii) The bi-criterion approximation called

SATURATE from [KMGG08], to the best of our knowledge this is considered state-

of-the-art for the problem. (iii) We compare these algorithms to a heuristic inspired

by our MWU algorithm. This heuristic differs from the algorithm discussed earlier in

two ways. Firstly, we eliminate Stage 1 which was key for technical analysis but in

practice makes the algorithm perform similar to GREEDY. Second, instead of simply

using the the swap rounded set 𝑆2, we output the best set out of {𝑋1, . . . , 𝑋𝑇} and

𝑆2. Also, for both SATURATE and MWU we estimate target value 𝑡 using binary

search and consider capped functions min{𝑓𝑖(.), 𝑡}. Also, for the MWU stage, we use

𝛿 = 0.5.
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Algorithm 3 GREEDY

1: Input: 𝑘,𝑚, 𝑓𝑖(.) for 𝑖 ∈ [𝑚]

2: 𝑆 = ∅, 𝑖 = 1

3: while |𝑆| ≤ 𝑘 − 1 do

4: 𝑆 = 𝑆 + argmax𝑥∈𝑁−𝑆 𝑓𝑖(𝑥|𝑆)

5: 𝑖 = 𝑖+ 1 mod 𝑚+ 1

6: Output: 𝑆

Algorithm 4 SATURATE

1: Input: 𝑘, 𝑡, 𝑓1, . . . , 𝑓𝑚 and set 𝐴 = ∅

2: 𝑔(.) =
∑︀

𝑖 min{𝑓𝑖(.), 𝑡}

3: while |𝐴| < 𝑘 do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑔(𝑥|𝐴)

4: Output: 𝐴

We pick Kronecker graphs of sizes 𝑛 ∈ {64, 512, 1024} with random initiator

matrix 2 and for each 𝑛, we test for 𝑚 ∈ {10, 50, 100}. Note that each graph here

represents an objective, so for a fixed 𝑛, we generate 𝑚 Kronecker graphs to get 𝑚

max-cover objectives. For each setting of 𝑛,𝑚 we evaluate the solution value for the

heuristics as 𝑘 increases and show the average performance over 30 trials for each

setting. All experiments were performed using MATLAB.

2To generate a Kronecker graph one needs a small initiator matrix. Using [LCK+10] as a guideline
we use random matrices of size 2 × 2, each entry chosen uniformly randomly (and independently)
from [0, 1]. Matrices with sum of entries smaller than 1 are discarded to avoid highly disconnected
graphs.
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Figure 3-1: Plots for graphs of size 64. Number of objectives increases from left to

right. The X axis is the cardinality parameter 𝑘 and Y axis is difference between #

vertices covered by MWU and SATURATEminus the # vertices covered by GREEDY

for the same 𝑘. MWU outperforms the other algorithms in all cases, with a max. gain

(on SATURATE) of 9.80% for 𝑚 = 10, 12.14% for 𝑚 = 50 and 16.12% for 𝑚 = 100.

Figure 3-2: Plots for graphs of size 512. MWU outperforms SATURATE in all cases

with a max. gain (on SATURATE) of 7.95% for 𝑚 = 10, 10.08% for 𝑚 = 50 and

10.01% for 𝑚 = 100.
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Figure 3-3: Plots for graphs of size 1024. MWU outperforms SATURATE in all cases,

with max. gain (on SATURATE) of 6.89% for 𝑚 = 10, 5.02% for 𝑚 = 50 and 7.4%

for 𝑚 = 100.

3.6 Conclusion and Open Problems

In summary, we consider the problem of multi-objective maximization of monotone

submodular functions subject to a cardinality constraint, when 𝑚 = 𝑜
(︀

𝑘
log3 𝑘

)︀
. No

polynomial time constant factor approximations or strong inapproximability results

were known for the problem, though it was known that the problem is inapproximable

when 𝑚 = Ω(𝑘) and admitted a nearly 1 − 1/𝑒 approximation for constant 𝑚. We

showed that when 𝑚 = 𝑜
(︀

𝑘
log3 𝑘

)︀
, one can indeed approach the best possible guarantee

of 1 − 1/𝑒 and further also gave a nearly-linear time (1 − 1/𝑒)2 approximation for

the same. Finally, we established a natural bound on how the optimal solution value

increases with increasing cardinality 𝑘 of the set, leading to a simple deterministic

algorithm

A natural open question here is whether one can achieve approximations right

up to 𝑚 = 𝑜(𝑘). Additionally, it also of interest to ask if there are fast algorithms

with guarantee closer to 1 − 1/𝑒, in contrast to the guarantee of (1 − 1/𝑒)2 shown

here. Further, it is unclear if similar results can also be shown for a general matroid

constraint.
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Chapter 4

Deletion-robust Monotone

Submodular Function

Maximization

In this chapter we study the problem of maximizing monotone submodular functions

subject to adversarial removal of elements, formulated as follows,

𝐷𝑅𝑂 := max
𝐴⊆𝑁,|𝐴|≤𝑘

min
𝑍⊆𝐴,|𝑍|≤𝜏

𝑓(𝐴− 𝑍).

W.l.o.g., we can turn the inequalities |𝐴| ≤ 𝑘 and |𝑍| ≤ 𝜏 to equalities. The

parameter 𝜏 controls the degree of robustness of the chosen set, and for 𝜏 = 0 the

problem reduces to the classical monotone submodular maximization problem 𝑆𝑂. It

also follows (and is shown formally later) that there is no algorithm with guarantee

strictly better than (1− 1/𝑒) for 𝐷𝑅𝑂.

Observe that one can easily cast 𝐷𝑅𝑂 as a multi-objective maximization problem

𝑀𝑂1 from Chapter 3. For every set 𝑍 ⊆ 𝑁 , the function 𝑓𝑍(.) = 𝑓(.∖𝑍) is monotone

submodular. Letting 𝒵 = {𝑍 | 𝑍 ⊆ 𝑁, |𝑍| = 𝜏} we have an equivalent formulation

of 𝐷𝑅𝑂, max
𝐴⊆𝑁,|𝐴|=𝑘

min
𝑍∈𝒵

𝑓𝑍(𝐴). The number of objectives here is 𝑂(𝑛𝜏 ), and due to

intractability of 𝑀𝑂1 for 𝑚 = Ω(𝑛) this does not yield any approximation results.

The approach however, raises the following question – is it possible to reduce 𝐷𝑅𝑂 to
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𝑀𝑂1 with far fewer objectives? Indeed, one of the key ideas in this chapter achieves

exactly this, resulting in a (1−1/𝑒) approximation for 𝐷𝑅𝑂 for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

. We start

here by discussing related work, and refer the reader to Chapter 1 Section 1.1.2 for a

discussion on applications of the formulation.

4.1 Related Work

For a discussion of past work on 𝑆𝑂 we refer the interested reader to Section 3.1,

except to recall that the greedy algorithm (Algorithm 1) guarantees a (1 − 1/𝑒) ap-

proximate solution, and this is best possible guarantee for 𝑆𝑂. However, the greedy

algorithm as well as the continuous greedy approach for 𝜏 = 0 can perform arbitrarily

poorly for 𝐷𝑅𝑂, even for 𝜏 = 1. We show an example of this in Section 4.4, along

with a discussion of some other natural approaches that fail to yield a constant factor

guarantee for 𝜏 ≥ 1.

𝐷𝑅𝑂 was formally introduced in Krause et al. [KMGG08], where they used the

multi-objective maximization framework to solve the problem. Their bi-criterion algo-

rithm for solving𝑀𝑂1 (SATURATE) when specialized to𝐷𝑅𝑂 guarantees optimality

by allowing sets up to size 𝑘(1 + Θ(log(𝜏𝑘 log 𝑛))) and has runtime exponential in 𝜏 .

To the best of our knowledge, no stronger/constant factor approximation results were

known for 𝐷𝑅𝑂 prior to our work. Further progress has been made on the problem

after the work discussed in this chapter first appeared (in [OSU15]), and we discuss

this in Section 4.8.

4.2 Our contributions

We work in the value oracle model and give constant factor guarantees for 𝐷𝑅𝑂 with

combinatorial, ‘greedy like’ algorithms. To ease presentation, we will usually ignore

factors of the form
(︀
1− 𝑂(1)

𝑘

)︀
in the approximation guarantees and thus, most of the

results presented here are asymptotic in 𝑘.

We first study a special case where we construct relatively simple algorithms and
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obtain a (1−1/𝑒) approximation for 𝜏 = 𝑜(𝑘). Using insights obtained for the special

case we then find constant factor approximations for the general case. We start

with the case of 𝜏 = 1 and find a fast and practical 0.5547 approximation. This is

subsequently improved to a (1− 1/𝑒)− 1/Θ(𝑚) algorithm (with runtime exponential

in input parameter 𝑚), which relies on a subroutine for bi-objective maximization of

monotone submodular functions. Reinterpreting this result, we find that an instance

of 𝐷𝑅𝑂 with 𝜏 = 1 can be cast as an instance of 𝑀𝑂1 with 𝑚 = 3. This is a vast

improvement over the trivial reduction from 𝐷𝑅𝑂 to 𝑀𝑂! discussed earlier, where

𝑚 = 𝑛 for 𝜏 = 1.

Leveraging the insights obtained for 𝜏 = 1, we show that 𝐷𝑅𝑂 for larger 𝜏 can be

cast as 𝑀𝑂1 with 𝑚 = 2𝑂(𝜏 log 𝜏) objectives. Using our results for 𝑀𝑂1 with 𝑚 = 𝑜(𝑘)

from Chapter 3, we have an asymptotic (1 − 1/𝑒) approximation for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

(so

that 𝑚 = 2𝑂(𝜏 log 𝜏) = 𝑜(𝑘)). Therefore, for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

we find an algorithm with the

best possible asymptotic guarantee.

In an effort ot find a fast and practical algorithm, for 𝜏 = 𝑜
(︀√︁

𝑘
𝑐(𝑘)

)︀
we give

a nearly linear time 0.387
(︀
1 − 1

Θ(𝑐(𝑘))

)︀
algorithm, where 𝑐(𝑘)

𝑘→∞−−−→ ∞ is an input

parameter that governs the trade off between how large 𝜏 can be and how fast the

guarantee converges to 0.387.

In the more general case, where we wish to find a deletion-robust set that belongs

to an independence system (of which cardinality constraint is a very special case),

we extend some of the ideas from the cardinality case into an enumerative procedure

that yields an 𝛼/(𝜏 +1) approximation using an 𝛼 approximation algorithm for 𝜏 = 0

as a subroutine. The runtime of our black box procedure scales as 𝑛𝜏+1.

Outline: The outline for the rest of this chapter is as follows: In Section 4.3,

we introduce some key notation and show a useful elementary lemma. In Section

4.4 we discuss how several natural ideas fail to give any approximation guarantees

and show an elementary hardness of approximation result. In Section 4.4, we start

with a special case and slowly build up to an algorithm with asymptotic guarantee

(1− 1/𝑒) for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

, covering the other results in the process. Finally, in Section

4.7, we extend some of the ideas to more general constraints. Section 4.8 concludes
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with some open questions and a brief discussion of more recent work.

4.3 Preliminaries

We denote an instance of𝐷𝑅𝑂 on ground set𝑁 with cardinality constraint parameter

𝑘 and robustness parameter 𝜏 by (𝑘,𝑁, 𝜏). Subsequently, we use 𝑂𝑃𝑇 (𝑘,𝑁, 𝜏) to

denote an optimal set for the instance (𝑘,𝑁, 𝜏). Notice that (𝑘,𝑁, 0) denotes an

instance of 𝑆𝑂 over ground set 𝑁 with cardinality parameter 𝑘.

Given a set𝐴, we call a subset 𝑍𝜏 aminimizer of𝐴 when 𝑓(𝐴−𝑍𝜏 ) = min
𝐵⊆𝐴;|𝐵|=𝜏

𝑓(𝐴−

𝐵). Also, let 𝒵𝜏 (𝐴) be the set of minimizers of 𝐴. When 𝜏 = 1, we often use the let-

ter 𝑧 for minimizers and when 𝜏 is otherwise clear from the context and fixed during

the discussion we use the shorthand 𝑍,𝒵(.). Based on this we also introduce a key

function 𝑔𝜏 (𝐴) = 𝑓(𝐴−𝑍𝜏 ). Again, we simply use 𝑔(.), when 𝜏 is clear from context.

Similar to the marginal value function for 𝑓 , define the marginal increase in value of

function 𝑔 due to a set 𝑋 added to the set 𝐴 as 𝑔(𝑋|𝐴) = 𝑔(𝐴 ∪𝑋)− 𝑔(𝐴).

We generalize the function 𝛽(𝛼) from Chapters 2 and 3 to 𝛽(𝜂, 𝛼) = 𝑒𝛼−1
𝑒𝛼−𝜂

∈ [0, 1]

for 𝜂 ∈ [0, 1], 𝛼 ≥ 0. Note that for 𝜂 = 0 we recover the old 𝛽(.) function and in

particular, 𝛽(0, 1) = (1 − 1/𝑒). This function appears naturally in our analysis and

will be useful for expressing approximation guarantees of the algorithms.

Now, suppose we run Algorithm 1 for 𝑛 steps and denote the element added at the

𝑖-th iteration by 𝑎𝑖. Using this, index the elements in 𝑁 in the order they were added

so, 𝑁 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}.

Next, we state and prove an elementary but useful lemma, which compares the

optimal value of (𝑘,𝑁, 𝜏) with (𝑘 − 𝜏,𝑁, 0).

Lemma 13. For instances (𝑘,𝑁, 𝜏), we have:

𝑔𝜏 (𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) ≤ 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 −𝑋, 0)) ≤ 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁, 0)),

for all 𝑋 ⊆ 𝑁, |𝑋| ≤ 𝜏 .

Proof. We focus on the first inequality since the second follows by definition. Let 𝑥 =
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⃒⃒
𝑋∩𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)

⃒⃒
≤ 𝜏 , then note that 𝑔𝜏 (𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) ≤ 𝑔𝜏−𝑥(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)−𝑋),

since the RHS represents the value of some subset of 𝑂𝑃𝑇 (𝑘,𝑁, 𝜏) of size 𝑘−𝜏 , which

upper bounds the LHS by definition. Now, 𝑔𝜏−𝑥(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)−𝑋) ≤ 𝑔𝜏−𝑥(𝑂𝑃𝑇 (𝑘−

𝑥,𝑁 − 𝑋, 𝜏 − 𝑥)) by definition. Finally, note that 𝑔𝜏−𝑥(𝑂𝑃𝑇 (𝑘 − 𝑥,𝑁 − 𝑋, 𝜏 −

𝑥)) ≤ 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝑋, 0)) since the LHS represents the value of a set of size

𝑘 − 𝑥 − (𝜏 − 𝑥) = 𝑘 − 𝜏 that does not include any element in 𝑋, giving us the

desired.

In the following section, we discuss why some straightforward algorithms fail for

𝐷𝑅𝑂, and show results on hardness of approximating 𝐷𝑅𝑂.

4.4 Negative Results

The example below demonstrates why the greedy algorithm that gives the best pos-

sible guarantee for 𝑆𝑂, fails for 𝐷𝑅𝑂 even when 𝜏 = 1. However, the weakness will

also indicate a property which will guide us towards better guarantees later.

Example: Consider a ground set 𝑁 of size 2𝑘 such that 𝑓(𝑎1) = 1, 𝑓(𝑎𝑖) = 0,

∀ 2 ≤ 𝑖 ≤ 𝑘 and 𝑓(𝑎𝑗) =
1
𝑘
, ∀𝑗 ≥ 𝑘 + 1. Also, for all 𝑗 ≥ 𝑘 + 1, let 𝑓(𝑎𝑗|𝑋) = 1

𝑘
if

𝑋 ∩ {𝑎1, 𝑎𝑗} = ∅ and 0 otherwise. Consider the set 𝑆 = {𝑎𝑘+1, · · · , 𝑎2𝑘} and let the

set picked by the greedy algorithm (with arbitrary tie-breaking) be 𝐴 = {𝑎1, · · · , 𝑎𝑘}.

Then we have that 𝑓(𝐴−𝑎1) = 0 and 𝑓(𝑆−𝑎𝑗) = 1− 1
𝑘
for every 𝑎𝑗 ∈ 𝑆. The insight

here is that greedy may select a set where only the first few elements contribute most

of the value in the set, which makes it non-robust. However, as we discuss more

formally later, such a concentration of value implies that only the first two elements,

{𝑎1, 𝑎2}, are critical and protecting against removal of those suffices for best possible

guarantees.

In fact, many natural variations fail to give an approximation ratio better than

1/(𝑘 − 1). Indeed, a guarantee of this order, i.e. 1/(𝑘 − 𝜏), is achievable for any

𝜏 by the following näıve algorithm: Pick the 𝑘 largest value elements. It is also im-

portant to examine if the function 𝑔 is super/sub-modular, since that would make
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existing techniques useful. While 𝑔 is monotonic, it is neither super nor sub modular.

Nonetheless, it is interesting to examine a natural variant of the greedy algorithm,

where we greedily pick w.r.t. function 𝑔 instead of 𝑓 . This variant can also be ar-

bitrarily bad if we pick just one element at each iteration. We refer the reader to

Appendix A.1 for some more details.

Finally, it is natural to expect that for any 𝜏 we cannot approximate 𝐷𝑅𝑂 better

than 𝑆𝑂 (which is approximable up to a factor of 𝛽(0, 1)) and this is indeed true, as

shown below.

Lemma 14. There exists no polytime algorithm with approximation ratio greater

than (1− 1/𝑒) for 𝐷𝑅𝑂 unless P=NP. For the value oracle model, we have the same

threshold, but for algorithms that make only a polynomial number of queries.

Proof. We will give a strict reduction from 𝑆𝑂 (for which the above hardness result

holds [NWF78, Fei98]) to 𝐷𝑅𝑂 for arbitrary 𝜏 . Consider an instance of 𝑆𝑂, denoted

by (𝑘,𝑁, 0). We intend to reduce this to an instance of𝐷𝑅𝑂 on an augmented ground

set 𝑁 ∪𝑋 i.e. (𝑘 + 𝜏,𝑁 ∪𝑋, 𝜏).

The set 𝑋 = {𝑥1, · · · , 𝑥𝜏} is such that 𝑓(𝑥𝑖) = (𝑘 + 1)𝑓(𝑎1) (and recall that

𝑓(𝑎1) ≥ 𝑓(𝑎𝑖),∀𝑎𝑖 ∈ 𝑁) and 𝑓(𝑥𝑖|𝑆) = 𝑓(𝑥𝑖) for every 𝑖 and 𝑆 ⊂ 𝑁 ∪ 𝑋 not

containing 𝑥𝑖. We will show that 𝑔(𝑂𝑃𝑇 (𝑘 + 𝜏,𝑁 ∪𝑋, 𝜏)) = 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)).

First, note that for an arbitrary set 𝑆 = 𝑆𝑁 ∪ 𝑆𝑋 , such that |𝑆| = 𝑘 + 𝜏 and

𝑆𝑋 = 𝑆 ∩ 𝑋, we have that every minimizer contains 𝑆𝑋 . This follows by definition

of 𝑋, since for any two subsets 𝑃,𝑄 of 𝑆 with |𝑃 | = |𝑄| = 𝑘 and 𝑃 disjoint with

𝑋 but 𝑄 ∩𝑋 ̸= ∅, we have by monotonicity 𝑓(𝑄) ≥ 𝑓(𝑥𝑖) = (𝑘 + 1)𝑓(𝑎1) > 𝑘𝑓(𝑎1)

and by submodularity 𝑘𝑓(𝑎1) ≥ 𝑓(𝑃 ). This implies that 𝑋 is the minimizer of

𝑂𝑃𝑇 (𝑘,𝑁, 0) ∪𝑋 and hence 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)) ≤ 𝑔(𝑂𝑃𝑇 (𝑘 + 𝜏,𝑁 ∪𝑋, 𝜏))

For the other direction, consider the set 𝑂𝑃𝑇 (𝑘 + 𝜏,𝑁 ∪𝑋, 𝜏) and define,

𝑀 = 𝑂𝑃𝑇 (𝑘 + 𝜏,𝑁 ∪𝑋, 𝜏) ∩𝑋.

Next, observe that carving out an arbitrary set 𝐵 of size 𝜏 − |𝑀 | from 𝑂𝑃𝑇 (𝑘 +

56



𝜏,𝑁 ∪𝑋, 𝜏)−𝑀 will give us the set

𝐶 = 𝑂𝑃𝑇 (𝑘 + 𝜏,𝑁 ∪𝑋, 𝜏)−𝑀 −𝐵,

of size 𝑘 + 𝜏 − (|𝑀 | + 𝜏 − |𝑀 |) = 𝑘. Also note that by design, 𝐶 ⊆ 𝑁 and hence

𝑓(𝐶) ≤ 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)), but by definition, we have that 𝑔(𝑂𝑃𝑇 (𝑘+ 𝜏,𝑁 ∪𝑋, 𝜏)) ≤

𝑓(𝐶). This gives us the other direction and we have 𝑔(𝑂𝑃𝑇 (𝑘 + 𝜏,𝑁 ∪ 𝑋, 𝜏)) =

𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)).

To complete the reduction we need to show how to obtain an 𝛼-approximate

solution to (𝑘,𝑁, 0) given an 𝛼-approximate solution to (𝑘 + 𝜏,𝑁 ∪ 𝑋, 𝜏). Let 𝑆 =

𝑆𝑁 ∪ 𝑆𝑋 be such a solution i.e. a set of size 𝑘 + 𝜏 with 𝑆𝑋 = 𝑆 ∩ 𝑋, such that

𝑔(𝑆) ≥ 𝛼𝑔(𝑂𝑃𝑇 (𝑘 + 𝜏,𝑁 ∪ 𝑋, 𝜏)). Now consider an arbitrary subset 𝑆 ′
𝑁 of 𝑆𝑁 of

size 𝜏 − |𝑆𝑋 |. Observe that |𝑆𝑁 − 𝑆 ′
𝑁 | = |𝑆| − |𝑆𝑋 | − (𝜏 − |𝑆𝑋 |) = 𝑘 and further

𝑓(𝑆𝑁 −𝑆 ′
𝑁) ≥ 𝑔(𝑆) ≥ 𝛼𝑔(𝑂𝑃𝑇 (𝑘+ 𝜏,𝑁 ∪𝑋, 𝜏)) = 𝛼𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)), by definition.

Hence the set 𝑆𝑁 − 𝑆 ′
𝑁 ⊆ 𝑁 is an 𝛼-approximate solution to (𝑘,𝑁, 0) which given 𝑆,

can be obtained in polynomial time/queries.

Main Results

Before we start, we would like to remind the reader that the focus of these results is

on asymptotic performance guarantee (for large 𝑘). In some cases, the results can be

improved for small 𝑘 but we generally ignore those details.

Additionally, in every algorithm that uses the greedy algorithm (Algorithm 1) as

a subroutine, especially the fast and practical algorithms 5 ,7 and 10, we can replace

the greedy addition rule of adding 𝑥 = argmax𝑥∈𝑆1 𝑓(𝑥|𝑆2) for some 𝑆1, 𝑆2, by the

more efficient thresholding rule from [BV14], reviewed in Chapter 2 Section 2.1. This

improves the query/run time to 𝑂(𝑛
𝜖
log 𝑛

𝜖
), at the cost of a factor of (1 − 𝜖) in the

guarantee.
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4.5 Special Case of “copies”

We first consider a special case, which will serve two purposes. First, it will simplify

our results and the insights gained for this case generalize. Second, this case may

arise in practical scenarios so it is worthwhile to discuss the special algorithms which

are much simpler than the general algorithms discussed later.

Given an element 𝑥 ∈ 𝑁 , we call another element 𝑥′ a copy of element 𝑥 if,

𝑓(𝑥′) = 𝑓(𝑥) and 𝑓(𝑥′|𝑥) = 0.

This implies 𝑓(𝑥|𝑥′) = 𝑓({𝑥, 𝑥′})− 𝑓(𝑥′) = 𝑓(𝑥) + 𝑓(𝑥′|𝑥)− 𝑓(𝑥′) = 0. In fact, more

generally, 𝑓(𝑥′|𝐴) = 𝑓(𝑥|𝐴) for every 𝐴 ⊆ 𝑁 , since 𝑓(𝐴 + {𝑥, 𝑥′}) = 𝑓(𝐴 + 𝑥) =

𝑓(𝐴 + 𝑥′). This is a useful case for robust sensor placement, if we were allowed

to place/replicate multiple sensors at certain locations that are critical for coverage.

Assume that each element in 𝑁 has 𝜏 copies. In the next section we discuss algorithms

for this special case when 𝜏 = 1. This will help build a foundation, even though the

results for 𝜏 = 1 are later superseded by the result for 𝜏 = 𝑜(𝑘).

4.5.1 Algorithms for 𝜏 = 1 in Presence of “copies”

Let 𝑎′𝑖 denote the copy of element 𝑎𝑖. As briefly indicated previously, we would like

to make our set robust to removal of critical elements. In the presence of copies,

adding a copy of these elements achieves this. So as a first step, consider a set

that includes a copy of each element, and so is unaffected by single element removal.

One way to do this is to run the greedy algorithm for 𝑘/2 iterations and then add

a copy of each of the 𝑘/2 elements. Then, it follows from Lemma 1 that 𝑔(𝑆) =

𝑓(𝑆) ≥ 𝛽(0, 𝑘/2
𝑘−1

)𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁, 0)) and then from Lemma 13 we have, 𝑔(𝑆) ≥

(1− 1√
𝑒
) 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)), where we use the fact that 𝛽(0, 𝑘/2

𝑘−1
) > 𝛽(0, 0.5) = (1− 1√

𝑒
).

Hence, we have ≈ 0.393-approximation and the bound is tight. We can certainly

improve upon this, one way to do so is to consider if one needs to copy all 𝑘/2

elements. We show that in fact, copying just 𝑎1 and 𝑎2 is enough. Intuitively, if the
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greedy set has value nicely spread out, we could get away without copying anything

but nevertheless, in such a case copying just two elements does not affect the value

much. Otherwise, as in the example from Section 4.4, if greedy concentrates its value

on the first few elements, then copying them is enough.

Before we state and prove this formally, consider the below corollary:

Corollary 15. Let 𝐴 be the final set obtained by running the greedy algorithm for 𝑙

steps on an initial set 𝑆. Then we have,

𝑓(𝐴− 𝑆|𝑆) ≥ 𝛽
(︁
0,

𝑙

𝑘

)︁
𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)|𝑆) ≥ 𝛽

(︁
0,

𝑙

𝑘

)︁(︁
𝑓
(︀
𝑂𝑃𝑇 (𝑘,𝑁, 0)

)︀
− 𝑓(𝑆)

)︁
Proof. Follows from Lemma 1, since 𝑓(.|𝑆) is monotone submodular for any fixed set

𝑆 and union of greedy on 𝑓(.|𝑆) with 𝑆 is the same as doing greedy on 𝑓(.) starting

with 𝑆.

Suppose 𝐴, referred to as the greedy set, is the output of Algorithm 1. We now

state and prove a simple yet key lemma, which will allow us to quantify how the ratio

𝑓(𝐴)
𝑓(𝑂𝑃𝑇 (𝑘,𝑁,0))

improves over (1 − 1/𝑒), as a function of how concentrated the value of

the greedy set is on the first few elements.

Lemma 16. Starting with initial set 𝑆, run 𝑙 iterations of the greedy algorithm and

let 𝐴 be the output (so |𝐴| = 𝑙+ |𝑆|). Then given 𝑓(𝑆) ≥ 𝑐𝑓(𝐴) for some 𝑐 ≤ 1 (high

concentration of value on 𝑆 implies large 𝑐), we have,

𝑓(𝐴) ≥ 𝛽
(︁
𝑐,

𝑙

𝑘

)︁
𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)), for all 𝑘 ≥ 1

In a typical application of this lemma, we will have 𝑆 be the first 𝑠 = |𝑆| elements

of the greedy algorithm on ∅ and 𝑐 = 𝑠𝜂 for some 𝜂 ≤ 1/𝑠. Additionally, |𝐴| can be

greater than 𝑘.

Proof. Denote 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)) by 𝑂𝑃𝑇 and with the sets 𝐴, 𝑆 as defined above, let

𝛿 = 𝑓(𝐴)
𝑂𝑃𝑇

, which implies 𝑓(𝑆) ≥ 𝑐𝛿𝑂𝑃𝑇 (by assumption). Also, since we allow |𝐴| to

be larger than 𝑘, assume 𝛿 ≤ 1 (otherwise statement is true by default).
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Now from Corollary 15 we have, 𝑓(𝐴) = 𝑓(𝑆)+𝑓(𝐴−𝑆|𝑆) ≥ 𝑓(𝑆)+𝛽(0, 𝑙
𝑘
)(𝑂𝑃𝑇−

𝑓(𝑆)) and thus,

𝛿𝑂𝑃𝑇 ≥ (1− 𝛽(0, 𝑙
𝑘
))× 𝑐𝛿𝑓(𝑂𝑃𝑇 ) + 𝛽(0, 𝑙

𝑘
)𝑓(𝑂𝑃𝑇 ) [substitution]

𝛿(1− 𝑐(1− 𝛽(0, 𝑙
𝑘
))) ≥ 𝛽(0, 𝑙

𝑘
)

𝛿(1− 𝑐 1
𝑒𝑙/𝑘

) ≥ 𝑒𝑙/𝑘−1
𝑒𝑙/𝑘

𝛿 ≥ 𝑒𝑙/𝑘−1
𝑒𝑙/𝑘−𝑐

= 𝛽
(︁
𝑐, 𝑙

𝑘

)︁
=⇒ 𝑓(𝐴) ≥ 𝛽

(︁
𝑐, 𝑙

𝑘

)︁
𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0))

Let us understand the above lemma with a quick example. Consider the greedy

set of the first 𝑘 elements 𝐴 = {𝑎1, . . . , 𝑎𝑘} and let 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 0)) = 1. Now,

clearly 𝑓(𝑎1) ≥ 𝑓(𝐴)
𝑘

. So using the lemma with 𝑆 = {𝑎1} and 𝑐 = 1/𝑘 gives us simply

that 𝑓(𝐴) ≥ 𝛽
(︁

1
𝑘
, 𝑘−1

𝑘

)︁
≈ (1 − 1/𝑒), as expected. Next, if 𝑓(𝑎1) ≥ 𝑓(𝐴)/2, then we

have that 𝑓(𝐴) ≥ 𝛽
(︁

1
2
, 𝑘−1

𝑘

)︁
≈ 0.77, asymptotically much better than (1 − 1/𝑒) ≈

0.63. Similarly, if 𝑓({𝑎1, 𝑎2}) ≥ 𝑓(𝐴)/2 we again have 𝑓(𝐴) ≥ 𝛽
(︁

1
2
, 𝑘−2

𝑘

)︁
≈ 0.77.

Additionally, we could compare the value 𝑓(𝐴) to 𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁, 0)) instead, and

then replacing 𝑘 by 𝑘− 1 in the denominator, we have 𝑓(𝐴) ≥ 𝛽
(︁

1
2
, 𝑘−2
𝑘−1

)︁
𝑓(𝑂𝑃𝑇 (𝑘−

1, 𝑁, 0)).

Now, consider the algorithm that copies the first two elements and thus outputs:

{𝑎1, 𝑎′1, 𝑎2, 𝑎′2, 𝑎3, . . . , 𝑎𝑘−2}. Call this the 2-Copy algorithm. Using the above lemma,

we show that this algorithm gives us the best possible guarantee asymptotically, align-

ing with the intuitive argument we presented earlier. Preceding the actual analysis,

we show an elementary lemma that we will use frequently.

Lemma 17. For 0 ≤ 𝜂 ≤ 1
3
and arbitrary 𝛼, argmin

𝜂
(1− 𝜂)𝛽(3𝜂, 𝛼) = 0.

Proof.

(1− 𝜂)𝛽(3𝜂, 𝛼) =
1

3
(3− 3𝜂)

𝑒𝛼 − 1

𝑒𝛼 − 3𝜂
=

1

3
(𝑒𝛼 − 1)

(︁
1 +

3− 𝑒𝛼

𝑒𝛼 − 3𝜂

)︁
≥ 1

3
(𝑒𝛼 − 1)

(︁
1 +

3− 𝑒𝛼

𝑒𝛼

)︁
= (1− 1/𝑒𝛼) = 𝛽(0, 𝛼)
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Theorem 18. For the case with copies, 2-Copy is 𝛽
(︀
0, 𝑘−5

𝑘−1

)︀ 𝑘→∞−−−→ (1− 1/𝑒) approx-

imate.

Proof. First, denote the output as 𝐴 = {𝑎1, 𝑎′1, 𝑎2, 𝑎′2, 𝑎3, . . . , 𝑎𝑘−2} and notice that

𝑓(𝐴) = 𝑓({𝑎1, 𝑎2, . . . , 𝑎𝑘−2}). As a warm-up, using Lemma 1 we get,

𝑓(𝐴) ≥ 𝛽
(︁
0,

𝑘 − 2

𝑘 − 1

)︁
𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁, 0)) ≥ 𝛽

(︁
0,

𝑘 − 2

𝑘 − 1

)︁
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)), (4.1)

where the second inequality follows from Lemma 13.

Let 𝑧 be a minimizer of 𝐴. We can assume that 𝑧 ̸∈ {𝑎1, 𝑎′1, 𝑎2, 𝑎′2} since all of

these have 0 marginal. Now let 𝑓(𝑧|𝐴 − 𝑧) = 𝜂𝑓(𝐴). We have due to greedy addi-

tions and submodularity, 𝑓(𝑎3|{𝑎1, 𝑎2}) ≥ 𝑓(𝑧|{𝑎1, 𝑎2}) ≥ 𝑓(𝑧|𝐴 − 𝑧) and similarly,

𝑓({𝑎1, 𝑎2}) ≥ 2𝑓(𝑧|𝐴− 𝑧). This implies that 𝑓({𝑎1, 𝑎2, 𝑎3}) ≥ 3𝜂𝑓(𝐴), which relates

the value removed by a minimizer 𝑧 to the value concentrated on the first 3 elements

{𝑎1, 𝑎2, 𝑎3}. The higher the value removed, the higher the concentration and closer

the value of 𝑓(𝐴) to 𝑓(𝑂𝑃𝑇 (𝑘−1, 𝑁, 0)). More formally, with 𝑆 = {𝑎1, 𝑎′1, 𝑎2, 𝑎′2, 𝑎3},

𝑘 replaced by 𝑘 − 1, 𝑙 = 𝑘 − 5 and 𝑐 = 3𝜂 (𝜂 ≤ 1/3), we have from Lemma 16,

𝑓(𝐴) ≥ 𝛽
(︁
3𝜂,

𝑘 − 5

𝑘 − 1

)︁
𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁, 0)) ≥ 𝛽

(︁
3𝜂,

𝑘 − 5

𝑘 − 1

)︁
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)).

Which implies that 𝑔(𝐴) = (1−𝜂)𝑓(𝐴) ≥ (1−𝜂)𝛽(3𝜂, 𝑘−5
𝑘−1

)𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)). Applying

Lemma 17 with 𝛼 = 𝑘−5
𝑘−1

finishes the proof. As an example, for 𝑘 ≥ 55 the value

of the ratio is ≥ 0.6. Additionally, we can use more precise bounds of the greedy

algorithm for small 𝑘 to get better guarantees in that regime.

The result also implies that for large 𝑘, if the output set 𝐴, of Algorithm 1

(the greedy algorithm), has a minimizer 𝑎𝑖 with 𝑖 ≥ 3, then 𝑔(𝐴) = 𝑓(𝐴 − 𝑎𝑖) ≥

(1− 1/𝑒)𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)), i.e. the greedy algorithm is (1− 1/𝑒) approximate for the

robust problem in this situation. This is because, for such an instance we can assume

that the set contains copies of 𝑎1, 𝑎2 without changing anything and then Theorem

18 applies.
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Moreover, if instead of just the first two, we copy the first 𝑖 elements for 𝑖 ≥ 3, we

get the same guarantee but with worse asymptotics, so copying more than first two

does not result in a gain. On the other hand, copying just one element, 𝑎1, gives a

tight guarantee of 0.5 (proof omitted).

Since (1 − 1/𝑒) is the best possible guarantee achievable asymptotically, we now

shift focus to case of 𝜏 > 1 but ≪ 𝑘, and generalize the above ideas to get an

asymptotically (1− 1/𝑒) approximate algorithm in presence of copies.

4.5.2 (1−1/𝑒) Algorithms for 𝜏 = 𝑜(𝑘) in Presence of “copies”

Assume we have 𝜏 copies available for each 𝑎𝑖 ∈ 𝑁 . As we did for 𝜏 = 1, we

would like to determine a small critical set of elements, copy them (possibly many

times) and then add the rest of the elements greedily to get a set of size 𝑘. In

order to understand how large the critical set should be, recall that in the proof

of Theorem 18, we relied on the fact that 𝑓({𝑎1, 𝑎2}) is at least twice as much as

the value removed by the minimizer, and then we could use Lemma 16 to get the

desired ratio. To get a similar concentration result on the first few elements for

larger 𝜏 , we start with an initial set of size 2𝜏 and in particular, we can start with

𝐴2𝜏 = {𝑎1, 𝑎2, . . . , 𝑎2𝜏}. Additionally, similar to the 2-Copy algorithm, we also want

the set to be unaffected by removal of up to 𝜏 elements from 𝐴2𝜏 . We do this by

adding 𝜏 copies of each element in 𝐴2𝜏 . More concretely, consider the algorithm

that greedily picks the set 𝐴𝑘−2𝜏2 = {𝑎1, 𝑎2, . . . , 𝑎𝑘−2𝜏2}, and copies each element in

𝐴2𝜏 = {𝑎1, 𝑎2, . . . , 𝑎2𝜏} ⊆ 𝐴𝑘−2𝜏2 , 𝜏 times. Denote the set of copies by 𝐶(𝐴2𝜏 ) and we

have |𝐶(𝐴2𝜏 )| = 2𝜏 2. To summarize, the algorithm outputs the set

𝐴 = 𝐴2𝜏 ∪ 𝐶(𝐴2𝜏 ) ∪ {𝑎2𝜏+1, . . . , 𝑎𝑘−2𝜏2}.

Observe that when 𝜏 = 1, this coincides with the 2-Copy algorithm.

We next show that this algorithm is 𝛽(0, 𝑘−2𝜏2−3𝜏
𝑘−𝜏

)
𝑘→∞−−−→ (1− 1/𝑒) approximate.

Proof. We can assume that 𝑍∩(𝐴2𝜏 ∪𝐶(𝐴2𝜏 )) = ∅ or alternatively 𝑍 ⊆ 𝐴𝑘−2𝜏2−𝐴2𝜏 ,

since there are 𝜏 + 1 copies of every element (counting the element itself) and 𝑍
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cannot remove all. Recall that in the analysis of the 2-Copy algorithm, we showed

𝑓({𝑎1, 𝑎2, 𝑎3}) ≥ 3𝑓(𝑧|𝐴 − 𝑧) and then used Lemmas 16 and 17 to get the desired.

Analogously, here we would like to show and 𝑓(𝐴3𝜏 ) ≥ 3𝑓(𝑍|𝐴−𝑍) and do the same.

Next, index elements in 𝑍 from 1 to 𝜏 , with the mapping 𝜋 : {1, . . . , 𝜏} →

{2𝜏 + 1, . . . , 𝑘 − 2𝜏 2}, such that 𝜋(𝑖) > 𝜋(𝑗) for 𝑖 > 𝑗 and 𝑎𝜋(𝑖) is the 𝑖-th element in

𝑍. Then with 𝐴𝑖 = {𝑎1, . . . , 𝑎𝑖} for all 𝑖, we have by submodularity, the following set

of inequalities,

𝑓(𝑎𝜋(𝑖)|𝐴𝜋(𝑖)−1) = 𝑓(𝑎𝜋(𝑖)|𝐴− {𝑎𝜋(𝑖), . . . , 𝑎𝑘−2𝜏2})

≥ 𝑓(𝑎𝜋(𝑖)|𝐴− {𝑎𝜋(𝑖), 𝑎𝜋(𝑖+1), . . . , 𝑎𝜋(𝜏)}) ∀𝑖

=⇒
𝜏∑︁

𝑖=1

𝑓(𝑎𝜋(𝑖)|𝐴𝜋(𝑖)−1) ≥ 𝑓(𝑍|𝐴− 𝑍) (4.2)

where the RHS in (4.2) is by definition.

Note that 𝜋(𝑖) > 2𝜏 , and for arbitrary 𝑖 ∈ {1, . . . , 𝜏} = [𝜏 ], 𝑗 ∈ {1, . . . , 2𝜏} = [2𝜏 ],

due to greedy iterations we have that 𝑓(𝑎𝜋(𝑖)|𝐴𝜋(𝑖)−1) ≤ 𝑓(𝑎𝑗|𝐴𝑗−1). So consider

any injective mapping from 𝑖 ∈ [𝜏 ] to 2 distinct elements 𝑖1, 𝑖2 ∈ [2𝜏 ], for instance

𝑖1 = 𝑖, 𝑖2 = 𝑖+ 𝜏 . We rewrite the previous inequality as,

2𝑓(𝑎𝜋(𝑖)|𝐴𝜋(𝑖)−1) ≤ 𝑓(𝑎𝑖1|𝐴𝑖1−1) + 𝑓(𝑎𝑖2 |𝐴𝑖2−1)

Summing over all 𝑖, along with (4.2) above gives,

2𝑓(𝑍|𝐴− 𝑍) ≤ 𝑓(𝐴2𝜏 ) (4.3)

where the RHS is by injective nature of mapping and definition of 𝑓(.|.).

In fact, we have 𝜋(𝑖) ≥ 2𝜏 + 𝑖 and thus, 𝑓(𝑎𝜋(𝑖)|𝐴𝜋(𝑖)−1) ≤ 𝑓(𝑎2𝜏+𝑖|𝐴2𝜏+𝑖−1). From

this, we have for the set 𝐴3𝜏 − 𝐴2𝜏 = {𝑎2𝜏+1, . . . , 𝑎3𝜏} that,

𝑓(𝑍|𝐴− 𝑍) ≤ 𝑓(𝐴3𝜏 − 𝐴2𝜏 |𝐴2𝜏 ) (4.4)
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(4.3) and (4.4) combined give us,

𝑓(𝐴3𝜏 ) ≥ 3𝑓(𝑍|𝐴− 𝑍)

We have from Lemma 13 that 𝑓(𝑂𝑃𝑇 (𝑘− 𝜏,𝑁, 0)) ≥ 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) and combined

with using Lemma 16, with 𝑘 replaced by 𝑘 − 𝜏 , 𝑆 = 𝐴3𝜏 ∪ 𝐶(𝐴2𝜏 ), 𝑠 = 3 and

𝑙 = 𝑘 − |𝑆| = 𝑘 − 2𝜏 2 − 3𝜏 and 𝑓(𝑍|𝐴− 𝑍) = 𝜂𝑓(𝐴) gives us,

𝑓(𝐴) ≥ 𝛽
(︁
3𝜂,

𝑘 − 2𝜏 2 − 3𝜏

𝑘 − 𝜏

)︁
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)).

Thus 𝑔(𝐴) = (1 − 𝜂)𝑓(𝐴) ≥ 𝛽
(︁
0, 𝑘−2𝜏2−3𝜏

𝑘−𝜏

)︁
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)), follows using Lemma

17.

Note that while we could ignore the asymptotic factors in approximation guarantee

for 𝜏 = 1, here we cannot, and this is where the upper bound on 𝜏 comes in. Recall

that we compare the value 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)), which is the 𝑓(.) value of a set of size

𝑘 − 𝜏 , to the 𝑓(.) value of a set of size 𝑘 −Θ(𝜏 2) (since the Θ(𝜏 2) elements added as

copies do not contribute any real value). Now 𝑘−Θ(𝜏2)
𝑘

converges to 1 only for 𝜏 ≪
√
𝑘

and it is this degradation that creates the threshold of 𝑜(
√
𝑘).

However, it turns out that we don’t need to add 𝜏 copies of each element in 𝐴2𝜏 .

Intuitively, the first few elements in 𝐴2𝜏 are more important and for those we should

add 𝜏 copies, but the later elements are not as important and we can add fewer copies.

In fact, we can geometrically decrease the number of copies we add from 𝜏 , to 1, over

the course of the 2𝜏 elements, resulting in a total of Θ(𝜏 log 𝜏) copies. The resulting

approximation ratio converges to (1− 1/𝑒) for 𝜏 = 𝑜(𝑘).

More concretely, consider the following algorithm,
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Algorithm 5 (1− 1/𝑒) Algorithm for copies when 𝜏 = 𝑜(𝑘)

1: Initialize 𝐴 = 𝐴2𝜏 , 𝑖 = 1

2: while 𝑖 ≤ ⌈log 2𝜏⌉ do

3: 𝐴 = 𝐴 ∪
(︀
⌈𝜏/2𝑖−1⌉ copies for each of {𝑎2𝑖−1, . . . , 𝑎2𝑖+1−2} ∩ 𝐴2𝜏

)︀
; 𝑖 = 𝑖+ 1

4: while |𝐴| < 𝑘 do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴)

5: Output: 𝐴

Essentially, we start with the set 𝐴2𝜏 , add 𝜏 copies each for {𝑎1, 𝑎2}, 𝜏/2 copies for

each of {𝑎3, . . . , 𝑎6}, 𝜏/4 copies for each of {𝑎7, . . . , 𝑎14} and so on, finally adding the

rest of the 𝑘−Θ(𝜏 log 𝜏) elements greedily. Notice that we could get the best possible

guarantee with a minimizer oblivious algorithm i.e., the output is independent of the

minimizer at any stage of the algorithm.

Theorem 19. Algorithm 5 is 𝛽
(︁
0, 𝑘−Θ(𝜏 log 𝜏)

𝑘−𝜏

)︁
𝑘→∞−−−→ (1 − 1/𝑒) approximate for 𝜏 =

𝑜(𝑘).

Proof. The basic outline of the analysis is similar to that of the previous one for

𝜏 = 𝑜(
√
𝑘), so we focus only on the differences here.

Let 𝐴1 denote the subset of 𝐴 obtained in the final greedy phase (step 4 in Algo-

rithm 5). Note that if 𝑍 ∩ 𝐴2𝜏 = ∅, then we have (4.3) and (4.4) as before and thus

𝑓(𝐴3𝜏 ) ≥ 3𝑓(𝑍|𝐴 − 𝑍). By applying Lemma 16 with 𝑙 = 𝑘 − Θ(𝜏 log 𝜏) this time,

we get the desired. However, unlike the previous analysis, here 𝑍 ∩ 𝐴2𝜏 need not be

empty since we have less than 𝜏 copies for many elements. We would like to show

that 𝑓(𝐴2𝜏 − 𝑍) ≥ 2𝑓(𝑍|𝐴 − 𝑍) regardless. Let 𝑚 = ⌈log 2𝜏⌉ − 1 and in fact, for

ease of presentation we assume that 𝜏 = 2𝑚. Also let 𝐵𝑖 = {𝑎2𝑖−1, . . . , 𝑎2𝑖+1−2} ∩𝐴2𝜏

i.e., the elements for which we add 𝜏/2𝑖−1 copies in the algorithm and let 𝐶𝑖 denote

the set of copies of these elements. Note that |𝐵𝑖| = 2𝑖 and |𝐶𝑖| = 2𝜏 ≥ 2|𝐵𝑖| for all

𝑖 ≤ 𝑚, for 𝑖 = 𝑚 + 1, 𝐵𝑚+1 = {𝑎2𝜏−1, 𝑎2𝜏} and |𝐶𝑚+1| = 2. We can assume that

for every element in 𝐴2𝜏 included in minimizer 𝑍, all copies of the element are also

present in 𝑍, hence 𝑍 removes at most ⌊ 𝜏
1+𝜏/2𝑖−1 ⌋ = ⌊ |𝐵𝑖|

2
𝜏

𝜏+2𝑖−1 ⌋ ≤ |𝐵𝑖|/2−1 elements

from 𝐵𝑖,∀𝑖 ≤ 𝑚. So we assume w.l.o.g. |𝑍 ∩𝐵1| = 0.
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Let us first examine the case where 𝑍 ⊂ 𝐵𝑖 ∪ 𝐶𝑖 for some 2 ≤ 𝑖 ≤ 𝑚 (the case of

𝑖 = 𝑚+1 follows rather easily). Notice that
∑︀𝑖−1

𝑗=1 |𝐵𝑗| = 2(|𝐵𝑖|/2−1), then from the

observation above we have 2|𝑍∩𝐵𝑖| ≤
∑︀𝑖−1

𝑗=1 |𝐵𝑗|. This implies that we can injectively

map any |𝐵𝑖|/2 − 1 = 2𝑖−1 − 1 elements in 𝐵𝑖, to two distinct elements with lower

indices in ∪𝑖−1
𝑗=1𝐵𝑗. Then, just as we showed in (4.4), we have an injective mapping

from every element in 𝑍 ∩ 𝐴2𝜏 to two distinct elements in ∪𝑖−1
𝑗=1𝐵𝑗, and this gives us

𝑓(∪𝑖−1
𝑗=1𝐵𝑗) ≥ 2𝑓(𝑍|𝐴−𝑍) which further implies 𝑓(𝐴2𝜏 ) ≥ 𝑓(∪𝑖−1

𝑗=1𝐵𝑗)+𝑓(𝑍|∪𝑖−1
𝑗=1𝐵𝑗) ≥

3𝑓(𝑍|𝐴− 𝑍) and applying Lemmas 16 and 17 completes the case.

For the general case, let 𝑥𝑗 = |𝑍 ∩ 𝐵𝑗|,∀𝑗 ∈ {2, . . . ,𝑚 + 1} (with 𝑥𝑚+1 ≤ 2) and

let 𝑥𝑚+2 = |𝑍 ∩ 𝐴1|. From |𝑍| = 𝜏 and the fact that 𝑍 contains all copies of every

element in |𝑍 ∩ 𝐴2𝜏 |, we have
∑︀𝑚+1

𝑗=2 𝑥𝑗(1 +
𝜏

2𝑗−1 ) + 𝑥𝑚+2 ≤ 𝜏 . Observe that to show

the existence of the desired injective mapping, it suffices to show,

2𝑥𝑖 ≤ | ∪𝑖−1
𝑗=1 𝐵𝑗 − 𝑍| −

𝑖−1∑︁
𝑗=1

2𝑥𝑗

= | ∪𝑖−1
𝑗=1 𝐵𝑗| −

𝑖−1∑︁
𝑗=1

3𝑥𝑗,∀𝑖 ∈ {2, . . . ,𝑚+ 2} (4.5)

Consider the polytope given by 𝑋 = (𝑥2, . . . , 𝑥𝑚+2) and constraints 0 ≤ 𝑥𝑗 ≤

⌊ |𝐵𝑖|
2

𝜏
𝜏+2𝑖−1 ⌋ ∀𝑗 and

∑︀𝑚+1
𝑗=1 𝑥𝑗(1+

𝜏
2𝑗−1 )+𝑥𝑚+2 ≤ 𝜏 . Then the extreme points correspond

exactly to the special cases we considered so far i.e. (i)𝑍∩𝐴2𝜏 = ∅ and (ii) 𝑍 ⊂ 𝐵𝑖∩𝐶𝑖,

and we showed that the conditions (4.5) are satisfied for these cases. This implies

the (linear) conditions (4.5) are satisfied for every point in the polytope and that

completes the proof.

4.6 Algorithms in Absence of “copies”

To recap, thus far we chose a set of elements greedily and treated a suitably large

subset of the initial few elements as ‘critical’ and added ‘enough’ copies of these

elements to ensure that we keep a copy of each critical element in the set, even after
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adversarial removal. We aim to follow a similar scheme even in the absence of copies.

In the general case however, we need to figure out a new way to ensure that our set

is robust to removal of the first few critical elements chosen greedily. We first discuss

how to approach this for 𝜏 = 1.

4.6.1 Algorithms for 𝜏 = 1

We start by discussing how one could construct a greedy set that is robust to the

removal of 𝑎1. In the case of copies, we would simply add a copy 𝑎′1 of 𝑎1, to accomplish

this. Here, one approach would be to pick 𝑎1 and then pick the rest of the elements

greedily while ignoring 𝑎1. Note that this would add a copy of 𝑎1, if it were available,

and if not it will permit the selection of elements which have small marginal on any

set containing 𝑎1, but possibly large marginal value in the absence of 𝑎1. Such an

element need not be selected by the standard Algorithm 1 that doesn’t ignore 𝑎1.

Formally,

Algorithm 6 0.387 Algorithm

1: Initialize 𝐴 = {𝑎1}

2: while |𝐴| < 𝑘 do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴− {𝑎1})

3: Output: 𝐴

This simple algorithm is in fact, asymptotically 0.387 approximate and the bound

is tight (proof in Appendix A.2). However, a possible issue with the algorithm is that

it is oblivious to the minimizers of the set at any iteration. It ignores 𝑎1 throughout,

even if 𝑎1 stops being the minimizer after a few iterations. Thus, if we check the

minimizer after every iteration and stop ignoring 𝑎1 once it is not a minimizer (i.e.

proceed with standard greedy iterations after such a point), we achieve a performance

guarantee of 0.5 (proof omitted). Note that this matches the guarantee obtained by

copying 𝑎1 in presence of copies. In this sense, we can build a set that is robust to

removal of 𝑎1 in the general setting.

As we saw for the case of copies, in order to get even better guarantees, we need

to consider the set of the first two elements, {𝑎1, 𝑎2}. A direct generalization of line 2
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in Algorithm 6, to a rule that ignores both 𝑎1 and 𝑎2, i.e. argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴− {𝑎1, 𝑎2}),

can be shown to have a performance bound less than 0.5. Algorithm 7 avoids looking

at both elements simultaneously. It instead ignores 𝑎1 until its marginal becomes

sufficiently small, and then does the same for 𝑎2, if required.

Algorithm 7 0.5547−Ω(1/𝑘) Algorithm

1: Initialize 𝐴 = {𝑎1, 𝑎2}

Phase 1:

2: while |𝐴| < 𝑘 and 𝑓(𝑎1|𝐴− 𝑎1) >
𝑓(𝐴)
3

do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴− 𝑎1)

Phase 2:

3: while |𝐴| < 𝑘 and 𝑓(𝑎2|𝐴− 𝑎2) >
𝑓(𝐴)
3

do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴− 𝑎2)

Phase 3:

4: while |𝐴| < 𝑘 do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴)

5: Output:𝐴

The algorithm is asymptotically 0.5547-approximate (as an example, guarantee

> 0.5 for 𝑘 ≥ 50) and note that it is minimizer oblivious and easy to implement.

We wish to make the final set robust to removal of either one of 𝑎1, 𝑎2. Algorithm

7 deals with the two elements one at a time, first ignoring 𝑎1 and then 𝑎2 if required.

In order to improve on it, we devise a way to add new elements while paying attention

to both 𝑎1 and 𝑎2 simultaneously. To this end, consider the algorithm that iteratively

adds a set 𝑋 of size 𝑚 while one of 𝑎1, 𝑎2 is a minimizer, where 𝑋 is,

𝑋 = argmax
|𝑆|≤𝑚;𝑆⊆𝑁−𝐴

𝑔(𝑆|𝐴) = argmax
|𝑆|≤𝑚;𝑆⊆𝑁−𝐴

[︀
min

{︀
𝑓(𝑆 + 𝐴− 𝑎1), 𝑓(𝑆 + 𝐴− 𝑎2)

}︀
−

min
{︀
𝑓(𝐴− 𝑎1), 𝑓(𝐴− 𝑎2)

}︀]︀
,

i.e., while 𝑧 ∈ {𝑎1, 𝑎2}, greedily adding 𝑚 tuples but w.r.t. to the 𝑔(.) function now

instead of 𝑓(.), for suitable𝑚 ≥ 1. We need to resort to𝑚-tuples instead of singletons

because, for𝑚 = 1 we cannot guarantee improvements at each iteration, as there need

not be any element that adds marginal value on both 𝑎1 and 𝑎2. However, for larger

𝑚 we can show improving guarantees. More concretely, consider an instance where
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𝑓(𝑎1) = 𝑓(𝑎2) = 1, 𝑎1 has a copy 𝑎′1 and additionally both 𝑎1 and 𝑎2 have ‘partial’

copies, 𝑓(𝑎𝑗𝑖 ) = 1
𝑘
and 𝑓(𝑎𝑗𝑖 |𝑎𝑖) = 0 for 𝑗 ∈ {1, . . . , 𝑘}, 𝑖 ∈ {1, 2}. Also, let there

be a set 𝐺 of 𝑘 − 2 garbage elements with 𝑓(𝐺) = 0. Finally, let 𝑓({𝑎1, 𝑎2}) = 2

and 𝑓(𝑎𝑗𝑖 |𝑋) = 1
𝑘
if 𝑎𝑖 ̸∈ 𝑋 (and also 𝑎′1 ̸∈ 𝑋 for 𝑖 = 1). Running the algorithm

with: (i) 𝑚 = 1 outputs {𝑎1, 𝑎2} ∪ 𝐺 in the worst case, with (ii) 𝑚 = 2 outputs

𝑎𝑗1, 𝑎
𝑗
2 on step 𝑗 of Phase 1 and thus, ‘partially’ copies both 𝑎1 and 𝑎2. Instead, if

we run the algorithm with (iii) 𝑚 = 3, the algorithm picks up 𝑎′1 and then copies

𝑎2 almost completely with {𝑎12, . . . , 𝑎𝑘−3
2 }. In fact, we will show that while {𝑎1, 𝑎2}

are minimizers, adding 𝑚-tuples in this manner allows us to guarantee that at each

step we increase 𝑔(𝐴) by 𝑚−1
𝑚

1
𝑘
times the difference from optimal. Thus, when 𝑚 is

large enough that 𝑚−1
𝑚

≈ 1, we effectively add value at the ‘greedy’ rate of 1
𝑘
times

the difference from optimal (ref. Lemma 1). However, this is while 𝑧 ∈ {𝑎1, 𝑎2}, so

we need to address the case when {𝑎1, 𝑎2} are not minimizers. One approach would

be to follow along the lines of Algorithm 7 by adding singletons greedily w.r.t. 𝑓

(similar to Phase 3) once the minimizer falls out of {𝑎1, 𝑎2}. This is what we do in

the algorithm below, recall that 𝒵(𝐴) is the set of minimizers of set 𝐴.

Algorithm 8 A (1− 1/𝑒)− 1/Θ(𝑚) Algorithm for 𝜏 = 1

input: 𝑚

1: Initialize 𝐴 = {𝑎1, 𝑎2}

Phase 1:

2: while |𝐴| < 𝑘 and 𝒵(𝐴) ⊆ {𝑎1, 𝑎2} do

3: 𝑙 = min{𝑚, 𝑘 − |𝐴|}

4: 𝐴 = 𝐴 ∪ argmax
|𝑆|=𝑙;𝑆⊆𝑁−𝐴

𝑔(𝑆|𝐴)

Phase 2:

5: while |𝐴| < 𝑘 do 𝐴 = 𝐴+ argmax
𝑥∈𝑁−𝐴

𝑓(𝑥|𝐴)

6: Output:𝐴

Before analyzing the approximation guarantee of Algorithm 8, we first need to

show that in Phase 1, at each step we greedily add an 𝑚-tuple with marginal value

𝑚−1
𝑘

times the difference from optimal. We do this by showing a more general property
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below,

Lemma 20. Given two monotone submodular functions, 𝑓1, 𝑓2 on ground set 𝑁 . If

there exists a set 𝑆 of size 𝑘, such that 𝑓𝑖(𝑆) ≥ 𝑉𝑖,∀𝑖, then for every 𝑚 (2 ≤ 𝑚 ≤ 𝑘),

there exists a set 𝑋 ⊆ 𝑆 with size 𝑚, such that,

𝑓𝑖(𝑋) ≥ 𝑚− 1

𝑘
𝑉𝑖, ∀𝑖.

Proof. First, we show that it suffices to prove this statement for two modular functions

ℎ1, ℎ2. Note that we can reduce our ground set to 𝑆. Now, consider an arbitrary

indexing of elements in 𝑆 = {𝑠1, . . . , 𝑠𝑘} and let 𝑆𝑗 = {𝑠1, . . . , 𝑠𝑗},∀𝑗 ∈ [𝑘]. Consider

modular functions such that value of element 𝑠𝑗 is ℎ𝑖(𝑠𝑗) := 𝑓𝑖(𝑠𝑗|𝑆𝑗−1). Note that

ℎ𝑖(𝑆) = 𝑓𝑖(𝑆) and additionally, by submodularity, we have that ℎ𝑖(𝑋) is a lower bound

on 𝑓𝑖(𝑋) i.e. for every set 𝑋 ⊆ 𝑆, 𝑓𝑖(𝑋) =
∑︀

𝑗:𝑠𝑗∈𝑋 𝑓𝑖(𝑠𝑗|𝑋∩𝑆𝑗−1) ≥ ℎ𝑖(𝑋). Also, we

can assume w.l.o.g. that ℎ𝑖(𝑆) = 1,∀𝑖 and so it suffices to show that ℎ𝑖(𝑋) ≥ 𝑚−1
𝑘

,∀𝑖.

We proceed by induction on 𝑚. For the base case of 𝑚 = 2, we can pick elements

𝑒1, 𝑒2 ∈ 𝑆 such that ℎ𝑖(𝑒𝑖) ≥ 1
𝑘
for 𝑖 ∈ {1, 2}, and we are done. Now assume that

the property holds for 𝑚 ≤ 𝑝 and we show it for 𝑚 = 𝑝 + 1 by contradiction.

Consider an arbitrary set 𝑋0 of size 𝑝, such that ℎ𝑖(𝑋0) ≥ 𝑝−1
𝑘
. Such a set exists by

assumption, and note that if for some 𝑖, say 𝑖 = 1, ℎ1(𝑋0) ≥ 𝑝
𝑘
, we are done, since

we can add an element 𝑒 ∈ 𝑆 to 𝑋0 such that ℎ2(𝑒 + 𝑋0) ≥ 𝑝
𝑘
. So we assume that

𝑝−1
𝑘

≤ ℎ𝑖(𝑋0) <
𝑝
𝑘
,∀𝑖 to set up the contradiction.

Now, consider the reduced ground set 𝑆 −𝑋0. Then we have that ℎ𝑖(𝑆 −𝑋0) >

1 − 𝑝
𝑘
,∀𝑖 and since |𝑆 − 𝑋0| = 𝑘 − 𝑝, we have for the reduced ground set 𝑆 − 𝑋0,

that there exists a set 𝑋1 of size 𝑝 such that ℎ𝑖(𝑋1) ≥ 𝑝−1
𝑘−𝑝

ℎ𝑖(𝑆 − 𝑋0) > 𝑝−1
𝑘
, by

the induction assumption. Using our second assumption (for contradiction), we have

that ℎ𝑖(𝑋1) < 𝑝
𝑘
. We repeat this until |𝑆 − ∪𝑗𝑋𝑗| ≤ 𝑝. Let 𝑋 ′ = 𝑆 − ∪𝑗𝑋𝑗, then

since ℎ𝑖(𝑆) = 1 ∀𝑖, we have 0 < |𝑋 ′| = 𝑝′ ≤ 𝑝 and ℎ𝑖(𝑋
′) > 𝑝′

𝑘
∀𝑖. Now using the

induction assumption for 𝑚 = 𝑝+1−𝑝′ and ground set 𝑆−𝑋 ′, we have a set 𝑌 with

|𝑌 | = 𝑝 + 1− 𝑝′, such that ℎ𝑖(𝑋
′ ∪ 𝑌 ) ≥ ℎ𝑖(𝑋

′) + 𝑝−𝑝′

𝑘−𝑝′
(1− ℎ𝑖(𝑋

′)) > 𝑝
𝑘
,∀𝑖, yielding

a contradiction.
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Observe that this is a stronger version of Lemma 11 in Chapter 3 for the special

case of two objective functions. In fact, we conjecture that the following strengthened

version of Lemma 11 is true in general.

Conjecture 21. Given 𝑚 ≥ 1 (treated as a constant) monotone submodular functions

𝑓1, . . . , 𝑓𝑚 on ground set 𝑁 , a set 𝑆 ⊆ 𝑁 of size 𝑘, such that 𝑓𝑖(𝑆) ≥ 𝑉𝑖 for all 𝑖 ∈ [𝑚]

and an arbitrary 𝑙 with 𝑚 ≤ 𝑙 ≤ 𝑘, there exists a set 𝑋 ⊆ 𝑆 of size 𝑙, such that,

𝑓𝑖(𝑋) ≥ 𝑙 −Θ(1)

𝑘
𝑉𝑖, ∀𝑖 ∈ [𝑚]

Based on this lemma, consider the below generalized greedy algorithm,

Algorithm 9 Generalized Greedy Algorithm

input: 𝑚,𝑉1, 𝑉2

1: Initialize 𝐴 = ∅

2: while |𝐴| < 𝑘 do

3: 𝑚 = min{𝑚, 𝑘 − |𝐴|}

4: Find
{︁
𝑋| 𝑓𝑖(𝑋|𝐴) ≥ 𝑚−1

𝑘
[𝑉𝑖 − 𝑓𝑖(𝐴)], 𝑋 ⊆ 𝑁 − 𝐴, |𝑋| = 𝑚

}︁
by enumeration

5: 𝐴 = 𝐴 ∪𝑋

6: Output:𝐴

Just as we showed in Chapter 3 Theorem 12, we have that Algorithm 9 is a (1−

1/𝑒)−1/Θ(𝑚) approximation for bi-objective maximization of monotone submodular

functions subject to cardinality constraints. As we saw in Chapter 3, the problem of

maximizing the minimum of monotone submodular functions, 𝑀𝑂1, is equivalent to

the formulation with target values 𝑉𝑖 above (𝑀𝑂2). Hence, for Algorithm 8, we have

after 𝑙 iterations in Phase 1,

𝑔(𝐴) = min{𝑓(𝐴− 𝑎1), 𝑓(𝐴− 𝑎2)}

≥
(︁
𝛽
(︁
0,

𝑙

𝑘

)︁
− 1/Θ(𝑚)

)︁
min{𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 1)− 𝑎1), 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 1)− 𝑎2)}

≥
(︁
𝛽
(︁
0,

𝑙

𝑘

)︁
− 1/Θ(𝑚)

)︁
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)) (4.6)
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Note that for Algorithm 9, Lemma 16 applies, albeit with the additive −1/Θ(𝑚)

term. We now present the analysis of Algorithm 8.

Theorem 22. Given 𝑚 ≥ 2, Algorithm 8 is 𝛽(0, 𝑘−2𝑚−2
𝑘

)−1/Θ(𝑚)
𝑘→∞−−−→ (1−1/𝑒)−

1/Θ(𝑚) approximate, and makes 𝑂(𝑛𝑚+1) queries.

Proof. Let 𝐴0 = {𝑎1, 𝑎2}. Consider the function 𝑔0(𝑆) = min𝑖∈{1,2}{𝑓(𝑆−𝑎𝑖)} and let

𝑧 be a minimizer of output set 𝐴 as usual and define 𝑧0(𝑆) = argmin𝑖∈{1,2}{𝑓(𝑆−𝑎𝑖)}.

Note that if 𝑧0(𝑆) ∈ 𝒵(𝑆) then 𝑔0(𝑆) = 𝑔(𝑆). Also, with the standard definition of

marginal, note that for any set 𝑆 ∩ 𝐴0 = ∅, 𝑔0(𝑆|𝑋) ≥ min𝑖∈{1,2}{𝑓(𝑆|𝑋 − 𝑎𝑖)} ≥

𝑓(𝑆|𝑋). Let 𝑈 be the set added during Phase 1 and similarly 𝑊 during Phase 2.

Also, let 𝑈 = {𝑢1, . . . , 𝑢𝑝}, where each 𝑢𝑖 is a set of size 𝑚 and similarly 𝑊 =

{𝑤1, . . . , 𝑤𝑟}, where each 𝑤𝑖 is a singleton. Let 𝑂𝑃𝑇 = 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)) and note

that if 𝑟 = 0 i.e., Phase 2 doesn’t occur, we have that 𝑧 ∈ 𝐴0 and using (4.6),

𝑔(𝐴) ≥
[︀
𝛽(0, 𝑘−2

𝑘−1
) − 1/Θ(𝑚)

]︀
𝑂𝑃𝑇 . So assume 𝑟 > 0 and also 𝑝 ≥ 2, since the

case 𝑝 = 1 will be easy to handle later. Now, let 𝑓(𝑧|𝐴 − 𝑧) = 𝜂𝑓(𝐴), and so

𝑔(𝐴) = (1 − 𝜂)𝑓(𝐴). Using analysis similar to Lemma 16, we will focus on showing

that,

𝑓(𝐴) ≥
[︁
𝛽
(︁
3𝜂,

𝑘 − 2𝑚

𝑘 − 1

)︁
− 1/Θ(𝑚)

]︁
𝑂𝑃𝑇 (4.7)

Lemma 17 then gives 𝑔(𝐴) ≥
[︀
𝛽(0, 𝑘−2𝑚

𝑘−1
)− 1/Θ(𝑚)

]︀
𝑂𝑃𝑇 .

During the rest of the proof, we sometimes ignore the 1/Θ(𝑚) term with the

understanding that it is present by default. To show (4.7), let 𝑎𝑖 = 𝑧0(𝐴0∪𝑈). Then,

observe that,

𝑓(𝐴) = 𝑔0(𝐴0 ∪ (𝑈 − 𝑢𝑝)) + 𝑔0(𝑢𝑝|𝐴0 ∪ (𝑈 − 𝑢𝑝))

+𝑓(𝑎𝑖|(𝐴0 ∪ 𝑈)− 𝑎𝑖) + 𝑓(𝑊 |𝐴0 ∪ 𝑈) (4.8)

For the first term in (4.8), we have

𝑔0(𝐴0 ∪ (𝑈 − 𝑢𝑝)) = 𝑔0(𝐴0 ∪ 𝑢1) + 𝑔0({𝑢2, . . . , 𝑢𝑝−1}|𝐴0 ∪ 𝑢1).
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Then, due to the greedy nature of Phase 1, we have using Theorem ?? (ignoring

1/Θ(𝑚) term),

𝑔0({𝑢2, . . . , 𝑢𝑝−1}|𝐴0 ∪ 𝑢1) ≥ 𝛽
(︁
0,

𝑚𝑝− 2𝑚

𝑘 − 1

)︁
(𝑂𝑃𝑇 − 𝑔0(𝐴0 ∪ 𝑢1)) (4.9)

As usual, the 𝑘 in the denominator was replaced by 𝑘 − 1 because we compare the

value to a set of size 𝑘−1 (𝑂𝑃𝑇 = 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 1)− 𝑧)). Similarly, for the last term

in (4.8), we have,

𝑓(𝑊 |𝐴0 ∪ 𝑈) ≥ 𝛽
(︀
0,

𝑟

𝑘 − 1

)︀
(𝑂𝑃𝑇 − 𝑓(𝐴0 ∪ 𝑈)) (4.10)

Now we make some substitutions, let Δ = 𝑔0(𝐴0 ∪ 𝑢1) + 𝑔0(𝑢𝑝|𝐴0 ∪ (𝑈 − 𝑢𝑝)) +

𝑓(𝑎𝑖|(𝐴0 ∪ 𝑈) − 𝑎𝑖), 𝛼𝑝 = (𝑚−1)(𝑝−2)
𝑘−1

, 𝛼𝑟 = 𝑟
𝑘−1

. Then using 𝑘 = 𝑚𝑝 + 𝑟 + 2 we get,

𝛼𝑝 + 𝛼𝑟 =
𝑘−2𝑚
𝑘−1

− 1/Θ(𝑚). Also, 𝑓(𝐴0 ∪ 𝑈) = Δ + 𝑔0({𝑢2, . . . , 𝑢𝑝−1}|𝐴0 ∪ 𝑢1). This

gives us,

𝑓(𝐴) = Δ + 𝑔0({𝑢2, . . . , 𝑢𝑝−1}|𝐴0 ∪ 𝑢1) + 𝑓(𝑊 |𝐴0 ∪ 𝑈)
(𝑎)

≥ Δ+ 𝑔0({𝑢2, . . . , 𝑢𝑝−1}|𝐴0 ∪ 𝑢1) + 𝛽(0, 𝛼𝑟)[𝑂𝑃𝑇 − 𝑓(𝐴0 ∪ 𝑈)]

≥ Δ+ (1− 𝛽(0, 𝛼𝑟))𝑔
0({𝑢2, . . . , 𝑢𝑝−1}|𝐴0 ∪ 𝑢1) + 𝛽(0, 𝛼𝑟)(𝑂𝑃𝑇 −Δ)

(𝑏)

≥ Δ+ (1/𝑒𝛼𝑟)𝛽(0, 𝛼𝑝)(𝑂𝑃𝑇 − 𝑔0(𝐴0 ∪ 𝑢1)) + 𝛽(0, 𝛼𝑟)(𝑂𝑃𝑇 −Δ)

≥ Δ+ (𝛽(0, 𝛼𝑟) + 𝛽(0, 𝛼𝑝)/𝑒
𝛼𝑟)[𝑂𝑃𝑇 −Δ]

= Δ+
[︁
𝛽
(︁
0,

𝑘 − 2𝑚

𝑘 − 1

)︁
− 1/Θ(𝑚)

]︁
[𝑂𝑃𝑇 −Δ]

where the last equality holds asymptotically, (𝑎) comes from (4.10) and (𝑏) from

(4.9). Assume for the time being, that for any 𝑥, 3𝑓(𝑥|𝐴 − 𝑥) ≤ Δ, which implies

that Δ ≥ 3𝜂𝑓(𝐴). Armed with these inequalities, the same simple algebra as in the

proof of Lemma 16, gives us (4.7). More concretely, ignoring the 1/Θ(𝑚) term, we
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have,

𝑓(𝐴) ≥ Δ+ 𝛽
(︁
0,

𝑘 − 2𝑚

𝑘 − 1

)︁
[𝑂𝑃𝑇 −Δ]

≥ 3𝜂𝑓(𝐴)
(︁
1− 𝛽

(︁
0,

𝑘 − 2𝑚

𝑘 − 1

)︁)︁
+ 𝛽

(︁
0,

𝑘 − 2𝑚

𝑘 − 1

)︁
𝑂𝑃𝑇

(1− 3𝜂𝑒−
𝑘−2𝑚
𝑘−1 )𝑓(𝐴) ≥ (1− 𝑒−

𝑘−2𝑚
𝑘−1 )𝑂𝑃𝑇

=⇒ 𝑓(𝐴) ≥ 𝛽
(︁
3𝜂,

𝑘 − 2𝑚

𝑘 − 1

)︁
𝑂𝑃𝑇

To finish the proof, we need to show 3𝑓(𝑥|𝐴−𝑥) ≤ Δ. We break this down by first

showing in two steps that for all 𝑥, 2𝑓(𝑥|𝐴 − 𝑥) ≤ 𝑔0(𝐴0 ∪ 𝑢1) = 𝑓(𝑎2) + 𝑔0(𝑢1|𝐴0),

followed by proving that 𝑓(𝑥|𝐴− 𝑥) ≤ 𝑔0(𝑢𝑝|𝐴0 ∪ (𝑈 − 𝑢𝑝)) + 𝑓(𝑎𝑖|(𝐴0 ∪ 𝑈)− 𝑎𝑖).

Step 1 : for all 𝑥, 𝑓(𝑥|𝐴−𝑥) ≤ 𝑓(𝑎2). To see this for 𝑥 ̸= 𝑎1, note that 𝑓(𝑥|𝐴−𝑥) ≤

𝑓(𝑥|𝐴0 − 𝑥) and further, 𝑓(𝑥|𝐴0 − 𝑥) ≤ 𝑓(𝑎2|𝑎1) ≤ 𝑓(𝑎2), where the first inequality

is because 𝑎2 adds maximum marginal value to 𝑎1. For 𝑥 = 𝑎1, since Phase 1 ends,

we have that 𝑓(𝑎1|𝐴− 𝑎1) ≤ 𝑓(𝑎1|𝑎2 + 𝑈) ≤ 𝑓(𝑦|(𝐴0 ∪ 𝑈)− 𝑦) for some 𝑦 not in 𝐴0

and then we have 𝑓(𝑦|(𝐴0 ∪ 𝑈)− 𝑦) ≤ 𝑓(𝑎2).

Step 2 : 𝑓(𝑥|𝐴−𝑥) ≤ 𝑔0(𝑢1|𝐴0). For 𝑥 ̸∈ 𝐴0, we have that 𝑓(𝑥|𝐴−𝑥) ≤ 𝑓(𝑥|𝐴0) ≤

𝑔0(𝑥|𝐴0) ≤ 𝑔0(𝑢1|𝐴0). For 𝑥 ∈ 𝐴0, from the fact that 𝐴0∪𝑈 has a minimizer 𝑦 ̸∈ 𝐴0,

we have that 𝑓(𝑥|𝐴 − 𝑥) ≤ 𝑓(𝑥|(𝐴0 ∪ 𝑈) − 𝑥) ≤ 𝑓(𝑦|(𝐴0 ∪ 𝑈) − 𝑦) and further

𝑓(𝑦|(𝐴0 ∪ 𝑈)− 𝑦) ≤ 𝑓(𝑦|𝐴0) ≤ 𝑔0(𝑦|𝐴0) ≤ 𝑔0(𝑢1|𝐴0).

Finally, we show that 𝑓(𝑥|𝐴 − 𝑥) ≤ 𝑔0(𝑢𝑝|𝐴0 ∪ (𝑈 − 𝑢𝑝)) + 𝑓(𝑎𝑖|(𝐴0 ∪ 𝑈) − 𝑎𝑖),

for all 𝑥. Let 𝑎𝑗 = 𝑧0(𝐴0 ∪ (𝑈 − 𝑢𝑝)) and observe that,

𝑔0(𝐴0 ∪ 𝑈)− 𝑔0(𝐴0 ∪ (𝑈 − 𝑢𝑝)) + 𝑓(𝑎𝑖|(𝐴0 ∪ 𝑈)− 𝑎𝑖)

= 𝑓((𝐴0 ∪ 𝑈)− 𝑎𝑖)− 𝑓((𝐴0 − 𝑎𝑗) ∪ (𝑈 − 𝑢𝑝)) + 𝑓(𝑎𝑖|(𝐴0 ∪ 𝑈)− 𝑎𝑖)

= 𝑓(𝐴0 ∪ 𝑈)− 𝑓((𝐴0 − 𝑎𝑗) ∪ (𝑈 − 𝑢𝑝))

≥ 𝑓(𝑎𝑗|(𝐴0 − 𝑎𝑗) ∪ (𝑈 − 𝑢𝑝))
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Now, before adding 𝑢𝑝, we have that 𝑔0(.) = 𝑔(.) and in fact, 𝑎𝑗 is a minimizer of

𝐴0 ∪ (𝑈 − 𝑢𝑝), so clearly, for all 𝑥 ∈ 𝐴0 ∪ (𝑈 − 𝑢𝑝), the desired is true. For 𝑥 ∈ 𝑢𝑝, it

is true since 𝑓(𝑢𝑝|𝐴0 ∪ (𝑈 − 𝑢𝑝)) ≤ 𝑔0(𝑢𝑝|𝐴0 ∪ (𝑈 − 𝑢𝑝)). For 𝑥 ∈ 𝑊 , we have that

𝑓(𝑥|𝐴− 𝑥) ≤ 𝑓(𝑥|𝐴0 ∪ (𝑈 − 𝑢𝑝)) ≤ 𝑔0(𝑥|𝐴0 ∪ (𝑈 − 𝑢𝑝)) ≤ 𝑔0(𝑢𝑝|𝐴0 ∪ (𝑈 − 𝑢𝑝))), and

we are done.

The case 𝑝 = 1 can be dealt with same as above, except that now Δ = 𝑔0(𝐴0 ∪

𝑢1) + 𝑓(𝑎𝑖|(𝐴0 ∪ 𝑢1)− 𝑎𝑖) + 𝑓(𝑤1|𝐴0 ∪ 𝑢1) = 𝑓(𝐴0 ∪ 𝑢1 ∪ 𝑤1).

Before improving and extending the above result to show an asymptotic (1− 1/𝑒)

approximation for 𝜏 = 𝑜(
√
log 𝑘), we first give a fast 0.387 approximation for 𝜏 =

𝑜(
√
𝑘).

4.6.2 0.387 Algorithm for 𝜏 ≪
√
𝑘

The first algorithm in Section 4.5.2, which greedily chooses {𝑎1, . . . , 𝑎𝑘−2𝜏2} elements

and adds 𝜏 copies for each of the first 2𝜏 elements. can be recast as greedily choosing

2𝜏 elements, ignoring them and choosing another 2𝜏 greedily (which will be copies of

the first 2𝜏) and repeating this 𝜏 times in total, leading to a set which contains 𝐴2𝜏

and 𝜏 − 1 copies of each element in 𝐴2𝜏 . Then, ignoring this set, we greedily add till

we have 𝑘 elements in total. Thus, the algorithm essentially uses the greedy algorithm

as a sub-routine 𝜏 + 1 times. Based on this idea, we now propose an algorithm for

𝜏 = 𝑜(
√
𝑘), which can also be viewed as an extension of the 0.387 algorithm for 𝜏 = 1.

To be more precise, it achieves an asymptotic guarantee of 0.387 for 𝜏 = 𝑜(
√︁

𝑘
𝑐(𝑘)

),

where 𝑐(𝑘) is an input parameter that governs the trade off between how fast the

guarantee approaches 0.387 as 𝑘 increases and how large 𝜏 can be for the guarantee

to still hold. In fact, the guarantee is 0.387
(︁
1 − 1

Θ(𝑐(𝑘))

)︁
with 𝑐(𝑘) being a function

monotonically increasing in 𝑘 and approaching∞ as 𝑘 → ∞. The factor also degrades

proportionally to 1− 𝜏2𝑐(𝑘)
𝑘

, as 𝜏 approaches
√︁

𝑘
𝑐(𝑘)

.
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Algorithm 10 Algorithm for 𝜏 = 𝑜
(︁√︁

𝑘
𝑐(𝑘)

)︁
1: Initialize 𝜏 ′ = 𝑐(𝑘)𝜏 2, 𝐴0 = 𝐴1 = 𝑋 = ∅.

2: while |𝐴0| < 𝜏 ′ do

3: while |𝑋| < 𝜏 ′/𝜏 do 𝑋 = 𝑋 + argmax
𝑥∈𝑁−(𝐴0∪𝑋)

𝑓(𝑥|𝑋)

4: 𝐴0 = 𝐴0 ∪𝑋; 𝑋 = ∅

5: while |𝐴1| < 𝑘 − 𝜏 ′ do 𝐴1 = 𝐴1 + argmax
𝑥∈𝑁−(𝐴0∪𝐴1)

𝑓(𝑥|𝐴1)

6: Output: 𝐴0 ∪ 𝐴1

Theorem 23. Algorithm 10 has an approximation ratio of 𝑒−1
2𝑒−1+ 𝑒−1

𝑐(𝑘)

= 𝑒−1
2𝑒−1

(︀
1 −

1
Θ(𝑐(𝑘))

)︀ 𝑘→∞−−−→ 0.387 for 𝜏 = 𝑜
(︀√︁

𝑘
𝑐(𝑘)

)︀
.

Proof. Let 𝐴 = 𝐴0 ∪ 𝐴1 be the output with 𝐴0, 𝐴1 as in the algorithm. Define

𝑍0 = 𝐴0 ∩𝑍 and 𝑍1 = 𝑍 −𝑍0 = 𝐴1 ∩𝑍. Let 𝑂𝑃𝑇 (𝑘− 𝜏,𝑁 −𝑍0, 0) = 𝐴′
0 ∪𝑋 where

𝐴′
0 = 𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝑍0, 0) ∩ 𝐴0 and 𝑋 ∩ 𝐴′

0 = ∅. Now note that,

𝑓(𝐴0 − 𝑍0) + 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0)) ≥ 𝑓(𝐴′
0) + 𝑓(𝑋)

≥ 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝑍0, 0))

≥ 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) [∵ Lemma 13]

Which implies,

𝑓(𝐴0 − 𝑍0) ≥ 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))− 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0)) (4.11)

In addition,

𝑓(𝐴1) ≥ 𝛽
(︁
0,

𝑘 − 𝜏 ′

𝑘 − 𝜏

)︁
𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0)) (4.12)

Next, index disjoint subsets of 𝐴0 based on the loop during which they were added.

So the subset added during loop 𝑖 is denoted by 𝐴𝑖
0, where 𝑖 ∈ {1, . . . , 𝜏}. So the last

subset consisting of 𝜏𝑐(𝑘) elements is 𝐴𝜏
0.

76



Now, if 𝑍0 includes at least one element from each 𝐴𝑖
0 then 𝑍1 = ∅ and for this

case we have from (4.11) and (4.12) above,

𝑓(𝐴− 𝑍) ≥ max{𝑓(𝐴0 − 𝑍0), 𝑓(𝐴1)}

≥ max{𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))− 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0)),

𝛽
(︁
0,

𝑘 − 𝜏 ′

𝑘 − 𝜏

)︁
𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0))}

≥
𝛽
(︁
0, 𝑘−𝜏 ′

𝑘−𝜏

)︁
1 + 𝛽

(︁
0, 𝑘−𝜏 ′

𝑘−𝜏

)︁𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))

𝑘→∞−−−→ 𝑒− 1

2𝑒− 1
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))

Next, suppose that |𝑍1| > 0, then there is some 𝐴𝑗
0 such that 𝐴𝑗

0 ∩𝑍 = ∅. Further let

𝑓(𝑍1|𝐴 − 𝑍) = 𝜂𝑓(𝐴1), then since |𝐴𝑗
0| ≥ 𝑐(𝑘)|𝑍1|, similar to (4.3), we have due to

greedy iterations and submodularity, 𝑓(𝐴𝑗
0) ≥ 𝑐(𝑘)𝑓(𝑍1|𝐴 − 𝑍) = 𝑐(𝑘)𝜂𝑓(𝐴1). Also

note that,

𝑓(𝐴− 𝑍) ≥ 𝑓(𝐴1 − 𝑍1) ≥ 𝑓(𝐴1)− 𝑓(𝑍1|𝐴− 𝑍) ≥ (1− 𝜂)𝑓(𝐴1) (4.13)

Moreover, let 𝐴′
1 be the set of first 𝜏 elements of 𝐴1. Then, due to greedy iterations

we have 𝑓(𝐴′
1) ≥ 𝑓(𝑍1|𝐴1 − 𝑍1) ≥ 𝜂𝑓(𝐴1). Thus, from Lemma 16, with 𝑁 replaced

by 𝑁 −𝐴0, 𝑘 replaced by 𝑘 − 𝜏 , 𝑆 = 𝐴′
1 with 𝑐 = 𝜂 and 𝑙 = 𝑘 − |𝑆| = 𝑘 − 𝜏 ′ − 𝜏 , we

have,

𝑓(𝐴1) ≥ 𝛽(𝜂,
𝑘 − 𝜏 ′ − 𝜏

𝑘 − 𝜏
)𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0)) (4.14)
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From (4.11), (4.13) and (4.14),

𝑓(𝐴− 𝑍) ≥ max{𝑓(𝐴0 − 𝑍0), (1− 𝜂)𝑓(𝐴1), 𝑓(𝐴
𝑗
0)}

≥ max{𝑓(𝐴0 − 𝑍0), (1− 𝜂)𝑓(𝐴1), 𝑐(𝑘)𝜂𝑓(𝐴1)}
(𝑎)

≥ max{𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))− 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0)),

𝑐(𝑘)

1 + 𝑐(𝑘)
𝛽(

1

1 + 𝑐(𝑘)
,
𝑘 − 𝜏 ′ − 𝜏

𝑘 − 𝜏
)𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝐴0, 0))}

≥
𝑐(𝑘)

1+𝑐(𝑘)
𝛽
(︁

1
1+𝑐(𝑘)

, 𝑘−𝜏 ′−𝜏
𝑘−𝜏

)︁
1 + 𝑐(𝑘)

1+𝑐(𝑘)
𝛽
(︁

1
1+𝑐(𝑘)

, 𝑘−𝜏 ′−𝜏
𝑘−𝜏

)︁𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))

𝑘→∞−−−→ 𝑒− 1

2𝑒− 1
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))

where (𝑎) follows by substituting 𝜂 = 1
1+𝑐(𝑘)

.

4.6.3 (1− 1/𝑒)− 𝜖 Algorithm for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

For 𝜏 = 1, inspired by the 2-Copy algorithm and using a phase wise approach, we

derived a (1 − 1/𝑒) − 1/Θ(𝑚) approximation for the general case in Section 4.6.1.

In the first phase, where the minimizers are restricted to the set 𝐴0 = {𝑎1, 𝑎2}, we

build a set robust to removal of either of these elements by using an algorithm for

bi-objective maximization of monotone submodular functions. In the second and final

phase, we filled in the rest of the set with standard greedy iterations (like Algorithm

1).

However, this phase wise approach doesn’t generalize well for 𝜏 > 1 since we can

have a minimizer that intersects with the initial set but is not a subset of the initial

set. Unlike for 𝜏 = 1, where a minimizer 𝑧 is either in {𝑎1, 𝑎2} or not. An alternative

approach comes from reinterpreting the result for 𝜏 = 1 as follows. We want to build

a set that has a large value on both 𝑓1(.) = 𝑓(.|𝑎1) and 𝑓2(.) = 𝑓(.|𝑎2) simultaneously,

to deal with the scenarios when either of these elements is a minimizer. Further, we

can capture the notion of continuing greedily w.r.t. 𝑓(.) once the set becomes robust

to removal of either of 𝑎1 or 𝑎2, by considering a third function 𝑓3(.) = 𝑓(.|{𝑎1, 𝑎2}).

Thus, instead of separate phases, we can think about a single multi-objective problem
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over three monotone submodular functions 𝑓1, 𝑓2, 𝑓3, and try to add a set 𝐴1 to

𝐴0 = {𝑎1, 𝑎2}, such that 𝑓𝑖(𝐴1) ≥ (1 − 1/𝑒)𝑓𝑖(𝑂𝑃𝑇 (𝑘,𝑁, 1)),∀𝑖. To see why this

serves our purposes, consider the scenario where 𝑎2 is a minimizer for the final set 𝐴,

𝑔(𝐴) = 𝑓(𝐴1 + 𝐴0 − 𝑎2) = 𝑓1(𝐴1) + 𝑓(𝑎1)

≥ 𝑓(𝑎1) + (1− 1/𝑒)(𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 1))− 𝑓(𝑎1))

≥ (1− 1/𝑒)𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)).

Generalizing this for larger 𝜏 , we start with the set 𝐴0 obtained by running Algorithm

10 with 𝜏 ′ = 3𝜏 2, implying |𝐴0| = 3𝜏 2. Now, consider the monotone submodular

functions 𝑓𝑖(.) = 𝑓(.|𝑌𝑖) for every possible subset 𝑌𝑖 (|𝑌𝑖| ≥ 3𝜏 2− 𝜏) of 𝐴0 and denote

the set of functions by ℒ. Observe that, |ℒ| ≤ 𝜏(3𝜏 2)𝜏 = 2𝑂(𝜏 log 𝜏).

Assuming there exists a set 𝑆 of size 𝑘 − 3𝜏 2 such that,

𝑓𝑖(𝑆) ≥
(︁
1−Θ

(︁1
𝑘

)︁)︁[︀
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))− 𝑓(𝑌𝑖)

]︀
.

We would like to solve an instance of 𝑀𝑂2 to find a set 𝐴1 of size 𝑘 − 3𝜏 2 such that

𝑓𝑖(𝐴1) ≥ 𝛽(0, 1)(1−Θ( 1
𝑘
))
[︀
𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏))− 𝑓(𝑌𝑖)

]︀
. We know that 𝑂𝑃𝑇 (𝑘,𝑁, 𝜏) is

a set such that, 𝑓𝑖(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) ≥ 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) − 𝑓(𝑌𝑖) ≥ 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) −

𝑓(𝑌𝑖). So for 𝜏 = 𝑜(
√
𝑘), the existence of such a set 𝑆 follows directly from Lemma 11

in Chapter 3. Now we use the (1−1/𝑒) algorithm for when the number of objectives is

𝑜(𝑘), that we developed in Chapter 3, to find set 𝐴1 that 𝑓𝑖(𝐴1) ≥ (1−1/𝑒)𝑓𝑖(𝑆). The

number of objectives here is given by |ℒ| ≤ 2𝑂(𝜏 log 𝜏). Therefore, as long as 𝜏 = 𝑜(log 𝑘)
log log 𝑘

,

we have that the number of functions is 𝑜(𝑘) and we can use the algorithms from

Chapter 3. Denote the algorithm by 𝒜 and let the set output be 𝒜(𝑓𝑖, 𝑉𝑖), for inputs

(𝑓𝑖, 𝑉𝑖)
𝑙
𝑖=1.

A final hurdle in using the algorithm for 𝑀𝑂2 is that we need to input the

values 𝑉𝑖 = 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) − 𝑓(𝑌𝑖) and hence, we need an estimate of 𝑂𝑃𝑇 =

𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)). We can overestimate 𝑂𝑃𝑇 as long as the problem remains feasible.

However, underestimating 𝑂𝑃𝑇 results in a loss in guarantee. Using Algorithm 10, we
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can quickly find lower and upper bounds 𝑙𝑏, 𝑢𝑏 such that 𝑙𝑏 ≤ 𝑂𝑃𝑇 ≤ 𝑢𝑏 = 𝑙𝑏/0.387

and then run the multi-objective maximization algorithm above with a geometrically

increasing sequence of 𝑂(1/ log(1 + 𝛿)) many values to get an estimate 𝑂𝑃𝑇 ′ within

factor (1± 𝛿) of 𝑂𝑃𝑇 .

In summary, our scheme starts with the set 𝐴0 of size 3𝜏 2, obtained by running

Algorithm 10 with 𝜏 ′ = 3𝜏 2, then uses the algorithm for multi-objective optimization

as a subroutine to find the estimate 𝑂𝑃𝑇 ′ ≥ (1 − 𝛿)𝑂𝑃𝑇 and simultaneously a set

𝐴1 = 𝒜({𝑂𝑃𝑇 ′ − 𝑓(𝑌𝑖)}𝑖,ℒ) of size 𝑘 − 3𝜏 2, such that 𝑓𝑖(𝐴1) ≥ (1 − 1/𝑒)(1 −

Θ(1/𝑘))(𝑂𝑃𝑇 ′ − 𝑓(𝑌𝑖)).

The final output is 𝐴 = 𝐴0 ∪ 𝐴1 and we next show that this is asymptotically

(1− 1/𝑒− 𝜖) approximate.

Proof. We ignore the 𝜖 and Θ(1/𝑘) terms to ease notation. First, note that if 𝑍 ⊆ 𝐴0,

then 𝑓(.|𝐴0−𝑍) ∈ ℒ gives us, 𝑓(𝐴1|𝐴0−𝑍) ≥ (1− 1/𝑒)(𝑂𝑃𝑇 ′− 𝑓(𝐴0−𝑍)). Hence,

𝑔(𝐴) = 𝑓(𝐴0 − 𝑍) + 𝑓(𝐴1|𝐴0 − 𝑍)

≥ 𝑓(𝐴0 − 𝑍) + (1− 1/𝑒)(𝑂𝑃𝑇 ′ − 𝑓(𝐴0 − 𝑍))

≥ (1− 1/𝑒)𝑂𝑃𝑇 ′.

If 𝑍 ̸⊆ 𝐴0, then let 𝑍1 = 𝑍∩𝐴1 and 𝑍0 = 𝑍−𝑍1. Similar to the proof of Theorem

23, let 𝐴𝑖
0 denote the 𝑖th set of 3𝜏 elements greedily chosen for constructing 𝐴0, 𝑖 ≤ 𝜏 .

Since |𝑍0| < 𝜏 , ∃𝑖 such that 𝐴𝑖
0 ∩ 𝑍0 = ∅. Then analogous to the proof of Theorem

23, we have due to greedy additions,

𝑓(𝐴0 − 𝑍0) ≥ 𝑓(𝐴𝑖
0) ≥ 3𝑓(𝑍1|𝐴− 𝑍) (4.15)

(in contrast with 𝑐(𝑘)𝑓(𝑍1|𝐴−𝑍) in Theorem 23). Now, since 𝑓(.|𝐴0 −𝑍0) is one of

the functions in ℒ, we have 𝑓(𝐴1|𝐴0 − 𝑍0) ≥ (1 − 1/𝑒)(𝑂𝑃𝑇 ′ − 𝑓(𝐴0 − 𝑍0)) which

implies,

𝑓(𝐴−𝑍0) = 𝑓(𝐴0−𝑍0)+𝑓(𝐴1|𝐴0−𝑍0) ≥ 𝑓(𝐴0−𝑍0)+(1−1/𝑒)(𝑂𝑃𝑇 ′−𝑓(𝐴0−𝑍0)).
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Further, letting 𝑓(𝑍1|𝐴− 𝑍) = 𝜂𝑓(𝐴− 𝑍0) and using (4.15),

𝑓(𝐴− 𝑍0) ≥ 3𝜂

𝑒
𝑓(𝐴− 𝑍0) + (1− 1/𝑒)𝑂𝑃𝑇 ′

≥ 𝛽(3𝜂, 1)𝑂𝑃𝑇 ′.

Now, using Lemma 17 we have 𝑔(𝐴) = 𝑓(𝐴−𝑍) ≥ (1− 𝜂)𝑓(𝐴−𝑍0) ≥ 𝛽(0, 1)𝑂𝑃𝑇 ′.

Remark: Note that if one could find a way to reduce the number of objectives

considered from 2𝑂(𝜏 log 𝜏) to say 𝜏 2, then the above result would extend directly for

𝜏 = 𝑜(
√
𝑘). To go further, to say 𝜏 = 𝑜(𝑘), one would also need to change the starting

set construction as accomplished in [BMSC17]. Also, since we use the randomized

(1 − 1/𝑒) approximation from Chapter 3 for number of functions 𝑚 = 𝑜(𝑘), the

above scheme is a randomized approximation. We could instead use the deterministic

approximation for constant number of objectives from Chapter 3 to get a deterministic

(1− 1/𝑒)(1− 𝜖) approximation for constant 𝜏 .

4.7 Extension to General Constraints

So far, we have looked at a robust formulation of 𝑆𝑂, where we have a cardinal-

ity constraint. However, there are more sophisticated applications where we find

instances of budget or even matroid constraints. In particular, consider the general-

ization max
𝐴∈ℐ

min
|𝐵|≤𝜏

𝑓(𝐴∖𝐵), for some independence system ℐ. By definition, for any

feasible set 𝐴 ∈ ℐ, all subsets of the form 𝐴∖𝐵 are feasible as well, so the formulation

is sensible. Let’s briefly discuss the case of 𝜏 = 1 and suppose that we are given an

𝛼 approximation algorithm 𝒜, with query/run time 𝑂(𝑅) for the 𝜏 = 0 case. Let

𝐺0 denote its output and 𝑧0 be a minimizer of 𝐺0. Consider the restricted system

ℐ𝑧0 = {𝐴 : 𝑧0 ∈ 𝐴,𝐴 ∈ ℐ}. Now, in order to be able to pick elements that have

small marginal on 𝑧0 but large value otherwise, we can generalize the notion of ig-

noring 𝑧0 by maximizing the monotone submodular function 𝑓(.∖𝑧0) subject to the

independence system 𝐼𝑧0 . However, unlike the cardinality constraint case, where this
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algorithm gives a guarantee of 0.387, the algorithm can be arbitrarily bad in general

(because of severely restricted 𝐼𝑧0 , for instance). We tackle this issue by adopting an

enumerative procedure.

Let 𝒜𝑗 denote the algorithm for 𝜏 = 𝑗 and let 𝒜𝑗(𝑁,𝑍) denote the output of𝒜𝑗 on

ground set 𝑁 and subject to restricted system ℐ𝑍 . Finally, let 𝑧(𝐴) = argmax
𝑥∈𝐴

𝑓(𝑥).

With this, we have for general constraints:

Algorithm 11 𝒜𝜏 : 𝛼
𝜏+1

for General Constraints

1: Initialize 𝑖 = 0, 𝑍 = ∅

2: while 𝑁 − 𝑍 ̸= ∅ do

3: 𝐺𝑖 = 𝒜0(𝑁 − 𝑍, ∅)

4: 𝑧𝑖 ∈ 𝑧(𝐺𝑖); 𝑍 = 𝑍 ∪ 𝑧𝑖

5: 𝑀𝑖 = 𝑧𝑖 ∪ 𝒜𝜏−1(𝑁 − 𝑍, 𝑧𝑖); 𝑖 = 𝑖+ 1

6: Output: argmax{𝑔𝜏 (𝑆)|𝑆 ∈ {𝐺𝑗}𝑖𝑗=0 ∪ {𝑀𝑗}𝑖𝑗=0}

To understand the basic idea behind the algorithm, assume that 𝑧0 is in an optimal

solution for the given 𝜏 . Then, given the algorithm 𝒜𝜏−1, if a minimizer of the

set 𝑀0 = 𝑧0 ∪ 𝒜𝜏−1(𝑁 − 𝑧0, 𝑧0) includes 𝑧0, it only removes 𝜏 − 1 elements from

𝒜𝜏−1(𝑁 − 𝑧0, 𝑧0). On the other hand, if a minimizer doesn’t include 𝑧0, 𝑔𝜏 (𝑀0) ≥

𝑓(𝑧0) ≥ 𝑓(𝑀0)−𝑔𝜏 (𝑀0)
𝜏

. These two cases yield the desired ratio, however, since 𝑧0 need

not be in an optimal solution, we systematically enumerate.

Theorem 24. Given an 𝛼 approximation algorithm 𝒜 for 𝜏 = 0 with query time

𝑂(𝑅), algorithm 𝒜𝜏 described above guarantees ratio 𝛼
𝜏+1

for general 𝜏 with query

time 𝑂(𝑛𝜏𝑅 + 𝑛𝜏+1)

Proof. We proceed via induction on 𝑗 ∈ {0, . . . , 𝜏}. Clearly, for 𝑗 = 0, 𝒜0 ≡ 𝒜, and

the statement holds. Assume true for 𝑗 ∈ {0, 1, . . . , 𝜏 − 1}, then we show validity of

the claim for 𝒜𝜏 . The query time claim follows easily since the while loop runs for

at most 𝑛 iterations and each iteration makes 𝑂(𝑛𝜏 +𝑛𝜏−1𝑅) queries (by assumption

on query time of 𝒜𝜏−1) and updating the best solution at the end of each iteration

(counts towards the final output step) takes 𝑂(𝑛𝜏 ) time to find the minimizer by

brute force for two sets 𝐺𝑖 and 𝑀𝑖.
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Now, let 𝑂𝑃𝑇 (ℐ, 𝑁, 𝜏) denote an optimal solution to max𝐴∈ℐ min|𝐵|=𝜏 𝑓(𝐴 − 𝐵)

on ground set 𝑁 and assume that 𝑧0 ∈ 𝑂𝑃𝑇 (ℐ, 𝑁, 𝜏). For any minimizer 𝐵 of 𝐴,

we have for every element 𝑧 ∈ 𝑧(𝐴), 𝑓(𝑧) ≥ 𝑓(𝐵)
𝜏

≥ 𝑓(𝐴)−𝑓(𝐴−𝐵)
𝜏

. Let 𝑍0 denote a

minimizer of 𝐺0. Hence, if 𝑧0 ̸∈ 𝑍0, we have that 𝑔𝜏 (𝐺0) ≥ 𝑓(𝑧0) ≥ 𝑓(𝐺0)−𝑔𝜏 (𝐺0)
𝜏

, giving

us 𝑔𝜏 (𝐺0) ≥ 𝑓(𝐺0)
𝜏+1

. Instead if 𝑧0 is in the minimizer of 𝐺0 and if 𝑓(𝐺0 − 𝑍0) <
𝑓(𝐺0)
𝜏+1

,

then we have that 𝑓(𝑍0|𝐺0 − 𝑍0) ≥ 𝜏
𝜏+1

𝑓(𝐺0), implying that 𝑓(𝑧0) ≥ 𝑓(𝐺0)
𝜏+1

. Now, let

𝑍 ′
0 denote the minimizer of 𝑀0 and note that if 𝑧0 ̸∈ 𝑍 ′

0, we are done. Else, we have

that,

𝑔𝜏 (𝑀0) = 𝑔𝜏−1(𝑀0 − 𝑧0) ≥ 𝛼

𝜏
𝑔𝜏−1(𝑂𝑃𝑇 (ℐ𝑧0 , 𝑁 − 𝑧0, 𝜏 − 1))

≥ 𝛼

𝜏
𝑔𝜏−1(𝑂𝑃𝑇 (ℐ, 𝑁, 𝜏)− 𝑧0)

≥ 𝛼

𝜏
𝑔𝜏 (𝑂𝑃𝑇 (ℐ, 𝑁, 𝜏)) >

𝛼

𝜏 + 1
𝑔𝜏 (𝑂𝑃𝑇 (ℐ, 𝑁, 𝜏))

Where the first inequality stems from the induction assumption, the second and

third by our assumption on 𝑧0. This was all true under the assumption that 𝑧0 ∈

𝑂𝑃𝑇 (ℐ, 𝑁, 𝜏), if that is not the case, we remove 𝑧0 from the ground set and repeat

the same process. The algorithm takes the best set out of all the ones generated, and

hence there exists some iteration 𝑙 such that 𝑧𝑙 ∈ 𝑂𝑃𝑇 (ℐ, 𝑁, 𝜏) and analyzing that

iteration as we did above, gives us the desired.

Finally, for the cardinality constraint case, we can avoid enumeration altogether

and the simplified algorithm has runtime polynomial in (𝑛, 𝜏) and guarantee that

scales as 1
𝜏
, which for Ω(

√
𝑘) ≤ 𝜏 = 𝑜(𝑘), is a better guarantee than the näıve one of

1
𝑘−𝜏

from Section 4.4.

4.8 Conclusion, Open Problems and Further Work

We looked at a robust version of the classical monotone submodular function max-

imization problem, where we want sets that are robust to the removal of any 𝜏 ele-

ments. We introduced the special, yet insightful case of copies, for which we gave a

fast and asymptotically (1− 1/𝑒) approximate algorithm for 𝜏 = 𝑜(𝑘).
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For the general case, where we may not have copies, we gave a randomized (1−1/𝑒)

approximation for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

. Additionally, we also gave a fast and practical 0.387

algorithm for 𝜏 = 𝑜(
√
𝑘). Note that here, unlike in the special case of copies, we

could not tune the algorithm to work for larger 𝜏 and in fact, there has been further

work in this direction since the appearance of this work in [OSU15]. Most notably,

[BMSC17] generalizes the notion of geometrically reducing the number of copies from

Section 4.5.2, and achieves a 0.387 approximation for 𝜏 = 𝑜(𝑘).

Finally, similar robustness versions can be considered for maximization subject

to independence system constraints and we gave an enumerative black box approach

that leads to an 𝛼
𝜏+1

approximation algorithm with query time scaling as 𝑛𝜏+1, given

an 𝛼 approximation algorithm for the non-robust case.
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Chapter 5

Robust Appointment Scheduling

In this chapter we study a robust formulation of the appointment scheduling problem

and find simple, nearly optimal heuristics. As briefly discussed in Chapter 1, we

will consider two different settings. The first, called 𝑅𝐴𝑆 (for Robust Appointment

Scheduling), is about finding optimal appointment start times for jobs that are to

served in a given (fixed) order. In the second, called 𝑅𝐴𝑆𝑆 (Robust Appointment

Scheduling and Sequencing), we must decide the sequence/order of jobs in addition

to appointing start times.

Let us review the model and these formulations in some more detail. Suppose we

are given 𝑛 jobs with uncertain service times, all to be served by a single server. We

first focus on 𝑅𝐴𝑆. So the service order is fixed a priori and we would like to appoint

start times for every job, so that each job arrives at its appointed start time and is

served as soon as previous jobs have been served. While we would like to minimize

the time a job has to wait to be served post arrival, there is also a cost associated

with keeping the server idle. Therefore, we need to balance these two costs when

accounting for the uncertain service times. Index jobs 𝑖 ∈ [𝑛] in order opposite to the

schedule (i.e. job 𝑛 is scheduled first followed by job 𝑛−1 and so on, job 1 is scheduled

last). Since we intend to model the uncertainty in service time using a deterministic

uncertainty set, we take the simplest uncertainty set and assume that it takes time in

the range [𝑝𝑖−𝛿𝑖, 𝑝𝑖+𝛿𝑖] to serve job 𝑖 for every 𝑖. If job 𝑖 is delayed and ends after the

appointed start time for job 𝑖− 1, we have a per unit delay overage cost given by 𝑜𝑖
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and similarly, if job 𝑖 ends before the appointed start time for job 𝑖− 1 we have a per

unit underage cost given by 𝑢𝑖. Let 𝑜(𝑖) =
∑︀𝑖

𝑗=1 𝑜𝑗 and 𝑆𝑖 = [𝑖] be the subset of the

last 𝑖 jobs in the schedule. We focus on variables 𝑥𝑖 that determine how much time

is allocated for a job. W.l.o.g., assume that the last job in the schedule, job 1, also

suffers from overage and underage based on its assigned end time (even though no

job succeeds it). Let 𝐴𝑖 be the allocated appointment/starting time for job 𝑖. Then

𝐴𝑖 =
∑︀𝑛

𝑗=𝑖+1 𝑥𝑗 for 𝑖 < 𝑛 and let 𝐴𝑛 = 0 and 𝐴0 =
∑︀𝑛

𝑖=1 𝑥𝑖. Further, let 𝐵𝑖 be the

allocated end time for job 𝑖, and note that 𝐵𝑖 = 𝐴𝑖−1 and 𝑥𝑖 = 𝐵𝑖 − 𝐴𝑖 for every 𝑖.

Given an arbitrary realization where job 𝑖 takes time 𝑡𝑖, let 𝐶𝑖 denote the completion

time for job 𝑖 ∈ [𝑛]. Letting 𝐶𝑛+1 = 0, we have 𝐶𝑖 = max{𝐶𝑖+1 + 𝑡𝑖, 𝐴𝑖 + 𝑡𝑖}. The

cost due to job 𝑖 is given by max{𝑜𝑖(𝐶𝑖 − 𝐴𝑖−1), 𝑢𝑖(𝐴𝑖−1 − 𝐶𝑖)}, where the first term

denotes the overage cost and the second term the underage cost (only one of the two

can be strictly positive). As introduced in Chapter 3 Section 1.2, our optimization

problem can now be stated as,

𝑅𝐴𝑆 : min
𝑥1,...,𝑥𝑛

max
𝑡𝑖∈[𝑝𝑖−𝛿𝑖,𝑝𝑖+𝛿𝑖] ∀𝑖∈[𝑛]

∑︁
𝑖

max{𝑜𝑖(𝐶𝑖 − 𝐴𝑖−1), 𝑢𝑖(𝐴𝑖−1 − 𝐶𝑖)}.

The inner problem (maximization), which is also the adversary’s problem, finds the

worst possible scenario/time profile for jobs given an allocation. It is not difficult to

see that an optimal allocation needs to allocate at least 𝑝𝑖 − 𝛿𝑖 time for job 𝑖, so we

can assume w.l.o.g. 𝑝𝑖 − 𝛿𝑖 = 0 for every job 𝑖. Therefore, to simplify notation we let

jobs take time between 0 to Δ𝑖 = 𝛿𝑖 + 𝛿𝑖.

In the second setting we relax the assumption that order of jobs is fixed a priori.

So the sequence of jobs is now a decision variable, and we seek the optimal order as

well as time allocation. Let 𝜋 represent a permutation over the set of first 𝑛 natural

numbers. Then,

𝑅𝐴𝑆𝑆 : min
𝜋:[𝑛]↔[𝑛]

min
𝑥𝑖

max
𝑡𝑖∈[0,Δ𝑖]

∑︁
𝑖∈[𝑛]

max{𝑜𝜋(𝑖)(𝐶𝜋(𝑖) − 𝐴𝜋(𝑖)−1), 𝑢𝜋(𝑖)(𝐴𝜋(𝑖)−1 − 𝐶𝜋(𝑖))}.

(5.1)

Here 𝐴𝜋(𝑖) and 𝐶𝜋(𝑖) denote the appointment start time and completion time for

86



job 𝑖 when jobs are sequenced according to 𝜋(.). So 𝐴𝜋(𝑖) =
∑︀

𝑗|𝜋(𝑗)≥𝜋(𝑖)+1 𝑥𝑗 and

𝐶𝜋(𝑖) = max{𝐶𝜋(𝑖)+1+ 𝑡𝑖, 𝐴𝜋(𝑖)+ 𝑡𝑖}. Next, we discuss previous work on this and other

related problems.

5.1 Related work

The existing literature on appointment scheduling is quite diverse and includes stochas-

tic optimization models, queueing models, robust optimization as well as distribution-

ally robust optimization models.

We start by discussing more recent work that relates closely to this paper. [MSS14]

first introduced the robust formulations 𝑅𝐴𝑆 and 𝑅𝐴𝑆𝑆 that we consider there. For

𝑅𝐴𝑆, they show that when all jobs have identical underage costs (𝑢𝑖 = 𝑢 for every

𝑖), there is a simple closed form solution that gives the optimal allocation. Under

the same assumption on underage costs, they also find a 2 + 𝜖 approximation for

𝑅𝐴𝑆𝑆 and establish a connection to the theory of min-sum scheduling with non-

linear objective of completion time, which we further exploit here. This connection

also implies a scaling based EPTAS for 𝑅𝐴𝑆𝑆 under homogeneous underage costs,

using an EPTAS for min-sum scheduling with concave objective given by [SW]. More

recently, [MRZ14] considered a distributionally robust formulation for the problem.

Their model incorporates ideas from both stochastic and robust optimization and

relies only on marginal moments information for job durations. When the order of

jobs is fixed a priori, they show that the problem can be formulated using tractable

conic programs. In the setting where the first two moments (mean-variance) are

known for every job duration, they formulate the problem as a second-order cone

program. Under the same setting, when the order of jobs is flexible, they show

that ordering the jobs in increasing order of variance is optimal under additional

assumptions. Prior to [MRZ14], [KLTZ13] first considered a distributionally robust

formulation but with cross-moments as opposed to marginal moments (for e.g. using

and requiring co-variance information as opposed to just variance). They formulate

a convex (but not necessarily tractable) program which they then solve by relaxing
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to a semi-definite program.

Next, we discuss the relevant literature for all other models. For an overview of

the appointment scheduling problem we refer the reader to [CV03], and to [MSS14]

and [MRZ14] for other good surverys on past work.

[Wan93] models the problem using a queueing model where the processing times

of the jobs are assumed to be i.i.d. exponential random variables. [Wan93] also

considers the case where new jobs arrive are released over time and shows that an

optimal schedule can be obtained by solving a set of non-linear equations. [Wan99]

generalizes the the model to allow for different mean processing times for jobs and

shows that in an optimal sequence of execution jobs are processed in increasing order

of their mean processing time.

The problem was modeled as a two stage stochastic linear program in [DG03].

They solve the problem using a sequential bounding algorithm and give general upper

bounds on the cost of a schedule. For this problem, [RC03] compute near optimal

solutions using a Monte Carlo integration technique. They characterize the optimal

schedule by showing it has a “dome shaped” structure, where as we move down the

schedule the time allocated to jobs first increases and then decreases. They also give

heuristics to approximate this structure. [KK07] consider a local search algorithm and

prove that it converges to an optimal solution. [GSW06] considers the problem of

outpatient appointment scheduling with emergency services and proposes a dynamic

stochastic control problem. [BQ11] work with a discrete stochastic model (where job

durations are integer random variables with finite support), and reduce the problem to

a submodular minimization problem under very general conditions. [BLQ12] extends

the idea and proves a similar result for a data driven discrete stochastic model.

5.2 Our Contributions

For the case of appointment scheduling with given job order (𝑅𝐴𝑆), we derive sev-

eral properties that an optimal allocation exhibits. Notably, we show that for every

optimal allocation, the case of all jobs underaged and overaged is a always worst case
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for the inner problem. Using this, we formulate a compact LP and show that every

LP optimal solution is a 2-approximate allocation. This is the first constant factor

approximation for this problem. We then further characterize the optimal allocation

and refine our LP formulation. We show that under special conditions, the refined LP

has a closed form optimal solution that is also an optimal allocation. This generalizes

and sheds new light on results in [MSS14].

When the sequence of jobs is not pre-determined (𝑅𝐴𝑆𝑆), the problem seems to

become harder. We focus primarily on the case of homogeneous underage costs and

find a simple ratio based heuristic which we call Customized-Smith’s rule (for reasons

that will be clear later). This heuristic achieves a 1.06043 approximation and we also

show a nearly matching lower bound of 1.06036 for the heuristic. We also give a locally

optimal algorithm for the problem and show that the algorithm is always at least as

good as Customized-Smith’s. Finally, for the general problem where underage costs

can be arbitrary, we show a Θ(𝑛) approximation.

Outline: In the rest of the paper we elaborate and formally state and prove the

results summarized above. In Section 5.3 we study the traditional setting where job

order is fixed a priori. In Section 5.4 we study the flexible job order setting where

we first show simple near optimal heuristics for the case of homogeneous underage

costs, followed by an approximation bound for the general case. Finally, we conclude

in Section 5.5 with some open questions.

5.3 Optimal Appointments Given Job Order

When 𝑢𝑖 = 𝑢, it was previously shown in [MSS14] that the optimal allocation is given

by 𝑥𝑖 = Δ𝑖
𝑜(𝑖)

𝑜(𝑖)+𝑢
. Let 𝑥𝑆

𝑖 denote the optimal time allocation for job 𝑖 when considering

only jobs in a subset 𝑆 that contains 𝑖. Note that 𝑥
{𝑖}
𝑖 = Δ𝑖𝑜𝑖

𝑜𝑖+𝑢𝑖
. Now, if 𝑢𝑖 = 0, we

allot a very large time slot for job 𝑖 and jobs on different sides of the slot become

independent. So from now on, assume all jobs have strictly positive underage costs,

𝑢𝑖 > 0∀𝑖. Also, if 𝑜1 = 0 we can assume w.l.o.g. that 𝑥1 = 0 and in fact ignore job

1, therefore we assume 𝑜1 > 0. In the following we coalesce the w.l.o.g. assumptions
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we have made so far,

Assumptions. W.l.o.g.,

1. For job 𝑖, time taken lies in [0,Δ𝑖].

2. For every job 𝑖, 𝑢𝑖 > 0.

3. Job 1 has strictly positive overage cost, 𝑜1 > 0.

Now, we say job 𝑖 is underaged if it ends on or before time 𝐵𝑖, and overaged

otherwise. However, if Δ𝑖 = 0 and job 𝑖 starts/ends at 𝐵𝑖, we consider it to be

both overaged and underaged (for technical reasons). We also use the term strictly

underaged (overaged) if a job is underaged (overaged) with non zero cost. Further

if job 𝑖 takes time Δ𝑖 we say it runs for maximum time. Observe that if a job 𝑖 is

underaged in some worst case time profile, and it has zero cost, then 𝑖 must end at 𝐵𝑖

and take zero time. Otherwise, we have a strictly worse case by underaging 𝑖 (simply

reduce the time taken by 𝑖 by some small 𝜖 > 0).

A perhaps natural question at this point is whether there is always a worst case

where all jobs take extreme values (zero or maximum). This is clearly not the case,

as demonstrated by the following example.

Consider 3 jobs 3, 2, 1 scheduled in that order. Let 𝑢1 = 5, 𝑢2 = 𝑢3 = 1, 𝑜1 = 𝑜2 =

1, 𝑜3 = 3 and Δ𝑖 = 1 for every job 𝑖 ∈ {1, 2, 3}. Suppose 𝐴3 = 0, 𝐴2 = 0.25, 𝐴1 =

0.5, 𝐵1 = 1.5, then intuitively, underaging job 1 and overaging job 3 would result in a

bad case. Indeed, when 3 takes time 0.5 (which is neither extreme), job 2 takes time

0 and job 1 takes time 0, we get the unique worst case. Note that in this case the

values 𝑢𝑖 were inhomogeneous and in fact, one can show that if the 𝑢𝑖 = 𝑢 for every

𝑖, then there is a worst case where the jobs take extreme values (though it’s certainly

possible that some jobs take zero time and some take maximum time).

Given an allocation, another natural question is to efficiently compute a worst case

scenario. The answer is not entirely clear but surprisingly, for an optimal allocation

some worst cases are remarkably easy to characterize. In particular, we will show that

all jobs together taking maximum time and all jobs taking zero time are both worst
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cases for every optimal allocation (this is not true for arbitrary allocations, even with

homogeneous 𝑢𝑖). This will effectively lead us to a 2-approximation for the general

problem, and combined with additional properties shown later, to optimal solutions

for several special cases.

Technically, we will need several parts to show this. And we start with some basic

properties that hold for arbitrary allocations.

Lemma 25. Given an arbitrary allocation {𝑦𝑖}𝑖∈[𝑛] and a case 𝑍 where job 𝑖 takes

time 𝑡𝑖 for every 𝑖 ∈ [𝑛]. The cost due to job 𝑖, 𝑐(𝑍, 𝑖), is at least 𝑜𝑖
∑︀

𝑗≥𝑖(𝑡𝑖 − 𝑦𝑖).

Proof. We have that 𝑐(𝑍, 𝑖) ≥ 𝑜𝑖(𝐶𝑖 − 𝐴𝑖−1) by definition. Now 𝐶𝑖 ≥
∑︀

𝑗≥𝑖 𝑡𝑗 and

𝐴𝑖−1 =
∑︀

𝑗≥𝑖 𝑦𝑗 also by definition. Therefore, we have 𝑐(𝑍, 𝑖) ≥ 𝑜𝑖
∑︀

𝑗≥𝑖(𝑡𝑗 − 𝑦𝑗).

Lemma 26. Given an arbitrary allocation where all jobs overaged and taking max-

imum time is a worst case; if the first job scheduled is always forced to start at an

arbitrary time 𝑡 > 0 instead, all jobs maximum time is still a worst case with this

restriction.

Proof. Let 𝑌 denote the case of all jobs taking maximum time. Think of 𝑌 as a

representation of the time profile or time taken by jobs, which in the case of 𝑌 is

Δ𝑖 for job 𝑖. When job 𝑛 (the first scheduled job) starts at time 0, denote the cost

of job 𝑖 by 𝑐(0, 𝑌, 𝑖). Since 𝑌 is a worst case, we have 𝑐(0, 𝑌 ) =
∑︀

𝑖 𝑐(0, 𝑌, 𝑖) =

max𝑋
∑︀

𝑖 𝑐(0, 𝑋, 𝑖), where 𝑋 represents possible time profiles for jobs. Consider the

restricted setting where job 𝑛 is always forced to start at time 𝑡 > 0 and let 𝑋 be a

worst case time profile for this setting. Note that 𝑐(𝑡, 𝑌 ) > 𝑐(0, 𝑌 ) and assume that

𝑋 differs from 𝑌 (i.e. all jobs taking maximum time). So there exists a job that is

underaged in 𝑋 and let 𝑗 be the largest index job underaged in 𝑋. We can assume

𝑗 < 𝑛 since if 𝑛 is underaged then 𝑐(𝑡,𝑋) < 𝑐(0, 𝑋) for 𝑡 > 0, where the terms denote

the total cost of 𝑋 with job 𝑛 starting at 𝑡 and 0 resp. So when 𝑛 starts at 𝑡, jobs

𝑗 + 1 to 𝑛 are all overaged and job 𝑗 is underaged in 𝑋.

Now consider 𝑋 in the normal setting where 𝑛 starts at 0. Note that some jobs

in 𝑗 + 1 to 𝑛 might be underaged now and job 𝑗 is still underaged. We claim that

𝑐(𝑡,𝑋, 𝑖) ≤ 𝑐(0, 𝑋, 𝑖) + 𝑡𝑜𝑖 for every 𝑖. Let 𝑥𝑗 denote the allocated duration for job 𝑗.
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Then the claim follow easily for jobs in [𝑗], since 𝑗 is underaged. For jobs in [𝑛]− [𝑗],

if job 𝑖 runs for time 𝑡𝑖 then observe that 𝑐(𝑡,𝑋, 𝑖) = 𝑜𝑖(𝑡 +
∑︀

𝑗≥𝑖 𝑡𝑖 −
∑︀

𝑗≥𝑖 𝑥𝑗) ≤

𝑜𝑖𝑡+𝑐(0, 𝑋, 𝑖) due to Lemma 25. Therefore, we have for the case 𝑌 of all jobs overaged

and 𝑛 starting at time 𝑡,
∑︀

𝑖 𝑐(𝑡, 𝑌, 𝑖) =
∑︀

𝑖

(︀
𝑐(0, 𝑌, 𝑖) + 𝑡𝑜𝑖

)︀
≥

∑︀
𝑖

(︀
𝑐(0, 𝑋, 𝑖) + 𝑡𝑜𝑖

)︀
≥∑︀

𝑖 𝑐(𝑡,𝑋, 𝑖) for every 𝑋.

Lemma 27. In every optimal allocation, for every job 𝑖, there is a worst case where

the job is underaged and takes zero time as well a worst case where it is overaged.

Proof. Let us fix arbitrary job 𝑖, we will prove the claim in parts by considering three

cases; when 𝑖 is strictly overaged or strictly underaged in all worst cases, when it is

underaged in all cases, when it is overaged in all cases.

First, consider the case where the job is strictly underaged in all worst cases. Then

reducing 𝑥𝑖 leads to a better allocation, yielding a contradiction. Note that 𝑥𝑖 > 0

since we assumed 𝑖 is strictly underaged. If 𝑖 is always strictly overaged then we have

a similar situation but with an added subtlety. Observe that we can reduce the cost

in every worst case by increasing 𝑥𝑖 by some small 𝜖 > 0, if 𝑥𝑗 = 0 for every 𝑗 < 𝑖.

Otherwise, let 𝑘 be the largest index smaller than 𝑖 such that 𝑥𝑘 > 0. To reduce

the worst case cost we then increase 𝑥𝑖 by 𝜖 and also reduce 𝑥𝑘 by 𝜖. Therefore,

in an optimal allocation no job can be strictly overaged nor strictly underaged in

every worst case. Recall that being charged for overage means job is completed after

scheduled completion time 𝐵𝑖, which could occur even if job takes zero time.

Now let us examine the scenario where job 𝑖 is always underaged but there is a

worst case where 𝑖 has zero cost. In fact, assume 𝑖 is the job with smallest index that

has this property, and we show this leads to a contradiction. We also have Δ𝑖 > 0,

since if Δ𝑗 = 0 for some job 𝑗 and there is a worst case where 𝑗 is underaged with

zero cost, it is also overaged (by definition). Note that being underaged, job 𝑖 takes

zero time in every worst case. Note further that 𝑖 > 1 since once can always overage

job 1 if it is underaged with zero cost. Now consider some worst case, call it X, where

𝑖 contributes zero cost and starts/ends at 𝐵𝑖, and suppose that 𝑖− 1 takes non-zero

time in 𝑋. We get another worst case with 𝑖 taking time 𝜖 (thus becoming overaged)
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and reducing the time taken by 𝑖−1 by 𝜖, for small enough 𝜖 > 0. Therefore, in every

worst case where 𝑖 has zero cost, 𝑖− 1 starts at 𝐴𝑖−1 and takes zero time and hence is

underaged. However, since 𝑖 ends on or before 𝐵𝑖 in every worst case, if there was a

worst case 𝑌 where 𝑖− 1 was overaged, then by copying 𝑋 for all jobs in [𝑛]− [𝑖− 1]

and copying 𝑌 for all jobs in [𝑖− 1], we have a worst case where 𝑖 has zero cost and

𝑖 − 1 is overaged. Therefore, we more generally have that 𝑖 − 1 must be underaged

in all worst cases. Further, 𝑖 − 1 must be strictly underaged in all worst cases due

to our assumption on 𝑖 as the minimum index job which is not strictly underaged,

contradiction.

Finally, consider the remaining case where job 𝑖 is always overaged but there is

a worst case where 𝑖 is overaged with zero cost. Indeed this only occurs if 𝑜𝑖 = 0

and thus 𝑖 is overaged with zero cost in all worst cases. Further assume that 𝑖 is the

highest index job with this property. Therefore job 𝑖+1 (if 𝑖 ≤ 𝑛−1) is underaged in

some worst case since it falls into one of the cases resolved earlier in the proof. Also

note 𝑖 > 1 since 𝑜1 > 0 by assumption. Now we could still increase 𝑥𝑖 by a small 𝜖 > 0

and decrease 𝑥𝑖−1 by the same if possible, but this will not result in a strictly better

allocation. Recall however that there is a worst case, say 𝑍, where 𝑖+1 is underaged

and thus 𝑖 starts at 𝐴𝑖 (trivially true if 𝑖 = 𝑛). Job 𝑖− 1 must be overaged in 𝑍 since

otherwise we also have a worst case by underaging 𝑖. More generally, let 𝑗 be the

largest index smaller than 𝑖, which is underaged in some worst case (not necessarily

𝑍). Now, for every 𝑘, 𝑗 < 𝑘 ≤ 𝑖, job 𝑘 is overaged in all worst cases and thus 𝑜𝑘 must

be zero. So just like job 𝑖− 1, job 𝑗 must also be overaged in 𝑍 otherwise we would

also have a worst case by underaging all jobs in {𝑗 +1, . . . , 𝑖} and keeping other jobs

as in 𝑍. So we have that all jobs in {𝑗, . . . , 𝑖} are overaged in Z. We more strongly

have that there can be no case that underages 𝑗 and yet has total cost contributed

by jobs in [𝑗] matching (or exceeding) the total cost due to subset [𝑗] in 𝑍. This

follows by observing that 𝑖 starts at 𝐴𝑖 and the cost due to jobs {𝑗+1, . . . , 𝑖} is zero,

therefore we can reduce the starting time of 𝑗 down to 𝐴𝑗 if we desired and emulate

any time profile for jobs in [𝑗] while mimicking 𝑍 for jobs in [𝑛]− [𝑖].

Next, let 𝑌 be a worst case where 𝑗 is underaged. 𝑌 exists by definition of 𝑗.
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Since 𝑗 is underaged we can assume that all jobs in {𝑗 + 1, . . . , 𝑖} take zero time in

𝑌 , otherwise we can construct a strictly worse case. Now, we claim that one can

construct a strictly worse case which mimics 𝑌 for jobs in [𝑛]− [𝑖] and 𝑍 for jobs in

[𝑗]. This follows by observing that we can manipulate the times of jobs in {𝑗, . . . , 𝑖} to

end 𝑗 at the same time as its completion time in 𝑍, thus overaging 𝑗 and allowing us

to mimic the total cost contribution from jobs in [𝑗] from 𝑍. Since this cost from jobs

in [𝑗] is strictly larger than the counterpart in every case where 𝑗 is underaged (which

it is in 𝑌 ), we have a case with strictly worse cost than 𝑌 and thus a contradiction.

Lemma 28. In every optimal allocation over 𝑛 jobs, the case of all jobs taking max-

imum time (Δ𝑖 for job 𝑖) is a worst case.

Proof. We will show this via induction over the subset of jobs [𝑖] for 𝑖 ≤ 𝑛 and fixed

𝑛. First consider 𝑖 = 1. Then by Lemma 27 there is a worst case where job 1 is

overaged, and hence takes time Δ1 (since there is no job scheduled afterwards). Now

assume that there is a worst case where all jobs from 1 to 𝑘 − 1 take maximum time

(and are overaged) and call it case 𝑌 . We will show that there exists a worst case

where jobs 1 to 𝑘 all take maximum time.

If job 𝑘 is overaged in 𝑌 , then it clearly takes maximum time. Therefore let us

assume that job 𝑘 is underaged, and so takes zero time in 𝑌 . Now if we restrict

attention to the subset of jobs [𝑘 − 1] (and ignore other jobs), the case of all jobs

taking maximum time is a worst case. By Lemma 27, there exists a worst case where

job 𝑘 is overaged, call it case 𝑋. Then the case which matches 𝑋 from jobs 𝑘 + 1 to

𝑛 and runs jobs 1 to 𝑘 for maximum time is also a worst case, since it matches the

cost of jobs 𝑘+1 to 𝑛 from 𝑋 and total costs from jobs in [𝑘] can only be larger than

the same total in 𝑋 due to Lemma 26.

Corollary 29. For every 𝑘,
∑︀𝑛

𝑗=𝑘 𝑥𝑗 ≤
∑︀𝑛

𝑗=𝑘 Δ𝑗.

Proof. Suppose this is untrue, and let 𝑘0 be the smallest index such that
∑︀𝑛

𝑗=𝑘0
𝑥𝑗 >∑︀𝑛

𝑗=𝑘0
Δ𝑗. This violates Lemma 28 since job 𝑘0 can never be overaged and therefore

the case of all jobs taking maximum time cannot be a worst case.
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Lemma 30. In every optimal allocation over 𝑛 jobs, the case of all jobs taking zero

time is a worst case.

Proof. We will prove this via induction on the subset of jobs [𝑛] − [𝑖], starting with

𝑖 = 𝑛 − 1 and keeping 𝑛 fixed. For the base case of job 𝑛, Lemma 27 implies there

is a worst case where job 𝑛 takes zero time. Assume there is a worst case, call it 𝑌 ,

where jobs 𝑘 + 1 to 𝑛 all take zero time. We wish to show that there is a worst case

where job 𝑘 to 𝑛 are all underaged, so assume job 𝑘 is overaged in 𝑌 (otherwise we

are done). Again, Lemma 27 implies there is a worst case, call it 𝑋, where job 𝑘 is

underaged and takes zero time.

Now job 𝑘 is overaged in 𝑌 (and starts at 𝐴𝑘) and underaged in 𝑋 (ends before

𝐴𝑘−1), and suppose it terminates at times 𝑡𝑌 and 𝑡𝑋 in 𝑌 and 𝑋 respectively (𝑡𝑋

is also the start time for job 𝑘 in 𝑋). Now consider a new case 𝑍, formed by a

combination of 𝑋 and 𝑌 . In 𝑍, jobs 𝑘 + 1 to 𝑛 are as given by 𝑋 and jobs 1 to

𝑘 − 1 are as in 𝑌 . We fill the gap by running job 𝑘 from 𝑡𝑋 to 𝑡𝑌 . This is feasible

since 𝑡𝑌 − 𝑡𝑋 ≤ 𝑡𝑌 −𝐴𝑘 ≤ Δ𝑘. Let 𝑐(., 𝑖) : {𝑋, 𝑌, 𝑍} → R denote the cost of job 𝑖 in

various cases. Observe that,
∑︀

𝑖 𝑐(𝑍, 𝑖) =
∑︀𝑛

𝑖=𝑘+1 𝑐(𝑋, 𝑖) +
∑︀𝑘

𝑖=1 𝑐(𝑌, 𝑖). Now since 𝑌

is a worst case we also have,

𝑛∑︁
𝑖=𝑘+1

𝑐(𝑋, 𝑖) +
𝑘∑︁

𝑖=1

𝑐(𝑌, 𝑖) ≤
𝑛∑︁

𝑖=1

𝑐(𝑌, 𝑖)

𝑛∑︁
𝑖=𝑘+1

𝑐(𝑋, 𝑖) ≤
𝑛∑︁

𝑖=𝑘+1

𝑐(𝑌, 𝑖)

Now, consider another hybrid case 𝑄, where jobs 𝑘 + 1 to 𝑛 are all underaged and

take zero time as in 𝑌 and jobs 1 to 𝑘− 1 are as in 𝑋. Job 𝑘 starts/ends at 𝐴𝑘 in 𝑄

and hence 𝑐(𝑋, 𝑘) ≤ 𝑐(𝑄, 𝑘). Then we have,

∑︁
𝑖

𝑐(𝑋, 𝑖) ≤
𝑛∑︁

𝑖=𝑘+1

𝑐(𝑌, 𝑖)+
𝑘∑︁
1

𝑐(𝑋, 𝑖) ≤
𝑛∑︁

𝑖=𝑘+1

𝑐(𝑌, 𝑖)+𝑐(𝑄, 𝑘)+
𝑘−1∑︁
1

𝑐(𝑋, 𝑖) =
∑︁
𝑖

𝑐(𝑄, 𝑖).

Hence, we have a worst case with jobs 𝑘 to 𝑛 all underaged.

Remarks: As mentioned before, Lemmas 28 and 30 are particularly interesting
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since they are not true for arbitrary allotments. In fact, it’s not clear right away if

the worst case can be easily found for arbitrary allotments, but the structure of an

optimal allotment renders the adversary’s problem easy.

Corollary 31. The worst case cost for an optimal allocation (𝑥𝑖 for job 𝑖) is given

by
∑︀𝑛

𝑖=1 𝑜(𝑖)(Δ𝑖 − 𝑥𝑖) =
∑︀𝑛

𝑖=1 𝑢𝑖𝑥𝑖.

Proof. Using Lemma 28 we have that the worst case cost is
∑︀𝑛

𝑖=1 𝑜𝑖(
∑︀𝑛

𝑗=𝑖Δ𝑗 −∑︀𝑛
𝑗=𝑖 𝑥𝑗) =

∑︀𝑛
𝑖=1 𝑜𝑖

∑︀𝑛
𝑗=𝑖(Δ𝑗−𝑥𝑗). Rearranging summation we get

∑︀𝑛
𝑖=1 𝑜𝑖

∑︀𝑛
𝑗=𝑖(Δ𝑗−

𝑥𝑗) =
∑︀𝑛

𝑗=1(Δ𝑗 − 𝑥𝑗)𝑜(𝑗). This cost is equal to
∑︀𝑛

𝑖=1 𝑢𝑖𝑥𝑖 due to Lemmas 28 and

30.

With all the above properties, we are now ready to show a simple 2-approximation

for finding the optimal allocation. Consider the following LP,

min
𝑛∑︁

𝑗=1

𝑢𝑗𝑦𝑗

𝑠.𝑡.
𝑛∑︁

𝑗=1

(𝑢𝑗 + 𝑜(𝑗))𝑦𝑗 =
𝑛∑︁

𝑗=1

𝑜(𝑗)Δ𝑗 (5.2)

𝑛∑︁
𝑗=𝑘

(𝑦𝑗 −Δ𝑗) ≤ 0 ∀𝑘 (5.3)

𝑦𝑗 ≥ 0 ∀𝑗 ∈ [𝑛]

Due to constraints (5.2) and (5.3), an optimal solution to the above LP is an allocation

that satisfies Corollaries 31 and 29 respectively. An optimal allocation is therefore a

feasible solution to the LP. However, an optimal solution to the LP need not have

all jobs underaged with zero time as a worst case, and hence need not be an optimal

allocation.

Theorem 32. The worst case cost of the LP optimum is at most twice the optimal

allocation cost and therefore, the LP is a 2-approximation.

Proof. Let 𝑥*
𝑖 denote the LP optimal and 𝑥𝑖 an optimal allocation. Since 𝑥𝑖 is a

feasible solution to the LP, we have that the worst case cost of optimal allocation,
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given by
∑︀

𝑖 𝑢𝑖𝑥𝑖, is at least
∑︀

𝑖 𝑢𝑖𝑥
*
𝑖 . Further, for any an arbitrary allocation, the

worst case cost is at most the sum of costs of all jobs overaged and all jobs underaged.

Therefore, for the allocation given by 𝑥*
𝑖 , we have that the worst case cost is at most∑︀

𝑖 𝑢𝑖𝑥
*
𝑖 +

∑︀
𝑖 𝑜(𝑖)(Δ𝑖 − 𝑥*

𝑖 ) = 2
∑︀

𝑖 𝑢𝑖𝑥
*
𝑖 ≤ 2

∑︀
𝑖 𝑢𝑖𝑥𝑖.

Lemma 33. There is an instance where the LP optimal results in a 2-approximate

allocation.

Proof. Consider two jobs, with job 2 scheduled first, followed by job 1. Job 1 takes

Δ1 = 1 unit time and job 2 takes time Δ2 = 𝜖 → 0. Further, let 𝑢1 = 𝑜1 = 1

and 𝑢2 = 1/𝜖, 𝑜2 = 1/𝜖 − (1 + 𝜖) and therefore, 𝑢1

𝑢1+𝑜1
= 0.5 / 𝑢2

𝑢2+𝑜(2)
. Consider the

allocation 𝑥*
1 = 0.5 and 𝑥*

2 = 𝜖 𝑜(2)
𝑢2+𝑜(2)

≈ 𝜖/2. It is easy to see that the worst case of

the allocation is when both jobs are underaged (overaged) and hence the cost of this

allocation is 𝑢1𝑥
*
1 + 𝑢2𝑥

*
2 ≈ 1.

Now, consider the solution 𝑥1 = 0.5 + Δ2𝑜(2)
𝑢1+𝑜1

≈ 1 and 𝑥2 = 0. This is an optimal

solution to the LP for 𝜖 → 0 and the worst case occurs when job 1 is underaged and job

2 is overaged. The cost of the induced allocation is therefore, ≈ 𝑜2Δ2+𝑢1(𝑥1−Δ2) =

2.

Next, we show additional properties that guide us to an optimal allocation for

various special cases. However, these properties will be insufficient to get an optimal

allocation for the general case, which we leave as an open problem.

5.3.1 Optimal Allocation for Special Cases

We will show a new set of constraints in Lemma 35 that will help refine the LP

and find an optimal allocation under certain conditions. First, consider the following

helper lemma.

Lemma 34. Recall 𝑥𝑆
𝑖 denotes the time allocation for job 𝑖 in an optimal allocation

over jobs in set 𝑆. We have,

∑︁
𝑖∈[𝑛−1]

𝑢𝑖𝑥
[𝑛−1]
𝑖 ≤

∑︁
𝑖∈[𝑛−1]

𝑢𝑖𝑥
[𝑛].
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Proof. Note that the LHS denotes the worst case cost of an optimal allocation over

[𝑛 − 1]. Consider the possibly sub-optimal allocation 𝑥
[𝑛]
𝑖 for jobs 𝑖 ∈ [𝑛 − 1]. The

RHS denotes the cost of all jobs underaged under this allocation, however a priori

this need not be a worst case cost for the allocation. So to show the inequality we

prove that all jobs underaged is a worst case for the allocation in RHS.

Assume this is not the case i.e., there is a case where some job in [𝑛 − 1] takes

non-zero time and this case, call it 𝑌 , is strictly worse than all jobs taking zero

time. Let the cost of 𝑌 be 𝑐(𝑌 ), and we have 𝑐(𝑌 ) >
∑︀

𝑖∈[𝑛−1] 𝑢𝑖𝑥
[𝑛]
𝑖 . Now consider

the set of jobs [𝑛] and the now optimal allocation 𝑥
[𝑛]
𝑖 over this set. We have that∑︀

𝑖∈[𝑛] 𝑢𝑖𝑥
[𝑛]
𝑖 < 𝑢𝑛𝑥

[𝑛]
𝑛 + 𝑐(𝑌 ), which is a contradiction due to Lemma 30 since the

RHS induces a case (job 𝑛 takes zero time, other jobs are as in 𝑌 ) that is strictly

worse than all jobs being underaged.

Lemma 35. In every optimal allocation over 𝑛 jobs,
∑︀𝑛

𝑗=𝑘 𝑢𝑗𝑥𝑗 ≤
∑︀𝑛

𝑗=𝑘 𝑜(𝑗)(Δ𝑗 −

𝑥𝑗)∀𝑘 ≤ 𝑛.

Proof. Lemmas 28 and 30 showed that for 𝑛 = 1 we in fact have an equality, since in

that case the two sides represent cost when the job takes time 0 and cost when it takes

maximum time. The general case is more subtle and we give a proof by induction on

𝑘, with 𝑛 > 1 fixed.

For the base case of 𝑘 = 𝑛, suppose the statement is false i.e., 𝑢𝑛𝑥𝑛 > 𝑜(𝑛)(Δ𝑛 −

𝑥𝑛). We derive a contradiction by constructing a new allocation that is better than

the optimal. We use 𝑥′
𝑖 to denote the new allocation for job 𝑖. Then,

𝑥′
𝑛 =

𝑜(𝑛)Δ𝑛

𝑢𝑛 + 𝑜(𝑛)
< 𝑥𝑛, (5.4)

and the allocation for jobs 1 to 𝑛 − 1 is an optimal allocation for the subset [𝑛 − 1]

i.e., 𝑥′
𝑖 = 𝑥

[𝑛−1]
𝑖 for every 𝑖 < 𝑛. Now we show that in the new allocation, the total
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cost when all jobs take maximum time equals total cost when all jobs take zero time.

𝑛∑︁
𝑖=1

𝑜(𝑖)(Δ𝑖 − 𝑥′
𝑖) = 𝑜(𝑛)(Δ𝑛 − 𝑥′

𝑛) +
𝑛−1∑︁
𝑖=1

𝑜(𝑖)(Δ𝑖 − 𝑥′
𝑖)

= 𝑢𝑛𝑥
′
𝑛 +

𝑛−1∑︁
𝑖=1

𝑢𝑖𝑥
′
𝑖.

Where the second equality follows from (5.4) and Corollary 31. Moreover, this cost

is strictly smaller than the worst case cost in the original allocation i.e.,
∑︀𝑛

𝑖=1 𝑢𝑖𝑥
′
𝑖 <

𝑢𝑛𝑥𝑛 +
∑︀𝑛−1

𝑖=1 𝑢𝑖𝑥
′
𝑖 ≤

∑︀𝑛
𝑖=1 𝑢𝑖𝑥𝑖, where the last inequality follows from Lemma 34.

To finish the proof for the base case we need to show that all jobs taking maximum

time or alternatively all taking zero time is a worst case in the new allocation. We

argue this by considering two cases based on job 𝑛, while using the fact that the new

allocation is optimal when restricted to the set [𝑛− 1]. If there is a worst case where

𝑛 is overaged, then all jobs taking maximum time is a worst case due to Lemma 26.

Similarly, if job 𝑛 takes zero time in some worst case then all jobs taking zero time is

a worst case due to Lemma 30. This completes the base case.

Next, assume we are given
∑︀𝑛

𝑗=𝑖 𝑢𝑗𝑥𝑗 ≤
∑︀𝑛

𝑗=𝑖 𝑜(𝑗)(Δ𝑗 − 𝑥𝑗) for every 𝑖 ≥ 𝑘 + 1

and we need to show the inequality for 𝑖 = 𝑘 i.e.,
∑︀𝑛

𝑗=𝑘 𝑢𝑗𝑥𝑗 ≤
∑︀𝑛

𝑗=𝑘 𝑜(𝑗)(Δ𝑗 −

𝑥𝑗). We prove by contradiction, so suppose the condition is false i.e.,
∑︀𝑛

𝑗=𝑘 𝑢𝑗𝑥𝑗 >∑︀𝑛
𝑗=𝑘 𝑜(𝑗)(Δ𝑗 − 𝑥𝑗). Then similar to the base case, we construct a new improved

allocation that will yield a contradiction. In the new allocation we let,

𝑥′
𝑘 =

1

𝑢𝑘 + 𝑜(𝑘)
[𝑜(𝑘)Δ𝑘 +

𝑛∑︁
𝑗=𝑘+1

𝑜(𝑗)(Δ𝑗 − 𝑥𝑗)−
𝑛∑︁

𝑗=𝑘+1

𝑢𝑗𝑥𝑗] < 𝑥𝑘.

Further, 𝑥′
𝑖 = 𝑥𝑖 for every 𝑖 ≥ 𝑘 + 1 and 𝑥′

𝑖 = 𝑥
[𝑘−1]
𝑖 for every 𝑖 ≤ 𝑘 − 1. Same as the

base case, observe that in the new allocation the cost when all jobs take zero time is

the same as the cost when all take maximum time. So we just need to show that at

least one of them is a worst case.

For the new allocation, if we have a worst case where 𝑘 is underaged, then there

is in fact a worst case where where all jobs from 1 to 𝑘 are underaged since Lemma
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30 gives us that underaging all jobs from 1 to 𝑘 − 1 is a worst case for every optimal

allocation on subset [𝑘 − 1]. If there is no worst case where all jobs are underaged,

then let 𝑌 be a worst case where jobs 1 to 𝑘 are all underaged. Let 𝑐(𝑌, 𝑖) denote the

cost contributed by job 𝑖 in worst case 𝑌 . Then we have that sum of costs from jobs

in [𝑛]− [𝑘− 1] is strictly larger than the cost of underaging those jobs,
∑︀𝑛

𝑖=𝑘 𝑐(𝑌, 𝑖) >∑︀𝑛
𝑖=𝑘 𝑢𝑖𝑥

′
𝑖 =

∑︀𝑛
𝑖=𝑘+1 𝑢𝑖𝑥𝑖+𝑢𝑘𝑥

′
𝑘. Therefore,

∑︀𝑛
𝑖=𝑘 𝑐(𝑌, 𝑖)+𝑢𝑘(𝑥𝑘−𝑥′

𝑘) >
∑︀𝑛

𝑖=𝑘 𝑢𝑖𝑥𝑖 and

now going back to the original allocation given by 𝑥𝑖 for job 𝑖, we find a contradiction

to Lemma 30 since the cost due to all jobs underaged is strictly smaller than the cost

when jobs in [𝑛]− [𝑘 − 1] are as in 𝑌 and all jobs in [𝑘 − 1] are underaged.

Finally, suppose there is no worst case for the new allocation (given by 𝑥′
𝑖) where

𝑘 is underaged, or in other words 𝑘 is overaged in all worst cases. Then due to Lemma

26 we know there is a worst case where all jobs in [𝑘] are overaged and take maximum

time. Now if there also exists a worst case where all jobs in [𝑛] − [𝑘] are overaged,

then it is not hard to see that all jobs overaged with maximum time is a worst case.

So assume that in every worst case some job in [𝑛] − [𝑘] is underaged. Then let us

consider a worst case, call it 𝑍, where all jobs in [𝑘] are overaged (with maximum

time) and 𝑗 is the lowest index job in [𝑛] − [𝑘] that is underaged in 𝑍. Since 𝑍 is

strictly worse than the case of all jobs overaged we have that,

𝑛∑︁
𝑖=1

𝑜(𝑖)(Δ𝑖 − 𝑥′
𝑖) <

𝑛∑︁
𝑖=1

𝑐(𝑍, 𝑖)

=⇒
𝑛∑︁

𝑖=𝑗

𝑜(𝑖)(Δ𝑖 − 𝑥𝑖) <

𝑛∑︁
𝑖=𝑗

𝑐(𝑍, 𝑖). (5.5)

Where the second inequality follows from
∑︀𝑗−1

𝑖=1 𝑐(𝑍, 𝑖) =
∑︀𝑗−1

𝑖=1 𝑜(𝑖)(Δ𝑖 − 𝑥′
𝑖) and

𝑥′
𝑖 = 𝑥𝑖 for 𝑖 ≥ 𝑗. Now going back to the original allocation given by 𝑥𝑖 for job 𝑖,

consider a new case where jobs in [𝑛]− [𝑗 − 1] are as in 𝑍 and jobs in [𝑗 − 1] all take

maximum time. Note that jobs in [𝑗 − 1] need not all be overaged in this case, but

by Lemma 25 the net cost due to jobs in [𝑗 − 1] is at least
∑︀𝑗−1

𝑖=1 𝑜𝑖(
∑︀

𝑗≥𝑖 Δ𝑗 − 𝑥𝑗) =∑︀𝑗−1
𝑖=1 (Δ𝑖−𝑥𝑖)𝑜(𝑖). Combining this with (5.5) we have that for the original allocation,

the case that mimics 𝑍 for jobs in [𝑛]− [𝑗−1] and sets all jobs in [𝑗−1] to maximum
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time is strictly worse than overaging all jobs, contradicting Lemma 28.

Now, based on the above properties, consider the following LP,

min
𝑛∑︁

𝑗=1

𝑢𝑗𝑦𝑗

𝑠.𝑡.
𝑛∑︁

𝑗=𝑘

𝑢𝑗𝑦𝑗 ≤
𝑛∑︁

𝑗=𝑘

𝑜(𝑗)(Δ𝑗 − 𝑦𝑗) ∀2 ≤ 𝑘 ≤ 𝑛 (5.6)

𝑛∑︁
𝑗=1

𝑢𝑗𝑦𝑗 =
𝑛∑︁

𝑗=1

𝑜(𝑗)(Δ𝑗 − 𝑦𝑗) (5.7)

𝑛∑︁
𝑗=𝑘

(𝑦𝑗 −Δ𝑗) ≤ 0 ∀𝑘

𝑦𝑗 ≥ 0 ∀𝑗 ∈ [𝑛]

As compared to the previous LP, we have a new set of constraints (5.6) due to Lemma

35. However, every optimal allocation is still a feasible solution to the LP. Observe

that, due to (5.7) we can rewrite constraints (5.6) as
∑︀𝑘

𝑗=1 𝑢𝑗𝑦𝑗 ≥
∑︀𝑘

𝑗=1 𝑜(𝑗)(Δ𝑗 − 𝑦𝑗)

for every 𝑘 ∈ [𝑛 − 1]. Modifying this further, we have the following alternative

formulation,

min
𝑛∑︁

𝑗=1

𝑢𝑗𝑦𝑗

𝑠.𝑡.
𝑘∑︁

𝑗=1

(𝑢𝑗 + 𝑜(𝑗))𝑦𝑗 ≥
𝑘∑︁

𝑗=1

𝑜(𝑗)Δ𝑗 ∀1 ≤ 𝑘 ≤ 𝑛− 1 (5.8)

𝑛∑︁
𝑗=1

(𝑢𝑗 + 𝑜(𝑗))𝑦𝑗 =
𝑛∑︁

𝑗=1

𝑜(𝑗)Δ𝑗 (5.9)

𝑛∑︁
𝑗=𝑘

(𝑦𝑗 −Δ𝑗) ≤ 0 ∀𝑘 (5.10)

𝑦𝑗 ≥ 0 ∀𝑗 ∈ [𝑛]

In essence, the LP above encompasses constraints that every optimal allocations must

satisfy. To show that LP optimal solutions induce optimal allocations we need to
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establish that these constraints are also sufficient. One way to show this would be

to prove that all jobs underaged or alternatively, all overaged is a worst case for an

allocation induced by some LP optimal solution. Note that while all jobs underaged

need not be a worst case for a LP optimal induced allocation, the cost is a lower

bound on the worst case cost of an optimal allocation.

As it turns out, in general the constraints are not sufficient and all jobs under-

aged/overaged need not be worst cases for LP optimal (induced) allocations. However,

for the important special case of homogeneous underage costs, 𝑢𝑖 = 𝑢 for every 𝑖, we

can easily find an LP optimal allocation that is also an optimal allocation. In fact,

this is true more generally as long as 𝑢𝑗+1 ≤ 𝑢𝑗
𝑜(𝑗+1)
𝑜(𝑗)

∀𝑗. And in this case an LP opti-

mum is explicitly given by the formula, 𝑥𝑗 =
𝑜(𝑗)Δ𝑗

𝑢+𝑜(𝑗)
for every 𝑗, which coincides with

what was previously known for the case of homogeneous underage costs. We prove

this and subsequently discuss other cases under which the LP allocation is optimal.

Lemma 36. The allocation given by 𝑥𝑗 =
𝑜(𝑗)Δ𝑗

𝑢+𝑜(𝑗)
∀𝑗 ∈ [𝑛] is a feasible solution to

the LP and has all jobs taking maximum time and all taking minimum time as worst

cases.

Proof. To verify feasibility, observe that constraints (5.8) are satisfied with equality

for every 𝑘. Also, 𝑥𝑖 ≤ Δ𝑖 for every 𝑖, so constraints (5.10) are satisfied. Finally, it is

easy to see that equality (5.9) is satisfied. This establishes feasibility.

Now, note that the cost of all jobs taking zero time is the same as the cost of

all jobs taking maximum time. We prove that these are worst cases by induction.

Claim is trivially true for a single job and suppose true for all 𝑛 ≤ 𝑘 − 1, then we

prove for the case of 𝑘 jobs. Let 𝑥′
𝑖 be the allocation given by the formula when we

focus on the subset [𝑘 − 1] of 𝑘 − 1 jobs. Note that 𝑥′
𝑖 = 𝑥𝑖 for every 𝑖 ∈ [𝑘 − 1]

and by assumption, all jobs underaged and all overaged are worst cases for allocation

{𝑥′
𝑖}𝑖∈[𝑘−1]. Therefore, if there is a worst case for allocation {𝑥𝑖}𝑖∈[𝑘] where job 𝑘 is

underaged and takes zero time, then all jobs taking zero time is a worst case and

we’re done. Alternatively, if there is a worst case with job 𝑘 overaged, we have from

Lemma 26 that all jobs overaged is a worst case.
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Theorem 37. If 𝑢𝑗+1 ≤ 𝑢𝑗
𝑜(𝑗+1)
𝑜(𝑗)

∀𝑗, then the allocation given by 𝑥𝑗 =
𝑜(𝑗)Δ𝑗

𝑢+𝑜(𝑗)
∀𝑗 is an

optimal allocation.

Proof. We show that 𝑥𝑗 =
𝑜(𝑗)Δ𝑗

𝑢+𝑜(𝑗)
∀𝑗 is an optimal solution to the LP when 𝑢𝑗+1 ≤

𝑢𝑗
𝑜(𝑗+1)
𝑜(𝑗)

∀𝑗. The lemma above then gives us that the allocation is also an optimal one.

We prove this via induction on the number of jobs 𝑛. The claim is clearly true for

𝑛 = 1 and assume the claim holds for 𝑛 = 𝑖− 1, we prove for the case with 𝑖 jobs.

First, observe that as a direct consequence of the conditions 𝑢𝑗+1 ≤ 𝑢𝑗
𝑜(𝑗+1)
𝑜(𝑗)

∀𝑗,

we have that,

𝑢𝑗+1

𝑢𝑗+1 + 𝑜(𝑗 + 1)
≤ 𝑢𝑗

𝑢𝑗 + 𝑜(𝑗)
for every 𝑗 ∈ [𝑖− 1]. (5.11)

Now, if constraints (5.8) and (5.10) in the LP were ignored, we have a very simple

greedy solution for the LP. Find the index 𝑘 that minimizes 𝑢𝑘

𝑢𝑘+𝑜(𝑘)
, which is implied

to be 𝑖 by inequalities (5.11). Then we set 𝑦𝑖 =
∑︀

𝑗 𝑜(𝑗)Δ𝑗

𝑢𝑖/(𝑢𝑖+𝑜(𝑖))
and all other variables to

zero to get the optimal solution. In the presence of (5.8), the idea is still to adopt a

greedy approach, albeit restricted by constraints (5.8).

Consider an optimal solution to the LP denoted {𝑦𝑗}𝑗∈[𝑖]. If
∑︀𝑘

𝑗=1(𝑢𝑗 + 𝑜(𝑗))𝑦𝑗 =∑︀𝑘
𝑗=1 𝑜(𝑗)Δ𝑗 for every 𝑘 ∈ [𝑖], we are done since 𝑦𝑗 = 𝑥𝑗 for every 𝑗 ∈ [𝑖]. So

consider the smallest 𝑚, 1 ≤ 𝑚 < 𝑖 such that
∑︀𝑚

𝑗=1(𝑢𝑗 + 𝑜(𝑗))𝑦𝑗 >
∑︀𝑚

𝑗=1 𝑜(𝑗)Δ𝑗.

Further, suppose 𝑦𝑗 is an LP optimum with the maximum 𝑚. Therefore, for every

𝑘 < 𝑚,
∑︀𝑘

𝑗=1(𝑢𝑗 + 𝑜(𝑗))𝑦𝑗 =
∑︀𝑘

𝑗=1 𝑜(𝑗)Δ𝑗. Consider a modified allocation {𝑦′𝑗}𝑗∈[𝑖],

with 𝑦′𝑗 = 𝑦𝑗 for every 𝑗 except 𝑚 and 𝑚 + 1, 𝑦′𝑚 = 𝑜(𝑚)Δ𝑚

𝑢𝑚+𝑜(𝑚)
< 𝑦𝑚 and 𝑦′𝑚+1 =

𝑦𝑚+1 +
𝑢𝑚+𝑜(𝑚)

𝑢𝑚+1+𝑜(𝑚+1)
(𝑦𝑚 − 𝑦′𝑚). It is easy to see that this is a feasible solution to the

LP. More importantly, due to (5.11) we have
∑︀

𝑗∈[𝑖] 𝑢𝑗𝑦
′
𝑗 ≤

∑︀
𝑗∈[𝑖] 𝑢𝑗𝑦𝑗 and therefore, 𝑦′𝑗

is an LP optimum that satisfies (5.8) for indices up to and including 𝑚, contradiction.

Note that an alternative proof follows from considering the dual of the LP.

For the general case, the constraints are still necessary however they are not suffi-

cient. Therefore, an optimal solution to the LP need not correspond to an allocation

where all jobs taking zero time or taking maximum time is a worst case. This is
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demonstrated by the example we saw earlier in Lemma 33 and in fact, it is easily

checked that the additional constraints given by (5.8) do not improve the approxima-

tion bound from earlier. Notice that for the example in Lemma 33, the closed form

allocation 𝑥𝑗 =
Δ𝑗𝑜(𝑗)

𝑢𝑗+𝑜(𝑗)
is nearly optimal. We consider a new example here, for which

the closed form allocation is sub-optimal too,

Example 1: Consider two jobs, jobs 2 and 1 with job 2 scheduled first. Let

Δ1 = 𝑢1 = 𝑜1 = 1 and let Δ2 = 1, 𝑢2 = 𝑀 and 𝑜2 = 3, where 𝑀 is a very large

number such that 𝑢2

𝑢2+𝑜(2)
→ 1. The allocation induced by LP optimum is given by

𝑥2 =
1

Ω(𝑀)
and 𝑥1 = 2 − 𝑥2. The worst case is when 2 is overaged and 1 underaged,

and the cost in this case is 4. On the other hand, it can be shown that the optimum

allocation has cost 3.5 and is given by 𝑥*
2 =

1
Ω(𝑀)

and 𝑥*
1 = 3/2− 𝑥*

2.

In the example above, and the one from Lemma 33, the LP optimum would

have given an optimal allocation if 𝑢1 ≥ 𝑜2. More complicated cases arise for larger

number of jobs and it is not clear if one can introduce a polynomial number of linear

constraints to the LP in order to ensure that the optimal LP solution is the optimal

allocation. Another natural question is whether the allocation 𝑥𝑗 =
Δ𝑗𝑜(𝑗)

𝑢+𝑜(𝑗)
∀𝑗 is a

good approximation. As demonstrated below, even for two jobs this allocation can

be arbitrarily worse than the optimal allocation.

Example 3: Job 1 has 𝑢1 = 𝜖,Δ1 = 1, 𝑜1 = 1 and 𝑢2 = 𝑀,Δ2 = 1, 𝑜2 = 𝜖.

Therefore we have that 𝑢1

𝑢1+𝑜1
→ 𝜖 < 𝑢2

𝑢2+𝑜(2)
→ 1 for 𝑀 → ∞ and 𝜖 → 0. Optimal

solution to the LP is 𝑥2 = 0, 𝑥1 = (Δ1𝑜(1) + Δ2𝑜(2))
1

𝑢1+𝑜1
= 2+𝜖

1+𝜖
. This is also

an optimal allocation (both jobs underaged and both overaged are worst cases, also

more generally true when 𝑜2 = 𝑢1) and has cost 𝜖2+𝜖
1+𝜖

. Formula gives allocation

𝑥′
2 = Δ2𝑜(2)

1
𝑢2+𝑜(2)

and 𝑥′
1 = Δ1𝑜(1)

1
𝑢1+𝑜(1)

= 1
1+𝜖

. This has cost𝑀𝑥′
2+𝜖𝑥′

1 = 1+𝑂(𝜖),

which is arbitrarily worse than the optimal cost as 𝜖 → 0.

Now we show that if 𝑢𝑗+1 > 𝑢𝑗
𝑜(𝑗+1)
𝑜(𝑗)

for some 𝑗, there still exists an LP optimal

solution that is also an optimal allocation, if some other conditions are satisfied.

Theorem 38. Given a sequence of 𝑛 jobs with parameters such that whenever 𝑖 ̸=

𝑚𝑖 := max
(︀
argmin𝑗≤𝑖

𝑢𝑗

𝑢𝑗+𝑜(𝑗)

)︀
, we have 𝑢𝑚𝑖

≥ 𝑜(𝑖)−𝑜(𝑚𝑖), then the following is both
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an optimal solution to the LP and also an optimal allocation,

𝑥𝑘 =

∑︀
𝑖|𝑘=𝑚𝑖

Δ𝑖𝑜(𝑖)

𝑢𝑘 + 𝑜(𝑘)
∀𝑘.

Proof. We follow the same scheme as before, first show that the allocation given by

the formula is a feasible solution to the LP and that all jobs underaged/overaged are

worst cases. Then prove that this allocation is an optimal solution for the LP.

To check feasibility, first note that equation (5.9) is satisfied by definition since

each term 𝑜(𝑖)Δ𝑖 appears exactly once in the sum
∑︀

𝑗(𝑜(𝑗)+𝑢𝑗)𝑥𝑗. Constraints (5.8)

are also similarly easy to verify. However, here 𝑥𝑖 can be larger than Δ𝑖 for some

𝑖, so checking (5.10) is less trivial. Indeed, this is where we use the assumption

𝑢𝑚𝑖
≥ 𝑜(𝑖) − 𝑜(𝑚𝑖) for every 𝑖. Note that if for job 𝑖, 𝑚𝑖 ̸= 𝑖, then 𝑥𝑖 = 0 and 𝑥𝑚𝑖

has a term Δ𝑖𝑜(𝑖)
𝑢𝑚𝑖+𝑜(𝑚𝑖)

≤ Δ𝑖 in the summation. More generally, we have that for every

𝑘 either 𝑥𝑘 = 0 or 𝑥𝑘 ≤
∑︀

𝑖≥𝑘|𝑘=𝑚𝑖
Δ𝑖. It now follows that constraints (5.10) are

satisfied.

To show that all jobs underaged/overaged (both have same cost) is a worst case,

we proceed by induction on the number of jobs 𝑛. For 𝑛 = 1 this is trivial. Assuming

the claim holds for 𝑘 − 1 jobs, we prove the statement for 𝑘 jobs. Let the allocation

given by the formula for 𝑘 − 1 jobs be 𝑥′
𝑖 for 𝑖 ∈ [𝑘 − 1] and let 𝑥𝑖 be the allocation

for 𝑘 jobs. We will break the proof down into cases. First, observe that 𝑥𝑖 ≥ 𝑥′
𝑖 for

every job 𝑖. Therefore, if for allocation 𝑥𝑖 there exists a worst case where job 𝑘 is

underaged, then all jobs underaged is a worst case (because all jobs underaged is a

worst case for allocation 𝑥′
𝑖 by assumption). Otherwise, suppose job 𝑘 is overaged in

all worst cases. Then if 𝑥𝑘 > 0, we have 𝑥𝑖 = 𝑥′
𝑖 for all other jobs 𝑖 and using Lemma

26 we have that all jobs overaged is a worst case. Finally, consider the case where

𝑘 is overaged in all worst cases and 𝑥𝑘 = 0. Note that 𝑥𝑖 = 0 for every 𝑖 > 𝑚𝑘 and

w.l.o.g., there is a worst case where 𝑘 takes at least Δ𝑘𝑜(𝑘)
𝑢𝑚𝑘

+𝑜(𝑚𝑘)
time. Using Lemma 26

again, we have that all jobs overaged is a worst case.

Now, to show that the given allocation is an optimal solution to the LP, consider
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the dual,

max
𝑛∑︁

𝑖=1

(
𝑖∑︁

𝑗=1

𝑜(𝑗)Δ𝑗)𝑝𝑖 +
𝑛∑︁

𝑖=1

(
𝑛∑︁

𝑗=𝑖

Δ𝑗)𝑟𝑖

𝑠.𝑡. (𝑢𝑗 + 𝑜(𝑗))
∑︁
𝑖≥𝑗

𝑝𝑖 +
∑︁
𝑖≤𝑗

𝑟𝑖 + 𝑠𝑗 ≤ 𝑢𝑗 ∀𝑗 ∈ [𝑛] (5.12)

𝑝𝑖 ≥ 0 ∀𝑖 ∈ [𝑛− 1]; −𝑟𝑖, 𝑠𝑖 ≥ 0 ∀𝑖 ∈ [𝑛].

Consider the solution 𝑝𝑛 = 𝑢𝑚𝑛

𝑢𝑚𝑛+𝑜(𝑚𝑛)
and 𝑝𝑖 =

𝑢𝑚𝑖

𝑢𝑚𝑖+𝑜(𝑚𝑖)
− 𝑢𝑚𝑖+1

𝑢𝑚𝑖+1+𝑜(𝑚𝑖+1)
for every 𝑖 < 𝑛

such that 𝑚𝑖 ̸= 𝑚𝑖+1. Set all other variables to zero and note that when 𝑚𝑖 ̸= 𝑚𝑖+1

we have, 𝑚𝑖+1 = 𝑖+1 and further,
𝑢𝑚𝑖

𝑢𝑚𝑖+𝑜(𝑚𝑖)
− 𝑢𝑚𝑖+1

𝑢𝑚𝑖+1+𝑜(𝑚𝑖+1)
> 0. To check feasibility,

it only remains to consider constraints (5.12). So fix arbitrary 𝑘 ∈ [𝑛], and we have,

(𝑢𝑘 + 𝑜(𝑘))
∑︀

𝑖≥𝑘 𝑝𝑖 = (𝑢𝑘 + 𝑜(𝑘))
𝑢𝑚𝑘

𝑢𝑚𝑘
+𝑜(𝑚𝑘)

≤ 𝑢𝑘, by definition of 𝑚𝑘. Finally, since

the objective value of this dual solution is designed to match the objective value of

allocation {𝑥𝑘}𝑘∈[𝑛] for the primal, we have an optimal solution to the primal.

5.4 Flexible Job Order

5.4.1 Homogeneous Underage Costs

So far we assumed that jobs were given to us in a fixed order and we had to allocate

appointments robust to uncertainty in service times. Now we consider appointment

scheduling with flexible job order i.e., we must decide the order as well as the ap-

pointment allocation for jobs. Let us index jobs from {1, . . . , 𝑛} as before, but now

let 𝜋 : [𝑛] → [𝑛] denote a permutation such that 𝜋(𝑖) is the (𝑛− 𝜋(𝑖) + 1)𝑡ℎ appoint-

ment scheduled. So now job 𝑛 is not necessarily the first scheduled job but rather

the (𝑛 − 𝜋(𝑛) + 1)𝑡ℎ scheduled job. Our primary focus here will be on the case of

homogeneous underage costs. For this case, it was previously shown in [MSS14] that

the problem is an instance of single machine min-sum scheduling with a concave ob-

jective over completion times. The latter problem has an established and ongoing line

of work, which we discuss more subsequently. Here we will leverage this connection
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further and use additional properties of our objective to show simple near optimal

heuristics. Consider now the following formulation for our optimization problem,

which is similar to [MSS14] (with difference in notation),

min
𝜋:[𝑛]↔[𝑛]

𝑛∑︁
𝑗=1

Δ𝑗(
∑︀

𝜋(𝑘)≤𝜋(𝑗) 𝑜𝑘)𝑢∑︀
𝜋(𝑘)≤𝜋(𝑗) 𝑜𝑘 + 𝑢

.

Note that we can normalize the objective and overage costs so that w.l.o.g., 𝑢 = 1.

Now consider a job scheduling problem with 𝑛 jobs indexed by 𝑖 ∈ [𝑛], weight of job

𝑖 is 𝑤𝑖 = Δ𝑖, processing time 𝑝𝑖 = 𝑜𝑖 and the objective is,

min
𝜋

𝑛∑︁
𝑗=1

𝑤𝑗𝑓(𝐶𝑗).

Where 𝑓(𝑥) = 𝑥
𝑥+1

is a concave function of the completion time of job 𝑗, 𝐶𝑗 =∑︀
𝜋(𝑘)≤𝜋(𝑗) 𝑝𝑘. Observe that these problems are identical but with reversed ordering

i.e., given an order, the first job scheduled in the concave scheduling problem is the

last appointment scheduled and so on.

The problem of scheduling with non-linear and in particular, concave objective

has a well established line of work [HJ15, SW, MV13, CMSV16, ELMS+10]. There is

a scaling based EPTAS for the concave objective problem due to [SW], and therefore

also for the appointment scheduling problem. However, the algorithm is fairly non-

trivial to understand and not easy to implement in practice. Interestingly, it is still

not known whether this problem is computationally hard or polynomial time solvable

and this has remained an intriguing open question in the scheduling literature. Since

we are interested in simple heuristics, our focus here will be on deriving customized

but simple algorithms that achieve a good approximation for our problem. There

has been some work on simple approximation algorithms for general concave schedul-

ing as well [HJ15, SW]. In particular, [SW] first showed that Smith’s rule[Smi56],

which schedules jobs in descending order of ratio 𝑤𝑖/𝑝𝑖, is a (
√
3 + 1)/2 ' 1.367

approximation for concave scheduling.

For our more specific case where 𝑓(𝑥) = 𝑥
𝑥+1

, [MSS14] gives a customized 2 + 𝜖
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approximation. Further, [HJ15] gives a formula for evaluating the (tight) approxima-

tion ratio of Smith’s rule for any specific concave function. Using this formula we find

that Smith’s rule is optimistically ≈ 1.1356 approximate when 𝑓(𝑥) = 𝑥
𝑥+1

. While

this gives us a very simple and intuitive heuristic with a good approximation for our

problem, it is actually suboptimal even for the case of two jobs. This motivates us

to consider a new heuristic, where we order jobs in descending order of 𝑤𝑖

𝑝𝑖(𝑝𝑖+1)
. We

call this Customized-Smith’s or C-Smith for short. This straightforward heuristic

is optimal for the case of two jobs and furthermore has an improved guarantee of

1.06036 < 𝛽 < 1.06043, within roughly 6% of the optimal. Perhaps another natural

expectation from an ordering would be to demand that it is optimal w.r.t. exchang-

ing the order of any two consecutive jobs. Let us call such an order locally optimal.

The schedule output by both Smith and C-Smith is not locally optimal in general

i.e., there could be two adjacent jobs in the output schedule such that swapping their

order results in a strictly better schedule. This motivates us to consider a natural

locally optimal algorithm. We show that this algorithm always outputs a solution

that is at least as good as C-Smith, implying an upper bound of 𝛽 on the guarantee

of the algorithm, however we leave finding the exact guarantee of the algorithm as an

open problem.

Algorithm 12 C-Smith

1: Schedule jobs in increasing order of Δ𝑖

𝑜𝑖(𝑜𝑖+𝑢)
.

Remark: The ratio 𝑤𝑖

𝑝𝑖(𝑝𝑖+1)
translates to Δ𝑖

𝑜𝑖(𝑜𝑖+𝑢)
for the appointment scheduling

and ordering problem. Also, while for concave scheduling, we order jobs in decreasing

order of the ratio. For appointments, we want the reverse order and therefore schedule

jobs in increasing order of the ratio Δ𝑖

𝑜𝑖(𝑜𝑖+𝑢)
. For the rest of the discussion, we focus

on the concave scheduling setup and therefore C-Smith stands for ordering jobs in

decreasing order of 𝑤𝑖

𝑝𝑖(𝑝𝑖+1)
= Δ𝑖

𝑜𝑖(𝑜𝑖+1)
. We use 𝑤𝑖,Δ𝑖 and 𝑝𝑖, 𝑜𝑖 interchangeably.

Before we delve into approximation bounds, first consider some special cases to

understand how the parameters affect order. For the case with homogeneous Δ𝑖 =

Δ, the optimum schedule orders jobs in ascending order of 𝑜𝑖. For the case with
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homogeneous 𝑜𝑖 = 𝑜, we order the jobs in descending order of Δ𝑖 values to get the

optimal schedule. Therefore, Smith’s rule is clearly optimal for both special cases.

So under what circumstances is it suboptimal? To understand this we now consider

two consecutive jobs 𝑖 and 𝑗 in an arbitrary schedule, and determine the conditions

under which the current order is better than the order which swaps the two jobs.

Lemma 39. Given an arbitrary schedule 𝜋, with two jobs 𝑖, 𝑗 scheduled consecutively,

𝜋(𝑗) = 𝜋(𝑖) + 1. Let 𝑜𝑥 =
∑︀

𝜋(𝑘)<𝜋(𝑖) 𝑜𝑘. Then the order is optimal w.r.t. swapping

jobs 𝑖, 𝑗 iff
Δ𝑖

𝑜𝑖(𝑜𝑖 + 𝑜𝑥 + 1)
≥ Δ𝑗

𝑜𝑗(𝑜𝑗 + 𝑜𝑥 + 1)
.

Proof. Consider the schedule 𝜋′ which swaps 𝑖 and 𝑗. Let 𝐶𝑖, 𝐶
′
𝑖 denote the completion

time of job 𝑖 in 𝜋 and 𝜋′ respectively. Similarly, 𝐶𝑗, 𝐶
′
𝑗 for job 𝑗 and note that the

completion times of all jobs except 𝑖, 𝑗 are unchanged. The difference in costs between

𝜋′ and 𝜋 is given by,

∑︁
𝑘

Δ𝑘(𝑓(𝐶
′
𝑘)− 𝑓(𝐶𝑘)) =

Δ𝑗(𝑜𝑗 + 𝑜𝑥)

𝑜𝑗 + 𝑜𝑥 + 1
+

Δ𝑖(𝑜𝑖 + 𝑜𝑗 + 𝑜𝑥)

𝑜𝑖 + 𝑜𝑗 + 𝑜𝑥 + 1

−Δ𝑗(𝑜𝑗 + 𝑜𝑖 + 𝑜𝑥)

𝑜𝑗 + 𝑜𝑖 + 𝑜𝑥 + 1
+

Δ𝑖(𝑜𝑖 + 𝑜𝑥)

𝑜𝑖 + 𝑜𝑥 + 1

= Δ𝑖
𝑜𝑗

(𝑜𝑗 + 𝑜𝑖 + 𝑜𝑥 + 1)(𝑜𝑖 + 𝑜𝑥 + 1)

−Δ𝑗
𝑜𝑖

(𝑜𝑗 + 𝑜𝑖 + 𝑜𝑥 + 1)(𝑜𝑗 + 𝑜𝑥 + 1)

=
𝑜𝑖𝑜𝑗

𝑜𝑖 + 𝑜𝑗 + 𝑜𝑥 + 1

(︁ Δ𝑖

𝑜𝑖(𝑜𝑖 + 𝑜𝑥 + 1)
− Δ𝑗

𝑜𝑗(𝑜𝑗 + 𝑜𝑥 + 1)

)︁
Therefore,

∑︀
𝑘 Δ𝑘(𝑓(𝐶

′
𝑘)− 𝑓(𝐶𝑘)) ≥ 0 iff Δ𝑖

𝑜𝑖(𝑜𝑖+𝑜𝑥+1)
≥ Δ𝑗

𝑜𝑗(𝑜𝑗+𝑜𝑥+1)
.

Observe that when we just have two jobs, 𝑜𝑥 = 0 and the optimal order is 𝑖

followed by 𝑗 iff Δ𝑖

𝑜𝑖(𝑜𝑖+1)
≥ Δ𝑗

𝑜𝑗(𝑜𝑗+1)
. This naturally implies that Smith’s rule is not

optimal even for two jobs. Also note that if 𝑜𝑥 → ∞, then we have 𝑖 before 𝑗 iff

Δ𝑖

𝑜𝑖
≥ Δ𝑗

𝑜𝑗
, indicating that Smith’s rule can become optimal for ordering jobs later in

the schedule (provided the overage costs are not too small). Next, we evaluate the

refined approximation ratio for Smith’s rule for our specific concave objective 𝑥
1+𝑥

using results in [HJ15].
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Consider 𝑞/𝜖 jobs each of length and weight 𝜖 and thus Smith ratio 1. As 𝜖 tends

to zero, we get a line job of length 𝑞, as defined in [HJ15]. Note that the both the

Smith and C-Smith ratio of every infinitesimal job that makes up the line job tends

to 1 as 𝜖 → 0.

Lemma 40 (Theorem 3.2 in [HJ15]). For the concave scheduling problem, a worst

case of Smith’s rule occurs for the case of a line job of length and weight 𝑞 and a

normal job of length and weight 𝑝. Smith’s rule schedules the regular job followed by

the line job and the optimal order is the reverse. Therefore, the ratio is,

max
𝑝,𝑞≥0

𝑝 𝑝
𝑝+1

+ 𝑞 − ln( 𝑞
𝑝+1

+ 1)

𝑝 𝑝+𝑞
𝑝+𝑞+1

+ 𝑞 − ln(𝑞 + 1)
≥ 1.1356.

Proof. Using a local optimization subroutine from MATLAB (fmincon), we find

a local minimum with value 1.135680634960286 at 𝑞 = 1.257523511039715, 𝑝 =

1.8614133406450792.

Using Lemma 39 it is easy to construct instances where both C-Smith and Smith’s

rule lead to orderings that are not locally optimal. This prompts the following locally

optimal algorithm,

Algorithm 13 Locally Optimal Algorithm

1: Initialize: 𝑆 = ∅, 𝑜(𝑆) = 0

2: for 𝑖 = 1 to 𝑛 do

3: Breaking ties arbitrarily,

𝑗 = argmax
𝑘∈[𝑛]∖𝑆

Δ𝑘

𝑜𝑘(𝑜𝑘 + 𝑜(𝑆) + 1)

4: 𝜋(𝑗) = 𝑖, 𝑆 = 𝑆 ∪ {𝑗}, 𝑜(𝑆) = 𝑜(𝑆) + 𝑜𝑗

5: Output: 𝜋(.)

Lemma 41. Algorithm 13 is locally optimal.

Proof. Consider arbitrary jobs 𝑗 and 𝑗 +1 in the order output by the algorithm. Let

𝑜𝑆𝑗
represent the value of 𝑜(𝑆) at iteration 𝑗 (where job 𝑗 was picked out). Since we
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have
Δ𝑗

𝑜𝑗(𝑜𝑗+𝑜𝑆𝑗
+1)

≥ Δ𝑗+1

𝑜𝑗+1(𝑜𝑗+1+𝑜𝑆𝑗
+1)

, Lemma 39 implies that the current order is swap

optimal w.r.t. pairs 𝑗, 𝑗 + 1.

Yet, a local optimum need not be globally optimal, indeed the algorithm can be

suboptimal as demonstrated by the following example.

Sub-optimality of Algorithm 13: Consider 3 jobs, with Δ1 = 𝑜1 = 1, Δ2 =

15,Δ3 = 14 and 𝑜2 = 𝑜3 = 5. Then the order 1,2,3 is locally optimal since Δ1

𝑜1(𝑜1+1)
=

Δ2

𝑜2(𝑜2+1)
= 1

2
and Δ3

𝑜3(𝑜3+1)
< 1

2
. Similarly, Δ2

𝑜2(𝑜2+𝑜1+1)
> Δ3

𝑜3(𝑜3+𝑜1+1)
. However, notice

that one can swap 1 and 2 without changing the value of the solution, resulting in

an equally costly order 2,1,3. Now this is not locally optimal and one gets a strictly

better order by swapping 1,3 to get the order 2,3,1.

We will next show that the schedule output by the algorithm is always at least as

good as the schedule given by C-Smith. We will then show an approximation guar-

antee of 1.06036 < 𝛽 < 1.06043 for C-Smith, also implying that the local algorithm is

𝛽 approximate. But first, we need to understand how the optimal ordering of a pair

of jobs changes due to other preceding jobs in a given schedule.

Lemma 42. If Δ𝑖

𝑜𝑖(𝑜𝑖+1)
≥ Δ𝑗

𝑜𝑗(𝑜𝑗+1)
but

Δ𝑗

𝑜𝑗(𝑜𝑗+𝑥+1)
≥ Δ𝑖

𝑜𝑖(𝑜𝑖+𝑥+1)
for some 𝑥 > 0, then

𝑜𝑗 ≥ 𝑜𝑖 and further
Δ𝑗

𝑜𝑗(𝑜𝑗+𝑥′+1)
≥ Δ𝑖

𝑜𝑖(𝑜𝑖+𝑥′+1)
for every 𝑥′ ≥ 𝑥.

Proof. Suppose 𝑜𝑖 > 𝑜𝑗. We have for 𝑥 > 0,

Δ𝑖

𝑜𝑖(𝑜𝑖 + 1)
≥ Δ𝑗

𝑜𝑗(𝑜𝑗 + 1)

Δ𝑖

𝑜𝑖(𝑜𝑖 + 𝑥+ 1)

𝑜𝑖 + 𝑥+ 1

𝑜𝑖 + 1
≥ Δ𝑗

𝑜𝑗(𝑜𝑗 + 𝑥+ 1)

𝑜𝑗 + 𝑥+ 1

𝑜𝑗 + 1

Δ𝑖

𝑜𝑖(𝑜𝑖 + 𝑥+ 1)

(︁
1 +

𝑥

𝑜𝑖 + 1

)︁
≥ Δ𝑗

𝑜𝑗(𝑜𝑗 + 𝑥+ 1)

(︁
1 +

𝑥

𝑜𝑗 + 1

)︁
=⇒ Δ𝑖

𝑜𝑖(𝑜𝑖 + 𝑥+ 1)
>

Δ𝑗

𝑜𝑗(𝑜𝑗 + 𝑥+ 1)
(Contradiction).

Therefore, 𝑜𝑗 ≥ 𝑜𝑖 as desired. Now starting with
Δ𝑗

𝑜𝑗(𝑜𝑗+𝑥+1)
≥ Δ𝑖

𝑜𝑖(𝑜𝑖+𝑥+1)
and repeating

the steps above with the assumption 𝑜𝑗 ≥ 𝑜𝑖, we have that
Δ𝑗

𝑜𝑗(𝑜𝑗+𝑥′+1)
≥ Δ𝑖

𝑜𝑖(𝑜𝑖+𝑥′+1)
for

every 𝑥′ ≥ 𝑥.
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Corollary 43. Suppose Δ𝑖

𝑜𝑖(𝑜𝑖+1)
=

Δ𝑗

𝑜𝑗(𝑜𝑗+1)
. If 𝑜𝑗 ≥ 𝑜𝑖, then

Δ𝑗

𝑜𝑗(𝑜𝑗+𝑥+1)
≥ Δ𝑖

𝑜𝑖(𝑜𝑖+𝑥+1)
for

every 𝑥 ≥ 0. Conversely, if
Δ𝑗

𝑜𝑗(𝑜𝑗+𝑥+1)
≥ Δ𝑖

𝑜𝑖(𝑜𝑖+𝑥+1)
for some 𝑥 > 0 then 𝑜𝑗 ≥ 𝑜𝑖.

Theorem 44. The cost of ordering by Algorithm 13 is always at most as much as

the cost of ordering by C-Smith.

Proof. Let 𝜋1 be the order from C-Smith and 𝜋2 the order from Algorithm 13. Further

suppose that the orders coincide for the first 𝑖 ≥ 0 jobs and 𝑖+1 is the smallest index

such that 𝜋−1
1 (𝑖 + 1) ̸= 𝜋−1

2 (𝑖 + 1). Let 𝑘 = 𝜋−1
2 (𝑖 + 1) and clearly 𝜋1(𝑘) > 𝑖 + 1.

We will show that the order which schedules 𝑘 at 𝑖 + 1 but otherwise follows the

C-Smith order 𝜋1, is at least as good as 𝜋1 and more generally, we demonstrate a way

to transform 𝜋1 to 𝜋2 while never increasing the cost.

We have
Δ𝑗

𝑜𝑗(𝑜𝑗+1)
≥ Δ𝑘

𝑜𝑘(𝑜𝑘+1)
for every 𝑗 such that 𝜋1(𝑗) ≤ 𝜋1(𝑘) (due to C-

Cmith). Further, let 𝑜(𝑖) =
∑︀

𝜋1(𝑗)≤𝑖 𝑜𝑗 then, Δ𝑘

𝑜𝑘(𝑜𝑘+𝑜(𝑖)+1)
≥ Δ𝑗

𝑜𝑗(𝑜𝑗+𝑜(𝑖)+1)
for every

𝑗 such that 𝑖 < 𝜋1(𝑗) ≤ 𝜋1(𝑘) (due to Algorithm 13). It follows that if 𝑜(𝑖) = 0,

then Δ𝑘

𝑜𝑘(𝑜𝑘+1)
=

Δ𝑗

𝑜𝑗(𝑜𝑗+1)
for all 𝑗 scheduled between 𝑖 + 1 to 𝜋1(𝑘) in 𝜋1, and we

are done. So assume 𝑜(𝑖) > 0. Then from Lemma 42 we have, 𝑜𝑘 ≥ 𝑜𝑗 and

Δ𝑘

𝑜𝑘(𝑜𝑘+
∑︀

𝜋1(𝑡)<𝜋1(𝑗)
𝑜𝑡+1)

≥ Δ𝑗

𝑜𝑗(𝑜𝑗+
∑︀

𝜋1(𝑡)<𝜋1(𝑗)
𝑜𝑡+1)

for every 𝑗 such that 𝑖 < 𝜋1(𝑗) ≤ 𝜋1(𝑘).

Therefore, when 𝑗 = 𝜋−1
1 (𝜋1(𝑘)−1), we have that swapping 𝑗 and 𝑘 in 𝜋1 does not re-

sult in a worse schedule, and subsequently for every 𝑗 such that 𝑖 < 𝜋1(𝑗) ≤ 𝜋1(𝑘)−1.

Now consider the new schedule 𝜋′
1, where 𝜋′

1(𝑘) = 𝑖 + 1 and order is otherwise

same as 𝜋1. The cost of 𝜋′
1 is at most the cost of 𝜋1 and the first index where 𝜋′

1 and

𝜋2 differ is 𝑖 + 2. We can now repeat the same process to get a schedule at least as

good as 𝜋′
1 that coincides with 𝜋2 for an even larger number of jobs. Repeating this

enough times gives us the desired.

Next, we focus on showing a nearly tight approximation bound for C-Smith. More

formally, we show that,

Theorem 45. The worst case ratio of C-Smith is given by 𝛽 where 1.06036 < 𝛽 <

1.06043.

To prove the above theorem, we will establish several intermediate results that

characterize and simplify the worst case instance for C-Smith. First, we generalize
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Lemma 3.5 in [HJ15] (Lemma 21 in [SW]) and show that there is a worst case in-

stance for C-Smith where all jobs are tied and in fact have ratio 1. Then, we show

that in the worst case C-Smith orders jobs in ascending order of 𝑜𝑖 and the optimal

order is the exact reverse. Interestingly, this is the opposite of Lemma 3.6 in [HJ15]

(Proposition 20 in [SW]) for Smith’s rule, where the optimal order is ascending in 𝑜𝑖

and worst order is descending. Thereafter, we can cleanly write down a non-convex

optimization problem in infinitely many variables. The optimal value of this problem

is the approximation ratio and every optimal solution is a worst case instance.

To then get lower and upper bounds on the optimum value, we utilize properties

specific to our objective 𝑓(𝑥) = 𝑥
𝑥+1

to approximate the problem (which has infinitely

many variables) with a family of optimization problems, that while still non-convex,

have a finite number of variables. As we consider more complex objectives from the

family, we get tighter upper bounds on true approximation ratio but the number

of variables involved increases. We find the global optimum to a problem in the

family with 5 variables, and this closely matches our lower bound. We solve such

a non-convex problem to global optimality by establishing upper and lower bounds

on variables and using linear cuts, both of which allow us to then effectively use a

nonlinear globally optimal MINLP solver, Couenne [IU06].

Now, consider heuristics that order jobs using a simple ratio. Where we use the

word simple to imply that the ratio for each job is evaluated only using the job

parameters (𝑜𝑖,Δ𝑖, 𝑢𝑖), and is independent of other jobs. We call such a heuristic

weight proportional if for every job 𝑖, the ratio is linearly proportional to its weight

𝑤𝑖(= Δ𝑖).

Lemma 46. Given a weight proportional ratio based heuristic, any worst case in-

stance 𝐼 can be modified into another worst case instance 𝐼 ′, where all jobs have the

same ratio and are thus tied. Further we can also assume that jobs have ratio 1.

Proof. Proof simply generalizes Lemma 3.5 in [HJ15] (and Lemma 21 in [SW]). Con-

sider a ratio based heuristic and suppose there exists 𝑘 classes of jobs based on the

ratio. All jobs within a class have the same ratio. Order the classes in decreasing

113



order of the representative ratio and note that the algorithm schedules jobs in class

𝑗 before jobs in class 𝑗 + 1 for every 1 ≤ 𝑗 ≤ 𝑘 − 1. Let 𝐴(𝑗, 𝐼) denote the total cost

of jobs in class 𝑗, given the ratio based order for instance 𝐼. Similarly, 𝑂𝑃𝑇 (𝑗, 𝐼)

denotes the total cost over jobs in the same class 𝑗 in the optimal order (in case

of multiple optima, fix one for this proof). We use the shorthand 𝐴(𝐼), 𝑂𝑃𝑇 (𝐼) to

denote the total costs over all jobs. Let 𝐴(𝐼) ≥ 𝛼𝑂𝑃𝑇 (𝐼) and let 𝑖 be the class with

the smallest index such that, 𝐴(𝑖, 𝐼) ≥ 𝛼𝑂𝑃𝑇 (𝑖, 𝐼). Note that there is such an 𝑖,

since otherwise
∑︀𝑘

𝑗=1𝐴(𝑗, 𝐼) = 𝐴(𝐼) < 𝛼𝑂𝑃𝑇 (𝐼). Now let 𝐼 be a worst case instance

with the smallest number, 𝑑, of distinct classes. We show that 𝑑 = 1 by considering

two cases and deriving a contradiction in each.

First, if 𝑖 = 1, then we can simply consider a new instance 𝐼 ′ that consists of only

jobs in class 1. We have that 𝑂𝑃𝑇 (𝐼 ′) ≤ 𝑂𝑃𝑇 (1, 𝐼) and 𝐴(𝐼 ′) = 𝐴(1, 𝐼). Therefore,

𝐴(𝐼 ′) ≥ 𝛼𝑂𝑃𝑇 (𝐼 ′), contradiction.

Otherwise, assume 𝑖 > 1. Since the ordering heuristic is weight proportional,

we can multiply the weights of all jobs in class 𝑖 by a factor 𝛿 > 1 such that the

ratio of class 𝑖 jobs now equals the ratio of class 𝑖 − 1. Call this instance 𝐼1. We

have 𝐴(𝑖, 𝐼1) = 𝛿𝐴(𝑖, 𝐼) and therefore 𝐴(𝐼1) = 𝐴(𝐼) + (𝛿 − 1)𝐴(𝑖, 𝐼). Similarly,

𝑂𝑃𝑇 (𝐼1) ≤ 𝑂𝑃𝑇 (𝐼)+ (𝛿− 1)𝑂𝑃𝑇 (𝑖, 𝐼). Further, since 𝐴(𝑖, 𝐼) ≥ 𝛼𝑂𝑃𝑇 (𝑖, 𝐼), we get

𝐴(𝐼1) ≥ 𝐴(𝐼)+(𝛿−1)𝛼𝑂𝑃𝑇 (𝑖, 𝐼). Finally, 𝐴(𝐼1) ≥ 𝛼(𝑂𝑃𝑇 (𝐼)+(𝛿−1)𝑂𝑃𝑇 (𝑖, 𝐼)) ≥

𝛼𝑂𝑃𝑇 (𝐼1). Therefore 𝐼1 is also a worst case instance, but with 𝑑− 1 distinct classes,

contradiction.

Given an instance where all jobs have the same ratio, we can easily multiply all

jobs weights by a scalar to normalize the ratio to one.

Remark: One might ask at this point if tie-breaking rules make a difference to the

performance guarantee. Since we can always perturb weights adversarially by tiny

amounts so that there are no ties but the costs are essentially unchanged, tie-breaking

doesn’t make a difference in theoretical performance.

Lemma 47. In any worst case instance for C-Smith with all jobs tied, the optimal

order is to schedule jobs in descending order of 𝑝𝑖 and the worst case is attained when
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jobs are scheduled in ascending order of 𝑝𝑖.

Proof. Consider two consecutive jobs, 𝑘 and 𝑘+1 in an optimal schedule. By applying

Corollary 43, we have that 𝑝𝑘 = 𝑜𝑘 ≥ 𝑝𝑘+1 = 𝑜𝑘+1. This more generally implies jobs

must be ordered in descending order of 𝑝𝑘 in the optimal schedule.

Now consider the worst order and observe that if there is pair of consecutive jobs

𝑘, 𝑘 + 1 such that 𝑝𝑘 > 𝑝𝑘+1, then using Corollary 43 again we have that swapping 𝑘

and 𝑘 + 1 would be strictly worse. Therefore, in the worst schedule jobs are ordered

in ascending order of 𝑝𝑖.

So far, our simplification implies that we can assume all jobs have C-Smith ratio

of 1, and given this we also know the worst possible (C-Smith) order and the opti-

mal order. So consider regular jobs 1 to 𝑛 (where 𝑛 can be arbitrarily large), with

processing times 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑛 and a line job of length 𝑞. We use the notion

of a line job as defined in [HJ15]; a line job of length 𝑞 consists of infinitely many

infinitesimally small jobs, each takes time 𝜖 so the total number of jobs is 𝑞/𝜖 and

𝜖 → 0. In [HJ15], the weight of each small job was 𝜖 (so that the Smith’s ratio was 1)

and therefore, the total weight of a line job was 𝑞, same as the time taken. Similarly,

we let the weight of each small job be 𝜖(𝜖+1) so that its C-Smith ratio is 1. However,

the 𝜖2 term in the weight disappears upon integration and the cumulative weight of

a line job of length 𝑞 in our setting is still 𝑞. Now, the cost incurred due to a line job

that runs from time 𝑡 to 𝑡+ 𝑝 is given by,

𝐹 (𝑡, 𝑡+ 𝑝) =

∫︁ 𝑡+𝑝

𝑡

𝑓(𝑥)𝑑𝑥 =

∫︁ 𝑡+𝑝

𝑡

(︁
1− 1

𝑥+ 1

)︁
𝑑𝑥 = 𝑝− ln

(︁ 𝑝

𝑡+ 1
+ 1

)︁
.

Observe that 𝐹 (𝑡, 𝑡+𝑝)+𝐹 (𝑡+𝑝, 𝑡+𝑝+𝑞) = 𝐹 (𝑡, 𝑡+𝑝+𝑞) for every 𝑡, 𝑝, 𝑞 > 0, and this

telescoping property of 𝐹 (.) will be useful later. Further, since 𝑓(.) is monotonically

increasing we have,

𝑝
𝑡

𝑡+ 1
≤ 𝐹 (𝑡, 𝑡+ 𝑝) ≤ 𝑝

𝑡+ 𝑝

𝑡+ 𝑝+ 1
. (5.13)

Let 𝑝(𝑖) =
∑︀

𝑘≤𝑖 𝑝𝑘 and 𝑞(𝑖) = 𝑞 +
∑︀

𝑘≥𝑖 𝑝𝑘 with 𝑝(0) = 0 and 𝑞(𝑛 + 1) = 𝑞. Note
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that weight 𝑤𝑖 of job 𝑖 is given by 𝑝𝑖(𝑝𝑖 + 1). Now, the optimal order schedules jobs

1 through 𝑛 in that order and ends with the line job. The worst case schedule is the

exact reverse, beginning with the line job, followed by job 𝑛 and ending with job 1.

Note that 𝑝1 > 0 since otherwise the optimal and C-Smith order are identical for all

values of 𝑞 and we have a ratio of 1. Given these definitions, the worst case ratio

𝑊 (𝑛), for instances with 𝑛 regular jobs (plus a line job) all with C-Smith ratio unity,

can be written as,

𝑁(𝑞, 𝑝1, . . . , 𝑝𝑛) = 𝐹 (0, 𝑞) +
𝑛∑︁

𝑖=1

𝑝𝑖(𝑝𝑖 + 1)
𝑞(𝑖)

𝑞(𝑖) + 1
(5.14)

𝐷(𝑞, 𝑝1, . . . , 𝑝𝑛) = 𝐹 (𝑝(𝑛), 𝑝(𝑛) + 𝑞) +
𝑛∑︁

𝑖=1

𝑝𝑖(𝑝𝑖 + 1)
𝑝(𝑖)

𝑝(𝑖) + 1
(5.15)

𝑊 (𝑛) = max
𝑞,𝑝1,...,𝑝𝑛≥0

𝑁

𝐷
(𝑞, 𝑝1, . . . , 𝑝𝑛).

Clearly 𝑊 (𝑛) ≤ 𝑊 (𝑛+1) for all 𝑛. However, recall from Lemma 40, that for Smith’s

rule there exists a worst case which includes just a regular job and a line job. So

if we use 𝑆(𝑛) to denote the worst case ratio for Smith’s rule with 𝑛 regular jobs,

[HJ15, SW] showed that 𝑆(𝑛) = 𝑆(1) for all 𝑛 ≥ 1. The worst case for C-Smith is more

involved and in particular, it is not clear if there is a worst case with a small number

of regular jobs. In fact, we show that 𝑊 (1) < 𝑊 (2) < 𝑊 (3) < 𝑊 (4), implying

that every worst case has at least 4 jobs. Nonetheless, we have 1.06036 < 𝑊 (4) and

𝑊 (𝑛) < 1.06043 for every 𝑛 ≥ 2, effectively showing 𝑊 (4) is reasonably close to the

true approximation guarantee. To establish the upper bound on 𝑊 (𝑛), we introduce

a family of non-linear optimization problems where we can control the number of

variables.

In order to construct this family, we establish and exploit constraints on the

worst case value of variables 𝑞, 𝑝1, . . . , 𝑝𝑛 i.e., values that attain objective value 𝑊 (𝑛).

Further, the same bounds and constraints also greatly help in using Couenne to

actually solve instances of the non-convex problems in reasonable time. To give a

quick overview of the rest of the analysis: First, we show a lower bound on 𝑝1 that

allows us to find 𝑊 (1). Without the lower bound the solver does not converge due
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to numerical issues related to dividing two very small quantities as 𝑝1, 𝑞 → 0. Then,

we show that 𝑊 (2) > 𝑊 (1) by finding a lower bound on 𝑊 (2) that is larger than

𝑊 (1). This implies that there are at least two regular jobs in every worst case. Given

this observation we then establish bounds and constraints on other variables. Finally,

we combine these conditions to establish our family of upper bounds, which we then

solve numerically.

Lemma 48. Let 𝛽 be the approximation ratio for C-Smith, then for every 𝑛 we have

that in the worst case, 𝑝1 ≥ 𝛽 − 1.

Proof. Let us assume 𝑝1 < 𝛽 − 1 and derive a contradiction. Considering the numer-

ator (5.14) for 𝑛 jobs we have,

𝑞 − ln(𝑞 + 1) +
𝑛∑︁

𝑖=1

𝑝𝑖(𝑝𝑖 + 1)
𝑞(𝑖)

𝑞(𝑖) + 1
< 𝛽

(︁
𝑞 − ln(𝑞 + 1) +

𝑛∑︁
𝑖=1

𝑝𝑖
𝑞(𝑖)

𝑞(𝑖) + 1

)︁
= 𝛽𝑁 ′,

where the inequality follows from 𝑝𝑖 + 1 ≤ 𝑝1 + 1 < 𝛽. On the other hand, the

denominator (5.15),

𝑞−ln
(︁ 𝑞

𝑝(𝑛) + 1
+1

)︁
+

𝑛∑︁
𝑖=1

𝑝𝑖(𝑝𝑖+1)
𝑝(𝑖)

𝑝(𝑖) + 1
≥ 𝑞−ln

(︁ 𝑞

𝑝(𝑛) + 1
+1

)︁
+

𝑛∑︁
𝑖=1

𝑝𝑖
𝑝(𝑖)

𝑝(𝑖) + 1
= 𝐷′.

The key now is to observe that 𝑁 ′

𝐷′ is the ratio of the optimal order divided by the

worst order when all jobs have Smith’s ratio 1 (thus job 𝑖 takes time 𝑝𝑖 and has weight

𝑝𝑖), and therefore 𝑁 ′

𝐷′ ≤ 1. Now, we have a contradiction since 𝑁
𝐷
< 𝛽𝑁 ′

𝐷′ ≤ 𝛽.

Now that we have a lower bound on 𝑝1, we can evaluate 𝑊 (1) using Couenne to

find,

𝑊 (1) = max
𝑝≥𝛽−1, 𝑞≥0

𝑞 − ln(𝑞 + 1) + 𝑝(𝑝+ 1) 𝑝+𝑞
𝑝+𝑞+1

𝑞 − ln( 𝑞
𝑝+1

+ 1) + 𝑝2
= 1.0567 when 𝑝 = 2.8943, 𝑞 = 8.07751.

Further, we also have 𝑊 (2) > 1.603 > 𝑊 (1) for 𝑞 = 7.7309, 𝑝1 = 2.3001, 𝑝2 = 1.8336.

Therefore, every worst case has at least two regular jobs. Given this, we will now

11.056749812107016 for 𝑞 = 8.077507951542048 and 𝑝 = 2.8943201615651377.
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establish more constraints on the variables but first, consider the following simple

and useful observation.

Lemma 49. Given 𝑁
𝐷
= 𝛽 ≥ 1, for 𝑛, 𝑑 ≥ 0, we have the following:

1. If 𝑛 ≥ 𝛽𝑑 then 𝑁+𝑛
𝐷+𝑑

≥ 𝛽.

2. If 𝑛 ≤ 𝛽𝑑 and 𝐷 − 𝑑 > 0 then 𝑁−𝑛
𝐷−𝑑

≥ 𝛽.

In both cases, equality iff 𝑛 = 𝛽𝑑.

Proof. 1. follows from 𝑁+𝑛
𝐷+𝑑

≥ 𝑁+𝛽𝑑
𝐷+𝑑

= 𝛽 and 2. from 𝑁−𝑛
𝐷−𝑑

≥ 𝑁−𝛽𝑑
𝐷−𝑑

= 𝛽.

We now show a lower bound on 𝑞, which is key to proving several subsequent

results.

Lemma 50. For 𝑛 ≥ 2, in a worst case with 𝑝𝑛 > 0 we have, 𝑞 > 𝑝(𝑛− 1).

Proof. Consider the order given by C-Smith and the optimal order and suppose we

turn job 𝑛 (for 𝑛 ≥ 2) into a line job with length and weight 𝑝𝑛, keeping everything

else as is in both orders. The change in cost (new cost - old cost) for the C-Smith

schedule is,

𝛿𝑁 = −𝑝𝑛(𝑝𝑛 + 1)
𝑞(𝑛)

𝑞(𝑛) + 1
+ 𝐹 (𝑞(𝑛+ 1), 𝑞(𝑛)). (5.16)

Similarly, the change in cost of the optimal order is,

𝛿𝐷 = −𝑝𝑛(𝑝𝑛 + 1)
𝑝(𝑛)

𝑝(𝑛) + 1
+ 𝐹 (𝑝(𝑛− 1), 𝑝(𝑛)). (5.17)

Using (5.13) it is easy to see that both 𝛿𝑁 and 𝛿𝐷 are negative. So if −𝛿𝑁 ≤ −𝛿𝐷,

then we have a strictly worse instance due to Lemma 49 (2.).

We claim −𝛿𝑁 ≤ −𝛿𝐷 as long as 𝑞(𝑛) ≤ 𝑝(𝑛) or 𝑞 ≤ 𝑝(𝑛− 1). Therefore, we can

assume that 𝑞 > 𝑝(𝑛− 1) in the worst case. To see the claim, treat 𝛿𝑁 as a function

of 𝑞 i.e., 𝛿𝑁(𝑞). Clearly, 𝛿𝑁(𝑝(𝑛− 1)) = 𝛿𝐷. Moreover, 𝑑𝛿𝑁
𝑑𝑞

= −𝑝𝑛(𝑝𝑛 + 1) 1
(𝑞+𝑝𝑛+1)2

+

𝑝𝑛
(𝑞+1)(𝑞+𝑝𝑛+1)

= −𝑞𝑝2𝑛
(𝑞+1)(𝑞+𝑝𝑛+1)2

≤ 0, therefore 𝛿𝑁(𝑞) ≥ 𝛿𝐷 for 0 ≤ 𝑞 ≤ 𝑝(𝑛 − 1) and

𝛿𝑁(𝑞) ≤ 𝐷 for 𝑞 > 𝑝(𝑛− 1).
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The following is a useful property of 𝐹 , which combined with the above lower

bound on 𝑞 will help us establish a lemma that is key to our upper bounds on 𝑊 (𝑛).

Lemma 51. Given 𝑡2, 𝑡1, 𝑝 ≥ 0, we have 𝑝 𝑡1+𝑝
𝑡1+𝑝+1

−𝐹 (𝑡1, 𝑡1+𝑝) > 𝑝 𝑡2+𝑝
𝑡2+𝑝+1

−𝐹 (𝑡2, 𝑡2+𝑝)

iff 𝑡2 > 𝑡1.

Proof. Observe that 𝑝 𝑡+𝑝
𝑡+𝑝+1

− 𝐹 (𝑡, 𝑡 + 𝑝) =
∫︀ 𝑡+𝑝

𝑡
( 𝑡+𝑝
𝑡+𝑝+1

− 𝑡+𝑥
𝑡+𝑥+1

)𝑑𝑥 ≥ 0. Since 𝑓

is strictly concave, we have 𝑡2 > 𝑡1 iff 𝑡1+𝑝
𝑡1+𝑝+1

− 𝑡1+𝑥
𝑡1+𝑥+1

> 𝑡2+𝑝
𝑡2+𝑝+1

− 𝑡2+𝑥
𝑡2+𝑥+1

for every

𝑥 ≥ 0.

Lemma 52. Consider the ratio 𝑟 =
𝜆𝑝𝑛

𝑞+𝑝𝑛
𝑞+𝑝𝑛+1

+𝑃

𝜆𝑝𝑛
𝑝(𝑛)

𝑝(𝑛)+1
+𝑄

. Given 𝑟, 𝜆 ≥ 1, 𝑃,𝑄, 𝑞, 𝑝𝑛 ≥ 0, and

𝑞 + 𝑝𝑛 > 𝑝(𝑛) ≥ 𝑝𝑛 we have,

𝜆𝐹 (𝑞, 𝑞 + 𝑝𝑛) + 𝑃

𝜆𝐹 (𝑝(𝑛)− 𝑝𝑛, 𝑝(𝑛)) +𝑄
> 𝑟.

Proof. Let 𝑝(𝑛 − 1) = 𝑝(𝑛) − 𝑝𝑛 ≥ 0. The claim is trivial when 𝑝𝑛 = 0 so let

us assume 𝑝𝑛 > 0. Suppose we replace the term 𝑝𝑛
𝑞+𝑝𝑛

𝑞+𝑝𝑛+1
in the numerator by

𝐹 (𝑞, 𝑞+𝑝𝑛) and replace 𝑝𝑛
𝑝(𝑛)

𝑝(𝑛)+1
in the denominator by 𝐹 (𝑝(𝑛−1), 𝑝(𝑛))). Then, the

numerator decreases (old cost - new cost) by 𝛿𝑁 = 𝜆(𝑝𝑛
𝑞+𝑝𝑛

𝑞+𝑝𝑛+1
− 𝐹 (𝑞, 𝑞 + 𝑝𝑛)). The

denominator decreases by 𝛿𝐷 = 𝜆( 𝑝(𝑛)
𝑝(𝑛)+1

−𝐹 (𝑝(𝑛− 1), 𝑝(𝑛))). Clearly 𝛿𝑁 , 𝛿𝐷 ≥ 0 and

since 𝑞 > 𝑝(𝑛− 1), using Lemma 51 we have, 𝛿𝐷 > 𝛿𝑁 . Since the original ratio is at

least 1, we have a strictly larger ratio after this operation due to Lemma 49 (2.).

Using the above lemma, we now show an upper bound on the total time taken by

regular jobs, 𝑝(𝑛).

Lemma 53. Given a worst case solution with 𝑛 ≥ 2 regular jobs (𝑝𝑛 > 0) and a line

job 𝑞, we have (𝑝𝑛+𝑞)(𝑝(𝑛)+1)
(𝑝𝑛+𝑞+1)𝑝(𝑛)

≥ 𝛽.

Proof. Consider the numerator 𝑁 and denominator 𝐷 from (5.14),(5.15). We assume

that
𝑝𝑛+𝑞

𝑝𝑛+𝑞+1
𝑝(𝑛)

𝑝(𝑛)+1

< 𝛽 and derive a contradiction. Using Lemma 49 (2.) we have that

replacing 𝑝𝑛(𝑝𝑛 + 1) 𝑞(𝑛)
𝑞(𝑛)+1

in 𝑁 and 𝑝𝑛(𝑝𝑛 + 1) 𝑝(𝑛)
𝑝(𝑛)+1

in 𝐷 by 𝑝𝑛
𝑞(𝑛)

𝑞(𝑛)+1
and 𝑝𝑛

𝑝(𝑛)
𝑝(𝑛)+1

respectively, increases the objective. And finally, using Lemma 52 (with 𝜆 = 1) we

have that turning job 𝑛 into a line job of length 𝑝𝑛 increases the ratio, giving us
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a contradiction since the instance with line job of length 𝑞 + 𝑝𝑛 and regular jobs

1, . . . , 𝑛 − 1 as before, cannot be strictly worse. Note that we satisfy all conditions

necessary to use Lemma 52 since the ratio is at least 1, 𝑞 > 𝑝(𝑛− 1) using Lemma 50

and other terms in the numerator and denominator are unaffected when converting

𝑛 into a line job.

Corollary 54. Given a worst case solution with 𝑛 ≥ 2 regular jobs (𝑝𝑛 > 0), 𝑝(𝑛) ≤
1

𝛽−1
.

Proof. (𝑝𝑛+𝑞)(𝑝(𝑛)+1)
(𝑝𝑛+𝑞+1)𝑝(𝑛)

≤ 𝑝(𝑛)+1
𝑝(𝑛)

and then a direct application of Lemma 53 to the LHS.

Suppose now that for the case of 𝑛 regular jobs there exists a worst case with

𝑝𝑛 > 0, then combining several of the results above we now have,

𝑊 (𝑛) = max
𝑞,𝑝1,...,𝑝𝑛

𝑁

𝐷
(𝑞, 𝑝1, . . . , 𝑝𝑛) (5.18)

s.t. 𝑞 ≥ 𝑝(𝑛− 1)

𝑝𝑖 ≥ 𝑝𝑖+1 ∀1 ≤ 𝑖 ≤ 𝑛− 1

𝑞, 𝑝1 ≥ 𝛽 − 1

𝑝(𝑛) ≤ 1

𝛽 − 1

𝑞 ≥ 0; 𝑝𝑖 ≥ 0∀𝑖

The true approximation factor is given by 𝑊 = lim𝑛→∞𝑊 (𝑛). The limit exists since

the sequence 𝑊 (𝑛) is non-decreasing. However, solving (5.18) is non-trivial since the

objective is provably non-convex. In fact, it can be shown that optimal solutions to

𝑊 (𝑛 − 1) are saddle points for 𝑊 (𝑛). Furthermore, we find that 𝑊 (4) > 𝑊 (3) >

𝑊 (2) > 𝑊 (1) and the program above is already intractable to solve for 𝑊 (5) and

beyond using Couenne (solver does not converge within two weeks on a computing

cluster). So while we have lower bounds on the true guarantee 𝑊 (using 𝑊 (4)),

in order to find upper bounds we need to account for the possibly large number of

regular jobs in a worst case instance.

120



Lemma 55. For 𝑛 ≥ 2, suppose that there is a worst case instance for 𝑊 (𝑛) with

𝑝𝑛 > 0. Then for every value of parameter 𝑚, such that 1 ≤ 𝑚 ≤ 𝑛− 1, W is upper

bounded by the optimal value of the following non-linear program,

max 𝑢(𝑞, 𝑟, 𝑝1, . . . , 𝑝𝑚)

=
𝐹 (0, 𝑞) + (𝑝𝑚 + 1)𝐹 (𝑞, 𝑞 + 𝑟) +

∑︀𝑚
𝑖=1 𝑝𝑖(𝑝𝑖 + 1) 𝑞′(𝑖)

𝑞′(𝑖)+1

𝐹 (𝑝(𝑚) + 𝑟, 𝑝(𝑚) + 𝑟 + 𝑞) + (𝑝𝑚 + 1)𝐹 (𝑝(𝑚), 𝑝(𝑚) + 𝑟) +
∑︀𝑚

𝑖=1 𝑝𝑖(𝑝𝑖 + 1) 𝑝(𝑖)
𝑝(𝑖)+1

s.t. 𝑞 ≥ 𝑝(𝑚) (5.19)

𝑝𝑖 ≥ 𝑝𝑖+1 ∀1 ≤ 𝑖 ≤ 𝑚− 1

𝑞, 𝑝1 ≥ 𝛽 − 1

𝑝(𝑚) + 𝑟 ≤ 1

𝛽 − 1

𝑞′(𝑖) = 𝑞 + 𝑟 +
∑︁

𝑖≤𝑗≤𝑚

𝑝𝑗 ∀𝑖 ≤ 𝑚

𝑞, 𝑟 ≥ 0; 𝑝𝑖 ≥ 0∀𝑖

Proof. Let 𝑈(𝑚) denote the optimal value of the above program and note that the

program is independent of 𝑛. So, consider any 𝑛 ≥ 2 such that there is an optimal

solution 𝑞, 𝑝1, . . . , 𝑝𝑛 to program (5.18) with 𝑝𝑛 > 0. We show that for every𝑚 ≤ 𝑛−1,

𝑢(𝑞,
∑︀𝑛

𝑖=𝑚+1 𝑝𝑖, 𝑝1, . . . , 𝑝𝑚) upper bounds 𝑊 (𝑛). Since the choice of 𝑛 is arbitrary (as

long as 𝑝𝑛 > 0 and 𝑛 ≥ 2), this implies, 𝑈(𝑚) ≥ 𝑊 for every 𝑚 ≤ 𝑝 − 1. The

constraints in the program (5.19) follow almost directly from their counterparts in

(5.18).

Fix arbitrary 𝑚 ≥ 1. To show 𝑢(𝑞,
∑︀𝑛

𝑖=𝑚+1 𝑝𝑖, 𝑝1, . . . , 𝑝𝑚) ≥ 𝑊 (𝑛), let 𝑝(𝑖) =∑︀𝑖
𝑗=1 𝑝𝑗 and 𝑞(𝑖) = 𝑞+

∑︀𝑛
𝑗=𝑖 𝑝𝑗 as before. We have from Lemma 53,

𝑞(𝑖)
𝑞(𝑖)+1
𝑝(𝑖)

𝑝(𝑖)+1

≥
𝑞(𝑛)

𝑞(𝑛)+1
𝑝(𝑛)

𝑝(𝑛)+1

≥ 𝛽

for every 𝑖. So for every 𝑖 ≥ 𝑚+ 1, replacing 𝑝𝑖(𝑝𝑖 + 1) 𝑞(𝑖)
𝑞(𝑖)+1

in the numerator (5.14)

and 𝑝𝑖(𝑝𝑖+1) 𝑝(𝑖)
𝑝(𝑖)+1

in the denominator (5.15) by (𝑝𝑚+1)𝑝𝑖
𝑞(𝑖)

𝑞(𝑖)+1
and (𝑝𝑚+1)𝑝𝑖

𝑝(𝑖)
𝑝(𝑖)+1

respectively, we get,

𝑉 (𝑞, 𝑝1, . . . , 𝑝𝑛) =
𝐹 (0, 𝑞) + (1 + 𝑝𝑚)

∑︀𝑛
𝑖=𝑚+1 𝑝𝑖

𝑞(𝑖)
𝑞(𝑖)+1 +

∑︀𝑚
𝑖=1 𝑝𝑖(𝑝𝑖 + 1) 𝑞(𝑖)

𝑞(𝑖)+1

𝐹 (𝑝(𝑛), 𝑝(𝑛) + 𝑞) + (1 + 𝑝𝑚)
∑︀𝑛

𝑖=𝑚+1 𝑝𝑖
𝑝(𝑖)

𝑝(𝑖)+1 +
∑︀𝑚

𝑖=1 𝑝𝑖(𝑝𝑖 + 1) 𝑝(𝑖)
𝑝(𝑖)+1

.

Due to Lemma 49 (1.), we have 𝑉 (𝑞, 𝑝1, . . . , 𝑝𝑛) ≥ 𝑊 (𝑛). We now apply Lemma 52
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on 𝑉 with 𝜆 = 1 + 𝑝𝑚 to obtain,

𝐹 (0, 𝑞) + (1 + 𝑝𝑚)
∑︀𝑛

𝑖=𝑚+1 𝐹 (𝑞(𝑖+ 1), 𝑞(𝑖)) +
∑︀𝑚

𝑖=1 𝑝𝑖(𝑝𝑖 + 1) 𝑞(𝑖)
𝑞(𝑖)+1

𝐹 (𝑝(𝑛), 𝑝(𝑛) + 𝑞) + (1 + 𝑝𝑚)
∑︀𝑛

𝑖=𝑚+1 𝐹 (𝑝(𝑖− 1), 𝑝(𝑖)) +
∑︀𝑚

𝑖=1 𝑝𝑖(𝑝𝑖 + 1) 𝑝(𝑖)
𝑝(𝑖)+1

> 𝑉 (𝑞, 𝑝1, . . . , 𝑝𝑛).

Where we applied the lemma once for every 𝑗 ≥ 𝑚 + 1. Note that a crucial require-

ment for applying Lemma 52 requires 𝑞 + 𝑝𝑛 > 𝑝(𝑛), and this follows from Lemma

50. Now, since the terms 𝐹 (𝑞(𝑖 + 1), 𝑞(𝑖))) and 𝐹 (𝑝(𝑖 − 1), 𝑝(𝑖)) telescope, the LHS

above is exactly 𝑢(𝑞, 𝑟, 𝑝1, . . . , 𝑝𝑚) for 𝑟 =
∑︀

𝑖≥𝑚+1 𝑝𝑖. To finish the proof, note that

𝑞, 𝑝1, . . . , 𝑝𝑛 is optimal for (5.18) and therefore the constraints in (5.19) follow directly

from their counterparts in (5.18) with the substitution 𝑟 =
∑︀

𝑖≥𝑚+1 𝑝𝑖.

We are now ready to combine everything together and show the approximation

bounds from Theorem 45.

Proof. (of Theorem 45) We argued earlier that 𝑊 (2) > 𝑊 (1) by finding a local

optimum that lower bounded 𝑊 (2). Using program (5.18) we can now compute

𝑊 (2) exactly. Similarly, we find 𝑊 (4) = 1.060369 > 𝑊 (3) > 𝑊 (2)2. This implies

that every worst case has at least 4 regular jobs. We deal with the possibility of more

than 4 jobs by using the family of upper bounds for 𝑚 = 3. Solving the 5 variable

problem using Couenne, we get 𝑈(3) = 1.060428 > 𝑊 3. Therefore 1.060369 < 𝑊 =

𝛽 < 1.060428.

5.4.2 General Case

Using notation from earlier sections, the appointment scheduling problem in its most

general form can be stated as,

2𝑊 (4) = 1.060368904346609 for 𝑞 = 7.386816352844115, 𝑝4 = 0.0505739093477502, 𝑝3 =
0.4491255264768826, 𝑝2 = 1.8092985887683977, 𝑝1 = 2.282536937503935, 𝑊 (3) =
1.060368797614823, 𝑊 (2) = 1.0603032474797747,𝑊 (1) = 1.056749812107016

3More precisely, 𝑈(3) = 1.060428822765705 for 𝑞 = 7.2120992284622245, 𝑟 =
0.37782737463982036, 𝑝3 = 0.3825692129329594, 𝑝2 = 1.792716190567159, 𝑝1 = 2.2707094349145875
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min
𝜋:[𝑛]↔[𝑛]

min
𝑥1,...,𝑥𝑛

max
𝑡𝑖∈[0,Δ𝑖] ∀𝑖∈[𝑛]

∑︁
𝑖∈[𝑛]

max{𝑜𝜋(𝑖)(𝐶𝜋(𝑖) − 𝐴𝜋(𝑖)−1), 𝑢𝜋(𝑖)(𝐴𝜋(𝑖)−1 − 𝐶𝜋(𝑖))}.

(5.20)

So far we worked in the regime of homogeneous underage costs, where we have

a closed form solution for the optimal allocation given some fixed order. Using this

closed form solution we could explicitly write the minimum allocation cost of any

given order, and the problem of finding an optimal order (one that minimizes cost)

was a type of min-sum scheduling problem with concave objective over completion

times. In the general case, where we make no assumptions on underage costs 𝑢𝑖,

we follow a similar recipe and give a 4𝛼𝑛 approximation, where 𝛼 ≤ 4 + 𝜖. The

main idea is still to use a closed form allocation that allows us to explicitly write the

optimization problem and leverage connections with scheduling theory.

Given an an arbitrary order, consider the allocation 𝑥𝑗 = Δ𝑗
𝑜(𝑗)

𝑜(𝑗)+𝑢𝑗
for job 𝑗,

𝑗 ∈ [𝑛]. The problem of finding a schedule 𝜋, that minimizes the cost given this

allocation rule can be written as,

min
𝜋:[𝑛]↔[𝑛]

𝑛∑︁
𝑗=1

Δ𝑗(
∑︀

𝜋(𝑘)≤𝜋(𝑗) 𝑜𝑘)𝑢𝑗∑︀
𝜋(𝑘)≤𝜋(𝑗) 𝑜𝑘 + 𝑢𝑗

. (5.21)

Observe that the above is equivalent to a min-sum scheduling problem of the form,

min
𝜋

∑︁
𝑗

𝑓𝑗(𝐶𝑗).

Where 𝐶𝑗 is the completion time of job 𝑗 which has processing time 𝑝𝑗 = 𝑜𝑗. Functions

𝑓𝑗(𝑥) = Δ𝑗𝑢𝑗
𝑥

𝑥+𝑢𝑗
are concave, but now we have a different function for each job and

therefore, this is a more general framework than 1|
∑︀

𝑗 𝑤𝑗𝑓(𝐶𝑗) (which we used in

case of homogeneous underage costs). We hereafter stick to the order in the min-

sum scheduling problem, which reverses the schedule in the appointment scheduling

problem (5.21), same as before.

Our heuristic is to simply use an approximation algorithm for the problem 1|
∑︀

𝑗 𝑓𝑗(𝐶𝑗)
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with 𝑓𝑗(𝑥) = Δ𝑗𝑢𝑗
𝑥

𝑥+𝑢𝑗
. We show that an 𝛼 approximation for this problem is a 4𝛼𝑛

approximation for the appointment scheduling problem (5.20). The additional factor

of 4𝑛 arises from the fact that (5.21) does not equal (5.20). More specifically, we are

using the closed form allocation formula 𝑥𝑗 = Δ𝑗
𝑜(𝑗)

𝑜(𝑗)+𝑢𝑗
, which does not give the opti-

mal allocation in general. In fact, as we saw in Example 3 earlier, this allocation can

be arbitrarily worse than the optimal allocation for certain orders. So it is perhaps

a little surprising that using this allocation we can still achieve some approximation

bound. Note that for the min-sum scheduling problem, 1|
∑︀

𝑓𝑗(𝐶𝑗), [CMSV16] gives a

4+ 𝜖-approximation for arbitrary 𝑓𝑗. Conceivably, this could be improved for concave

functions, and more specifically the function we have here, but we leave that open for

future work. Using the algorithm in [CMSV16] we have a (16 + 𝜖)𝑛 approximation,

and we show that this is tight up to constant factors by giving an instance where the

optimal value of (5.21) is Ω(𝑛) times the optimal for (5.20).

Lemma 56. Using an 𝛼 approximation for 1|
∑︀

𝑓𝑗(𝐶𝑗), with 𝑓𝑗(𝑥) = Δ𝑗𝑢𝑗
𝑥

𝑥+𝑢𝑗
for

every 𝑗, we have a 4𝛼𝑛 approximation for (5.20).

Proof. We claim that the optimal value of (5.21) is at most a factor 4𝑛 times the

optimal for (5.20). We show this by proving there always exists an order such that

given this order the cost of the formula allocation 𝑥𝑗 = Δ𝑗
𝑜(𝑗)

𝑜(𝑗)+𝑢𝑗
, is within a factor 4𝑛

of the optimal value of (5.20). Then the guarantee follows due to an 𝛼 approximation

for (5.21).

For jobs 𝑗 ∈ [𝑛], let 𝑦𝑗 be a fixed optimal allocation for an optimal order. Recall

that all jobs underaged and overaged are worst cases for 𝑦𝑗 therefore,
∑︀

𝑗 𝑢𝑗𝑦𝑗 equals

the optimal value of (5.20). Further, let 𝐶𝑗 denote the completion time when all

jobs are overaged and 𝐵𝑗 the anointed end time, for every job 𝑗 ∈ [𝑛]. Observe that

for every job 𝑗, either the cost of underaging, 𝑢𝑗𝑦𝑗, or overaging, 𝑜𝑗(𝐶𝑗 − 𝐵𝑗), is at

least Δ𝑗
𝑜𝑗𝑢𝑗

𝑜𝑗+𝑢𝑗
≥ Δ𝑗

min{𝑜𝑗 ,𝑢𝑗}
2

. With 𝑐𝑗 = max{𝑢𝑗𝑦𝑗, 𝑜𝑗(𝐶𝑗 − 𝐵𝑗)} we therefore have,

𝑐𝑗 ≥ Δ𝑗
min{𝑜𝑗 ,𝑢𝑗}

2
and

∑︀
𝑗 𝑐𝑗 ≤ 2

∑︀
𝑗 𝑢𝑗𝑦𝑗. Now, let 𝑆 denote the set of jobs such that

𝑐𝑗 < Δ𝑗𝑢𝑗/2. Then, for every job 𝑗 ∈ 𝑆 we have, 𝑐𝑗 ≥ Δ𝑗𝑜𝑗/2.

Consider the order that schedules jobs in 𝑆 in ascending order of 𝑜𝑗 and subse-
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quently schedules the remaining jobs in arbitrary order. Re-index the jobs so that

job 𝑗 is the 𝑗𝑡ℎ job scheduled in this order and change 𝑆 accordingly. Also, let

𝑜′(𝑗) =
∑︀

𝑘≤𝑗 𝑜𝑘. We claim that the cost of the formula allocation 𝑥𝑗 = Δ𝑗
𝑜′(𝑗)

𝑢𝑗+𝑜′(𝑗)

for this order is at most 4𝑛 times the optimal cost. Recall that all jobs under-

aged is a worst case for the formula allocation and observe that,
∑︀

𝑗∈𝑆 𝑢𝑗𝑥𝑗 ≤∑︀
𝑗∈𝑆 Δ𝑗 min{𝑢𝑗, 𝑜

′(𝑗)} ≤
∑︀

𝑗∈𝑆 Δ𝑗 min{𝑢𝑗, 𝑛𝑜𝑗} ≤ 2𝑛
∑︀

𝑗∈𝑆 𝑐𝑗 ≤ 4𝑛
∑︀

𝑗∈𝑆 𝑢𝑗𝑦𝑗. Fi-

nally, note that for a job 𝑖 ̸∈ 𝑆, we have 𝑢𝑖𝑥𝑖 ≤ Δ𝑖𝑢𝑖 ≤ 2𝑐𝑖, regardless of the order.

The following example now shows that there is a gap of Ω(𝑛) between the optimal

values of (5.20) and (5.21) and thus, the analysis above is tight up to constant factors.

Consider jobs 1, . . . , 2𝑛 and an order such that job 𝑖 is the 2𝑛 − 𝑖 + 1𝑡ℎ ap-

pointment scheduled. Let even indexed jobs have large underage cost 𝑢2𝑖 = 𝑀

such that 𝑀
𝑀+𝑜(2𝑛)

→ 1, and small overage cost 𝑜2𝑖 = 1 ≪ 𝑀 , for every 𝑖 ∈ [𝑛].

For the odd indexed jobs, let 𝑜2𝑖−1 = 𝑢2𝑖−1 = 1 for every 𝑖 ∈ [𝑛]. Therefore,

𝑢2𝑖+1

𝑢2𝑖+1+𝑜(2𝑖+1)
≤ 𝑢2𝑖−1

𝑢2𝑖−1+𝑜(2𝑖−1)
for every 𝑖 ∈ [𝑛]. Finally, let Δ2𝑖 = 1 and Δ2𝑖−1 = 0 for

every 𝑖 ∈ [𝑛]. Now, for any two consecutive jobs 2𝑖, 2𝑖− 1, using Theorem 38 we have

in the optimal allocation, 𝑥2𝑖 = 0 and 𝑥2𝑖−1 = (Δ2𝑖𝑜(2𝑖)+Δ2𝑖−1𝑜(2𝑖− 1)) 1
𝑢2𝑖−1+𝑜(2𝑖−1)

.

Then since 𝑢2𝑖−1 = 𝑜2𝑖 = 1, we have 𝑢2𝑖−1𝑥2𝑖−1 = Δ2𝑖
𝑜(2𝑖)𝑢2𝑖−1

𝑢2𝑖−1+𝑜(2𝑖−1)
= 1. Therefore, the

cost of this order is
∑︀

𝑖∈[2𝑛] 𝑢𝑖𝑥𝑖 = 𝑛. This establishes an upper bound on the optimal

value of (5.20) for this instance. Next, consider an arbitrary order 𝜋, where we use

the formula allocation. Let 𝑜′(𝑖) =
∑︀

𝜋(𝑘)≤𝜋(𝑖) 𝑜𝑘. Then based on the original index-

ing, the cost of underaging an even indexed job is given by Δ2𝑖
𝑜′(2𝑖)𝑢2𝑖

𝑜′(2𝑖)+𝑢2𝑖
≈ Δ2𝑖𝑜

′(2𝑖).

Therefore the total cost for this allocation is
∑︀

𝑖∈[𝑛] Δ2𝑖𝑜
′(2𝑖) ≥

∑︀
𝑖∈[𝑛] 2𝑖 = 𝑛(𝑛+ 1).

Since this was for an arbitrary order, we have a multiplicative gap of Ω(𝑛) between

(5.20) and (5.21).

5.5 Conclusion and Open Problems

We considered two settings in this paper, with an eye towards designing very simple

but theoretically sound heuristics for each setting. In the first setting, we are given

a fixed schedule of jobs and we would like to allocate appointment durations (or
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alternatively, appointment start times) for each job. We found a simple LP, which

gives a 2-approximation for the problem. Then we further refined this LP, resulting

in a closed form solution for the optimal allocations in certain special cases (including

the case of homogeneous underage cost). It is not known whether an optimal solution

can be found in polynomial time for the general appointment allocation problem.

In the second setting, we are allowed to change the order of jobs and so we seek

an optimal order in addition to an optimal allocation given that order. We focus

primarily on the case of homogeneous underage costs, where we find two simple and

practical heuristics that are guaranteed to be with ≈ 6% of the optimal. For the case

of general underage costs, we give an Θ(𝑛) approximation. Apart from improving

on these bounds, a natural open question here is to understand the hardness of the

problem, both for the general case as well as the special case of homogeneous underage

costs for which polynomial time solvability is still open.
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Chapter 6

Conclusion

We studied three problems in combinatorial optimization, in each of which the ob-

jective was uncertain, and this uncertainty was modeled via a robust re-formulation.

For each problem, we designed and analyzed algorithms with theoretical guarantees

– in some cases the best possible guarantee – and also faster and more practical

algorithms. We conclude this thesis here, with a summary of our contributions.

In Chapter 3, we considered the problem of simultaneously maximizing 𝑚 mono-

tone submodular objectives subject to a cardinality constraint

𝑀𝑂1 : max
𝐴⊆𝑁,|𝐴|≤𝑘

min
𝑖∈{1,2,...,𝑚}

𝑓𝑖(𝐴).

We focused on the setting where 𝑚 = 𝑜(𝑘) and showed both a best possible (1 −

1/𝑒) approximation (by extending the algorithm in [CVZ10]) as well as a faster

𝑂( 𝑛
𝛿3
log𝑚 log 𝑛

𝛿
) time MWU based algorithm with guarantee (1 − 1/𝑒)2 − 𝛿. We

also showed that the classical greedy algorithm could be generalized to achieve a

deterministic (1 − 1/𝑒) − 𝜖 algorithm with runtime 𝑂(𝑘𝑛𝑚/𝜖4). Our guarantees are

asymptotic in nature i.e., they tend to these constant values for 𝑘 → ∞. To partially

address this issue, we tested a heuristic inspired by our MWU algorithm on synthetic

data and found significant improvement over previous heuristics in all settings of 𝑚, 𝑘

that we considered.

In Chapter 4, we considered a deletion-robust version of the single objective mono-
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tone submodular function maximization problem and showed the first constant factor

approximation results.

𝐷𝑅𝑂 : max
𝐴⊆𝑁,|𝐴|≤𝑘

min
𝑍⊆𝐴,|𝑍|≤𝜏

𝑓(𝐴− 𝑍).

We start with a special case, which we called the case of copies. Here, we found

exceptionally simple algorithms with the best possible asymptotic guarantee of (1−

1/𝑒) for 𝜏 = 𝑜(𝑘). Using insights from this special case, we then gave an algorithm

with the best possible guarantee of (1 − 1/𝑒) (asymptotically), for 𝜏 = 𝑜(log 𝑘)
log log 𝑘

. We

further found a fast nearly linear time 0.387 algorithm for 𝜏 = 𝑜(
√
𝑘). Finally, we

also gave a general black box scheme for deletion-robust maximization of monotone

submodular functions subject to an Independence system.

In Chapter 5, we considered a robust formulation of the appointment scheduling

problem. Here our main goal was to find simple, nearly optimal heuristics that could

be used in practice, such as in appointment scheduling systems for health care. We

considered two different settings. In the first setting, we assumed that the order of

jobs is fixed a priori and we only seek an optimal schedule of appointment start times

for the jobs. We found a simple LP, that yields a 2 approximation or the problem.

We then refine this LP and show that the resulting LP lends itself to a simple closed

form optimal solution, that is also an optimal allocation, under various special cases.

In the second setting, the order of jobs is flexible and we seek both optimal order as

well as optimal appointment schedule given this order. The problem becomes more

sophisticated in this case and we focus primarily on the important special case of

homogeneous under-utilization costs across jobs. We find a simple ratio based 1.0604

approximation for this case and also find a nearly matching worst case instance for

the algorithm. For the general setting, we find a Θ(𝑛) approximation.
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Appendix A

Additional Proofs for Chapter 3

A.1 Negative Results

A.1.1 Analysis of Naive algorithm

Lemma 57. Consider elements 𝑥 ∈ 𝑁 in decreasing order of their values 𝑓(𝑥). The

set of the first 𝑘 elements (the ones with the largest value) is 1
𝑘−𝜏

approximate for

(𝑘,𝑁, 𝜏).

Proof. Let 𝐴 be the set picked by the algorithm, with minimizer 𝑍. From Lemma

13 we have that 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 𝜏)) ≤ 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝑍, 0)). Let 𝑒 ∈ 𝑁 − 𝑍 be

such that 𝑓(𝑒) = max𝑥∈𝑁−𝑍 𝑓(𝑥). By definition, 𝐴 contains at least one element with

value 𝑓(𝑒). Submodularity then gives us, 𝑓(𝑂𝑃𝑇 (𝑘 − 𝜏,𝑁 − 𝑍, 0)) ≤ (𝑘 − 𝜏)𝑓(𝑒) ≤

(𝑘 − 𝜏)𝑓(𝐴− 𝑍).

A.1.2 Counterexample for non-super/sub modularity of 𝑔

Consider 3 elements 𝑥, 𝑥′, 𝑦 and let 𝑓(𝑥) = 𝑓(𝑥′) = 𝑓(𝑦) = 1, 𝑓({𝑥, 𝑦}) = 2 and

𝑓(𝑥|𝑥′) = 𝑓(𝑥′|𝑥) = 0. This implies that 𝑓({𝑥′, 𝑦}) = 𝑓({𝑥, 𝑥′, 𝑦}) = 2 by sub-

modularity. Now, note that the singleton set 𝑔({𝑥}) = 𝑓(∅) = 0 and 𝑔({𝑥, 𝑥′}) =

min{𝑓(𝑥), 𝑓(𝑥′)} = 1. Hence 𝑔(.) is clearly not submodular. Next, consider the sets

𝑥 and {𝑥, 𝑦}, then 𝑔({𝑥}∪{𝑥′})− 𝑔(𝑥) = 1−0 = 1 and 𝑔({𝑥, 𝑦}∪{𝑥′})− 𝑔({𝑥, 𝑦}) =
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𝑓({𝑥, 𝑥′})− 𝑓(𝑥) = 0. Hence 𝑔 is not supermodular either.

A.2 Tight analysis of Algorithm 6

Theorem 58. The 0.387-algorithm is 1
2
𝛽(0.5, 𝑘−2

𝑘−1
)(> 0.387 asymptotically) approxi-

mate.

Proof. Let 𝑂𝑃𝑇 = 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)), 𝐴 be the output of the 0.387-algorithm and 𝑎′1

be the first element added to 𝐴 apart from 𝑎1. The case 𝑧 = 𝑎1 is straightforward since

𝑓(𝐴− 𝑎1) ≥ 𝛽(0, 1)𝑓(𝑂𝑃𝑇 (𝑘− 1, 𝑁 − 𝑎1, 0)) ≥ 𝛽(0, 1)𝑂𝑃𝑇 where the last inequality

follows from Lemma 13. So assume 𝑧 ̸= 𝑎1. Further, let 𝑓(𝑧|𝐴−𝑎1− 𝑧) = 𝜂𝑓(𝐴−𝑎1)

which implies that 𝑓(𝑎′1) ≥ 𝑓(𝑧) ≥ 𝑓(𝑧|𝐴 − 𝑎1 − 𝑧) = 𝜂𝑓(𝐴 − 𝑎1) and now from

Lemma 16 with 𝑁 replaced by 𝑁 − 𝑎1, 𝐴 replaced by 𝐴− 𝑎1 and thus 𝑘 replaced by

𝑘 − 1, 𝑆 = 𝑎′1 with 𝑠 = 1 and 𝑙 = 𝑘 − 1− |𝑆| = 𝑘 − 2, we get,

𝑓(𝐴− 𝑎1) ≥ 𝛽(𝜂,
𝑘 − 2

𝑘 − 1
)𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁 − 𝑎1, 0))

This together with Lemma 13 implies, 𝑓(𝐴− 𝑎1) ≥ 𝛽(𝜂, 𝑘−2
𝑘−1

)𝑂𝑃𝑇 . Also, we have by

definition,

𝑓(𝐴− 𝑎1 − 𝑧) = (1− 𝜂)𝑓(𝐴− 𝑎1) ≥ (1− 𝜂)𝛽(𝜂,
𝑘 − 2

𝑘 − 1
)𝑂𝑃𝑇

Further, we have,

𝑔(𝐴) ≥ max{𝑓(𝑎1), 𝑓(𝐴− 𝑎1 − 𝑧)}

≥ max{𝑓(𝑧|𝐴− 𝑎1 − 𝑧), 𝑓(𝐴− 𝑎1 − 𝑧)}

≥ max{𝜂𝛽(𝜂, 𝑘 − 2

𝑘 − 1
), (1− 𝜂)𝛽(𝜂,

𝑘 − 2

𝑘 − 1
)}𝑂𝑃𝑇

≥ 0.5𝛽(0.5,
𝑘 − 2

𝑘 − 1
)𝑂𝑃𝑇 [for 𝜂 = 0.5]

𝑘→∞−−−→ 0.387𝑂𝑃𝑇
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We now give an instance where the above analysis is tight. Let the algorithm

start with a maximum value element 𝑎1, then pick 𝑎2, and then add the set 𝐶, such

that the output of the algorithm is 𝑎1 ∪ 𝑎2 ∪𝐶, with 𝐶 being a set of size 𝑘 − 2. Let

𝑓(𝑎1) = 1, 𝑓(𝑎2) = 1, 𝑓(𝐶) = 1 with 𝑓(𝑎1 +𝐶) = 1, 𝑓(𝑎1 + 𝑎2) = 2, 𝑓(𝑎2 +𝐶) = 2 i.e.

𝐶 copies 𝑎1. Hence 𝑓(𝑎1 + 𝑎2 + 𝐶) = 2 and 𝑔(𝑎1 + 𝑎2 + 𝐶) = 𝑓(𝑎1 + 𝐶) = 1.

Let 𝑂𝑃𝑇 (𝑘,𝑁, 1) include 𝑎2, a copy 𝑎′2 of 𝑎2 (so 𝑓(𝑎′2) = 1, 𝑓(𝑎2 + 𝑎′2) = 1) and

a set 𝐷 of 𝑘 − 2 elements of value 1
(𝑘−2)𝛽(0,1)

each, such that 𝑓(𝑂𝑃𝑇 (𝑘,𝑁, 1)) =

1 + (𝑘 − 2) 1
(𝑘−2)𝛽(0,1)

= 1 + 𝑒
𝑒−1

= 2
𝛽(0.5,1)

. Observe that the small value elements

are all minimizers and 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)) ≈ 2
𝛽(0.5,1)

as 𝑘 becomes large. Note that

𝑓(𝐷) = 𝑓(𝐶)
𝛽(0,1)

and we can have sets 𝐶 and 𝐷 as above based on the worst case

example for the greedy algorithm given in [NWF78].This proves that the inequality

in Lemma 16 is tight.

A.3 Analysis of Algorithm 7

Theorem 59. Algorithm 7 is 0.5547− Ω(1/𝑘) approximate.

Proof. Let 𝐴 denote the output and 𝐴0 ⊂ 𝐴 denote {𝑎1, 𝑎2}. Due to submodularity,

there exists at most two distinct 𝑥 ∈ 𝐴 with 𝑓(𝑥|𝐴 − 𝑥) > 𝑓(𝐴)
3

. Additionally, for

every 𝑥 ̸∈ 𝐴0, we have that 𝑓(𝑥|𝑆) ≤ 𝑓(𝑎1) and 𝑓(𝑥|𝑆) ≤ 𝑓(𝑎2|𝑎1) for arbitrary subset

𝑆 of 𝐴 containing 𝐴0 and 𝑥 ̸∈ 𝑆. This implies that that 2𝑓(𝑥|𝑆) ≤ 𝑓(𝐴0) ≤ 𝑓(𝑆),

which gives us that 𝑓(𝑥|𝑆) ≤ 𝑓(𝑆+𝑥)
3

.

Note that due to condition in Phase 1, the algorithm ignores 𝑎1 even if it is not

a minimizer, as long as its marginal is more than a third the value of the set at that

iteration. At the end of Phase 1, if 𝑎2 has marginal more than third of the set value,

then it is ignored until its contribution/marginal decreases. Phase 3 adds greedily

(without ignoring any element added). As argued above, no element other than 𝑎1, 𝑎2

can have marginal more than a third of the set value at any iteration, so during Phase

2 we have that 𝑎2 is also a minimizer.

We will now proceed by splitting into cases. Denote 𝑔(𝑂𝑃𝑇 (𝑘,𝑁, 1)) as 𝑂𝑃𝑇 and

recall from Lemma 13, 𝑂𝑃𝑇 ≤ 𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁 − 𝑎𝑖, 0)) for 𝑖 ∈ {1, 2}. Also, let the
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set of elements added to 𝐴0 during Phase 1 be 𝑈 = {𝑢1, . . . , 𝑢𝑝}, similarly elements

added during Phases 2 and 3 be 𝑉 = {𝑣1, . . . , 𝑣𝑞},𝑊 = {𝑤1, . . . , 𝑤𝑟} respectively,

with indexing in order of addition to the set. Finally, let 𝛼𝑝 =
𝑝−2
𝑘−1

, 𝛼𝑞 =
𝑞−1
𝑘−1

, 𝛼𝑟 =

𝑟
𝑘−1

, 𝛼 = 𝛼𝑝 + 𝛼𝑞 + 𝛼𝑟 =
𝑘−5
𝑘−1

, and assume 𝑘 ≥ 8.

Case 1: Phase 2,3 do not occur i.e. 𝑝 = 𝑘 − 2, 𝑞 = 𝑟 = 0.

Since we have,

𝑓(𝐴− 𝑎1)
(𝑎)

≥ 𝑓(𝑎2) + 𝛽
(︁
0,

𝑘 − 2

𝑘 − 1

)︁
(𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁 − 𝑎1, 0))− 𝑓(𝑎2))

≥ 𝛽
(︁
0,

𝑘 − 2

𝑘 − 1

)︁
𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁 − 𝑎1, 0))

(𝑏)

≥ 𝛽
(︁
0,

𝑘 − 2

𝑘 − 1

)︁
𝑂𝑃𝑇 , (A.1)

where (𝑎) follows from Lemma 1 and (𝑏) from Lemma 13. This deals with the case

𝑧 = 𝑎1. If 𝑧 = 𝑢𝑝, we have,

𝑓(𝐴− 𝑢𝑝) ≥ 𝑓(𝐴− 𝑢𝑝 − 𝑎1)
(𝑐)

≥ 𝛽
(︁
0,

𝑘 − 3

𝑘 − 1

)︁
𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁 − 𝑎1, 0))

≥ 𝛽
(︁
0,

𝑘 − 3

𝑘 − 1

)︁
𝑂𝑃𝑇,

where (𝑐) is like (A.1) above but with 𝑘 − 2 replaced by 𝑘 − 3 when using Lemma

1. Finally, let 𝑧 ̸∈ {𝑎1, 𝑢𝑝}, then due to the Phase 1 termination criteria, we have

𝑓(𝑎1|𝐴− 𝑎1 − 𝑢𝑝) ≥ 𝑓(𝐴− 𝑢𝑝)/3, which implies that,

2𝑓(𝑎1|𝐴− 𝑎1 − 𝑢𝑝) ≥ 𝑓(𝐴− 𝑎1 − 𝑢𝑝) (A.2)

Now letting 𝜂 = 𝑓(𝑧|𝐴−𝑎1−𝑢𝑝−𝑧)

𝑓(𝐴−𝑎1−𝑢𝑝)
, we have by submodularity 𝑓(𝑧|𝐴−𝑧) ≤ 𝜂𝑓(𝐴−𝑎1−𝑢𝑝)

and by definition 𝑓(𝐴 − 𝑎1 − 𝑢𝑝 − 𝑧) = (1 − 𝜂)𝑓(𝐴 − 𝑎1 − 𝑢𝑝). Using the above we
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get,

𝑓(𝐴− 𝑧)
(𝑑)

≥ max{𝑓(𝑎1), 𝑓(𝐴− 𝑢𝑝 − 𝑧)}

≥ max{𝑓(𝑧|𝐴− 𝑎1 − 𝑢𝑝 − 𝑧), 𝑓(𝐴− 𝑎1 − 𝑢𝑝 − 𝑧) + 𝑓(𝑎1|𝐴− 𝑎1 − 𝑢𝑝 − 𝑧)}

≥ max{𝜂𝑓(𝐴− 𝑎1 − 𝑢𝑝), (1− 𝜂)𝑓(𝐴− 𝑎1 − 𝑢𝑝) + 𝑓(𝑎1|𝐴− 𝑎1 − 𝑢𝑝)}

≥ max{𝜂, (1− 𝜂) +
1

2
}𝑓(𝐴− 𝑎1 − 𝑢𝑝) (A.3)

where (𝑑) follows from monotonicity and the fact that 𝑎1 ∈ 𝐴−𝑧 and𝐴−𝑢𝑝−𝑧 ⊂ 𝐴−𝑧.

Now, from Lemma 16 with 𝑆 = {𝑎2, 𝑢1}, 𝑙 = 𝑝− 2, 𝑘 replaced by 𝑘− 1, 𝑁 by 𝑁 − 𝑎1

and 𝑠 = 1, we have, 𝑓(𝐴−𝑎1−𝑢𝑝) ≥ 𝛽(𝜂, 𝛼𝑝)𝑓(𝑂𝑃𝑇 (𝑘−1, 𝑁−𝑎1, 0)) ≥ 𝛽(𝜂, 𝛼𝑝)𝑂𝑃𝑇 .

Substituting this in (A.3) above we get,

𝑓(𝐴− 𝑧) max{𝜂, 3
2
− 𝜂}𝛽(𝜂, 𝛼𝑝)𝑂𝑃𝑇

≥ 3

4
𝛽
(︁3
4
, 𝛼𝑝

)︁
𝑂𝑃𝑇 [𝜂 = 3/4]

> 𝛽(0, 𝛼𝑝)𝑂𝑃𝑇 = 𝛽
(︁
0,

𝑘 − 4

𝑘 − 1

)︁
𝑂𝑃𝑇 (A.4)

Case 2: Phase 2 occurs, 3 doesn’t i.e. 𝑝+ 𝑞 = 𝑘 − 2 and 𝑞 > 0.

As stated earlier, during Phase 2, 𝑎2 is the minimizer of 𝐴0 ∪ 𝑈 ∪ (𝑉 − 𝑣𝑞). We

have 𝑔(𝐴) ≥ 𝑔(𝐴−𝑣𝑞) = 𝑓(𝐴−𝑣𝑞−𝑎2) = 𝑓(𝑎1+𝑈)+𝑓(𝑉 −𝑣𝑞|𝑎1+𝑈). Further, since

the addition rule in Phase 2 ignores 𝑎2, we have from Lemma 1, 𝑓(𝑉 − 𝑣𝑞|𝑎1 + 𝑈) ≥

𝛽(0, 𝛼𝑞)(𝑂𝑃𝑇 − 𝑓(𝑎1 +𝑈)), and 𝑓(𝑎1 +𝑈) ≥ 𝛽(0, 𝛼𝑝)𝑂𝑃𝑇 follows from the previous

case (to see this, suppose that the algorithm was terminated after Phase 1 and note

that 𝑧 = 𝑎2 falls under the scenario 𝑧 ̸∈ {𝑎1, 𝑢𝑝}). Using this,

𝑔(𝐴− 𝑣𝑞) ≥ 𝑓(𝑎1 + 𝑈) + 𝛽(0, 𝛼𝑞)(𝑂𝑃𝑇 − 𝑓(𝑎1 + 𝑈))

𝑓(𝐴− 𝑧)

𝑂𝑃𝑇
≥ (1− 𝛽(0, 𝛼𝑞))𝛽(0, 𝛼𝑝) + 𝛽(0, 𝛼𝑞)

= 𝛽(0, 𝛼) = 𝛽
(︁
0,

𝑘 − 5

𝑘 − 1

)︁
(A.5)

Case 3: Phase 3 occurs i.e., 𝑟 > 0.

133



We consider two sub-cases, 𝑧 ∈ 𝐴 − 𝑊 and 𝑧 ∈ 𝑊 . Suppose 𝑧 ∈ 𝐴 − 𝑊 . Due

to 𝑓(𝑧|𝐴 − 𝑊 − 𝑧) ≤ 𝑓(𝐴 − 𝑊 )/3 we have, 𝑓(𝐴 − 𝑊 ) ≤ 3
2
𝑓(𝐴 − 𝑊 − 𝑧). Also,

𝑓(𝑊 |𝐴 − 𝑊 − 𝑧) ≥ 𝑓(𝑊 |𝐴 − 𝑊 ) ≥ 𝛽(0, 𝛼𝑟)(𝑂𝑃𝑇 − 𝑓(𝐴 − 𝑊 )). Then using this

along with the previous cases,

𝑓(𝐴− 𝑧) = 𝑓(𝐴−𝑊 − 𝑧) + 𝑓(𝑊 |𝐴−𝑊 − 𝑧)

≥ 𝑓(𝐴−𝑊 − 𝑧) + 𝛽(0, 𝛼𝑟)(𝑂𝑃𝑇 − 𝑓(𝐴−𝑊 ))

≥ 𝑓(𝐴−𝑊 − 𝑧) + 𝛽(0, 𝛼𝑟)(𝑂𝑃𝑇 − 3

2
𝑓(𝐴−𝑊 − 𝑧))

≥ (1− 3

2
𝛽(0, 𝛼𝑟))𝑓(𝐴−𝑊 − 𝑧) + 𝛽(0, 𝛼𝑟)𝑂𝑃𝑇

≥ (1− 3

2
𝛽(0, 𝛼𝑟))𝛽(0, 𝛼𝑝 + 𝛼𝑞)𝑂𝑃𝑇 + 𝛽(0, 𝛼𝑟)𝑂𝑃𝑇 [from (A.4),(A.5)]

𝑓(𝐴− 𝑧)

𝑂𝑃𝑇
≥ 0.5− 3

2𝑒𝛼
+

1

2
(𝑒−(𝛼𝑝+𝛼𝑞) + 𝑒−𝛼𝑟)

≥ 0.5− 3

2𝑒𝛼
+ 𝑒−𝛼/2 [for 𝛼𝑟 = 𝛼𝑝 + 𝛼𝑞 = 𝛼/2]

= 0.5− 3

2𝑒
𝑘−4
𝑘−1

+ 𝑒−
𝑘−4

2(𝑘−1)
𝑘→∞−−−→ 0.5547

Now, suppose 𝑧 ∈ 𝑊 , then note that for 𝑝+𝑞 ≥ 6 we have either 𝑝 ≥ 3, and hence

due to greedy additions 𝑓(𝑧|𝐴− 𝑧) ≤ 𝑓({𝑢1, 𝑢2, 𝑢3})/3 ≤ 𝑓(𝐴−𝑊 )/3, or 𝑞 ≥ 3, and

again due to greedy additions 𝑓(𝑧|𝐴− 𝑧) ≤ 𝑓(𝑎1 + 𝑈 ∪ {𝑣1, 𝑣2})/3 ≤ 𝑓(𝐴−𝑊 )/3.

If 𝑞 > 0, then note that 𝑓(𝐴−𝑊 ) ≥ 𝑓(𝐴−𝑊 − 𝑣𝑞) ≥ 3
2
𝑓(𝐴−𝑊 − 𝑣𝑞 − 𝑎2) due

to the Phase 2 termination conditions. Now we reduce the analysis to look like the

previous sub-case through the following,

𝑓(𝐴− 𝑧) = 𝑓(𝐴−𝑊 ) + 𝑓(𝑊 |𝐴−𝑊 )− 𝑓(𝑧|𝐴− 𝑧)

≥ 𝑓(𝐴−𝑊 ) + 𝛽(0, 𝛼𝑟)(𝑂𝑃𝑇 − 𝑓(𝐴−𝑊 ))− 𝑓(𝑧|𝐴− 𝑧)

≥ (1− 𝛽(0, 𝛼𝑟))𝑓(𝐴−𝑊 ) + 𝛽(0, 𝛼𝑟)𝑂𝑃𝑇 − 𝑓(𝐴−𝑊 )/3

≥
(︁
1− 3

2
𝛽(0, 𝛼𝑟)

)︁2
3
𝑓(𝐴−𝑊 ) + 𝛽(0, 𝛼𝑟)𝑂𝑃𝑇

≥
(︁
1− 3

2
𝛽(0, 𝛼𝑟)

)︁
𝑓(𝐴−𝑊 − 𝑣𝑞 − 𝑎2) + 𝛽(0, 𝛼𝑟)𝑂𝑃𝑇
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Which since 𝑓(𝐴 −𝑊 − 𝑣𝑞 − 𝑎2) ≥ 𝛽
(︁
0, 𝑝+𝑞−3

𝑘−1

)︁
𝑂𝑃𝑇 from (A.5), leads to the same

ratio asymptotically as when 𝑧 ∈ 𝐴−𝑊 . The case 𝑞 = 0 can be dealt with similarly

by using 𝑓(𝐴−𝑊 ) ≥ 𝑓(𝐴−𝑊 − 𝑢𝑝) ≥ 3
2
𝑓(𝐴−𝑊 − 𝑢𝑝 − 𝑎1)

If 𝑝 + 𝑞 < 6, then let 𝑓(𝑧|𝐴 − 𝑧) = 𝜂𝑓(𝐴). Now we have, 𝑓(𝐴 −𝑊 ) ≥ 𝑓(𝐴0) =

𝑓(𝑎1)+𝑓(𝑎2|𝑎1) ≥ 2𝑓(𝑧|𝐴−𝑧) = 2𝜂𝑓(𝐴), which further implies that 𝑓(𝐴−𝑊+𝑤1) ≥

3𝜂𝑓(𝐴) since 𝑧 ∈ 𝑊 . Then proceeding as in Lemma 16 with 𝑘 replaced by 𝑘 − 1,

𝑆 = 𝐴−𝑊 +𝑤1 and hence 𝑠 = 3 and finally 𝑙 = 𝑘− |𝑆| = 𝑘− (𝑝+ 𝑞+2+1) ≤ 𝑘− 8

gives us,

𝑓(𝐴) ≥ 𝛽(3𝜂,
𝑘 − 8

𝑘 − 1
)𝑓(𝑂𝑃𝑇 (𝑘 − 1, 𝑁, 0)) ≥ 𝛽(3𝜂,

𝑘 − 8

𝑘 − 1
)𝑂𝑃𝑇

Then using Lemma 17 we have, 𝑓(𝐴− 𝑧) ≥ (1− 𝜂)𝛽(3𝜂, 𝑘−8
𝑘−1

)𝑂𝑃𝑇 ≥ 𝛽(0, 𝑘−8
𝑘−1

)𝑂𝑃𝑇 .
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