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Abstract

The mdx mouse is the most widely-used animal model of the human disease Duchenne

muscular dystrophy, and quantitative PCR analysis of gene expression in the muscles of

this animal plays a key role in the study of pathogenesis and disease progression and in

evaluation of potential therapeutic interventions. Normalization to appropriate stably-

expressed reference genes is essential for accurate quantitative measurement, but determi-

nation of such genes is challenging: healthy and dystrophic muscles present very different

transcriptional environments, further altering with disease progression and muscle use, rais-

ing the possibility that no single gene or combination of genes may be stable under all exper-

imental comparative scenarios. Despite the pedigree of this animal model, this problem

remains unaddressed. The aim of this work was therefore to comprehensively assess refer-

ence gene suitability in the muscles of healthy and dystrophic mice, identifying reference

genes appropriate for specific experimental comparisons, and determining whether an

essentially universally-applicable set of genes exists. Using a large sample collection com-

prising multiple muscles (including the tibialis anterior, diaphragm and heart muscles) taken

from healthy and mdx mice at three disease-relevant ages, and a panel of sixteen candidate

reference genes (FBXO38, FBXW2, MON2, ZFP91, HTATSF1, GAPDH, ACTB, 18S,

CDC40, SDHA, RPL13a, CSNK2A2, AP3D1, PAK1IP1, B2M and HPRT1), we used the

geNorm, BestKeeper and Normfinder algorithms to identify genes that were stable under

multiple possible comparative scenarios. We reveal that no single gene is stable under all

conditions, but a normalization factor derived from multiple genes (RPL13a, CSNK2A2,

AP3D1 and the widely-used ACTB) appears suitable for normalizing gene expression in

both healthy and dystrophic mouse muscle regardless of muscle type or animal age. We fur-

ther show that other popular reference genes, including GAPDH, are markedly disease- or

muscle-type correlated. This study demonstrates the importance of empirical reference

gene identification, and should serve as a valuable resource for investigators wishing to

study gene expression in mdx mice.
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Background

The X-linked muscle-wasting disease Duchenne muscular dystrophy (DMD) affects roughly 1

in 5000 new born boys [1], and is the most common fatal genetic condition diagnosed in child-

hood. Caused by absence or insufficiency of the muscle membrane-associated protein dystro-

phin, muscle fibres lacking this protein sustain damage under even normal use [2]. Repeated

cycles of muscle degeneration and compensatory regeneration, alongside a steady accumula-

tion of fibrotic scarring and fatty replacement, lead to muscle atrophy, loss of function and

ultimately death. While the condition is presently incurable, DMD remains a field of active

research: several different approaches aimed at dystrophin restoration are currently under

investigation or entering therapeutic trials [3, 4]. Such research is aided by animal models, and

multiple models of this disease exist, including mouse [5], rat [6, 7], rabbit [8], dog [9–11] and

pig [12, 13]. While mouse models (particularly the mdx mouse) are the most frequently stud-

ied, each model offers discrete benefits and caveats in terms of disease severity, disease pro-

gression, cost and therapeutic tractability [14]. Regardless of species, assessment of the

consequences of insufficient dystrophin -and more critically, the extent of therapeutic dystro-

phin restoration- utilises multiple investigative avenues, from whole animal and whole muscle

physiological studies, to gross histology and immunostaining, to quantitative measures of gene

expression at the protein and mRNA level.

Quantitative analysis of mRNA via reverse-transcription and subsequent qPCR (SYBR

green, Taqman, and more recently digital droplet) is a powerful approach, allowing determina-

tion of the extent and significance of changes in transcription (or degradation), often needing

only minimal starting material. Processing of tissue to RNA and then onward to cDNA

involves multiple manipulation steps, however, all of which may vary in efficiency: normaliza-

tion of data via internal reference genes (genes known to be stably-expressed under the condi-

tions studied) is essential before meaningful conclusions can be drawn. Identification of such

reference genes is thus critical, but it is now well-recognised that no single gene is suitable

under all circumstances, and many putative reference genes show prominent changes between

tissues and -of particular relevance to DMD research- with disease. Different muscles within

even the same model organism may necessitate different reference genes, hampering compara-

bility of experiments. An ideal panel of reference genes would be appropriate regardless of

muscle group studied, animal age, or whether the muscle in question was healthy or dystro-

phic, but identifying such a panel presents considerable challenges. Healthy skeletal muscle is

essentially static, and consequently exhibits remarkable transcriptional stability. In contrast,

the cellular environment present within damaged, regenerating muscle is more diverse, com-

prising necrotic/apoptotic myofibres, proliferating myoblasts, fusing myotubes and immature

myofibres committing to fibre-type fate choices [15]. Add to this the presence of adipocyte,

fibroblast, infiltrating macrophage and lymphocyte components characteristic of dystrophic

disease progression and it is clear that the transcriptional milieu of dystrophic muscle is likely

to be highly plastic. Furthermore, the relative proportions and transcriptional states of all these

diverse elements will vary with disease progression, severity and muscle type: finding even a

single gene expressed stably under such mixed conditions seems ambitious, and it would not

be unreasonable to surmise no such genes exist.

Assessment of potential reference genes is not a straightforward process: RNA is an inher-

ently labile, short-lived molecule, and even within highly-expressed near-ubiquitous mRNAs,

transcript levels can alter far more rapidly than the corresponding proteins they encode.

GAPDH may serve for normalizing protein expression under many conditions, but this gene

may conversely be wholly inappropriate as an RNA standard (even under the same conditions)

and worse: may be inappropriate in a manner not immediately obvious to the researcher. Poor

Identification of qPCR reference genes for the mdx mouse model of Duchenne muscular dystrophy

PLOS ONE | https://doi.org/10.1371/journal.pone.0211384 January 30, 2019 2 / 28

(musculardystrophyuk.org, project grant 17GRO-

PG12-0204). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0211384


normalization may mask genuine biological effects, or even suggest such effects where none

exist. The importance of reference gene selection in qPCR (and the pitfalls of inappropriate

choices) is illustrated in the MIQE guidelines [16]: all qPCR data should be normalized to ref-

erence genes shown to be appropriate for the conditions studied, and moreover multiple refer-

ence genes should be used (two at a bare minimum). Empirical determination of appropriate

genes is by necessity rather tortuous: a simple approach to identify appropriate candidate ref-

erence genes would be direct comparison with established good candidates, however such an

approach presupposes such candidates exist, and indeed raises questions as to the validation of

those established candidates. Identifying suitable reference gene candidates de novo thus typi-

cally involves generation of a dataset of gene expression values for multiple candidate reference

genes, in multiple representative cDNAs covering the expected range of sample variability: this

dataset can then be analysed to determine the most stable candidates according to specific

comparative metrics. Three commonly-used algorithms are geNorm [17], Bestkeeper [18] and

Normfinder [19]: each runs under a Windows/Excel environment (as an executable macro, a

write-protected spreadsheet and an Add-In, respectively), rendering them highly accessible to

the researcher, and all three can utilise the same essential dataset. Each assesses suitability via

subtly different criteria, thus each possesses unique strengths and weaknesses: both geNorm

and BestKeeper use pairwise, correlation-based approaches within the dataset, while Normfin-

der assesses expression stability of individual candidates (download locations and more

detailed summaries are provided in S1 Appendix and previously [20]). Strong performance

under any single method is commonly adjudged to be sufficient, but strong performance

under all three algorithms constitutes firm support for the suitability of any given reference

genes. Indeed, combinations of these approaches have been used to determine appropriate ref-

erence genes in multiple tissues, disease states and model organisms ranging across the biolog-

ical spectrum (see [21–32] for a small selection of recent examples). We also note that

RefFinder, a software package incorporating all three plus a comparative ΔΔCt method is now

available [33], however given the strengths and weaknesses of each method, we prefer to assess

outputs individually.

We have previously used the three algorithms described above to identify the genes

CSNK2A2 and AP3D1 as suitable reference genes throughout the transcriptionally-plastic pro-

cess of myogenic differentiation in both healthy and dystrophic murine myoblast cell cultures

[34], suggesting that such diverse transcriptional environments are tractable to some extent.

More recently, we made the remarkable finding that the genes HPRT1, SDHA and RPL13a are

appropriate for normalizing gene expression in a canine model of DMD (the DeltaE50-MD

dog), regardless of animal age, presence/progression of disease, or even muscle type [20]. A

similar panel of genes might thus exist for human patients, or as we investigate here, the mdx
mouse.

The mdx mouse is the canonical animal model of DMD: first reported in 1984 [5], this

mouse model carries a natural mutation in exon 23 of the dystrophin gene (dmd) which results

in a premature stop codon and consequent loss of dystrophin expression [35]. While the dis-

ease severity in this animal is mild and remarkably well-tolerated (mdx mice live near-normal

lifespans, and predominantly display compensatory muscle hypertrophy rather than atrophy

and fibrosis) [36], the model still exhibits continual muscle degeneration/regeneration, and

has proven to be a valuable resource for scientific research into this devastating human

disease.

Given the ubiquity of this animal model (PubMed indicates an average of 124 papers a year

since 2000, and ~3000 in total since the model was first reported), it is somewhat surprising

that no such reference gene assessment study has to date (to our knowledge) been performed

in this animal. Studies have been performed in healthy mice alone, either looking at quadriceps
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muscle only [37], or at gastrocnemius muscle during denervation atrophy [38], but systematic

analysis of candidate reference genes in healthy and dystrophic mice is lacking. A number of

different genes have been used in the mdx literature, including B2M [39], cyclophilin [40] and

HPRT1 [41, 42], but the most widely-employed references appear to be either GAPDH [43–

47], 18S [48–50] or ACTB [47, 51–53]. In the majority of cases only a single gene is used, with

little effort to standardise between studies, and the justification for the reference gene chosen is

rarely provided. These shortcomings are perhaps understandable, as identifying and verifying

a universally-applicable set of genes is not trivial: assessing the suitability of a given reference

gene under multiple criteria necessitates a large and well-structured dataset, one from which

statistically-valid criterion-specific subsets can readily be prepared and analysed.

For the study described here, we were able to take advantage of the higher sample numbers

mouse models potentially offer, and thus endeavoured to prepare a broad and comprehensive

sample set of healthy and mdx mouse muscle tissues. Our final sample set comprised muscle

RNA collected from dystrophic mice and healthy strain-matched controls at three different

disease-relevant ages: 6 weeks, corresponding to the early stage of disease and characterised by

profound focal degeneration; 10 weeks, corresponding to progressing disease, with widespread

degeneration and compensatory regeneration; and 24 weeks, corresponding to established dis-

ease with a comparatively stable level of degeneration/regeneration and fibrotic accumulation

in some muscles (Fig 1). We used multiple mice per age (N = 3 per genotype) and a broad

panel of muscles covering multiple functional roles, oxidative capacities and dystrophic pro-

gression: the highly-studied tibialis anterior (TA) muscle; the gastrocnemius (GC) and quadri-

ceps (Q) hind-limb muscles; the triceps muscle (TRI); musculature of the body wall (BW); the

diaphragm (one of the few muscles in the mdx mouse to show pronounced fibrotic accumula-

tion); and finally the heart. This substantial panel of samples (126 unique cDNA preparations,

see S2 Appendix for a summary) permits empirical assessment of gene stability under a multi-

tude of different criteria or subdivisions. Similarly, we used sixteen candidate reference genes

(FBXO38, FBXW2, MON2, ZFP91, HTATSF1, GAPDH, ACTB, 18S, CDC40, HPRT1, SDHA,

RPL13a, CSNK2A2, AP3D1, PAK1IP1 and B2M –see Table 1), an extensive panel that included

the three most prevalent ‘housekeeping genes’ in the mdx field (18S, GAPDH and ACTB),

those that scored highly in our murine cell-culture myogenesis work (CSNK2A2, AP3D1) [34],

and those that performed well in our recent dystrophic dog study (HPRT1, SDHA, RPL13a)

[20].

We reasoned that use of such a large panel of candidates would maximise potential for iden-

tifying reference genes suited for specific comparative scenarios and increase likelihood of

identifying a unified set that score highly under all scenarios. As shown below, we were able to

determine just such a unified set, while also revealing stark transcriptional differences between

model systems of DMD and identifying several widely-used reference genes as being actively

muscle- or disease-associated.

Methods

Animals and tissue collection

Dystrophic muscle samples were obtained from male mdx mice bred under UK Home Office

Project Licence PPL 70/7777 (holder Professor Dominic Wells) together with healthy strain-

matched male C57/Bl10 wild type (WT) samples from mice bred under the same licence. This

study was internally reviewed and approved by the Royal Veterinary College Animal Welfare

and Ethical Review Body. Mice were held in open top cages in a minimal disease unit at an

average 21˚C in a 12 hours light/ 12 hours dark light cycle with food and water provided ad-

lib. Mice were collected at three ages (6 weeks, 10 weeks, 24 weeks) and sacrificed by cervical
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dislocation. Three healthy and three dystrophic animals were used for each time point. Muscle

tissues -TA, GC, Q, TRI, BW, hemidiaphragm- were collected rapidly, flash frozen under liq-

uid nitrogen and stored at -80˚C. Hearts, contralateral muscles and the remaining hemidiaph-

ragm were mounted in cryoMbed (Bright Instruments Ltd.) on cork blocks and frozen in

liquid-nitrogen-cooled isopentane for cryosectioning and histological analysis.

RNA isolation

Frozen tissues were pulverised under liquid nitrogen while cork-mounted hearts were sub-

jected to cryosectioning. Interleaving unmounted heart sections (~50 sections at 8um thick-

ness) and pulverised muscle tissue (~100mg per sample) were used to prepare RNA via

TRIzol reagent (Invitrogen) according to the manufacturer’s instructions (with the addition

of a 1:1 chloroform extraction step after phase separation, and inclusion of 10ug glycogen

in the isopropanol precipitation). RNA purity was assessed via spectrometry (Nanodrop

ND1000), and samples with 260/230 ratios lower than 1.7 were cleaned via a further isopro-

panol precipitation. RNA integrity was confirmed for a representative panel of samples via

gel electrophoresis.

Fig 1. Disease progression in the mdx mouse. Representative Haematoxylin and Eosin stains of tissues used in this

study. Top row (A): WT Tibialis anterior (TA) muscle; Second row (B): mdx TA muscle; Third row (C): WT

diaphragm muscle; Bottom row (D): mdx diaphragm muscle. Left column: 6 week samples; Centre column: 10 week

samples, Right column: 24 week samples. Note the prominent necrosis and oedema characteristic of the 6-week acute

phase, the steady accumulation of centrally-nucleated fibres with age and the marked fibrosis and calcium deposition

in dystrophic diaphragms. Scale bar: 200um.

https://doi.org/10.1371/journal.pone.0211384.g001
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cDNA synthesis

cDNA was prepared using the RTnanoscript2 kit (Primerdesign), using 1.6ug total RNA per

reaction, with oligodT and random nonamer priming. cDNAs were subsequently diluted 1/20

in nuclease-free H2O to give a final cDNA concentration of ~4ng.ul-1 (assuming 1:1 conver-

sion). Samples were stored at -20˚C.

qPCR

Reactions were carried out using PrecisionPLUS SYBR green mastermix (Primerdesign) in

duplicate or triplicate, using 2ul diluted cDNA per well (approx. 8ng). Cycling used a CFX384

thermal cycler (BioRad) in three-step PCR (95˚C, 15sec; 60˚C, 20sec; 72˚C, 20sec for 40 cycles)

with subsequent melt curves performed for all reactions. Quantification cycle (Cq) values were

determined by regression, and (where necessary) converted to relative quantities (RQ). Prim-

ers to FBXO38, FBXW2, MON2, ZFP91, HTATSF1, GAPDH, ACTB, 18S, CDC40, SDHA,

RPL13a, CSNK2A2, AP3D1, PAK1IP1 and B2M were taken from the geNorm and geNorm-

PLUS primer sets (Primerdesign) and sequences are thus proprietary. In accordance with the

amended MIQE guidelines for proprietary primer sequences [54] we have included anchor

nucleotide and context lengths for the amplicons used (see S2 Appendix). Primers to HPRT1
were the well-validated pan-species set taken from [55], and have the following sequence:

HPSF F 5’-GGACTAATTATGGACAGGACTG-3’
HPSF R 5’-GCTCTTCAGTCTGATAAAATCTAC-3’
All primer sets produced single amplicons and all reactions were of comparable efficiency

(95–105%). Additional detail regarding primer validation can be found in S2 Appendix.

Analyses

geNorm, Bestkeeper and ungrouped Normfinder analyses were conducted on our entire data-

set, and also on subsets of our data (number of samples indicated in brackets) as follows:

• Healthy samples only (N = 63)

Table 1. Candidate reference gene names/full names.

Gene Name Full name

FBXO38 F-Box Only Protein 38

FBXW2 F-Box And WD-40 Domain Protein 2

MON2 Regulator Of Endosome-To-Golgi Trafficking

ZFP91 Zinc Finger Protein 91

HTATSF1 HIV-1 Tat Specific Factor 1

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase

ACTB Beta Actin

18S 18S ribosomal RNA

CDC40 Cell Division Cycle 40

HPRT1 Hypoxanthine phosphoribosyltransferase 1

SDHA Succinate dehydrogenase subunit A

RPL13a Ribosomal protein L13

CSNK2A2 Casein Kinase 2 Alpha 2

AP3D1 Adaptor-Related Protein Complex 3 Subunit Delta-1

PAK1IP1 P21-Activated Protein Kinase-Interacting Protein 1

B2M Beta 2 Microglobulin

https://doi.org/10.1371/journal.pone.0211384.t001
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• Dystrophic samples only (N = 63)

• 6 week samples only (N = 42)

� 6 week healthy only (N = 21)

� 6 week dystrophic only (N = 21)

• 10 week samples only (N = 42)

� 10 week healthy only (N = 21)

� 10 week dystrophic only (N = 21)

• 24 week samples only (N = 42)

� 24 week healthy only (N = 21)

� 24 week dystrophic only (N = 21)

Given the research interest in specific muscle groups, and the distinct metabolic and dis-

ease-specific responses of particular muscles to dystrophic progression, we also used several

more focussed subsets. These subsets reduced our dataset to the level of individual muscles of

particular research value (diaphragm, heart, TA), or excluded muscles with unique properties

(i.e. a dataset containing non-respiratory skeletal muscles: all muscles except the fibrosis-

prone slow, oxidative diaphragm and the non-skeletal heart muscle). We did not further divide

these subsets by healthy/dystrophic, as such an approach would in most cases provide datasets

of only nine samples, greatly increasing susceptibility to noise. The datasets were thus as

follows:

• Non-respiratory skeletal muscle only (TA/GC/Q/Tri/BW: N = 90)

• Diaphragm only (N = 18)

• Heart only (N = 18)

• TA only (N = 18)

For grouped Normfinder analysis, grouping criteria were applied to the whole dataset (or,

where applicable to allow at least two members per group, to subsets as described above).

Grouping criteria used were as follows:

• Individual animal (18 groups)

• Healthy/dystrophic (2 groups)

• Muscle type (7 groups)

• Age (3 groups)

Bestkeeper analysis used raw Cq values, while both geNorm and Normfinder used linear-

ised relative quantity (RQ) values.

Statistics

Statistical analyses for category-specific expression differences used appropriate non-paramet-

ric tests. Healthy vs Dystrophic: Mann-Whitney U; Muscle-group, age, or muscle-group by

healthy/dystrophic: one-way ANOVA with Sidak’s multiple comparisons test. Correlation

coefficients (Pearson or Spearman’s rho) were determined as indicated. All statistical analysis

was performed using GraphpadPRISM software or Microsoft excel.
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Results

Cq distributions

Cq values for our panel of candidate genes (S1A Fig) covered a broad range of expression lev-

els, from the very highly expressed (18S, GAPDH) to the more modestly expressed (FBXW2,

CSNK2A2). Expression levels were also highly comparable with those reported for these genes

in the Human BodyMap 2.0 data [56] (S1B Fig). Unexpectedly however, three of our candidate

genes (FBXO38, MON2, ZFP91) showed very high variation in expression, and moreover failed

to provide quantitative amplicons in several of our samples, with near limit-of-detection levels

in others (in both cases, invariably those taken from 24 week old dystrophic mice). While of

academic interest (and clearly a finding that highlights the stark differences between healthy

and dystrophic muscle), missing data combined with innately high variability immediately

rendered these genes unsuitable for use in our study. These genes were thus omitted from sub-

sequent analysis. Distribution of within-gene Cq values for our remaining thirteen candidates

were lowest in AP3D1 and CSNK2A2, and highest in FBXW2 (S1 Table).

geNorm analysis

The pairwise approach of the geNorm algorithm [17] calculates a stability factor M for each

gene (see S1 Appendix), a measure of the extent to which expression of that gene correlates

with other genes in the dataset. Iterative removal of the gene exhibiting the least correlation

(highest M), followed by recalculation of M values allows the dataset to be reduced until

only a single pair of highly-correlated genes remain: the ‘best pair’. The M value of this final

pair, and the values of each discarded gene allow candidate genes to be ranked from least to

most stable (lowest M). By convention, candidates with M values < 0.5 are generally consid-

ered to be appropriate reference genes, though for samples expected to exhibit high tran-

scriptional variability (such as comparison of multiple cell types, or samples derived from

tumours) values < 1.0 are adjudged acceptable [57]. Analysis of our dataset as a whole, or

assessed as healthy or dystrophic samples alone (Fig 2, Table 2), revealed that ACTB,

CSNK2A2, RPL13a and AP3D1 consistently ranked highly (indeed, ACTB represented one

member of the best pair in all cases). Stability as a whole was however modest, as might be

expected for such varied samples: for the analysis of our entire dataset, only the pairing of

ACTB and RPL13a fell below the 0.5 threshold (though healthy/dystrophic only datasets

showed marginally higher stability, with several genes achieving this benchmark). When

analysed by sub-category (Table 2 and S2 Fig) a similar pattern was observed, with ACTB,

CSNK2A2, RPL13a and AP3D1 near-universally appearing within the top five highest scor-

ing candidates, suggesting these genes are suitable both for broad panels of muscles and for

individual muscle groups (such as diaphragm).

Fig 2. geNorm analysis. Representative outputs of the geNorm algorithm. geNorm ranking by average expression

stability M (left to right: least stable to most stable) for the entire dataset, or dystrophic or healthy samples alone (as

indicated). Dashed line: M = 0.5 (threshold of stability for strong candidates).

https://doi.org/10.1371/journal.pone.0211384.g002
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Interestingly, assessment of heart samples alone revealed that HTATSF1 appears uniquely

stable in this tissue, here forming one half of the best pair despite scoring comparatively poorly

under all other conditions. Conversely, ACTB fared less well in this specific tissue. Heart sam-

ples also exhibited higher stability as a whole, possibly reflecting the relatively mild cardiac

phenotype in mdx mice of the ages studied. In marked contrast, overall sub-category stability

values for skeletal muscle clearly illustrate the transcriptional differences between dystrophic

and healthy tissue: when categorised by age alone (thus comparing age-matched healthy and

dystrophic tissue) even the best scoring candidates exhibited M values close to 0.5, but further

sub-division into separate healthy/diseased categories enhanced stability values considerably.

Analysis also reveals that FBXW2, SDHA, GAPDH and 18S are exceptionally poor candi-

dates, with M values> 0.75 under essentially all dataset combinations.

geNorm analysis additionally indicates the change in pairwise variation elicited by increas-

ing the number of reference genes beyond the best pair (S2 Table): while increasing from two

to three (or four) lowered variation, the threshold for acceptable variation is <0.2, and the best

pair was sufficient in all cases.

Bestkeeper analysis

This algorithm substitutes the iterative pairwise method of geNorm with a pairwise compari-

son of each gene individually against the geometric average of all genes, essentially determin-

ing which gene best reflects the behaviour of the dataset as a whole [18]. Genes can thus be

ranked by their Pearson correlation coefficient (r), where r = 1 represents perfect correlation.

As shown (Fig 3, Table 3 and S3 Fig), and in agreement with geNorm analysis, ACTB,

CSNK2A2, RPL13a and AP3D1 consistently score highly, while SDHA, GAPDH and 18S
tended to show lower correlation values. Similarly, HTATSF1 was revealed to be particularly

suited to normalization of heart expression data. In marked contrast to geNorm, however,

FBXW2 (the gene exhibiting the most variable expression in our dataset, and one of lowest

scoring under geNorm analysis) here unexpectedly represented one of the highest scoring can-

didates, often with r> 0.9.

Normfinder

Unlike the pairwise approaches of other two algorithms, the Normfinder algorithm assesses

absolute expression stability, either within the dataset as a whole, or within and between sub-

groups specified by the user [19]. Each gene is thus effectively evaluated individually, rather

than by comparison with other candidates: Normfinder can identify single highly-stable gene

candidates that geNorm and Bestkeeper may not. As shown (Fig 4, Table 4 and S4 Fig) even

under this alternative assessment methodology, CSNK2A2, RPL13a and AP3D1 again were

consistently ranked highly, with ACTB also rated as highly stable under most dataset combina-

tions. HTATSF1 again scored highly in heart samples alone, though here this gene was also

ranked comparatively highly overall (especially in 24 week-old samples).

In agreement with both other algorithms, SDHA, 18S and GAPDH were assigned poor sta-

bility values, and in support of geNorm (but in dramatic contrast with BestKeeper), FBXW2
was again consistently rated as one of the least stable genes in our dataset. Under grouped anal-

ysis (Table 5 and S3, S4 and S5 Tables) a similar pattern was observed, though this methodol-

ogy also highlights categorical subtleties, permitting further inferences to be drawn. For

example, while CNSK2A2 and AP3D1 appeared highly stable essentially regardless of grouping

criterion, ACTB and (to a less dramatic extent) RPL13a tended to score highly when samples

were grouped by age, muscle type or individual, but performed less well when grouped by

healthy/dystrophic, perhaps suggesting these genes are not as well-suited to disease-specific
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comparisons as CSNK2A2 and AP3D1. As with ungrouped analysis, FBXW2, SDHA, GAPDH
and 18S were rated as low stability candidates near-universally, with SDHA and GAPDH being

particularly sensitive to grouping by muscle type.

Grouped analysis further suggests a ‘best pair’: two genes that may be of low individual sta-

bility, but in opposing senses, such that when combined they outperform any single candidate

within the dataset analysed. Of the 41 dataset groupings analysed (Table 5 and S6 Table),

AP3D1 formed one part of the best pair in 30 cases, while CSNK2A2 appeared 17 times. Inter-

estingly, ACTB and RPL13a were rarely nominated (2 and 3 times respectively) while

HTATSF1 earned 21 nominations.

Taking all three algorithm outputs together, our data suggests that CSNK2A2, AP3D1,

RPL13a and ACTB are suitable for normalizing gene expression in healthy and dystrophic

mice regardless of animal age or muscle studied. RPL13a and ACTB may be less optimal for

specific healthy/dystrophic comparisons if used individually, however as shown by geNorm

these genes remain very strong if used as part of a set.

Validation of gene candidates

To assess the validity of the four high-scoring gene candidates (CSNK2A2, AP3D1, RPL13a
and ACTB), we employed a within-dataset strategy we have used previously: using a normali-

zation factor generated from our highest-scoring genes (NF: geometric mean of the four candi-

dates above) to normalize low-scoring genes from our panel. In addition, as GAPDH is often

employed as a reference in the literature, this gene (here scoring poorly) was also used to nor-

malize other low-scoring genes for comparative purposes. We first addressed SDHA: in canine

muscle this gene is a high-scoring and universally-suitable candidate [20]; conversely, our

work here suggests this gene is highly unstable in mouse muscle under all algorithms and

essentially all dataset comparisons. Normalization of SDHA expression via our NF data reveals

this gene to not only exhibit a highly muscle-specific transcriptional program, but also to be

markedly reduced in dystrophic tissue (with the exception of the mildly-affected heart muscle)

(Fig 5A & 5B). In contrast, following normalization with GAPDH alone this muscle-specificity

appears grossly simplified, and disease-associated changes are no longer apparent at individual

muscle or even entire dataset level (Fig 5A & 5C). The coefficient of variation (CoV, a measure

of the spread of data) is also substantially reduced by normalization with our four-gene NF,

but increases following normalization with GAPDH.

Our second candidate was B2M: this gene (beta-2-microglobulin) is actively disease-associ-

ated in dogs [20], showing an up-regulation of approximately 2-fold in dystrophic canine mus-

cle (likely reflecting elevated numbers of immune cells in damaged tissue). Though this gene

has been used in the literature [39], performance of this gene in our mouse panel was medio-

cre, and as shown in Fig 6A, the raw (non-normalized) data for B2M in our mouse muscle

dataset does appear to suggest a highly significant (P = 0.0002) increase in B2M expression in

Fig 3. BestKeeper analysis. Representative outputs of the BestKeeper algorithm. Coefficient of correlation values for

the reference gene candidates are shown for the entire dataset, or dystrophic or healthy samples alone (as indicated),

ranked (left to right) from least stable to most stable.

https://doi.org/10.1371/journal.pone.0211384.g003
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dystrophic tissue. Crucially, however: after normalization to the geometric mean of CSNK2A2,

AP3D1, RPL13a and ACTB this difference disappears entirely (P = 0.72). This unexpected

finding appears to be genuine: as shown, the coefficients of variation are markedly reduced by

normalization, exactly as would be expected if such normalization is effective. Conversely, nor-

malization to GAPDH exaggerates this apparently aberrant difference (P<0.0001), and again

also increases CoV values.

Given these findings, it seemed prudent to use our NF to normalize GAPDH data: as shown

(Fig 6B), raw GAPDH data shows no overt disease-associated expression pattern, though does

display some muscle-group specificity. Following normalization (Fig 6C), GAPDH exhibits

marked muscle-specific variation in expression, and is further revealed to be sharply downre-

gulated (~2-fold) in all dystrophic skeletal muscle (but not heart).

GAPDH is a widely-used reference gene in the mdx mouse, and one could rightly posit that

these disease-associated decreases in expression might instead be an artefact generated by a

poorly-chosen normalization factor composed of genes that all show increased expression in

diseased tissue. We thus subjected each of our high-scoring genes to normalization with our

NF (a slightly unorthodox approach that means each gene is effectively normalized–in part- to

itself, but which allows each gene’s individual bias with respect to the NF to be assessed, and

moreover allows all four normalized genes to be directly compared). Raw data suggests a dys-

trophy-associated increase in all cases (S5A Fig) however following normalization (Fig 7 and

S5B Fig) all four genes show marked reduction in CoV, and none of the genes exhibit any sig-

nificant muscle specificity. Nevertheless, our data suggests each gene is indeed disease-associ-

ated to a biologically mild (~20% change) but statistically highly-valid (P = 0.002 for RPL13a,

P<0.0001 otherwise) extent. Crucially, however, the genes differ in the direction of change:

ACTB and RPL13a both show a ~20% increase in dystrophic tissue, while CSNK2A2 and

AP3D1 both show a ~20% decrease in dystrophic tissue. Our data thus suggest that (much as

for selection of the best pair in grouped Normfinder analysis) while no single gene is wholly

stable between healthy and dystrophic muscle, a highly stable normalization factor can be gen-

erated by geometric averaging of two (or four) genes that exhibit small disease-specific changes

in equal but opposite directions.

Discussion

A panel of reference genes suitable for normalizing gene expression in both healthy and dys-

trophic tissue (regardless of age or muscle group) would represent a valuable tool in the DMD

research tool-kit, ostensibly permitting otherwise quite disparate samples (such as aged dia-

phragm and young tibialis anterior) to be empirically compared and evaluated, both within

and between research groups. Dystrophic muscle is however host to a complex mixture of cell

types, and moreover a mixture that changes with age, frequency of use and muscle type: it is by

no means guaranteed that any set of genes might be appropriate for normalizing expression

Fig 4. Normfinder analysis (ungrouped). Representative outputs of the Normfinder algorithm. Stability values (left to

right: least stable to most stable) for the reference gene candidates are shown for the entire dataset or dystrophic or

healthy samples alone (as indicated).

https://doi.org/10.1371/journal.pone.0211384.g004

Identification of qPCR reference genes for the mdx mouse model of Duchenne muscular dystrophy

PLOS ONE | https://doi.org/10.1371/journal.pone.0211384 January 30, 2019 13 / 28

https://doi.org/10.1371/journal.pone.0211384.g004
https://doi.org/10.1371/journal.pone.0211384


T
a

b
le

4
.

N
o

rm
fi

n
d

er
ra

n
k

in
g

s
(u

n
g

ro
u

p
ed

).

A
ll

d
a

ta
A

ll
h

ea
lt

h
y

A
ll

D
M

D
A

ll
6

w
k

A
ll

1
0

w
k

A
ll

2
4

w
k

A
ll

sk
el

et
a

l

m
u

sc
le

A
ll

D
IA

A
ll

H
ea

rt
s

A
ll

T
A

6
w

k

h
ea

lt
h

y

6
w

k
D

M
D

1
0

w
k

h
ea

lt
h

y

1
0

w
k

D
M

D
2

4
w

k

h
ea

lt
h

y

2
4

w
k

D
M

D

M
o

st
A

P
3

D
1

C
S

N
K

2
A

2
A

P
3

D
1

C
S

N
K

2
A

2
A

P
3

D
1

H
T

A
T

S
F

1
C

S
N

K
2

A
2

A
P

3
D

1
C

S
N

K
2

A
2

A
P

3
D

1
A

C
T

B
C

S
N

K
2

A
2

C
S

N
K

2
A

2
A

P
3

D
1

H
T

A
T

S
F

1
H

T
A

T
S

F
1

st
ab

le
C

S
N

K
2

A
2

A
C

T
B

R
P

L
1

3
A

A
P

3
D

1
C

S
N

K
2

A
2

A
P

3
D

1
A

P
3

D
1

R
P

L
1

3
A

H
T

A
T

S
F

1
C

D
C

4
0

C
S

N
K

2
A

2
A

P
3

D
1

A
P

3
D

1
R

P
L

1
3

A
A

P
3

D
1

A
C

T
B

R
P

L
1

3
A

R
P

L
1

3
A

A
C

T
B

C
D

C
4

0
R

P
L

1
3

A
A

C
T

B
C

D
C

4
0

H
T

A
T

S
F

1
R

P
L

1
3

A
H

P
R

T
1

H
T

A
T

S
F

1
1

8
S

R
P

L
1

3
A

A
C

T
B

A
C

T
B

R
P

L
1

3
A

H
T

A
T

S
F

1
A

P
3

D
1

C
S

N
K

2
A

2
H

T
A

T
S

F
1

C
D

C
4

0
C

S
N

K
2

A
2

R
P

L
1

3
A

A
C

T
B

C
D

C
4

0
R

P
L

1
3

A
R

P
L

1
3

A
H

P
R

T
1

A
C

T
B

C
S

N
K

2
A

2
C

S
N

K
2

A
2

A
P

3
D

1

A
C

T
B

H
T

A
T

S
F

1
H

T
A

T
S

F
1

R
P

L
1

3
A

H
T

A
T

S
F

1
R

P
L

1
3

A
H

T
A

T
S

F
1

C
S

N
K

2
A

2
A

P
3

D
1

C
S

N
K

2
A

2
A

P
3

D
1

R
P

L
1

3
A

S
D

H
A

H
P

R
T

1
R

P
L

1
3

A
C

S
N

K
2

A
2

P
A

K
1

IP
1

C
D

C
4

0
P

A
K

1
IP

1
A

C
T

B
H

P
R

T
1

P
A

K
1

IP
1

A
C

T
B

P
A

K
1

IP
1

S
D

H
A

A
C

T
B

C
D

C
4

0
C

D
C

4
0

H
P

R
T

1
H

T
A

T
S

F
1

1
8

S
H

P
R

T
1

C
D

C
4

0
P

A
K

1
IP

1
H

P
R

T
1

H
P

R
T

1
P

A
K

1
IP

1
S

D
H

A
P

A
K

1
IP

1
G

A
P

D
H

A
C

T
B

G
A

P
D

H
H

P
R

T
1

H
T

A
T

S
F

1
C

D
C

4
0

P
A

K
1

IP
1

S
D

H
A

P
A

K
1

IP
1

H
P

R
T

1
S

D
H

A
B

2
M

1
8

S
B

2
M

H
P

R
T

1
H

P
R

T
1

B
2

M
H

P
R

T
1

H
T

A
T

S
F

1
P

A
K

1
IP

1
F

B
X

W
2

H
T

A
T

S
F

1
B

2
M

P
A

K
1

IP
1

B
2

M

B
2

M
B

2
M

C
D

C
4

0
P

A
K

1
IP

1
A

C
T

B
B

2
M

G
A

P
D

H
S

D
H

A
G

A
P

D
H

S
D

H
A

F
B

X
W

2
A

C
T

B
P

A
K

1
IP

1
1

8
S

B
2

M
S

D
H

A

18
S

H
P

R
T

1
1

8
S

B
2

M
1

8
S

18
S

B
2

M
1

8
S

P
A

K
1

IP
1

1
8

S
B

2
M

B
2

M
B

2
M

C
D

C
4

0
C

D
C

4
0

FB
X
W
2

SD
H
A

18
S

SD
H
A

F
B

X
W

2
G
A
PD

H
CD

C4
0

F
B

X
W

2
H
PR

T1
1

8
S

B
2

M
S

D
H

A
P

A
K

1
IP

1
1

8
S

G
A

P
D

H
H
PR

T1
18
S

L
ea

st
FB

X
W
2

FB
X
W
2

G
A
PD

H
SD

H
A

SD
H
A

FB
X
W
2

18
S

CD
C4

0
B2

M
PA

K
1I
P1

18
S

G
A

P
D

H
G
A
PD

H
FB

X
W
2

G
A
PD

H
CD

C4
0

st
ab

le
G
A
PD

H
G
A
PD

H
FB

X
W
2

G
A
PD

H
FB

X
W
2

G
A
PD

H
SD

H
A

FB
X
W
2

FB
X
W
2

FB
X
W
2

G
A
PD

H
S

D
H

A
FB

X
W
2

SD
H
A

FB
X
W
2

G
A
PD

H

N
o

rm
fi

n
d

er
re

su
lt

s
fo

r
th

e
en

ti
re

u
n

g
ro

u
p

ed
d

at
as

et
o

r
su

b
se

ts
(a

s
in

d
ic

at
ed

),
ra

n
k

ed
(t

o
p

to
b

o
tt

o
m

)
fr

o
m

h
ig

h
es

t
sc

o
ri

n
g

(l
o

w
es

t
st

ab
il

it
y

v
al

u
e)

to
lo

w
es

t
sc

o
ri

n
g

.
B

o
ld

:
st

ab
il

it
y
<

0
.4

;
it

al
ic

s:

st
ab

il
it

y
>

0
.6

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
1
1
3
8
4
.t
0
0
4

Identification of qPCR reference genes for the mdx mouse model of Duchenne muscular dystrophy

PLOS ONE | https://doi.org/10.1371/journal.pone.0211384 January 30, 2019 14 / 28

https://doi.org/10.1371/journal.pone.0211384.t004
https://doi.org/10.1371/journal.pone.0211384


between dystrophic muscles, let alone between such muscles and matched healthy tissue. The

study presented here attempts to address this question in a rigorous and comprehensive fash-

ion, with a dataset using 13 genes and fully 126 samples, allowing assessment of gene suitability

in multiple muscles, including the TA, diaphragm and heart, taken from mdx and strain-

matched healthy mice at three disease- and research-relevant ages (6 week early disease, 10

week disease progression and 24 week established disease, with all three being commonly

employed time-points for therapeutic trials). As shown, our data reveal that CSNK2A2,

AP3D1, RPL13a and ACTB appear to represent a universal mouse panel (albeit not without

caveats). These four genes score highly under geNorm, Normfinder and BestKeeper analysis,

both within the dataset as a whole and when assessed as subsets of the data, suggesting a high

level of stability. Further investigation clarified this stability: all four genes exhibit no age or

muscle-group specific changes, however all four genes do show moderate (but statistically-sig-

nificant) disease-associated changes (Fig 7). The changes are small and indeed below the

threshold of significance when considered on an individual muscle level: only with the greater

statistical power afforded by more systematic analysis do these changes reveal themselves

(illustrating a major strength of our large and comprehensive dataset). Such a result might be

considered problematic: use of any one of these genes as a reference would introduce a small

(~20%) but nevertheless consistent disease-specific bias. The significance of our findings is

that this bias can be effectively (and easily) eliminated, as the differences exhibited are almost

perfect mirror images of each other: the extent to which ACTB and RPL13a are increased in

dystrophic tissue is near-exactly matched by the extent to which CSNK2A2 and AP3D1 are

decreased. A normalization factor prepared by geometric average of all four (or indeed one of

each sign) should exhibit no net disease-associated behaviour, and would thus be entirely

appropriate for normalizing gene expression data taken from both healthy and dystrophic tis-

sue, regardless of animal age or muscle type studied.

Table 5. Normfinder rankings (grouped).

All Samples All Healthy All Dystrophic

Animal Disease Muscle Age Animal Muscle Age Animal Muscle Age

Best pair AP3D1

+

HTATSF1

HTATSF1

+

B2M

AP3D1

+

HTATSF1

AP3D1

+

CSNK2A2

HTATSF1

+

CSNK2A2

AP3D1

+

HTATSF1

AP3D1

+

HTATSF1

PAK1IP1

+

RPL13A

AP3D1

+

CSNK2A2

AP3D1

+

PAK1IP1

Most CSNK2A2 AP3D1 CSNK2A2 ACTB CSNK2A2 CSNK2A2 RPL13A RPL13A AP3D1 RPL13A

stable AP3D1 HPRT1 AP3D1 AP3D1 RPL13A ACTB CSNK2A2 AP3D1 CSNK2A2 AP3D1

HTATSF1 CDC40 ACTB CSNK2A2 ACTB AP3D1 B2M CSNK2A2 ACTB CDC40

RPL13A CSNK2A2 B2M PAK1IP1 HTATSF1 HTATSF1 ACTB ACTB RPL13A ACTB

CDC40 18S HTATSF1 RPL13A AP3D1 RPL13A AP3D1 HTATSF1 HTATSF1 HTATSF1

PAK1IP1 FBXW2 RPL13A SDHA B2M PAK1IP1 HTATSF1 PAK1IP1 HPRT1 CSNK2A2

ACTB PAK1IP1 PAK1IP1 HTATSF1 CDC40 CDC40 GAPDH CDC40 PAK1IP1 PAK1IP1

B2M HTATSF1 18S B2M SDHA B2M PAK1IP1 B2M B2M SDHA

HPRT1 B2M HPRT1 CDC40 PAK1IP1 18S FBXW2 HPRT1 18S B2M

GAPDH RPL13A FBXW2 GAPDH GAPDH HPRT1 CDC40 GAPDH FBXW2 GAPDH

FBXW2 GAPDH CDC40 FBXW2 FBXW2 SDHA SDHA SDHA CDC40 HPRT1

Least SDHA ACTB SDHA HPRT1 18S FBXW2 18S 18S SDHA 18S

stable 18S SDHA GAPDH 18S HPRT1 GAPDH HPRT1 FBXW2 GAPDH FBXW2

Normfinder results for the entire dataset or healthy/diseased subsets grouped by different criteria (as indicated: top row; datasets, second row; criterion), ranked from

highest scoring (lowest stability value) to lowest scoring (see supplementary data for extended grouped analysis). Grouped analysis also suggests the best pair of genes for

normalization (third row), (not necessarily the highest scoring individually). Bold: stability <0.25; italics: stability > 0.4

https://doi.org/10.1371/journal.pone.0211384.t005
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Fig 5. Succinate dehydrogenase subunit A expression. (A) Expression data for SDHA in all healthy and dystrophic

samples, either raw relative quantity (RQ) values (left); normalized to the geometric mean of ACTB, RPL13a,

CSNK2A2 and AP3D1 (centre); or to GAPDH (right). (B) and (C) expression data for SDHA in healthy and dystrophic

samples sorted by muscle group (as indicated) normalized to the geometric mean of ACTB, RPL13a, CSNK2A2 and

AP3D1 (B) or to GAPDH (C). Data shown either as individual sample RQ values (•) and means +/- SEM, or means

+ SEM alone. �:P<0.05; ��:P<0.01,����:P<0.0001 (Mann-Whitney U test (healthy/dystrophic) or one-way ANOVA

with Sidak’s multiple comparisons test (healthy/dystrophic by muscle)). Boxes: Coefficient of Variation.

https://doi.org/10.1371/journal.pone.0211384.g005
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Fig 6. Beta 2 microglobulin and Glyceraldehyde 3-phosphate dehydrogenase expression. (A) Expression data for

B2M in all healthy and dystrophic samples, either raw relative quantity (RQ) values (left); normalized to the geometric

mean of ACTB, RPL13a, CSNK2A2 and AP3D1 (centre); or to GAPDH (right). (B) and (C) Expression data for

GAPDH in all healthy and dystrophic samples (left), or healthy and dystrophic samples sorted by muscle group (as

indicated, right), either raw (B) or normalized to the geometric mean of ACTB, RPL13a, CSNK2A2 and AP3D1 (C).

All data shown either as means +/- SEM plus individual sample RQ values (•) or as means + SEM alone. ��:P<0.01,���:

P<0.001,����:P<0.0001 (Mann-Whitney U test (healthy/dystrophic) or one-way ANOVA with Sidak’s multiple

comparisons test (healthy/dystrophic by muscle)). Boxes: Coefficient of Variation.

https://doi.org/10.1371/journal.pone.0211384.g006
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For studies concerned exclusively with heart tissue, our data further reveal that while these

four genes also tend to score highly in this tissue, the gene HTATSF1 exhibits marked stability

specifically in cardiac samples (outperforming many of the other four genes under all three

algorithms). Of the muscles studied here, the heart is certainly the most unique, thus it is not

surprising (and indeed, arguably encouraging) that such tissue-specific differences exist.

CSNK2A2 and AP3D1 both score highly in murine cell culture models of myogenesis

(healthy or dystrophic) [34], remaining stable from proliferating myoblasts all the way to con-

tractile myotubes. Given the relatively mild pathology of the mdx mouse (with minimal

inflammation or fibrosis), the bulk of any given skeletal muscle is likely either mature muscle

or muscle at various stages of regeneration: genes that remain stable through this process

might well be expected to rank highly. As noted, both genes nevertheless exhibit a mild but

consistent reduction in dystrophic muscle (perhaps reflecting the greater percentages of non-

muscle cells within these tissues) but encouragingly these genes remain strong candidates

regardless of whether 6, 10 or 24 week old samples are considered in isolation: as shown in Fig

1, each stage exhibits distinct pathological characteristics that correspond to marked changes

in cellular composition. These two genes also score highly in the diaphragm, suggesting that

the progressive accumulation of fibrotic scarring does not affect their suitability as references

(at least up to 24 weeks of age). The performance of these genes in dogs is unknown, however

we note these genes are absent from the Canis familiaris geNorm primer set (suggesting their

stability may be mediocre).

The strong performance of ACTB is a surprise: we have previously shown this gene to be an

exceptionally poor candidate in both myogenic cell cultures and healthy/dystrophic dogs [20,

34], and the expectation was that this gene would similarly fare poorly here. It is not immedi-

ately clear why this gene should be such a strong candidate in mouse muscle: expression of this

cytoskeletal beta isoform falls during myogenesis (presumably as the increase in filamentous

alpha-actin and other contractile proteins presses cytoskeletal requirements to the periphery)

thus one would expect levels in healthy muscle to be low, while levels in dystrophic muscle

-with its diverse cellular composition- to be elevated. As shown, expression of beta actin is

indeed elevated in diseased muscle, and consistently so, but to only a comparatively minor

extent.

Fig 7. Expression of the four high scoring genes. Expression data for ACTB, RPL13a, CSNK2A2 and AP3D1 (as

indicated) in all healthy and dystrophic samples, individually normalized to the geometric mean of ACTB, RPL13a,

CSNK2A2 and AP3D1. Data shown as individual sample relative quantity values (•) and means +/- SEM. ��:P<0.01,����:

P<0.0001 (Mann-Whitney U test). Boxes: Coefficient of Variation.

https://doi.org/10.1371/journal.pone.0211384.g007
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RPL13a (which codes for a protein component of the large ribosomal subunit) is similarly

identified as highly stable, but as with ACTB, also shows a small, but significant and consistent

increase in expression within dystrophic muscle. A parsimonious interpretation of this

increase might be that, courtesy of infiltrating inflammatory cells and proliferating myoblasts,

dystrophic tissue simply contains a greater number of cells per unit mass. We note that

RPL13a also scored highly in our canine panel, and indeed a number of studies have suggested

that genes directly associated with the translational machinery tend to score highly as candi-

date reference genes [23, 28, 31, 32] under a variety of conditions, implying that translational

components are highly stable. Such findings suggest that translation may not be limiting

under most conditions, with even dramatic changes in cellular translational demand being

readily accommodated by existing ribosomal content. A puzzling corollary, therefore, is the

observation that 18S ribosomal RNA performs so poorly under similar comparisons (both in

dogs and mice). As the core RNA components of the ribosome, rRNAs must achieve stoichi-

ometry with ribosomal proteins, and do so without the advantage of the amplification step

inherent to translation (one mRNA ->many proteins): ribosomal RNA is thus incredibly

abundant (as shown by low Cq values), and such abundance may explain this discrepancy.

rRNAs are estimated to make up ~80% of total RNA, with tRNAs contributing a further 15%

[58], thus measured RNA concentrations are primarily a reflection of ribosomal RNA concen-

tration: small changes in rRNA fraction of a sample (say, 85% to 82%) would likely fall within

the range of tolerable biological noise and thus have little effect on the total translational capac-

ity of a cell, or the measured RNA concentration. The concomitant mRNA content of the two

samples would however vary by 60% (an increase from 5% to 8% of total RNA), rendering 18S
a misleading metric of mRNA content. Use of extremely abundant RNAs as references already

carries caveats with respect to efficiency and accuracy of measurement, thus it would seem

ribosomal RNAs, despite the advantages in signal robustness their abundance ensures (and

their widespread historical use), are poor references for study of gene expression.

In addition to 18S as discussed above, our data also suggest that GAPDH -another fre-

quently-employed reference gene- here performs remarkably poorly, as does SDHA (which

conversely scored very highly in a canine model of DMD): indeed, both GAPDH and SDHA
display prominent muscle-specific expression patterns, and both also show marked disease-

specific changes. The fact that SDHA (succinate dehydrogenase subunit A) does not exhibit

the same universal suitability as shown previously in dogs most likely stems from the inherent

differences in skeletal muscle mitochondria between small and large mammals. In the muscle

of dogs (and similarly, humans), fast glycolytic 2B fibres are essentially absent: even the fastest

fibres present (2X) retain significant oxidative capacity, and the muscles of larger mammals

consequently exhibit more metabolic homogeneity. In contrast, while all fibres of the mouse

display proportionately higher mitochondrial volumes than larger mammal counterparts, they

also exhibit marked metabolic compartmentalization: the fast, glycolytic muscles of mice are

very fast, and very glycolytic (and vice versa for the slow, oxidative muscles) [59]. This

compartmentalization is clearly reflected in the (normalized) expression of the mitochondrial

marker SDHA, even between the comparatively fast skeletal muscles chosen for this study.

SDHA also exhibits a prominent disease-specific reduction in muscle expression: this decrease

may reflect elevated levels of non-muscle cells, or the large numbers of fast-twitch glycolytic

regenerating fibres within active skeletal muscle, an explanation that would also account for

the absence of such a decrease in the heart (as this tissue has limited regenerative capacity).

Taken together, these findings render SDHA manifestly unsuitable as a reference in mouse

muscle, instead serving here as a precautionary tale against extrapolating between model

organisms.
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Our finding that GAPDH also shows muscle-specific expression is not wholly surprising:

several multiple-tissue transcriptomics studies have reported markedly higher expression of

this gene in skeletal muscle than in heart [56, 60, 61]. GAPDH also exhibits a two-fold decrease

in dystrophic tissue, however: a discovery that has potentially serious implications for studies

using this gene as a reference for comparisons between healthy and diseased animals (or

indeed treated vs untreated dystrophic tissues).

A final gene that performed exceptionally poorly was the Fbox/WD40 protein FBXW2,

ranked as last or second-last by geNorm and Normfinder under most datasets, with the dra-

matic exception of BestKeeper analysis, where it was near-unanimously ranked highest. This

was wholly unexpected: raw FBXW2 Cq values show only moderate correlation with other

candidate genes (S7 Table), and indeed exhibit the greatest sample-to-sample variation within

our dataset; even before analysis the expectation was that this gene would fare poorly. One pos-

sible explanation for this discrepancy was that such high variability allowed this gene to exert a

potent influence over the average generated by the BestKeeper algorithm, artificially enhancing

its own correlation with that average. However, after removal of FBXW2 from our dataset, the

resultant (FBXW2-deleted) BestKeeper still correlates highly with FBXW2 (Pearson correlation

of 0.91 drops to 0.89, S6 Fig). We note however that this method ranks only by correlation

with the BestKeeper, the average expression of all genes: comparisons between individual

genes play no role in the final ranking. There is thus no a priori reason (beyond improbability)

that a given gene might correlate only modestly with other individual candidates while still ser-

endipitously correlating spectacularly well with the average of those candidates. Regardless of

the underlying mechanism, such a finding illustrates the advantages of our approach: use of

three different algorithms allows unexpected occurrences exactly like this to be readily identi-

fied and rightly dismissed as aberrant. We do not consider FBXW2 to be a suitable reference

gene here.

Taken as a whole, the above results are encouraging: our dataset is substantial, and we have

endeavoured to cover a wide range of potential comparative scenarios so as to truly support

our conclusions of universal suitability. We must nevertheless accept certain limitations: only

three time-points were chosen, and while these were chosen to maximise utility to the mdx
research field, our data is ostensibly only applicable to mice up to 24 weeks of age. In a similar

vein, only 3 healthy and 3 dystrophic mice were taken for each time-point, limiting the levels

of subdivision we could realistically achieve: while this is unlikely to affect the robustness of

our dataset as a whole or under the subsets presented here, comparison (for example) of ‘dys-

trophic TA muscles alone’ would be a dataset of 9 samples, while ‘6 week dystrophic TA mus-

cles alone’ would consist of 3, neither dataset large enough to confer confidence in the

conclusions obtained. Five or six mice of each genotype might plausibly permit such analyses,

but the numbers (210 or 252 samples respectively) render such studies impractical in terms of

resources, time and sample-handling practicality. We also limited our investigations to only

seven muscles (the TA, gastrocnemius, quadriceps, triceps, body wall, diaphragm and heart).

Inclusion of the very fast EDL and slow, postural soleus muscle would be a welcome addition,

but again for reasons of time and practicality (these muscles are also very small, limiting avail-

able tissue for RNA extraction) these were omitted. As a final caveat, this work addresses the

mdx mouse (and non-dystrophic C57/Bl10 mice) alone: our final high-scoring candidate

genes are well-supported, but we cannot claim these findings necessarily extend to other dys-

trophic mice such as the mdxCV lines [62, 63] or the humanised mdx Cmah-/- mouse [64].

These limitations conceded, we feel our data remains robust, comprehensive and compel-

ling. Our nominated genes are not individually stable between healthy and dystrophic tissue

(it may be the case that no such stable genes exist for comparisons in mouse), but nevertheless

combine to produce a normalization factor that is stable regardless of disease, age, or muscle
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group. It would however be remiss not to address the pertinent observation that the contrast-

ing behaviour of our high scoring genes (CSNK2A2, AP3D1, RPL13a and ACTB) and GAPDH
could well be viewed from the opposite perspective. GAPDH (following normalization with

our high-scoring candidates) is revealed to show marked muscle and disease-specific changes

in expression, thus by extension our high-scoring candidates (following normalization with

GAPDH) would show similar muscle and disease-specific changes in expression, but simply of

the opposite sign. Both ACTB and GAPDH have been widely used as references in the mdx
mouse (though almost never together), thus our findings may engender controversy regardless

of interpretation. We have previously shown GAPDH to be a poor candidate both in canine

muscle and murine cell cultures (healthy and dystrophic), though we note the very same analy-

ses revealed ACTB to be a similarly poor choice. In the mdx mouse as shown here, GAPDH
remains poor while ACTB appears to be a very strong candidate. Given the further observation

that B2M is strongly disease-associated in a dog model of DMD, and appears similarly disease-

associated in mouse if GAPDH is used as a reference but crucially not if our normalization fac-

tor (including ACTB) is used, our conclusions here warrant additional attention. The three

algorithms employed here are unbiased, and the scoring obtained is an empirical measure of

gene suitability under the constraints stipulated by the method in question, but each method

has limitations. geNorm will select unstable but pairwise-matched candidates over highly sta-

ble candidates without an appropriate matching partner, while Normfinder will do the reverse;

as illustrated by FBXW2 here, BestKeeper may even produce aberrant results purely through

chance. The fact that our four high-scoring candidates perform well under all three methods,

both by pairwise comparisons (geNorm and BestKeeper) and by individual measure of stabil-

ity (Normfinder: both within and between a wide range of possible sub-groupings) is however

strong support, as is the concomitant observation that GAPDH near-uniformly performs

poorly under the exact same comparisons. Furthermore, all four of our high-scoring candi-

dates show remarkable sample-to-sample RQ agreement (Spearman’s rho values ~0.8), while

all four show poor correlation with GAPDH (~0.3–0.4) (S8 Table). Given the diverse biochem-

ical roles played by these four genes, a coordinated muscle and disease-associated expression

program for all four seems unlikely. Conversely SDHA, another key metabolic gene used in

our panel, exhibits muscle and disease-specific expression in a manner similar to GAPDH,

while critically not demonstrating overt sample-to-sample correlation with this gene (Spear-

man’s rho 0.39). Finally, normalization of data with our four genes resulted in a marked

decrease in data spread (lower CoV) in almost all cases, while normalization with GAPDH
achieved the opposite effect. If one makes the assumption that biological replicates for expres-

sion of a given gene should be relatively consistent, one would be forced to conclude our nor-

malization factor serves better in this respect than does GAPDH.

Conclusions

The primary goal of this work was to establish whether a set reference genes exists for mouse

muscle that remain suitable for both healthy and dystrophic samples regardless of animal age

or muscle type studied: a standard panel of qPCR reference genes that remain valid under

essentially all comparative scenarios would, if adopted widely, render multiple studies con-

ducted in multiple research groups highly comparable. As shown here, despite showing small

disease-associated changes, the combination of CSNK2A2, AP3D1, RPL13a and ACTB appears

to fulfil this challenging remit. Moreover, we have previously shown that such a set exists for

normalizing expression in healthy and dystrophic canine muscle [20], raising the enticing pos-

sibility that a similar set might be identified for use in human patient samples. We would not

necessarily expect the same genes to perform well in humans: our data suggest that
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extrapolation between species is not straightforward. RPL13a performs well in both mouse

and dogs (and thus may similarly excel in humans), but our other candidate genes show clear

species-specificity. Humans are genetically closer to mice than dogs, but more similar to dogs

with respect to muscle metabolism and disease presentation/severity. A human equivalent of

the study presented here would be markedly more ambitious, but our data suggests such an

effort might yield success.

A secondary goal of this work was to assess the validity of the three most commonly used

reference genes in the literature (GAPDH, 18S and ACTB), as these three genes have previously

been shown to be remarkably poor choices in myogenic cell cultures and dystrophic canine

muscle. Unexpectedly, while GAPDH and 18S remain poor candidates in this study, ACTB is

revealed to be a strong choice in mouse, a finding we hope is of considerable reassurance to

many investigators in the mdx field. The small dystrophy-associated increase we identify here

argues against using this gene alone however, and we would further stress that reliance on any

single gene is a risky, error-prone normalization strategy regardless of suitability: in alignment

with the MIQE guidelines [16] investigators should always strive to employ two if not three

reference genes, especially if attempting to measure subtle changes in expression. We accept

that use of all four reference genes suggested here might be considered excessive (though such

an approach would be highly rigorous), and our geNorm analysis suggests there is little advan-

tage to be gained in increasing the number of reference genes from three to four (S2 Table).

All four genes show very closely-matched expression profiles (S7 and S8 Tables), and while all

are high-scoring, no consistent ranking of the four emerges. All four offer advantages with

respect to wider comparisons: CSNK2A2 and AP3D1 also perform well in myogenic cell cul-

tures, RPL13a performs well in dogs, and ACTB already enjoys widespread use in mdx mice.

Given the observations regarding disease-specificity however, we do not recommend pairing

CSNK2A2 and AP3D1 alone, nor ACTB and RPL13a, and we thus conclude by suggesting

(given the wealth of established literature using ACTB as a reference) the most prudent and

economical approach for investigators seeking empirically-identified and validated reference

genes would be to select ACTB first and foremost, and combine it with either AP3D1 or

CSNK2A2.

Supporting information

S1 Appendix. Reference gene selection algorithms: Detailed summary.
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S2 Appendix. Sample summary, Primer and qPCR validation.
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S1 Fig. Raw Cq data. (A) Individual Cq values (•) for all 126 samples for each candidate refer-
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along with number of missing datapoints. (B) Relative expression levels for each candidate ref-

erence gene in human tissues as reported by the Illumina bodymap project (expression data

converted to log(1/expression level) to allow scale-matching with raw Cq data). No bodymap

data for 18S exists (mRNA only).

(TIF)

S2 Fig. geNorm outputs for all dataset combinations. geNorm ranking by average expression

stability M (left to right: least stable to most stable) for the entire dataset, or specific subsets (as

indicated). Dashed line: M = 0.5 (threshold of stability for strong candidates).

(TIF)
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S3 Fig. BestKeeper analysis for all dataset combinations. Coefficient of correlation values

for the reference gene candidates are shown for the entire dataset, or specific subsets (as indi-

cated), ranked (left to right) from least stable to most stable.

(TIF)

S4 Fig. Normfinder analysis (ungrouped) for all dataset combinations. Stability values (left

to right: least stable to most stable) for the reference gene candidates are shown for the entire

dataset or specific subsets (as indicated).

(TIF)

S5 Fig. Muscle and disease-specific expression patterns of high-scoring candidates. (A)

Raw RQ values (•) for ACTB, RPL13a, CSNK2A2 and AP3D1 for the entire dataset, separated

by healthy/dystrophic. (B) Normalized expression data (means + SEM) for ACTB, RPL13a,

CSNK2A2 and AP3D1 separated by muscle type and healthy (green) vs dystrophic (red). �:

P<0.05, ��:P<0.01, ����:P<0.0001, Mann-Whitney U test (healthy/dystrophic). Boxes: Coeffi-

cient of Variation.

(TIF)

S6 Fig. FBXW2 vs BestKeeper. Raw Cq values for FBXW2 plotted against a BestKeeper

derived from the entire dataset (upper panel), or against a BestKeeper derived from the dataset

after removal of FBXW2 (lower panel). Boxes: Pearson correlation (r) and significance of cor-

relation.

(TIF)

S1 Table. Dataset averages. Arithmetic mean and standard deviations of the Cq values for

each candidate gene: of the genes used, FBXW2 shows the greatest sample-to-sample variation,

while AP3D1 and CSNK2A2 show the least. Shaded boxes: genes omitted from analysis.

(DOCX)

S2 Table. geNorm pairwise variation. Output of the geNorm algorithm for the entire dataset

(or subcategory as indicated) showing reduction in pairwise variation with additional refer-

ence genes (e.g. V2/3: increasing from 2 -the best pair- to three). Values of 0.2 or lower are

considered acceptable, thus three or four reference genes reduce variability but two (the best

pair) suffice in all instances.

(DOCX)

S3 Table. Age-specific Normfinder rankings (grouped). Normfinder results for age-specific

subsets grouped by different criteria (as indicated: top row; datasets, second row; criterion),

ranked from highest scoring (lowest stability value) to lowest scoring. Grouped analysis also

suggests the best pair of genes for normalization (third row), (not necessarily the highest scor-

ing individually). Bold: stability <0.25; italics: stability > 0.4

(DOCX)

S4 Table. Muscle-specific Normfinder rankings (grouped). Normfinder results for muscle-

specific subsets grouped by different criteria (as indicated: top row; datasets, second row; crite-

rion), ranked from highest scoring (lowest stability value) to lowest scoring. Grouped analysis

also suggests the best pair of genes for normalization (third row), (not necessarily the highest

scoring individually). Bold: stability <0.25; italics: stability > 0.4

(DOCX)

S5 Table. Age and disease-specific Normfinder rankings (grouped). Normfinder results for

age-specific subsets separated by healthy/dystrophic and then grouped by different criteria (as

indicated: top row; datasets, second row; criterion), ranked from highest scoring (lowest
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