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ABSTRACT: Machine learning (ML) has emerged as a powerful complement to
simulation for materials discovery by reducing time for evaluation of energies and
properties at accuracy competitive with first-principles methods. We use genetic
algorithm (GA) optimization to discover unconventional spin-crossover complexes in
combination with efficient scoring from an artificial neural network (ANN) that
predicts spin-state splitting of inorganic complexes. We explore a compound space of
over 5600 candidate materials derived from eight metal/oxidation state combinations
and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by
limiting how far the GA travels away from the nearest ANN training points while
maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the
leads from full chemical space enumeration. Over a 51-complex subset, average
unsigned errors (4.5 kcal/mol) are close to the ANN’s baseline 3 kcal/mol error. By
obtaining leads from the trained ANN within seconds rather than days from a DFT-
driven GA, this strategy demonstrates the power of ML for accelerating inorganic
material discovery.

Although increases in computing power and efficient
algorithms1−6 have cemented first-principles screening7−16

16 (e.g., with density functional theory or DFT) as a critical
component of materials and chemical discovery,9−13,17−22

further acceleration is needed to overcome the combinatorial
challenge of vast regions of unexplored chemical space.23,24

With the increased availability of large training sets,25 machine
learning (ML) has emerged26−30 as a tool to replace first-
principles characterization, demonstrating improvement over
linear structure−property relationships31,32 and, where large
data sets are available, predicting energies with an accuracy that
approaches or exceeds the baseline accuracy of approximate
DFT.29,33,34 ML models have excelled in design for narrow
composition spaces (e.g., alloys31,32 or phase stabilities35).
Descriptors used in ML model training can have strong size and
domain dependence36−39 that restrict discovery to a specific
size range and chemical composition. Following the successes
of force-field development,40 group additivity,41 and chem-
informatics,42,43 major ML-driven advances have been made in
organic molecule design and discovery,44,45 where structure−
property relationships are well-defined. Inorganic chemistry
represents a challenging case where few46 force fields are
available, informatics approaches are less well-devel-
oped,14,16,47−50 and properties of interest such as spin-state
ordering or redox potential require robust first-principles
characterization.
Nevertheless, the enlarged chemical space afforded by

inorganic chemistry motivates ML model development as a
tool to accelerate discovery. We recently trained51 an artificial

neural network (ANN) on 2690 geometry optimized transition-
metal complexes to predict transition-metal complex adiabatic
high-spin to low-spin state splitting (ΔEH‑L) with root-mean-
square error (RMSE) of 3 kcal/mol along with its Hartree−
Fock exchange sensitivity and metal−ligand bond length. We
selected 25 mixed continuous (i.e., oxidation state) and discrete
(i.e., metal identity) local descriptors (MCDL-25) that focused
on metal-proximal effects and demonstrated superior trans-
ferability over whole complex representations to the prediction
on diverse molecules from experimental databases (Figure 1).
This feature set was selected from seven candidate feature sets,
as evaluated by retained features and errors with LASSO,52 and
the inclusion of discrete features was made possible by their
compatibility with an ANN. As suggested by the success of
ligand field theory,53−55 our representation51,56 is ideal for
predicting inherently local, electronic properties such as spin
state splitting.
Now we turn to the outstanding challenge of using ML

models to enable chemical discovery in inorganic chemistry. An
open question for the use of ML models28,32,37,39 in
discovery57−60 is the manner in which we should optimally
balance exploration of new compounds with model confidence.
Although ML model predictions are of virtually no computa-
tional cost versus direct simulation, if the ML model lacks
extrapolative power to previously unstudied complexes, then its
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utility for chemical space exploration will be limited. A second
concern is the manner in which optimization is carried out in
continuous, data-driven representations versus discrete repre-
sentations needed for characterization, for example, by
simulation.
We develop strategies for balancing exploration in inorganic

chemical space with model confidence in a manner that makes
leads obtained from a ML model amenable to straightforward
validation by first-principles simulation, a necessary step toward
automated, adaptive learning. We circumvent the secondary
question of continuous optimization61−65 by employing widely
used66−69 genetic algorithms (GAs) on discrete ligand pools in
combination with our ANN to discover unconventional spin-
crossover complexes.
Spin-crossover complexes (SCOs) are defined by near-zero

free-energy differences of high (H) and low (L) spin states
(ΔGH‑L), with changes in spin in response to light/heat due to
entropic differences.70 This behavior makes SCOs compelling
for potential applications, for example, spintronics and sensing
of light71,72 or small molecules.73−75 Conventional76−79 Fe(II)/
nitrogen SCOs are well-studied,19,54,55 and design rules for
these complexes have been recently suggested.80,81 In this work,
we use GAs on a larger (i.e., several thousand) compound space
to reveal both expected and unconventional SCOs as judged
through adiabatic electronic energy differences (i.e., |ΔEH‑L| < 5
kcal/mol; see Computational Details).
We now will explore GA-driven strategies for discovering

octahedral spin-crossover complexes from a chemical space
composed of metals in the original ANN (i.e., M(II/III), where
M = Cr, Mn, Fe, or Co) with 32 unique ligands with varied
denticity (i.e., 16 monodentate, 14 bidentate, and 2
tetradentate), direct connecting atom identity (CA, i.e., C, N,
and O), and size (i.e., from 2 atoms in CO to 52 atoms in
cyanoaceticporphyrin) (Supporting Information Table S1 and
Figure S1). Taking into account ligand compatibility and the
symmetry required by the ANN51 (i.e., one gene each for axial

and equatorial ligand identity), these combinations produce a
compound space of 5664 (i.e., 708 ligand combinations × 8
metals) transition-metal complexes ranging from 13 to 151
atoms in size (Supporting Information Table S2). Of the 32
ligands, 14 were in the original set of ligands used to train the
ANN, but only 113 of 5664 compounds (2%) in the design
space have been previously studied.51

For spin-crossover complex discovery, our target is to
minimize the spin-state splitting (i.e., ΔEH‑L) obtained (e.g.,
with DFT or an ANN), using H-L definitions as in previous
work51 (see Computational Details and Supporting Informa-
tion Table S3). At each generation in the GA, compound spin-
splitting fitness (Fs) is evaluated as
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where ΔwH‑L controls the decrease in fitness with increasing
magnitude of ΔEH‑L, chosen to be 15 kcal/mol to preserve Fs ≈
1.0 for |ΔEH‑L| ≤ 5 kcal/mol (Supporting Information Figure
S2). For the GA, we follow a similar strategy to ref 22: Starting
from a pool of 20 randomly selected complexes, 21 generations
are carried out with fitness evaluation, which includes five
crossovers and random mutation probability (pmut) of 0.15 (i.e.,
of the metal or ligand genes, details in Supporting Information
Text S1). Differences from standard choices22,66 are the
reduced number of generations and a higher mutation
probability to increase diversity,67 both motivated by the
modest compound space. We introduce a diversity control
mode to further increase diversity (i.e., percentage of complexes
with distinct gene combinations in the total pool) by raising
pmut by 0.5 when the diversity of a generation falls below 25% of
the pool and reduce pmut to the 0.15 default once diversity
reaches at least 25%.
Evaluation of compound fitness during GA optimization with

a trained ANN motivates consideration of uncertainty in model
predictions. Beyond sometimes overconfident credible inter-
vals82 obtained from dropout, we have identified51 large (i.e., >
1.0) Euclidean norm of the distance (d) in normalized MCDL-
25 descriptor space to training data to be a useful indicator of
low ANN accuracy (Supporting Information Text S1). MCDL-
25 emphasizes the direct metal−ligand environment: Preserv-
ing an oxygen connecting atom but replacing water ligands with
larger furan ligands (i.e., changing the Δχ and topology from a
truncated Kier index83) produces moderate distances (i.e., d =
0.5, see Figure 1), whereas a changed CA in otherwise
comparably structured ligands (i.e., imidazole vs furan)
produces large distances (i.e., d = 1.5). Differences in oxidation
state (e.g., Fe(II)(bpy)3 vs Fe(III)(bpy)3: d = 0.1) are closer in
descriptor space than different metals (e.g., Fe(II)(furan)6 vs
Mn(II)(furan)6: d > 1.0) (see Figure 1). Large distances in
descriptor space can arise from substantial differences in all
ligands, even when metal, oxidation state, and direct CAs (i.e.,
all proximal features56) are unchanged. Fe(II)(bpy)2(furan)2 is
distant (i.e., d = 1.0) from the closest ANN training point,51

Fe(II)(NCS)4(H2O)2, due to differing denticity, Δχ, and
truncated Kier index.83 Remote changes more than three
bonds away from the metal−ligand bond56,84 are neglected in
the nearsighted descriptor set, so distinct compounds can be
identical in MCDL-25 (see Figure 1 and Supporting
Information Table S1).
Thus using observations about the relationship between

chemical differences and descriptor distances, we define our
target discovery region for ANN scoring as 0.3 ≤ d ≤ 1.0 to

Figure 1. (top) Representative descriptors in MCDL-25: metal
properties, metal-adjacent (i.e., local ligand properties), and global
ligand properties. (bottom) Representative complexes including
Fe(II)(H2O)6 in training data and increasingly distant complexes
from the training data (left to right): Fe(II)(bpy)3, Fe(II)-
(H2O)2(furan)4, and Fe(II)(bpy)2(furan)2. The closest training point
and its distance is indicated below each complex.
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avoid both “discovery” of complexes too similar to training data
and high-promise but very low-confidence complexes. We
introduce a modified fitness function (Fs,d)
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where in addition to a spin-splitting fitness term, a penalty
scaled by dopt is set to discourage sampling compounds with a
very large distance to the training data. To encourage
compound discovery, we introduce a distance control mode
that adapts the fitness function from eq 1 to eq 2 only if the
average d of all complexes is large (dav > 0.6, selected by trial
and error) after a generation has been selected for fitness and
reverts to eq 1 if dav falls below 0.6 in a subsequent generation.
We have selected dopt = 1.0 in eq 2 by trial and error to avoid
overpenalizing discovery.
We compare four modes of spin crossover complex GA

optimization using an ANN for scoring: (i) distance control in
the fitness function, (ii) mutation-rate enhancement to
encourage diversity, (iii) both distance and diversity controls,
and (iv) a standard spin-splitting fitness GA. A 21-generation
GA run requires a little over 5 min to complete (limited by
complex assembly with partial force field optimization for
optional follow-up DFT study), whereas fitness evaluation with
DFT single points at guessed geometries85 would require 4
days (Supporting Information Text S2). All molecules are built,
scored, and evolved using an automated design extension to our
molSimplify toolkit,85 which is freely available online86

(Supporting Information Text S3). As expected, the standard
GA rapidly (i.e., within five generations) approaches a mean
pool fitness of 1.0 through a dramatic drop in diversity
corresponding to roughly one lead compound at the end of the
GA run (Figure 2). Introducing diversity control improves the
number of retained compounds, but diversity control or
standard GA runs converge to high-distance/low-confidence
leads (dav ≈ 1.0, Figure 2). Adjusting fitness evaluation from eq
1 to eq 2 with distance control reduces dav to ∼0.5 (Figure 2).
Introducing a distance control comes at the cost of slightly
reducing the mean spin-splitting-only fitness of the retained
ligands to ∼0.8, a modest increase in |ΔEH‑L| due to the
exponential fitness function, and, interestingly, increases the
pool diversity (Figure 2). Finally, combining both controls
preserves the good features of both strategies: Diversity of leads
at the end of a GA run is highest overall, and mean distance to
training set is unchanged from distance control (Figure 2).
Incorporating diversity or both controls increases the number
of distinct complexes sampled in the GA runs by 50% (150 vs
100) over other modes and localizes retained hits to a narrow
area of target distance and spin-splitting (Supporting
Information Figures S3 and S4).
Over 50 repeats, roughly half (∼2800) of the compound

space is sampled by the standard GA, and the slight reduction
(∼2650) in compounds sampled with distance control is
compensated by combination with diversity control (∼3300)
(Supporting Information Table S4 and Figure S5). We
evaluated the full feasible design space with the ANN in a
little over 7 h on a standard desktop machine to identify the
fraction of leads (i.e., |ΔEH‑L| < 5 kcal/mol and 0.3 ≤ d ≤ 1.0)
missed during these GA optimizations (Supporting Information
Text S2). Roughly 8% (474 complexes) of the constructed
design space corresponds to our definition of lead compounds
(Figure 3a and Supporting Information Table S4). Our

recommended control strategy (both) recovers nearly 80% of
the lead compounds, a substantial improvement over a standard
GA or distance control. Most missed compounds are at larger
(d > 0.5) distances (Figure 3b and Supporting Information
Table S4 and Figure S6).
Dimensionality reduction87 of the full compound space in

continuous descriptors56 similar to MCDL-25 reveals why it is
challenging to ensure that a GA samples all compound leads
(Figure 3a and Supporting Information Text S4). Although
families of related complexes are reasonably well-clustered in
this representation (i.e., most Fe(II)-substituted-bpy and nearly

Figure 2. ANN GA runs with diversity and distance control (both,
green), diversity control only (div, blue), distance only (dist, gray),
and no controls on (none, red), as described in the main text: mean
splitting-only pool fitness (top), diversity of the pool (middle), and
mean distance to training data (bottom) with one standard deviation
over 50 runs shown in translucent shading.
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all Fe(II)-substituted-cyano complexes are sampled in small
regions), variation of properties in this space is quite rough
(Figure 3a). Narrow target regions that correspond to SCOs
are surrounded by nonleads, and several of these promising
compound regions are in areas where the ANN confidence is
low (black shading in Figure 3a).
Both distance- and diversity-controlled GA exploration

provides a promising approach to reveal a large fraction of
theoretical leads in compound space with an ANN. An
additional concern is whether our distance control ensures
reasonable reliability of the ANN-based fitness scoring. We
quantify the ANN prediction accuracy over a randomly selected
51-complex subset (i.e., roughly 15%) of the 372 identified
leads by fully geometry optimizing the high-spin and low-spin
states (see Computational Details and Supporting Information
Table S5). Overall performance on these newly generated
complexes is good, with mean unsigned error (MUE) of 4.5
kcal/mol, 40% (80%) of all compounds predicted at or below
1× (2×) baseline error of the ANN51 on a set-aside test set
(Figure 4). Around 2/3 of ANN spin-crossover leads are

validated (i.e., |ΔEH‑L,DFT| ≤ 5 kcal/mol) by DFT geometry
optimization (Figure 4). Inclusion of solvent and thermody-
namic corrections, which were omitted from ANN training or
our fitness function, reduces this fraction only slightly to around
1/2 of candidates (22 of 49, see Supporting Information Table
S5). Improvement upon this performance would likely require
ANN training directly on ΔGH‑L rather than shifting the fitness
function because inclusion of solvent and thermodynamic
corrections does not produce a systematic shift of ΔGH‑L with
respect to ΔEH‑L. Unconventional, promising complexes (i.e.,
non-Fe(II)/N, with ΔGH‑L ≈ 1.5 kcal/mol) identified by the
ANN and confirmed with DFT ΔGH‑L include Mn(II)-
(CNCH3)2(CO)4 and Fe(III)(CO)2(NCS)4. Convention-
al76−79 complexes (e.g., Fe(II)(phen)(en)2 and Fe(III)-
(NCS)2(mebpy)2) are also captured (Supporting Information
Table S5).
Categorizing distance to training data into near (d < 0.5),

mid (0.5 < d < 0.75), and far (0.75 < d < 1.0) complexes reveals
excellent prediction accuracy in the near subset (MUE = 1.5
kcal/mol) and nonmonotonically worsening performance for
mid (MUE = 6.2 kcal/mol) and far (MUE = 4.7 kcal/mol)
subsets (Figure 4 and Supporting Information Table S5 and
Figure S7). Good performance is obtained for far iron
complexes, such as Fe(II)(CNPh)2(NH2CH3)4 (d = 0.79 and
error: 1.3 kcal/mol, see (2) in Figure 4). A systematic
underprediction of Mn complexes is apparent, with MUE for
all Mn of 5.1 versus 4.1 kcal/mol for remaining metals, despite
comparable average distances over the two subsets (dav = 0.65
vs 0.63). The most notable example is Mn(II)(CO)2(CNPh)4
(d = 0.51 and error: −18.9 kcal/mol, see (1) in Figure 4). The
closest training points51 are homoleptic Mn(II)(CNCH3)6
(ΔEH‑L = 10 kcal/mol) and Mn(II)(CO)6 (ΔEH‑L = −6.6
kcal/mol), explaining why the ANN might predict the
Mn(II)(CO)2(CNPh)4 complex to have near degenerate spin
states (i.e., by averaging these two compounds), even though
the ANN can predict nonadditive effects. The origin of this
unexpected deviation is indicated by large (i.e., > 2.5 Å) Mn−
CO distances in the DFT-optimized high-spin complex
compared with low-spin complexes (1.9 Å), suggesting
electronic structure differences in this sampled heteroleptic

Figure 3. (a) t-SNE plot of the full compound space colored by ΔEH‑L (in kcal/mol as indicated in inset color bar) with increasingly high distance-
to-train regions indicated in darker shades of gray. The convex hulls of two families of Fe(II) with substituted-bpy ligands and substituted-cyano
ligands are indicated by orange and bright-green triangles, respectively. Insets show zooms to each of these regions with discrete hits in empty
diamonds with sampled hits as filled dark-green circles. (b) 1D histograms of the ANN-predicted ΔEH‑L (top) and data distance to training data
(bottom) using both controls in a stacked bar graph consisting of all sampled points (blue), nonsampled, nonhits (gray), and nonsampled hits (red).

Figure 4. (left) B3LYP (DFT) geometry optimization ΔEH‑L versus
ANN prediction distinguished by metal identity (Cr, gray; Mn, green;
Fe, red; and Co, blue) and distance from closest training point (near,
circles: <0.5, mid, squares: 0.5 to 0.75, and far, triangles: > 0.75). A
parity line is shown (gray, dotted), and the |ΔEH‑L| < 5 kcal/mol is
shown in light blue. (right, top) Error histogram of ANN predictions
with baseline error (medium green) and 2× baseline error (light
green) regions shown. (right, bottom) Representative complexes
corresponding to labels at left.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b00170
J. Phys. Chem. Lett. 2018, 9, 1064−1071

1067

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00170/suppl_file/jz8b00170_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00170/suppl_file/jz8b00170_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00170/suppl_file/jz8b00170_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00170/suppl_file/jz8b00170_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.8b00170


compound absent from the homoleptic-focused training data
(Supporting Information). These observations at mid/far
distances motivate adaptive retraining (i.e., to incorporate
more heteroleptic combinations of weak and strong field
ligands) for improved accuracy in using ANNs for discovery.
From a theoretical compound space of which only a fraction

were likely spin-crossover complexes, the ANN-GA results are
enriched in the number of DFT-level spin crossover complexes
by around an order of magnitude (Supporting Information
Text S2). The best estimates of a full geometry-optimization-
driven GA run walltime are around 10−30 days, even with
parallel evaluation of each generation (Supporting Information
Text S2 and Figures S8 and S9). We considered alternatively
using guessed16,51,85 H and L geometries to evaluate single
point (SP) ΔEH‑L with DFT, requiring around 4 days for a GA
run (Supporting Information Text S2 and Figures S8 and S10).
Imbalanced effects in bond length prediction errors51 on spin-
state ordering mean that the DFT-SP-GA performs worse than
the ANN with MUE of 11 kcal/mol and only 30% of
compounds remain spin-crossover complexes after geometry
optimization (Supporting Information Table S6).
A final consideration in computational discovery of spin

crossover complexes is the strong dependence of spin-state
ordering on functional,53,55,88−93 with few exceptions,94

especially on admixture of Hartree−Fock (HF) ex-
change53,55,88−92 due to differences in delocalization error
between spin states.95 Our ANN was trained on a range of HF
exchange values, making it possible to identify SCOs in a
functional-dependent manner. Rerunning the ANN GA with
both controls at reduced 15% exchange (i.e., B3LYP*88,92 vs
20% in B3LYP thus far) yields new candidates with weaker field
ligands (e.g., Mn(III)(NH2CH3)4(4-CNPyr)2 and Fe(II)-
(ox)2(CN)2 ΔEH‑L ≈ 0−2 kcal/mol), in line with our prior
observations51,53 (Supporting Information Figure S11). Of
leads predicted by the ANN, exchange sensitivity is predicted
by the ANN to be lowest for Mn(III)/en ligand complexes or
Co(II) complexes, and this kind of functional invariance could
be a useful metric in future multiobjective optimization.
In conclusion, we have demonstrated an ML-driven strategy

for accelerating SCO discovery with an ANN. By pairing our
trained ML model with a strategy for controlling the novelty of
leads in the GA, we discover complexes sufficiently distinct
from training data but for which the ML model can still be
suitably employed to make predictions. Using this approach, we
have explored a space of >5500 candidate materials generated
from eight possible metal/oxidation state combinations and 32
possible ligands. Of over 51 representative spin-crossover
complexes distinct from ANN training points, average unsigned
errors (4.5 kcal/mol) are close to the ANN’s baseline 3.1 kcal/
mol error. Two thirds of the discovered compounds, including
unconventional complexes, are still considered spin-crossover
candidates after full DFT geometry optimization. The largest
errors can be avoided in future work by applying an even more
conservative distance control, using a series of independently
trained ANNs, or enriching the data set with more heteroleptic
compounds. This strategy demonstrates the power of ML for
accelerating materials discovery through prescreening vast
chemical space. In future work, we will identify ways to exploit
(instead of avoid) high-promise, low-confidence compounds
for adaptive retraining of ML models during discovery. We
expect this suite of ML models, discovery algorithms, and
simulation automation software to be valuable for the
optimization of key properties in inorganic chemistry.

■ COMPUTATIONAL DETAILS
Single-point energies and geometry optimizations were carried
out with TeraChem3,96 at the B3LYP97−99 level of theory with
LANL2DZ effective core potential100 for all transition metals,
bromine, and iodine and the 6-31G* basis for the remaining
atoms, as employed during ANN training.51 Basis set
dependence is observed to be small (Supporting Information
Table S7). Although their inclusion has been motivated,101

vibrational or solvent contributions, which often have
compensating effects,16,101 are neglected during fitness scoring
by DFT or with the trained ANN (Supporting Information
Table S5). On representative molecules, vibrational enthalpy
and entropy corrections were obtained through calculation of
the gas-phase Hessian of each spin state. Solvent corrections
were obtained from differences in solvation free energy on the
gas-phase geometries using COSMO86,102 (ε = 78.39 and a
cavity constructed from 1.2× Bondi radii103).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jpclett.8b00170.

Information and structures of ligands used in the GA
pool; calculation of allowed ligand combinations; high-
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