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Abstract. I provide novel empirical evidence grounded in an original theoretical frame-
work to explain why colocation matters for the rate, direction, and quality of scien-
tific collaboration. To address endogeneity concerns due to selection into colocation and
matching, I exploit the constraints imposed on the spatial allocation of labs on the Jussieu
campus of Paris by the removal of asbestos from its buildings. Consistent with search costs
constituting a major friction to collaboration, colocation increases the likelihood of joint
research by 3.5 times, an effect that is mostly driven by lab pairs that face higher search
costs ex ante. Furthermore, separation does not negatively affect collaboration between
previously colocated labs. However, while colocated labs grow increasingly similar in
topics and literature cited, separated ones embark on less correlated research trajectories.
Research outcomes, instead, seem to be mostly influenced by how distance affects exe-
cution costs: after colocation, labs are more likely to pursue both lower-quality projects
(a selection effect) and high-quality projects (an effort effect). Opposite effects on quality
are observed after separation. Whereas search costs affect which scientists are likely to
collaborate together, execution costs shape the quality of their output.
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“The truth is, it may have changed my whole life in a
respect. I guess if I had any long-run thoughts then,
it was to make a career doing statistics, econometrics,
probability models, and things like that. But when I
started talking on a regular basis with Paul, and he
was so full of ideas and thoughts, it was impossible not
to find my interests moving toward more straight eco-
nomics. In a way the location of that office and the fact
that we liked each other so much had a major influence
on the direction my career took.”

—Nobel laureate Robert Solow describing how his
office location and resulting friendship with Nobel

laureate Paul Samuelson affected his career
(Dizikes 2011)

1. Introduction
When we select a location, we are committing to
spending a disproportionate share of our most scarce
resource, time, in that particular place. Individuals and
organizations, anticipating the role geographic dis-
tance will play in their allocation of time, and in defin-
ing the opportunities and talent they will have access

to, pay particular attention to location decisions. As a
result, location choices are highly endogenous to eco-
nomic outcomes.

Geographic proximity not only increases the chance
of a serendipitous interaction, but also lowers the cost
of a scheduled one. Both types of interactions make
it substantially easier to search for new collaborators
within our local environment. When colocated, joint
execution costs are also lower, as coordination, moni-
toring, and the transfer of complex information can all
rely on more frequent, face-to-face interactions.

Thus, organizations spend considerable time and re-
sources optimizing the spatial allocation of their teams
and invest in infrastructure to allow for interdiscipli-
nary work to flourish when new opportunities are
identified. This endogenously shapes the trajectory of
a university, R&D lab, or start-up, as the spatial alloca-
tion often results from priors about which teams and
individualswill benefit themost fromproximity.When
a misalignment between the objectives of an organiza-
tion and its current layout emerges, efforts are made
to compensate for geographic distance, for example
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by scheduling temporary colocation (e.g., joint meet-
ings, conferences) and remote interactions to recre-
ate the benefits of colocation. A recent, large-scale
example is Microsoft’s ambitious relocation of 1,200
engineers, which cut travel time between buildings
for employees by 46% with the explicit objective of
encouraging face-to-face conversations and serendipi-
tous interactions instead of email and Skype meetings
(Nielsen 2016).
Empirically, this makes it extremely challenging to

understand why colocation matters and under which
conditions different mechanisms are responsible for
the benefits we attribute to proximity. The objective of
this paper is to focus on how search costs and joint exe-
cution costs shape inventive outcomes, and to provide
novel empirical evidence and a theoretical framework
that can help us separate between these two compet-
ing, but not necessarily exclusive, mechanisms.

If search costs are a key friction to collaboration, then
colocation should have a positive effect on the proba-
bility of collaboration, but separation may not neces-
sarily have a negative effect, as teams that are aware
of each other may be able to compensate for distance
through temporary colocation and remote interactions.
If instead joint execution costs are driving collaboration
decisions, then the effects observed after colocation
and separation should be exact opposites of each other
(as execution costs would increase almost immediately
with distance). Furthermore, whereas search costs do
not have a strong implication for the observed value
of joint projects, if lower execution costs allow teams
to apply more effort toward advancing their ideas,
then the effect of colocation on quality will be ambigu-
ous. On the one hand, lower execution costs may
induce teams to select lower-quality projects (a selec-
tion effect). On the other hand, if lower execution costs
allow teams to endogenously apply more effort—and
effort improves the quality of the underlying idea—
we may also observe an increase in right-tail outcomes
after colocation (an effort effect).1

I explore the relative role of these mechanisms in
a setting where the spatial allocation is constrained
by reasons that are orthogonal to the outcomes of
interest—i.e., where exogenous variation is injected
in the process of deciding where different teams
are placed. Combined with a difference-in-differences
approach, this mitigates the endogeneity concerns typ-
ically linked to selection into colocation.

The setting is the university campus of Paris Jussieu,
the leading scientific and medical complex in France.
Following a research report by INSERM on the car-
cinogenic effects of asbestos (June 21, 1996), the French
government introduced a full ban of the fire retardant
from all public buildings, including the Jussieu ones.
Starting in 1997, a separate entity (Etablissement Pub-
lic d’Aménagement Universitaire de la Région Ile-de-
France (EPAURIF)) was put in charge of the asbestos

removal process on campus, which led to five massive
waves of lab relocations over 17 years. Because of the
complexity and urgency2 of the cleaning process, labs
were forced to move often on short notice and with lit-
tle influence over their new location. As a consequence,
many labs found themselves next to new neighbors,
and the overall spatial allocation was severely more
constrained than before. I exploit this variation, com-
bined with the reconstruction of fine-grained, longi-
tudinal information on inventive outcomes, to try to
understand why colocation matters for the rate, direc-
tion, and quality of inventive activity.

Consistent with the search costs mechanism, results
show that colocation increases the likelihood that two
labswill collaborate by 3.5 times, an effect that ismostly
driven by pairs that faced higher search costs ex ante.
Moreover, separation has a nonsignificant effect on
the probability and rate of collaboration, suggesting
that labs that were previously exposed to each other
are later able to sustain collaboration also over dis-
tance. At the same time, while colocated labs become
increasingly similar in the topics they work on and
references they cite,3 separated labs embark on less
correlated research trajectories. This is consistent with
search costs increasing considerably even at relatively
low levels of geographic distance, a result that sup-
ports past literature that has linked proximity to better
information diffusion (Allen 1977, Cowgill et al. 2009),
formation of social ties (Stuart and Liu 2010, Liu 2013),
and knowledge flows (Jaffe et al. 1993, Thompson and
Fox-Kean 2005, Thompson 2006).

Furthermore, conditional on collaboration, the qual-
ity of a lab pair’s output also changes following a
change in distance. Colocated labs are 1.36 times more
likely to produce a paper that will end up in the highest
quartile of the citation distribution, and their variance
in outcomes increases. Opposite results are observed
for lab pairs that are separated. This is consistent with
colocation affecting joint execution costs, andwith both
a selection and an effort effect playing a role in this
context. Interestingly, the collaborations resulting from
interactions between labs that faced higher search costs
ex ante are more likely to be of high impact, suggesting
that arbitrage opportunities may exist in encouraging
interactions between communities of scientists that do
not overlap through other channels (e.g., joint confer-
ences and journals).

Taken together, the findings highlight that whereas
search costs mostly affect which scientists are likely to
collaborate together, execution costs shape the qual-
ity of their output. By allocating space, organizations
profoundly shape the evolution of scientific trajecto-
ries and the types of opportunities that are explored
by different teams. This involves a trade-off between
the perhaps more efficient exploitation of established
research paradigms and the more costly exploration
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of new ones. Colocation is an expensive way to lower
search costs, as supported by the overall changes in
the collaboration portfolios of the labs observed in
the data: during the moves, in aggregate, labs focused
more inwards, increasing within-lab research at the
expense of across-lab collaborations. While this may
be a result of the suboptimal set of local peers the
moves offered the labs relative to their ideal choices,
it is also a reminder of how pursuing research across
disciplines is a more costly endeavor than incremental,
within-discipline work both for an institution and the
scientists involved. In the absence of complementary
changes in incentives (e.g., to favor cross-disciplinary
research), scientists will focus where search and joint
execution costs are lower first. Although temporary
forms of colocationmay not be as effective as the longer
periods studied here in leading to actual knowledge
flows and collaboration, they may still allow for cross-
pollination between research trajectories and break-
through discoveries at a lower cost.
The layout of the remainder of the paper is as

follows. In the next section, I further develop the
basic hypotheses of the theoretical framework to guide
empirical predictions and interpretations of the find-
ings. Section 3 describes the empirical setting, data,
and empirical strategy. Section 4 reports the main
results. Section 5 concludes.

2. Theoretical Framework
The ability of an economy to generate, diffuse, and
recombine ideas has a profound influence on its
ability to sustain growth (Lucas 1988, Romer 1990,
Weitzman 1998). Our understanding of a key economic
phenomenon behind agglomeration and growth—
localization economies—relies on, among other fac-
tors, basic assumptions about how knowledge is
recombined locally versus over distance.

Despite frequent references in the literature on
knowledge flows and localization to the role of colo-
cation in knowledge transmission and recombination
(Breschi and Lissoni 2004, Mairesse and Turner 2005,
Singh 2005, Agrawal et al. 2006, Fleming et al. 2007,
Belenzon and Schankerman 2013), there is more lim-
ited empirical evidence on the underlying mechanisms
invoked to explain its effects. In part, this is due to
the difficulty of finding plausibly exogenous variation
in location choice. Most of the existing literature relies
on observational data (Olson and Olson 2000, Van den
Bulte and Moenaert 1998, Kabo et al. 2014, Fayard and
Weeks 2007, Kabo et al. 2015, Crescenzi et al. 2017),
which is subject to selection bias from individuals,
teams, and organizations choosing where to locate.
This makes it challenging to isolate the effect of colo-
cation from confounders and other forms of proximity,
such as proximity in social space and in knowledge

space. Knowledge production, moreover, is increas-
ingly a collaborative process (Wuchty et al. 2007, Jones
et al. 2008) between colocated and geographically dis-
persed teams of scientist (Adams et al. 2005, Katz 1994,
Freeman et al. 2015), making it difficult to trace knowl-
edge flows through these alternative channels.

Scientists are evaluated based on the quality and
quantity of their output (e.g., in terms of scientific
impact measured through citations, publications, out-
lets). Two key costs shape how scientists (and teams
of scientists) make collaboration decisions: search costs
and execution costs. Search costs, by defining the
choice set of possible collaborators, influence the like-
lihood that any two individuals will explore a joint
research project to begin with. Execution costs deter-
mine if, given an idea of a certain quality, it makes
sense for a specific team to invest time, resources, and
effort in developing it.

Colocation has a profound effect on both costs: (1) by
increasing the chance of an interaction (both serendipi-
tous and planned), colocation drastically lowers search
costs for new collaborators; (2) by lowering the cost of
face-to-face meetings, coordination costs, monitoring
costs, and the cost of transferring complex informa-
tion, colocation also reduces joint execution costs. If by
applying effort toward a project scientists are able to
improve its ultimate value, then lower execution costs,
locally, endogenously change the optimal level of effort
scientists may want to apply to local versus distant
projects.

In the next sections, I focus on how geographic prox-
imity influences search and execution costs to build
predictions about howmicrogeography affects the rate
and type of scientific collaborations between teams of
scientists (labs).

2.1. Search Costs
In this context, search costs are defined as the frictions
scientists incur in finding new collaborators and col-
laboration opportunities. A reduction in search costs
should therefore induce an increase in the probability
of collaboration between two labs and possibly shift
over time the collaboration portfolios of the scientists
affected. Recent experimental evidence has shown that
even within the same university, search frictions can be
substantial: after randomly colocating scientists in the
same room for a 90-minute information-sharing ses-
sion, Boudreau et al. (2017) observe a 75% increase in
the probability that they will co-apply for a grant.

An opposite increase in search costs, instead, may
have a more ambiguous effect on the probability of
collaboration, especially if we believe that once two
scientists are aware of each other’s research agenda,
they can keep communicating new ideas cheaply over
distance—i.e., when it comes to search, if social prox-
imity (e.g., past collaboration) can partially substitute
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for geographic proximity, then separating groups of
scientists that were previously colocated may have a
smaller effect (or no effect at all) on collaboration.4
Search also takes place through temporary colo-

cation (e.g., conferences),5 and through codified
information (e.g., published research). As a result, in
cases where search costs are likely to be already low ex
ante because scientists attend the same conferences or
read the same journals, changes in geographic proxim-
ity may have a less pronounced effect on the likelihood
of collaboration.
This can be summarized in the following hypothesis:

Hypothesis 1. After colocation, scientists should be more
likely to collaborate, and the effect will be stronger the higher
search costs are ex ante. Separation, instead, should have no
effect on the probability of collaboration.

2.2. Execution Costs
Joint execution costs include the cost of face-to-face
meetings, coordination, monitoring, and transfer of
complex information between teams of scientists. The
first effect of a reduction in joint execution costs is, as in
the case of search costs, an increase in the probability of
collaboration (this time possibly skewed toward preex-
isting pairs). After colocation, scientists should collab-
orate together more.6 At the same time, while search
costs may not increase immediately after separation
because of the long-term benefits from past exposure,
execution costs should increase relatively quickly, neg-
atively affecting joint projects. To summarize:

Hypothesis 2. After colocation, scientists should be more
likely to collaborate with each other (and increase their rate
of collaboration) because of lower execution costs. After sep-
aration, the opposite should be observed.

Whereas the effect of a decrease in execution costs on
the rate of collaboration is straightforward, the effect on
the realized value of the resulting projects is ambigu-
ous. If the value of a project depends both on the orig-
inal idea’s intrinsic quality as well as on the amount
of effort dedicated to advancing it, then colocation
may induce: (1) the development of lower-quality ideas
(a selection effect); (2) the application of effort for any
given idea quality (an effort effect). In other words, if
we assume that research projects improve when more
effort is allocated to their development, and that it
is cheaper to do so when colocated (lower execution
costs), then the ultimate impact of colocation on out-
comes is the composition of the selection and effort
effect pushing in opposite directions.

On the one hand, lower execution costs locally may
induce scientists to engage in marginal, lower-value
projects. Intuitively, if projects below a certain value
cannot be published (i.e., if there is a minimum thresh-
old for publication) and effort improves the payoff of
an idea, then the threshold for developing a research

project under colocation will be lower. Conditional
on an idea being developed, this should lead to an
increase on the left tail of the outcome distribution.

On the other hand, if scientists can improve a project
more efficiently when colocated (e.g., through addi-
tional face-to-face meetings, better knowledge trans-
fer, team coordination, etc.), this leads to the expected
value of colocated projects being higher for any under-
lying idea quality. Intuitively, scientists can achieve
the same outcome with ideas of lower starting qual-
ity because they can execute on them more efficiently.
Additionally, it can be shown7 that if the distribution
of idea quality is skewed toward the low end (i.e.,
if most scientific ideas are of low impact and a few
are of very high impact), then the difference in effort
is a (weakly) increasing function of idea quality (i.e.,
the difference in effort between colocated and distant
projects increases with project quality). This leads to
the following hypothesis:

Hypothesis 3. After colocation, conditional on projects
being developed, we should observe more projects at the low
end of the distribution (selection effect) and at the high end
of the distribution (effort effect). Separation should lead to
opposite results.

The above prediction relies on the skewed nature of
inventive outcomes, on the idea that colocation offers
lower execution costs, and on the assumption thatmore
effort improves the value of a project.

Empirically, a key challenge is due to the fact that
whenever scientists have unrealistic expectations about
the value of a project (e.g., when they believe a project
is of publishable quality when it is not), or whenever
projects are abandoned as scientists update their pri-
ors, part of the left tail of the outcome distribution will
not be observed (as we only see published research),
leading to underestimating the effects of colocation
and separation on lower-quality ideas. This limits what
we can learn from bibliometrics data regarding the
full distribution of research outcomes. The analysis on
quality in Section 4.3 will be therefore more informa-
tive about right-tail outcomes and only provide sug-
gestive evidence about the left tail.

Moreover, because of lower search and execution
costs, colocation is a strategic choice, and observa-
tional data will overestimate the impact of these effects
on inventive outcomes. The relocations of labs on the
Jussieu campus, because of the external constraints
imposed on space allocation by the asbestos removal
process, can help us understand if the mechanisms
suggested in the theoretical framework are correct, and
improve our understanding of the conditions under
which colocation is more likely to matter for collabo-
rative inventive outcomes. To address additional con-
cerns about selection into colocation and matching
between labs, the key part of the empirical analysis
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relies on a difference-in-differences approach at the
lab-pair level, as described in the next section. Lab-
level portfolio choices are also presented to understand
the aggregate effects of the moves on the trade-offs labs
make in deciding who to collaborate with.

3. Empirical Setting
The setting is the university campus of Paris Jussieu,
which hosts the Université Pierre et Marie Curie
(UPMC). According to the 2016 U.S. News and World
Report rankings, UPMC is the top institution in France
(10th in Europe, 49th on a global scale). It houses
the faculty of sciences of Sorbonne Universités and
approximately 31,000 students (5,900 master students
and 3,000 doctoral students), as well as 3,750 research-
active professors (80% of its staff work in research cen-
ters).8 Three recent Nobel laureates are from UPMC:
Pierre-Gilles de Gennes (Physics, 1991), Claude Cohen-
Tannoudji (Physics, 1997), and Françoise Barré Sinoussi
(Medicine, 2008). Strong areas of specialization include
mathematics (fifth worldwide), physics (15th), space
science (20th), geosciences (21st), neuroscience (43rd),
environment and ecology (49th), and biology and bio-
chemistry (51st).
The campus went through five massive waves of

labs relocations over 17 years (1997–2014) due to the
removal of asbestos from its buildings. The moves
started when the French government, reacting to a
research report by INSERM on the carcinogenic effects
of asbestos (June 21, 1996),9 introduced a full ban of
the fire retardant material from public buildings. The
Jussieu campus was built extensively using asbestos.
Interviews with scientists from the labs confirmed

that given the nature and urgency10 of the clean-
ing process, labs were forced to move often under
short notice and with minimal influence over their
new location. A separate entity (EPAURIF) was put
in charge of the cleaning process, which started with
labs that were relatively easy to move (e.g., theoreti-
cal labs in mathematics, computer science) and only
later reached labs with sophisticated instrumentation
and machinery (e.g., applied physics). During the relo-
cation period, entire sections of the campus were pro-
gressively isolated and renovated. Because of the com-
plexity and costs of the operation, lab requirements
were often not a priority, resulting in many labs com-
plaining about the moves. Whereas for some scientists
the actual moving process was a cause of delays (one
scientist estimated a one-year delay in productivity
over a 10-year period), others did not find it disruptive
at all (a different scientist, who does theoretical work,
estimated just one week without lab access).
As in other research-intensive institutions, interac-

tions across labs are common, and the relocations
ended up separating labs thatwere colocated and inter-
acted before. The same moves also placed labs next to

new neighbors, in some cases with positive effects on
collaboration. In the data set, the aggregate amount of
colocation between lab pairs slightly decreases during
the moves, from 7.3% to 6.9% of pairs.11 Whereas the
mean distance between lab pairs across broad fields of
science (e.g., natural versus life sciences) and within
subfields (e.g., within chemistry) is broadly stable over
time, the distance across subfields (e.g., chemistry
and physics) decreases, providing plausibly exogenous
variation in the composition of a lab’s neighbors. The
data also provides substantial variation in terms of
which types of lab pairs are affected by the moves at
any point in time.12 Themean number of collaborations
per year for colocated lab pairs increases from 0.034
during the pre-period to 0.042 during the moves. The
change is substantially larger for pairs that are within
a broad field, from 0.039 to 0.056.

An academic campus is an appealing environment
for studying the role of geographic proximity on col-
laboration: knowledge production is one of its defin-
ing activities, it is possible to measure collaborations
and their long-run impact, knowledge flows can be
partially captured by looking at cited references, and
research agendas can bemapped into knowledge space
using keywords and cited references. Moreover, labs
increasingly rely on amix of proximate and distant col-
laborators (both in geographic and knowledge space)
for advancing their research agendas.

3.1. Data
The data set combines information on 39,527 pub-
lications from the labs at Jussieu (1980–2010) with
fine-grained location data over time. Publications are
retrieved from SciVerse Scopus13 and parsed to extract
affiliation data. Forty-two thousand, four hundred
ninety-four unique affiliation strings are cleaned and
harmonized with a series of algorithmic and manual
steps to match them to a specific lab.14 Whenever loca-
tion data is available in the papers15 it is extracted
to complement information retrieved from the UPMC
archives and the EPAURIF website16 to reconstruct the
spatial allocation of labs over time. Paper affiliations
that are not matched to the campus are geocoded
using a combination of three different services (Google
Maps API, Bing Maps API, and the Data Science
Toolkit) to identify them as either French or interna-
tional affiliations.

The core of the campus resembles a chessboard (see
Online Appendix Figure A-1) and is composed of a
series of towers connected by corridor buildings. Dis-
tances are obtained by manually geocoding the loca-
tion of each tower and connecting building on Google
Earth.17

Out of 39,527 publications, 6% are collaborations
across different labs at Jussieu. In the final data set (see
Table 1), the average minimum distance between any
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Table 1. Summary Statistics for the Main Sample

Lab-pair-year level Mean Std. dev. Min Max N

Location
Minimum distance (km) 0.17 0.106 0 0.449 183,359
Colocated (same building) 0.072 0.258 0 1 295,435
Treatment year (colocation) 2,003.99 3.722 1,997 2,010 7,338
Treatment year (separation) 2,003.63 4.089 1,997 2,010 5,877

Collaboration
Probability of collaboration 0.004 0.064 0 1 295,435
Number of collaborations 0.006 0.126 0 15 295,35

Quality and type of research
Citation weighted collaborations 0.204 7.328 0 2,058 295,435
Maximum number of citations 0.164 6.053 0 2,058 295,435
Standard deviation of citationsa 25.666 38.964 0 271.442 321
Keyword similarity 0.076 0.108 0 0.881 116,851
Cited references similarity 0.174 0.115 0 0.677 84,865
aConditional on collaborating at least twice in focal year.

two lab pairs is 0.17 km (approximately 550 feet) and
7.2% of them are colocated at any point in time (same
tower or corridor building).18 Over time, 383 lab pairs
switch from not colocated to being in the same build-
ing during the asbestos cleaning process (at a rate of
16–52 each year), with 37% of the changes happening
in the first five years. Two hundred forty-eight lab pairs
experience the opposite change (i.e., are separated by
the moves), with 34% of the events taking place within
five years.
Collaboration across labs is a rare event, and only

0.4% of all lab pairs collaborate in any given year,
receiving on average 0.20 citations per lab-pair-year.
As often observed, the distribution of citations is very
skewed, with most papers receiving no citations, and
the most productive lab pair totaling 2,058 citations
from the papers published in a single year.

Citation data is obtained from Scopus in 2016, and
quartiles for the citation distribution are built by year
using a large sample of articles in the relevant fields of
science. Scopus data is also used to retrieve, whenever
available, author and index keywords,19 as well as the
full set of references cited by each paper.
Cited references and keyword data are then used

to create measures of proximity in knowledge space
between the labs. In particular, the cosine similar-
ity between vectors of cited references (or keywords)
used by each lab is calculated using the Scikit-Learn
python module.20 To ensure that these proximity mea-
sures are not inflated by direct collaborations (which
would share all cited references and keywords by
design), coauthored papers between the focal labs are
dropped—i.e., the vectors of cited references (or key-
words) are based on independent publications. More-
over, when the sample is split by lab pairs with above
versus below the median distance in knowledge space
(e.g., Table 7), the measure is defined before the moves

start to avoid it being influenced by the effect of colo-
cation (or separation). In the data set, labs that do not
share any keyword have a cosine similarity of zero, the
pair with the most overlap has a score of 0.88,21 and
the mean keyword similarity is 0.08. Similarity in cited
references is on average higher (0.17), but the highest
observed score is lower (0.68).

3.2. Empirical Strategy
Estimating the effect of colocation on inventive out-
comes using observational data is likely to return
biased results, the main endogeneity concern being a
selection effect. If labs value proximity to other labs
they want to collaborate with, then a basic ordinary
least-squares (OLS) regression of the number of collab-
orations on geographic distance will positively bias the
effect of proximity on collaboration.Whereas colocated
lab pairs were 2.75 times more likely to collaborate
than not-colocated pairs before themoves started,22 the
premium is only 14% (and not significant) during the
relocations, which is consistent with the new spatial
allocation being suboptimal in the post-period.

In a perfect experiment, we would randomize
the location of labs and observe how collaborations
between colocated pairs differ from those between dis-
tant ones. During the asbestos removal, qualitative evi-
dence confirmed that needs that were orthogonal to
the research agendas of the scientists involved (e.g.,
ease of relocation of a type of lab, cost minimization
for the removal operation) constrained space assign-
ment and shaped when and where different labs were
moved. This introduces exogenous variation in the set
of neighbors a lab is offered.23 To account for idiosyn-
cratic reasons a lab pair may be more or less likely
to collaborate in the first place, the analysis uses lab-
pair fixed effects. Importantly, the pair fixed effects also
capture the degree of influence a particular pair of
labs may have on campus resource allocation decisions
(funding, personnel, space allocation).
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The econometric analysis uses a difference-in-dif-
ferences approach24 at the lab-pair-year level which
exploits the variation in colocation (and separation)
generated by the moves that take place during the
asbestos-removal period. I estimate variations of

Yi jt � γi j + δt + βAfterColocationi jt + εi jt , (1)

where Yi jt is a dummy for collaboration in focal year25
between lab i and lab j in year t; β is the coefficient of
interest and the lab-pair fixed effects, γi j , mean that β
is identified as the within-pair effect on collaboration
after labs become colocated because of the asbestos
removal, relative to their before period; and δt is a year
effect. TheAfterColocation dummy is equal to 1 if the lab
pair becomes colocated because of themoves, and is set
back to 0 when the labs are separated again. Similarly, I
estimate the effect of separation in the same regression
using variations of

Yi jt � γi j + δt + β1 AfterColocationi jt

+ β2 AfterSeparationi jt + εi jt . (2)

Both equations are also estimated with nonlinear
models and for different outcomes: number of col-
laborations in focal year, maximum number of cita-
tions received (conditional on publication), number of
papers published in different quartiles of the citation
distribution, similarity in cited references space and in
keyword space, probability of publishing in a journal
that is new for at least one of the labs, etc.

Beforemoving to the difference-in-differences frame-
work, the paper uses regressions at the lab-year level
for the same set of outcomes to explore how the relo-
cation period influenced collaboration and the compo-
sition of the labs’ portfolios (in terms of share of affilia-
tions classified as same lab, different lab, other French
lab or international lab, etc.). All lab-year–level regres-
sions include lab fixed effects and year fixed effects.

4. Results
The first section of the results focuses on assessing
the overall effect of the moves on the labs involved.
Empirically, it is important to determine if the relo-
cation period had a negative effect on the labs’ pro-
ductivity, and how labs adjusted their collaboration
portfolios because of the changes in their neighbors.
Since this part of the analysis does not rely on the
difference-in-differences empirical strategy described
above, results will only be informative but not conclu-
sive with respect to the mechanisms proposed in the
theoretical framework.

The second section will directly test Hypothesis 1 on
the effects of a change in proximity on the probability
of collaboration. This is done by looking at pairs of labs
that find themselves in the same building because of

the asbestos removal, as well as pairs that are separated
because of it. In particular, separated pairswill be infor-
mative about the ability of other forms of proximity
(e.g., social proximity) to compensate for geographic
distance. Robustness is shown to highlight the absence
of a pre-trend in collaboration among pairs that are
going to be colocated, which is consistent with the
moves not being driven by the labs’ research agendas.

Knowledge distance between labs is then introduced
as a way to compare lab pairs with different ex ante
search costs, and to see if the changes in the proba-
bility of collaboration are consistent with the search
cost mechanism. Since Hypotheses 1 and 2 do not dif-
fer in terms of what they predict we should observe
after colocation, but differ in terms of what we should
see after separation, this section will also compare
the relative role of search versus execution costs in
defining who collaborates. Lastly, the section explores
the effect of search costs over longer periods of time
by using information on the references cited in the
affected papers.

The third section introduces quality (as proxied by
citations) to test Hypothesis 3, and to see if outcomes
are consistent with lower execution costs under coloca-
tion leading to both more marginal ideas being devel-
oped (selection effect), as well as higher-quality ideas
(effort effect).

4.1. Lab-Level Results and Collaboration Portfolios
One may worry that the relocations on the Jussieu
campus had a negative effect on the productivity of
the labs. This would influence how we would inter-
pret the results from the difference-in-differences anal-
ysis in the next sections of the paper. Furthermore,
since labs are likely to reallocate their resources toward
different types of projects as their local environment
changes, before moving to the lab-pair–level regres-
sions, it is useful to descriptively explore how aggre-
gate collaboration portfolios shifted during the study
period because of the moves.

The unit of analysis in Table 2 is a lab-year, lab fixed
effects are included to account for unobservable dif-
ferences between labs that are constant over time (e.g.,
field of science, relative scale and resources of the lab
within the institution, etc.), and year fixed effects are
introduced to control for changes in productivity over
time (e.g., increased resources available to the campus,
changes in the national science policy, etc.).26 The key
explanatory variable in the table is a dummy equal to 1
during theRelocation Period—i.e., during all of the years
during which a specific lab is moved from its original
location because of the asbestos removal (and 0 other-
wise). As can be seen both in terms of raw publication
counts (column (1)), and in terms of quality-adjusted
output (column (2)), the moves are not correlated with
a decrease in output for the affected labs relative to
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Table 2. Lab-Level Outcomes

(1) (2) (3) (4) (5)
Variables Publications Citation weighted pubs Mean cites Max cites Std. dev. cites

Relocation Period 10.8003∗∗∗ 246.6649∗∗∗ −0.0157 28.0384∗ 6.4865∗∗
(2.3118) (82.7443) (1.6609) (14.6638) (2.6019)

Lab fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Observations 3,951 3,951 3,951 3,951 3,951
R-squared 0.161 0.070 0.015 0.015 0.011
Number of labs 328 328 328 328 328

Notes. Relocation Period is a dummy equal to 1 for all of the years during which a specific lab is moved from its original location because of the
asbestos removal. Citation data is collected from Scopus in 2016. Robust standard errors clustered at the lab level in parentheses.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

the controls (i.e., labs that have not been moved yet or
that have returned to their original location). Interest-
ingly, results on quality are suggestive of an increase
on both tails of the outcome distribution: the effect on
mean citations is negative although nonsignificant (col-
umn (3)), max citations increase (column (4)), and the
moves are correlated with a positive increase in the
standard deviation of citations (column (5)).
It is important to highlight that multiple mecha-

nisms, including changes in neighboring labs, infras-
tructure, and research type, can explain these results.
For example, labs could have changed the composi-
tion of their projects in response to shifts in their local
environment in a way that favored higher-variance
projects—e.g., if the moves increased the likelihood
that a lab had access to peers from a different disci-
pline, the polarization in outcomes could be a result
of an increase in cross-disciplinary work. This would
be consistent with past research that has shown that
recombination of ideas that span more distant areas
of the knowledge space exhibit higher variance (e.g.,
because the ideas involved are recombined less often
and therefore represent a less explored area of the
research landscape; see Fleming and Sorenson 2004,
Singh and Fleming 2010). In this context, while keep-
ing the expected value of their projects constant (i.e.,
while staying on their original risk–return indifference
curve), labs could have undertaken some projects that
offered higher risk but also higher reward. Alterna-
tively, the moves could have induced a temporary, one-
time shift in research agendas because of the reshuf-
fling of scientists and labs (a “novelty” effect).

For these reasons, the next section will move away
from the lab-level analysis and control for many of
these confounders by looking at variation within lab
pairs.With the introduction of lab-pair fixed effects, the
difference-in-differences approach allows to account
for the idiosyncratic reasons two labs may (or may
not) collaborate with each other, and controls for unob-
served heterogeneity in the type of research a particu-
lar pair may be conducting. Within a lab pair, the con-
straints imposed by the moves will deliver plausibly

exogenous variation in distance, allowing us to look at
outcomes while keeping issues related to the matching
between labs constant—i.e., within a lab pair, changes
in collaboration and outcomes will be predominantly
driven by shifts in proximity. Additionally, the analysis
of pre-trends in collaboration within the difference-in-
differences framework will allow us to visually inves-
tigate the presence of selection into colocation during
the moves—i.e., if labs are endogenously paired in an
effort to improve their collaborations, this should be
observable in the data.

Before moving to the lab-pair analysis, it is useful
to check how the relocation period shifted the collab-
oration portfolios of the labs at the aggregate level.
Table 3 uses the same specification of the previous
table to look at how the shares of affiliations on the
labs’ papers changed during themoves. The dependent
variables here are, respectively, the share of affiliations
that are international (column (1)), within France but
not from the institution (column (2)), and within the
institution (column (3)). Interestingly, the moves saw a
decrease in the share of international collaborators; a

Table 3. Lab Level—Overall Collaboration Portfolio

(1) (2) (3)
Share Share Share

Variables international French within institution

Relocation Period −0.0237∗ 0.0018 0.0218
(0.0121) (0.0137) (0.0146)

Lab fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
Observations 3,951 3,951 3,951
R-squared 0.144 0.072 0.207
Number of labs 328 328 328

Notes. Relocation Period is a dummy equal to 1 for all of the years dur-
ing which a specific lab is moved from its original location because
of the asbestos removal. Shares are calculated based on the Scopus
author affiliations data available for each paper and then aggregated
at the lab level on a yearly basis. “Share French” does not include the
Jussieu campus and affiliated labs. Robust standard errors clustered
at the lab level in parentheses.
∗p < 0.1.
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Table 4. Lab Level—Collaboration Portfolio Within Institution

(6) (7) (8) (9)
(1) (3) (4) (5) Colocated Colocated Not colocated Not colocated

Share (2) Not Intensive Extensive intensive extensive intensive extensive
Variables across labs Colocated colocated margin margin margin margin margin margin

Relocation Period −0.0210∗∗ 0.0155∗∗∗ −0.0365∗∗∗ −0.0035 −0.0175∗∗ 0.0030 0.0125∗∗∗ −0.0065 −0.0300∗∗∗
(0.0093) (0.0048) (0.0082) (0.0066) (0.0075) (0.0037) (0.0031) (0.0051) (0.0075)

Lab fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 3,951 3,951 3,951 3,951 3,951 3,951 3,951 3,951 3,951
R-squared 0.022 0.023 0.034 0.065 0.130 0.036 0.035 0.041 0.119
Number of labs 328 328 328 328 328 328 328 328 328

Notes. Relocation Period is a dummy equal to 1 for all of the years during which a specific lab is moved from its original location because of the
asbestos removal. All shares are calculated based on the Scopus author affiliations data available for each paper and then aggregated at the
lab level on a yearly basis. The table only includes affiliations that can be assigned to the Jussieu campus and affiliated labs. Robust standard
errors clustered at the lab level in parentheses.
∗∗p < 0.05, ∗∗∗p < 0.01.

nonsignificant, small positive change in collaborators
from other French institutions; and an increase in
within-institution research. While the regression con-
trols for lab fixed effects and year fixed effects, as in
the previous table multiple mechanisms could explain
these changes. One interpretation is that the campus
lost competitiveness because of the moves, becoming
more inward focused. A different one is that the reshuf-
fling improved local opportunities by offering labs new
neighbors, making outside collaboration relatively less
appealing.
To further test how internal collaboration was af-

fected, Table 4 uses the same approach of Table 3 but
only focuses on internal collaborations (i.e., all of the
shares are now defined over the total number of affil-
iations assigned to the institution). Column (1) high-
lights how the increase in within-institution research
observed in column (3) of Table 3 is entirely driven
by collaborations within labs: the share of across-lab
collaborations actually decreases, suggesting that the
moves may have worsened the local environment, forc-
ing labs to increase collaborationwithin their unit. This
is consistent with the relocations leading to a subop-
timal space allocation relative to what the labs would
have selected if they were in charge of it. The next
two pairs of columns in Table 4, take the share from
column (1) and further decompose it across different
dimensions. In particular, columns (2) and (3) split the
collaborations across labs (i.e., column (1)) between
labs that are colocated versus labs that are distant: the
negative result from the first column comes from a
drastic decrease in the share of collaborators from not
colocated labs (column (3)) that is not compensated
by an equal increase in collaborations with colocated
labs (column (2)). When column (1) is instead decom-
posed into intensive margin versus extensive margin
collaborations (i.e., between labs that had collaborated

before the relocations versus not), the data show that
the decay in across-lab collaborations is mostly driven
by extensive margin pairs—i.e., during the relocations,
labs were substantially less likely to explore research
with labs they had not collaborated with before.

The aggregate result of columns (4) and (5), however,
hide different heterogeneous effects by microgeogra-
phy: in columns (6)–(9), the share of column (1) is
divided into colocated (intensive versus extensive) and
not colocated (intensive versus extensive) collabora-
tions. Whereas the results are consistent with geogra-
phy only slightly facilitating (or obstructing) collabora-
tive work on the intensive margin (the coefficients are
respectively positive in column (6) and negative in col-
umn (8), but in both cases not significant), columns (7)
and (8) suggest that microgeography plays a substan-
tially more important role on the extensive margin of
collaboration. This seems consistent with search costs
having a disproportionate effect on defining who col-
laborateswithwhom in the absence of past exposure or
social proximity. This hypothesis will be further tested
in the next section.

Overall, at least in the Jussieu case, the increase in
collaboration with newly colocated pairs (columns (6)
and (7)) seems to be more than offset by the decrease
with not colocated labs (columns (8) and (9)). Fur-
thermore, the result in column (1) (combined with
the effect of column (3) in Table 3) is consistent with
labs being more inward focused during the moves,
potentially because they faced a less optimal set of
local peers around them relative to what they would
have selected in an ideal scenario. Together with the
observed increased in best outcomes and variance in
Table 2, and with the rise in colocated experimentation
on the extensive margin (column (7) in Table 4), this
raises the question of how colocation and separation
directly affected research outcomes once we keep lab
pairs constant.
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4.2. Probability of Collaboration and the
Role of Search Costs

In the theoretical framework, both a reduction in
search costs (Hypothesis 1) and in joint execution costs
(Hypothesis 2) predict an increase in the probability of
collaboration after colocation. If joint execution costs
are particularly important, thenwe should also observe
a tangible rise in the rate of collaboration. The two
mechanisms have different implications for the reverse
move though—i.e., for what we should observe after
two labs that were previously colocated are suddenly
separated. If search costs do not increase immediately
after separation because of past exposure, then sepa-
ration should have little to no effect on the probability
of collaboration. If joint execution costs are instead dis-
proportionately driving collaboration decisions, then
separation should be accompanied with a drop in col-
laboration. This section tests these hypotheses by first
looking at within-lab-pair changes in collaboration fol-
lowing changes in distance, and then by exploring het-
erogeneous effects by pairs that faced ex ante higher
versus lower search costs to compare the two mecha-
nisms more directly.
The first part of Hypotheses 1 and 2 are tested

in Table 5: after colocation, lab pairs are 3.5 times
more likely to collaborate (column (1)) and collaborate
on average 2.5–3.3 times more (columns (3) and (2),
respectively). Results are robust and qualitatively sim-
ilar across different functional forms (OLS, Poisson,
logit, rare event logit). Robust standard errors are clus-
tered at the lab-pair level, and all regressions include
lab-pair fixed effects as well as year fixed effects. The
estimated effects do not change if lab-year trends are
included in the regression. The findings are consistent
with lower search and execution costs increasing the

Table 5. Increase in Collaboration and Colocation

(1) (2) (3)
Variables OLS 1/0 OLS #Collabs Poisson #Collabs

After Colocation 0.0146∗∗∗ 0.0210∗∗ 0.8981∗∗∗
(0.0054) (0.0094) (0.2814)

Lab-pair fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
Observations 295,435 295,435 10,383
R-squared 0.005 0.005
Number of lab pairs 35,805 35,805 587
Log likelihood −2,929

Notes. The dependent variable in column (1) is a dummy equal to 1 if
the lab pair collaborates in the focal year. The dependent variable in
columns (2) and (3) is the number of collaborations. After Colocation
is equal to 1 when a lab pair becomes colocated because of the moves
and 0 otherwise. The Poisson specification with fixed effects drops
all lab pairs where collaboration is never observed, hence the smaller
number of observations. Robust standard errors clustered at the lab-
pair level in parentheses.
∗∗p < 0.05; ∗∗∗p < 0.01.

likelihood (column (1)) and rate (columns (2) and (3))
of collaboration.

It is important to stress that the presence of the lab-
pair fixed effects takes care of the idiosyncratic influ-
ence a pair of labsmay have on campus (e.g., in terms of
funding, ability to bargain for more or better resources
and infrastructure). Nevertheless, one may still worry
that influential labs might have exerted pressure on
EPAURIF to assign them a particular temporary loca-
tion, or to change the timing of their move. From an
identification perspective, the main worry is that the
moves were driven by preexisting collaboration pat-
terns and therefore endogenous to the outcomes of
interest. If that were the case, and labs were able to
obtain a spot next to the labs with which they had an
interest in collaborating more, then we should observe
a rise in collaboration that predates the relocation. Fig-
ure 1 reassures us this is not the case, as the rise in col-
laboration follows colocation (no pre-trend) and builds
progressively over the years in the post-period. In fact,
there is no activity until two years or more after the
move. The figure plots the estimated coefficient of an
OLS regression with year and lab-pair fixed effects
for all of the years before and after the move.27 The
dependent variable is the probability of collaboration
(dummy), and the error bars represent 95% confidence
intervals based on robust standard errors (clustered at
the lab-pair level).28
Past exposuremayallow labs to contact a now-distant

lab when the right opportunity emerges or, if opportu-
nities have already been identified, labs can make com-
mitments to keep their research active through joint
seminars, temporary colocation, and distant interac-
tions. Therefore, if search costs are a key friction to

Figure 1. (Color online) Probability of Collaboration and
Colocation
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Notes. Estimated coefficient for years before and after the move.
The dependent variable is collaboration (1/0). Regression includes
lab-pair fixed effects and year fixed effects. Error bars represent
95% confidence intervals based on robust standard errors clustered
at the lab-pair level.
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Table 6. Colocation and Separation

(1) (2) (3)
Variables OLS 1/0 OLS #Collabs Poisson #Collabs

After Colocation 0.0148∗∗∗ 0.0217∗∗ 0.8871∗∗∗
(0.0054) (0.0093) (0.2814)

After Separation 0.0101 0.0388 −0.4520
(0.0089) (0.0278) (0.3171)

Lab-pair fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
Observations 295,435 295,435 10,383
R-squared 0.005 0.005
Number of lab pairs 35,805 35,805 587
Log likelihood −2,926

Notes. The dependent variable in column (1) is a dummy equal to 1
if the lab pair collaborates in the focal year. The dependent vari-
able in columns (2) and (3) is the number of collaborations. After
Colocation is equal to 1 when a lab pair becomes colocated because
of the moves and 0 otherwise. After Separation is equal to 1 when
a previously colocated pair is separated because of the moves and
0 otherwise. The Poisson specification with fixed effects drops all lab
pairs where collaboration is never observed, hence the smaller num-
ber of observations. Robust standard errors clustered at the lab-pair
level in parentheses.
∗∗p < 0.05; ∗∗∗p < 0.01.

collaboration, separation should not have a strong, neg-
ative effect on the probability of collaboration.29 If joint
execution costs constitute a barrier to collaboration
instead, separated pairs should reduce their rate of
collaboration.
Consistent with the search costs mechanism, in

Table 6 separation has a noisy, nonsignificant effect on
the probability and intensity of collaboration. The co-
efficient is positive and nonsignificant in the OLS re-
gressions (columns (1) and (2)) and negative and non-
significant in the Poisson specification (column (3)).30
Meanwhile, controlling for separation leaves the results
on colocation unchanged.
Figure 2, which plots the estimated regression coef-

ficients31 for the years before and after separation,
highlights three facts: (1) lab pairs that are going to
be separated have a higher propensity to collaborate
before the move (all of the coefficients in the pre-
period are positive and many are statistically different
than zero); (2) the relocation process seems to gener-
ate a slight, temporary decay in collaboration (years −1
to +1); (3) lab pairs revert to their mean collabora-
tion propensity in the later periods (although results
are noisy, potentially because some pairs recover and
others do not).
Overall, results from Tables 5 and 6 are consistent

with the idea that search costs may be a more impor-
tant friction than joint execution costs in defining if
two labs will collaborate or not. If the key mechanism
through which colocation facilitates collaboration is by
helping scientists discover new potential collaborators,
then the effect of proximity should be strongest where

Figure 2. (Color online) Probability of Collaboration and
Separation
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Notes. Estimated coefficient for years before and after the move. The
dependent variable is collaboration (1/0). Regression includes lab-
pair fixed effects and year fixed effects. Error bars represent 95% con-
fidence intervals based on robust standard errors clustered at the lab-
pair level.

search costs are ex ante high and less pronounced
where search costs are lower because alternative chan-
nels for knowledge diffusion are likely to exist (e.g.,
joint conferences, journals, etc.).

To proxy for the fact that two labs may be work-
ing in related areas before the moves (i.e., within more
proximate communities of science), Table 7 uses two
sources of data: keywords listed on publications and
the full set of references cited in the papers. To calculate
a measure of proximity in knowledge space between
two labs, the cosine distance between the vectors of
keywords (or of references cited) used by each lab is
calculated excluding all direct collaborations (which
would exhibit perfect overlap in keywords and refer-
ences by design). Lab pairs that have an above-the-
median similarity in keywords and references are clas-
sified as facing lower search costs ex ante (columns (1)
and (3)), since they are more likely to overlap in top-
ics and the literature they cite (and potentially con-
ferences, etc.). Lab pairs that have below-the-median
similarity (columns (2) and (4)) are classified as expe-
riencing higher search costs ex ante, since they do not
seem aware of each other’s research topics and body of
knowledge.

Interestingly, whereas the two classifications assign
slightly different sets of labs to each bin, the inter-
pretation of the main effect is consistent between
them. When search costs are low ex ante (columns (1)
and (3)), colocation has a positive but nonsignificant
effect on the probability of collaboration. This is consis-
tent with these lab pairs already overlapping through
other channels and being aware of each other’s work
(as evidenced by the similar keywords and literature
used). As additional evidence that search costs may
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Table 7. Probability of Collaboration and Search Costs

(1) (2) (3) (4)
OLS 1/0 OLS 1/0 OLS 1/0 OLS 1/0

low search costs high search costs low search costs high search costs
Variables (keywords) (keywords) (cited ref.) (cited ref.)

After Colocation 0.0056 0.0179∗ 0.0006 0.0145∗
(0.0126) (0.0093) (0.0268) (0.0077)

After Separation −0.0197∗ 0.0244 −0.0080 0.0059
(0.0112) (0.0185) (0.0180) (0.0136)

Lab-pair fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 48,710 60,837 20,698 77,951
R-squared 0.008 0.016 0.008 0.012
Number of lab pairs 3,864 6,102 1,366 6,485

Notes. The dependent variable in all columns is a dummy equal to 1 if the lab pair collaborates in the focal year. In columns (1) and (3),
only pairs with above the median cosine similarity (low search costs) are included. In columns (2) and (4), only pairs with below the median
similarity (high search costs) are included. The cosine similarity measures are based on the vectors of keywords used by each lab in columns (1)
and (2), and on the vectors of cited references in columns (3) and (4). In all cases, the measures are calculated before the moves start and do
not include direct collaborations between the focal labs (which would share mechanically all keywords and cited references). After Colocation is
equal to 1 when a lab pair becomes colocated because of the moves and 0 otherwise. After Separation is equal to 1 when a previously colocated
pair is separated because of the moves and 0 otherwise. Robust standard errors clustered at the lab-pair level in parentheses.
∗p < 0.1.

not be the key constraint for collaboration between
these pairs, separation does seem to induce a decay
in their likelihood of collaboration, possibly because
some of these marginal, within-field collaborations are
only sustainable when joint execution costs are low.
Moreover, when search costs are high, not only do we
observe a strong and positive effect of colocation on
collaboration, but separation has only a noisy effect on
outcomes, supporting the idea that for these pairs, the
key constraint is being aware of each other’s agenda.

A consequence of this result is that over time, labs
may becomemore similar because of lower search costs
and repeated exposure, exhausting some of the best
arbitrage opportunities in idea space. After separation,
because of higher execution costs, some labs that are
very similar (columns (1) and (3)) may reduce collab-
oration with each other in favor of new opportunities
with newly colocated labs that bring more novelty to
their approaches (columns (2) and (4)).

To test if repeated exposure through colocation leads
to an increase in similarity and awareness of each
other’s research, Figure 3(a) plots the estimated regres-
sion coefficients32 for the years before and after colo-
cation using the cosine similarity in cited references
as the dependent variable. The measure captures the
extent of overlap in backward cites for a specific lab
pair in a given year (excluding joint collaborations).
Overlap does not increase until two or more years after
colocation, which is consistent with changes taking
place slowly over time through knowledge flows and
direct collaboration.33

Adding separation to the regression of similarity in
cited references (Figure 3(b)) shows that the reverse

process takes place when distance increases: after sep-
aration, previously colocated labs progressively grow
apart, a result that is striking because in the two years
before separation, they were actually more likely to
cite the same references than the controls.34 The neigh-
bors of a lab, by exposing it to new knowledge, ideas,
and collaboration opportunities, seem to profoundly
shape its research trajectory. In this particular set-
ting, whereas collaboration seems to recover from an
increase in geographic distance (Figure 2)—possibly
also because labs can make purposeful investments in
temporary colocation and remote interactions to com-
pensate for it—knowledge flows seem to be negatively
affected by separation. Ironically, as separated labs
embark on less correlated research trajectories, they
may also set the stage for more novel recombination of
ideas in the future.

4.3. Quality of Collaborations and Execution Costs
This last section explores the effect of proximity on the
quality of collaborations. Hypothesis 3 predicts that if
geographic proximity has a tangible effect on joint exe-
cution costs, then after colocation, we should observe
more projects both on the left tail of the quality dis-
tribution (a selection effect) as well as on the right tail
(an effort effect). Separation instead should generate
opposite effects. It is important to highlight that the
prediction refers to the observed outcomes conditional
on a project being developed, but empirically an addi-
tional issue arises from the fact that not all projects are
observed: e.g., if scientists are overly optimistic about
their chances of publishing their results, or if part of
the projects that are initially developed are dropped
before submission, then we will never see projects of
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Figure 3. (Color online) Similarity in Cited References Space
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Notes. Estimated coefficient for years before and after the move. The
dependent variable is the cosine similarity (based on cited refer-
ences) between the two labs. The higher line in the post-period is for
colocation, and the lower line is for separation. Regression includes
lab-pair fixed effects and year fixed effects. Error bars represent 95%
confidence intervals based on robust standard errors clustered at the
lab-pair level.

the lowest quality. As a result, any effect on the left
tail of the outcome distribution should be considered a
lower estimate of the true effect of colocation (or sepa-
ration) on inventive outcomes.
Table 8 explores how the citation distribution35

changes after the moves, conditional on the lab pairs
collaborating. Overall, colocation seems to increase the
number of collaborations that will end on both tails
of the distribution (first and fourth quartiles), and to
decrease activity in the third quartile (negative and
significant) and potentially in the second quartile (neg-
ative but not significant). A comparison between the
estimated coefficients for colocation shows that the
fourth quartile (highest quartile, column (4)) is statisti-
cally different at 1% from the one in the third quartile

(column (3)), and at 10% from the one in the second
quartile (column (2)). It is not statistically different from
the coefficient in the bottom quartile (column (1)), and
second and third quartiles are not statistically different
from each other. The noisier results in the first quar-
tile could be due to the fact that collaborations that do
not generate a publication are not observed, truncat-
ing the left tail. Separation exhibits an almost symmet-
ric pattern, with a positive (although nonsignificant)
increase in the third quartile and a significant decay in
the fourth.

In Table 9, the right tail of the outcome distribution is
further explored by separating lab pairs that faced high
versus low search costs before the moves (based on the
same approach used in Table 7, columns (1) and (2)).
Whereas for pairs with low search costs, both coloca-
tion and separation generate only noisy and insignif-
icant results, when search costs are high, colocation
leads to high impact research, and separation generates
the opposite result. In the online appendix, robustness
is shown using a different proxy for quality (citation
weighted publications) and by looking at the standard
deviation of citations as away to capture effects on both
tails of the outcome distribution (Online Appendix
Table A-2).

While only suggestive, the results in Table 9 support
the idea that pairs that usually face high search costs
(potentially also because space allocation is generally
optimized by discipline) are not only more responsive
to changes in distance (as we have seen in Table 7),
but are also able to produce higher-impact research
when given the opportunity to take advantage of lower
execution costs.

One interpretation of this result is that these col-
laborations constitute arbitrage opportunities across
domains of science, and that if we were able to observe
these pairs for substantially longer periods of time,
the positive effect on the right tail may revert to the
mean. Another interpretation is that once faced with
a more heterogeneous set of local peers, labs were
encouraged to embark on higher-risk, higher-reward
projects (which would be consistent with the increase
in variance). The result is also consistent with the view
that multidisciplinary research tends to be of higher
variance and, when successful, of higher impact. The
effects are also a reminder of how search frictions can
be a tangible obstacle to impactful research outside
of a community of science. In these cases, colocation
(whether temporary or not) can be used to remove
some of these frictions and introduce novelty within
current research agendas.

5. Limitations
This study has a number of limitations. First, only col-
laborations that end up in a peer-reviewed publication
are observed, meaning that the left tail of the outcome
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Table 8. Colocation, Separation, and the Citation Distribution

(1) (2) (3) (4)
# Collabs # Collabs # Collabs # Collabs

Variables 1st quartile (lowest) 2nd quartile 3rd quartile 4th quartile (highest)

After Colocation 0.2135 −0.0719 −0.3937∗ 0.4250∗∗
(0.2241) (0.2082) (0.2007) (0.1675)

After Separation −0.1236 −0.2239 0.3725 −0.3403∗∗
(0.2638) (0.2190) (0.3538) (0.1656)

Lab-pair fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 1,221 1,221 1,221 1,221
R-squared 0.061 0.081 0.070 0.199
Number of lab pairs 627 627 627 627

Notes. The dependent variable in all columns is the number of publications by the lab pair in the focal year within the given quartile
of the citation distribution. Citation data is obtained from Scopus in 2016, and quartiles for the citation distribution are built by year
using a large sample of articles in the relevant fields of science. The first quartile represents papers with the lowest level of citations,
the fourth the highest. Results are conditional on collaboration in the focal year.After Colocation is equal to 1 when a lab pair becomes
colocated because of the moves and 0 otherwise. After Separation is equal to 1 when a previously colocated pair is separated because
of the moves and 0 otherwise. Robust standard errors clustered at the lab-pair level in parentheses.
∗p < 0.1, ∗∗p < 0.05.

distribution is not observed. Whereas the analysis on
cited references and keywords may be able to capture
the outcome of some of the interactions (planned or
serendipitous) that do not translate into a paper, the
analyses on the rate and quality of research misses
them. The measured effects on the left tail of the out-
come distribution are therefore likely to represent a
lower estimate of the true effects. Furthermore, collab-
orations across labs are rare relative to collaborations
within labs, which limits the set of tests that can be con-
ducted on this sample (e.g., further splits of the sample
across more fine-grained dimensions).

Table 9. Colocation, Separation and Max Citations

(1) (2)
Max cites Max cites

Variables (low search costs) (high search costs)

After Colocation 27.9531 40.0822∗∗∗
(31.6185) (13.3165)

After Separation 6.6615 −36.4662∗∗∗
(11.3936) (6.9199)

Lab-pair fixed effects Yes Yes
Year fixed effects Yes Yes
Observations 639 529
R-squared 0.142 0.118
Number of lab pairs 293 294

Notes. The dependent variable in all columns is the maximum num-
ber of citations received by the publications of the lab pair in the focal
year. Citation data is obtained from Scopus in 2016. In column (1),
only pairs with above the median cosine similarity in keywords (low
search costs) are included. In column (2), only pairs with below
the median similarity in keywords (high search costs) are included.
Results are conditional on collaboration in focal year. After Colocation
is equal to 1 when a lab pair becomes colocated because of the moves
and 0 otherwise.After Separation is equal to 1 when a previously colo-
cated pair is separated because of the moves and 0 otherwise. Robust
standard errors clustered at the lab-pair level in parentheses.
∗∗∗p < 0.01.

Second, location information is imprecise,36 generat-
ing noise in the exact timing of a move and potentially
biasing the estimates downward. The same applies to
the ability to correctly capture and match every pub-
lication of the entities involved, as affiliation data is
difficult to clean and harmonize at scale at the lab level.
Hopefully, as bibliometrics and algorithms for disam-
biguation improve, better data will become available.

Third, while the relocations on the Jussieu campus
are substantially more constrained than typical obser-
vational data on campus moves, they do not consti-
tute random assignment. It is reassuring to see that
the difference-in-differences estimates, and in particu-
lar the pre-trends, do not hint at strong selection into
colocation during the study period.

Fourth, the data does not allow perfect separation
and direct measurement of some of the mechanisms
discussed in the theoretical framework (e.g., face-to-
face interactions, serendipitous conversations, etc.).

6. Conclusions
The paper provides novel empirical evidence groun-
ded in an original theoretical framework to explain
why colocation matters for the rate, direction, and
quality of scientific collaboration. To address endo-
geneity concerns due to selection into colocation and
matching, I exploit the constraints imposed on the spa-
tial allocation of labs on the Jussieu campus of Paris by
the removal of asbestos from its buildings.

The analyses highlight under which conditions
search and joint execution costs are more likely to
be responsible for the patterns observed in the data.
Consistent with recent experimental (Boudreau et al.
2017) and observational (Kabo et al. 2014) evidence,
search frictions can be a substantial obstacle to col-
laboration even within the boundaries of the same
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institution: labs that become colocated because of the
moves are 3.5 timesmore likely to collaboratewith each
other. Supporting the search costs hypothesis, effects
are driven by pairs that are more likely to face higher
search costs ex ante, such as labs that do not work
on similar topics and that do not cite the same lit-
erature. Furthermore, separating previously colocated
labs does not lead to a decay in collaboration, which
is consistent with past exposure allowing scientists to
compensate for distance through temporary coloca-
tion and remote interactions, as well as through inven-
tive and organizational networks (Crescenzi et al. 2016,
Monge et al. 1985, Breschi and Lissoni 2004, Singh 2005,
Azoulay et al. 2011).
At the same time, over long periods of time, search

costs seem to affect the research trajectories of sep-
arated scientists: while colocated labs grow increas-
ingly similar in topics and literature cited, separated
ones undertake less correlated research trajectories.
Ironically, by embarking on different paths, labs may
be setting the stage for future, high-impact idea
recombinations.

Lower execution costs under colocation, by endoge-
nously allowing scientists to improve ideas more effi-
ciently when proximate, also have an effect on the
quality of inventive outcomes. Whereas search costs
profoundly influence who a scientist is more likely
to collaborate with, joint execution costs appear to
shape the distribution of outcomes, conditional on col-
laboration. Consistent with the theoretical framework,
after colocation, more collaborations are observed on
both tails of the outcome distribution. The high-impact
collaborations that emerge are predominantly coming
from labpairs that facedhigher search costs ex ante: this
points to potential gains from connecting labs within
an institution that may not overlap directly through
other channels, as these labs may bring novel ideas to
domain-specific research agendas. Results are also con-
sistent with past research that has shown that diverse
inventive teams are correlated with novel idea recom-
bination (Singh and Fleming 2010); that breakthrough,
Nobel Prize contributions are correlated with scientists
being embedded in different communities of research
at the time of their development (Ham and Weinberg
2016); and that winning solutions to innovation prob-
lems tend to come from solvers from a different field of
technical expertise (Jeppesen and Lakhani 2010).

The findings also point out some of the strategic
trade-offs that the spatial allocation of teams entails.
By optimizing space based on current beliefs of where
opportunities are, organizations are making a strategic
choice that will profoundly shape their R&D trajectory.
Space acts as a powerful layer of incentives, which can
be used to define not only the intensity of interactions,
but also their quality. Organizations that either need
to move away from a declining trajectory or want to

explore radically novel opportunities can colocate pre-
viously separated teams to encourage serendipitous
(and planned) conversations between individuals with
different priors, ideas, and knowledge. When coloca-
tion is not an option, other forms of temporary colo-
cation could be strategically used to compensate for
the lower chance of an interaction and higher search
costs. Interestingly, once individuals are aware of each
other, proximity plays a lesser role, and collaboration
can also be sustained over distance. At the same time,
this seems to come at the cost of right-tail outcomes, a
result that future research may be able to unpack fur-
ther, and that advances in communication technology
and virtual reality may be able to undo (e.g., by recre-
ating the benefits of in-person, face-to-face interactions
and serendipitous conversations).

The moves on the Jussieu campus, by injecting exo-
genous variation into a process otherwise optimized
by scientific fields, also highlight how scientific com-
munities, also because of endogenous space alloca-
tion, can become an obstacle to breakthrough research.
While it may not be optimal for an institution to relo-
cate scientists to overcome these barriers,37 forms of
temporary colocation (e.g., joint conferences) could be
strategically used to encourage cross-pollination across
disciplines.

Since Marshall’s seminal work (Marshall 1890) on
localization economies, scholars have been interested
in why colocation matters for the generation of new
ideas. While we do know that the spatial allocation of
inventors and scientists has an impact on the diffusion
of information and ultimately on innovation, we still
know surprisingly little about the micro-foundations
of knowledge recombination. This study is a first step
toward helping us understand themechanisms at work
at different levels of distance.
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Endnotes
1This assumes that inventive outcomes are skewed (i.e., most ideas
are of very low quality), that ideas need to be of sufficient quality to
be published (minimum effort level), and that applying more effort
improves the quality of a research project.
2Additional, more strict European regulation was published in
2003 (directive 2003/18/EC), 2004 (directive 2004/37/EC), 2007
(2007/30/EC), and 2009 (2009/148/EC).
3Five or more years after becoming neighbors, labs are 20% more
similar in terms of the references they cite.
4This is consistent with past research that has shown that social
proximity can compensate for geographic distance (Agrawal et al.
2006, Sorenson et al. 2006).
5For example, Chai (2014) finds that participation in the same con-
ference is positively correlated with future collaboration.
6Additionally, if the arrival rate of ideas is higher under colocation
because of lower search costs (e.g., serendipitous interactions during
low-opportunity cost time), this effect would be amplified.
7See the Agrawal et al. (2016) model of slack time and innovation
for a detailed description. In the paper, the authors assume that idea
quality follows an exponential distribution, that the cost function is
convex in effort, and that there is a minimum effort requirement for
an idea to be developed.
8http://www.upmc.fr/en/university.html (accessed April 2, 2016).
9Seehttp://www.ipubli.inserm.fr/handle/10608/20(accessedApril2,
2016).
10Additional, more strict European regulation was published in
2003 (directive 2003/18/EC), 2004 (directive 2004/37/EC), and 2007
(2007/30/EC) and 2009 (2009/148/EC).
11Some of the labs are placed in temporary sites.
12For example, in 1997, 38.9% of pairs that experience a change in
colocation are within subfields, and 61.1% across subfields; in 1998
the opposite is true, with 69.7% within and 30.3% across; in 1999,
89.5% is across, 10.5% is within; in 2000 all pairs are across; in 2001,
66.6% are across and 33.4% are within; in 2002 the opposite is true,
with 68.8% within and 31.2% across, etc.
13https://www.elsevier.com/solutions/scopus/content (accessed
July 6, 2017).
14The initial set of affiliations is first run through a script that divides
the strings into their main components (i.e., department name, insti-
tute name, lab name, building name, floor, address, zip code, city,
and country). Normalized lists are then created for the key labs,
institutes, and departments, so that each string can be mapped to a
unified name. Eighty-seven percent of affiliation strings are matched
to a UPMC lab or entity, resulting in a final set of 36,822 affiliation
strings.
15Five thousand eight hundred forty-seven unique affiliation in-
stances. Location information is extracted by searching for building
numbers, names, and their potential abbreviations, and then manu-
ally checked to confirm accuracy.
16See http://www.epaurif.fr/documentation/transferts (accessed
May 1, 2015).
17Geodesic distances are calculated using a method developed by
Thaddeus Vincenty and implemented in Stata by Nichols (2003).
18The choice of this level of analysis is driven by data constraints, as
floor-level data is not always available, particularly for early years.
Same-floor-level estimates for colocation (within the subsample with
floor information) are typically larger; hence, the same tower and
corridor building effects probably constitute a lower bound of the
true effects of microgeography.
19For index keywords, according to Scopus: “A team of professional
indexers assigns index terms to records according to the following

controlled vocabularies (in addition to keywords supplied by authors
themselves): GEOBASE Subject Index (geology, geography, earth and
environmental sciences), EMTREE (life sciences, health), MeSH (life
sciences, health), FLX terms, WTA terms (fluid sciences, textile sci-
ences), Regional Index (geology, geography, earth and environmen-
tal science), Species Index (biology, life sciences), Ei Thesaurus (con-
trolled and uncontrolled terms) (engineering, technology, physical
sciences).” Source: http://info.sciencedirect.com/scopus/scopus-in-
detail/content-coverage-guide/metadata (accessedMay 1, 2015).
20The Scikit-Learn python module (http://scikit-learn.org/stable/
modules/metrics.html) is used to calculate the L2-normalized dot
product of the two vectors of keywords x and y as cosinesimi-
larity(x,y)� x yT/‖x‖‖y‖. See also http://nlp.stanford.edu/IR-book/
html/htmledition/dot-products-1.html (accessedMay 1, 2015).
21 If the two vectors were identical, then the cosine similarity would
be equal to 1.
22 In an OLS regression that includes lab-pair fixed effects and year
fixed effects. Results are robust to excluding the fixed effects.
23As a comparison, the expansion of a campus would not offer
the same degree of exogenous variation as labs would have more
influence over the allocation of the new space, and the expansion
itself could be the result of promising research being conducted on
campus.
24 In other words, it does not simply rely on a single shock, but on
multiple moves staggered in time.
25But can also be the number of collaborations or key statistics linked
to the type and quality of papers that emerge (e.g., citations, similar-
ity in keyword or cited references space).
26Descriptive statistics at this level of analysis are reported in Online
Appendix Table A-1.
27The baseline is any year more than 10 years away from the move.
28 In the appendix, robustness is provided by building the same fig-
ure with the number of collaborations as the dependent variable
(Online Appendix Figure A-2), and by ignoring the five most recent
years of moves in the data set. Whereas moves on the campus con-
tinued until 2014 (and a few are still taking place in 2016), the data
used in this paper cover 1980–2010. When estimating the effects,
Online Appendix Figure A-3 limits the sample to moves between
1997 and 2005.
29Empirically, it is important to highlight that separated lab pairs
were more likely to be related both in knowledge space and research
agendas (since the campus was optimized to minimize distance by
field before the moves started)—i.e., these pairs are also more likely
to overlap in other circumstances (e.g., teaching, conferences) and
have a higher baseline risk of collaboration.
30Part of the noise in the result could be due to crowding out taking
place for some of these pairs as labs shift part of their collaboration
portfolios toward their new neighbors, as described in the lab-level
regressions.
31OLS regression with lab-pair fixed effects and year fixed effects.
Error bars represent 95% confidence intervals based on robust stan-
dard errors clustered at the lab-pair level.
32OLS regression with lab-pair fixed effects and year fixed effects.
Error bars represent 95% confidence intervals based on robust stan-
dard errors clustered at the lab-pair level.
33The effect is close in timing to the rise in collaboration observed
in Figure 1, which suggests that labs become more similar mostly
through purposeful interactions. At the same time, it becomes pos-
itive and significant substantially earlier, which is consistent with
at least some interactions predating collaboration or taking place in
the absence of collaboration. In the online appendix, similar graphs
show that colocated labs are also more likely to start publishing in
a journal that is new to them but not to their collaborator (Online

http://www.upmc.fr/en/university.html
http://www.ipubli.inserm.fr/handle/10608/20
https://www.elsevier.com/solutions/scopus/content
http://www.epaurif.fr/documentation/transferts
http://info.sciencedirect.com/scopus/scopus-in-detail/content-coverage-guide/metadata
http://info.sciencedirect.com/scopus/scopus-in-detail/content-coverage-guide/metadata
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Appendix Figure A-4) and exhibit increasing overlap in the key-
words they use outside of direct collaborations (Online Appendix
Figure A-5).
34The estimated coefficient for the separation line at t − 2 and t − 1
is positive and significant, which is consistent with the moves sepa-
rating lab pairs that were actually benefiting from colocation in the
pre-period.
35Citation data were obtained from Scopus in 2016, and quartiles
for the citation distribution are built by year using a large sample of
articles in the relevant fields of science.
36An analysis on the subsample of data for which floor-level infor-
mation is available shows effects roughly twice as large as those
measured in Table 5 for labs that not only share the same building,
but also the same floor.
37Results on collaboration portfolios highlight how labs actually
became more inward focused during the moves, potentially because
of the worsened set of neighboring labs relative to their preferences.
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