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A B S T R A C T

A series of simplified glasses were prepared to mimic the United Kingdom's Magnox radioactive waste glasses
and determine the separate effect of the presence of Mg on the glass structure and the initial dissolution rate.
These glasses had an alkaline earth (Ca/Mg) content of 6.5 mol% and relative ratios of Si, B and Na similar to
25 wt% waste loaded Magnox waste glass simulant. Each simplified glass had similar macroscopic properties,
differing only in Ca/Mg ratio. 25Mg magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of the
simplified Mg endmember (MgEM) glass (with no Ca) and the full-component simulant glass were similar,
consistent with the similar Mg local environments in both glasses. 11B MAS NMR spectra of the series of sim-
plified glasses showed a systematic increase in the amount of three-coordinated boron ([3]B) with increasing
amounts of Mg. A clear change in the charge balancing of four-coordinated boron ([4]B) by Mg compared with Ca
is observed. However, 11B NMR measurements of the leached material showed that the additional [3]B was not
preferentially leached from the Mg containing samples. Despite the structural changes in the glass induced by
Ca/Mg substitution, initial dissolution rates (r0) remained invariant, within error, with Ca/Mg ratio. This in-
dicates that the poorer aqueous durability of Mg-containing Magnox waste glass measured experimentally in
long-term leaching experiments, compared with SON68 glass containing Ca, is not caused by a primary struc-
tural effect in the glass.

1. Introduction

The majority of radioactive waste glass produced in the UK contains
magnesium (Mg). This arises for historical reasons from the Mg-con-
taining alloy cladding used on the natural uranium fuel of the first
generation UK Magnox reactors. This Mg is entrained in the fission
product fraction following fuel re-processing operations and becomes
incorporated into the glass wasteform on vitrification. At least two
studies [1,2] have shown that in long-term (up to 12.2 years), simulant
UK Magnox waste glass containing Mg (and nominally no calcium (Ca))
have significantly poorer aqueous durability compared with Ca-based
glasses such as the French benchmark SON68 inactive glass simulant.
This paper describes a separate effect study of the influence of sub-
stitution of Mg on the pristine structures and initial dissolution rate of
simplified UK Magnox waste glasses.

The simulant Magnox waste glass with a 25wt% waste loading (herein
referred to as MW25) contains 23 oxide components (see Supplementary
materials), the aim of this work is to produce a simplified glass with 6–7

components that represents the main compositional features of the complex
glass and allows the separate effect of Ca and Mg on glass structure to be
established with all other parameters being equal. As the major structural
probe will be NMR (nuclear magnetic resonance), paramagnetic lanthanides
have been substituted by lanthanum (La) and iron (Fe) has been left out of
the compositional mapping.

The similarity between MW25 and the simplified analogue needs to
be verified for the use of simplified glass to study its full-component
counterpart to be valid, especially from a Mg point of view. 25Mg MAS
(magic angle spinning) NMR provides a powerful tool to investigate the
local Mg environments in glasses. The major cations present in the glass
are boron (B) and silicon (Si), these act as the network formers which
are linked via bridging oxygens to form the network of the glass
structure. Si is primarily in four-fold coordination, this is the origin of
the Qn (quaternary) Si speciation. The number n, ranging from 1 to 4,
denotes the number of bridging oxygens attached to a silicate tetra-
hedron. B is distributed in either three- or four-fold coordination de-
pending on the nature and the availability of charge balancing cations.
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This was explored in the series of simplified glasses by 11B MAS NMR.
Other structural changes due to Mg substitution, similarly, were ex-
amined by using 23Na and 27Al nuclei as NMR probes to elucidate the
local coordination changes and overall charge balancing scheme.

In long-term experiments, B release is considered as the proxy for
measuring overall glass dissolution in water owing to its almost com-
plete leachability and absence from any secondary phases [1–3] al-
though its slight retention in the alteration layer has been directly
probed [4,5]. 11B MAS NMR can also be used to compare the [3]B/[4]B
ratio before and after leaching experiments to investigate whether there
is preferential dissolution occurring from these glasses. This in turn
would indicate whether the poorer aqueous durability of Mg-containing
glasses is due to a change in B speciation. On the other hand, whether B
speciation and other structural changes would fundamentally affect the
aqueous durability of these glasses could be readily addressed by
measuring the initial dissolution rate (r0) before secondary effects, such
as solution saturation and altered layer formation, start to influence the
dissolution process. Comparison of r0 with Ca/Mg ratio will help to
discriminate the relative importance of structural and secondary effects
on glass dissolution.

2. Materials and methods

2.1. Glass preparation

The simplified glass was made according to the composition of the
full-component MW25 glass (listed in Table S1). In order for the com-
position to represent the full-component glass as closely as possible, the
molar ratios of Si, B, Na, Al and Mg were fixed at the same ratios as in
the full-component glass. Meanwhile, the REE (rare-earth element) load
was represented by La on a charge for charge basis except cerium which
was attributed its fully oxidised charge of (4+). Paramagnetic transition
metals such as Fe and Ni were omitted to facilitate examination of the
glass structure with NMR spectroscopy. The nominal composition is
listed in Table 1. Mg was then successively substituted by Ca, on an
atom-for-atom basis, to produce 0, 25, 50, 75 and 100mol% Ca-sub-
stituted simplified glasses. The glasses are denoted as MgEM,
Mg75Ca25, Mg50Ca50, Mg25Ca75 and CaEM respectively. The final
glass-making process consisted of a controlled heating (10 °C/min) of
weighed amounts of the precursors (SiO2, Na2B4O7, Al2O3, Na2CO3,
MgO/CaCO3, La2O3) in a platinum90/rhodium10 crucible to 1500 °C.
The melt was poured onto a steel block and allowed to cool to room
temperature (RT). The glass was then broken up and re-melted using
the same ramp rate to reach 1500 °C. The second melt was poured onto
a heated steel block at 250 °C then left cooled to RT. Finally, the glass
was annealed at 550 °C for 2 h and subsequently cooled slowly in the
furnace over a period of 16 h. The compositions of these simplified
glasses were analysed (Table 1) by a combination of acid digestion/
solution ICP-MS and solid source LA-ICP-MS ((Laser Ablation) In-
ductively Coupled Plasma Mass Spectrometry) and EPMA (Electron
probe microanalysis) techniques (Table S2 shows the original data
presented in oxide wt%).

2.2. Leaching experiments

The glasses made as outlined in Section 2.1 were crushed and
ground and then sieved to a size range between 75 μm and 150 μm.
After the sieving procedure, the glass particles were washed in a con-
trolled manner with Type I water and absolute ethanol according to the
PCT-B (Product Consistency Test Type B) protocol [6] in order to re-
move any adhering fines and contaminants. The theoretical median
diameter of 112.5 μmwas then used for determining the specific surface
area (SA) of each glass sample.

For the initial dissolution rate experiments, a sample of each glass
composition ranging from 0.05 to 0.1 g was leached in a sealed PFA
(Perfluoroalkoxy alkane) vessel in 100mL 18.2MΩ deionised water
(DI) at 90 ± 1 °C and the whole system was agitated with a magnetic
stirrer. This setup results in the SA/V (surface area to volume) ratios
being no>22m−1 to ensure that the initial dissolution rate (r0) was
measured in very dilute conditions i.e., the forward hydrolysis reactions
are not hindered and the formation of effective barrier layers is pre-
cluded [7]. This should be the maximum dissolution rate of the glass for
these (temperature, DI) conditions.

The values of r0 can be determined from the change in normalised
release of Si (NLSi) within the first 7.2 h of leaching, with the applica-
tion of the shrinking core model [3] to correct for the change in SA/V
ratio over time as dissolution proceeds, as follows:
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(AG – altered glass fraction; Ci– concentration of element i in leachate
(mg/L); V – solution volume (mL); m0 – initial mass of glass sample (g);
Xi – mass fraction of element i in glass; ET – equivalent thickness of
dissolved glass (nm); SA – initial specific surface area (geometric in m2/
g); ρ – glass density (g/cm3); r0 – initial dissolution rate (g/m2/d); NLi –
normalised release of element i (g/m2); t – time interval (d)). The ra-
tionale of using Si concentration rather than that of Na is to bypass the
initial ion-exchange stage and reflect the direct dissolution of the glass
network.

For long-term 112-day leaching experiments, a glass sample of each
composition (only 11B NMR data of 112-day leached MgEM and MW25
is presented in this paper) of 0.22–0.23 g was leached in a PTFE linear,
which was sealed inside a stainless steel vessel, in 4.0 mL 18.2MΩ DI at
90 ± 1 °C. The resulting SA/V ratio for the experiments from this setup
was accordingly 1200m−1 across all compositions.

2.3. Solid-state NMR characterisation

11B, 27Al and 23Na are all non-zero spin nuclei and therefore their
local environments can be detected by solid-state NMR techniques even
without long-range atomic order. As presented in this paper, apart from
25Mg, their spectra were all obtained by single-pulse excitation. 11B

Table 1
Nominal composition of the simplified MW25 glass (MgEM) and analysed compositions of the simplified glass series (cation mol%).

Cation (mol%) Al B La Mg Ca Na Si

MgEM (Nominal) 4.87 27.58 1.72 6.54 - 15.38 43.91
MgEM 4.81 ± 0.20 28.26 ± 3.56 1.68 ± 0.16 6.54 ± 0.30 - 15.08 ± 0.81 43.63 ± 3.02
Mg75Ca25 4.82 ± 0.35 28.32 ± 6.64 1.66 ± 0.17 4.24 ± 0.32 1.57 ± 0.11 14.80 ± 1.20 44.61 ± 5.59
Mg50Ca50 4.89 ± 0.21 26.46 ± 2.06 1.73 ± 0.15 3.08 ± 0.12 3.15 ± 0.14 14.72 ± 0.71 45.98 ± 3.61
Mg25Ca75 4.93 ± 0.24 26.24 ± 2.40 2.01 ± 0.42 1.57 ± 0.07 4.78 ± 0.23 15.28 ± 0.82 45.18 ± 4.33
CaEM 4.71 ± 0.19 26.44 ± 2.97 1.69 ± 0.10 - 6.11 ± 0.22 14.92 ± 0.58 46.13 ± 2.75
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MAS NMR spectra were collected on a Varian InfinityPlus 11.7 T
spectrometer operating at 160.34MHz for 11B using a 3.2 mm MAS
probe. Samples of the unleached glass particles (size fraction
75–150 μm) were packed into 3.2mm zirconia rotors and spun at
20 kHz. A short π

20
pulse of 0.6 μs and a recycle delay of 5 s were used to

acquire the spectra. 27Al MAS NMR spectra were collected on the same
instrument but using a 2.5mm probe. Fine (< 75 μm) unleached glass
particles were used and spun at 15 kHz. A π

18
pulse and a recycle delay

of 0.3 s were applied with 8192 repetitions. 23Na MAS NMR spectra
were collected on a Varian Infinity 400MHz spectrometer using a 4mm
probe. The fines were packed into 4mm rotors and spun at 12 kHz. A
pulse length of 0.75 μs ( π

18
) and a recycle delay of 1.0 s were applied

with 1024 repetitions. The abovementioned pulse lengths (at a given RF
power) and recycle delay times were carefully adjusted to achieve se-
lective excitation of central transition and acquire quantitative spectra.
The spectra presented in this paper are referenced to BF3·OEt2 in CDCl3
(via a secondary reference of −42 ppm for 11B in NaBH4) and 23Na in
1M NaNO3, 27Al in 1M Al(NO3)3 and 25Mg in 1M MgCl2 as 0 ppm,
respectively.

25Mg shows very low NMR sensitivity due to its low natural abun-
dance (10.0%), low resonance frequency (30.6MHz at 11.7 T) and large
quadrupole moment (199.4 mbarn). In addition, only 6.5 mol% of the
total cations in the glass is Mg. To alleviate these difficulties, 25Mg
spectra were obtained with a DFS (double-frequency sweep) assisted
rotor-synchronised spin-echo pulse sequence on the UK 850MHz solid-
state NMR facility at the University of Warwick. DFS was applied to
increase the spin population difference between 1

2
and −1

2
energy le-

vels. Glass particles of MW25 (75–150 μm) and MgEM (<75 μm) were
packed in 4mm zirconia rotors and spun at 14 kHz. Spin-echo π

2
and π

pulses of 2.33 and 4.66 μs were applied and the recycle delays were 0.1
and 1.5 s, respectively, as the MgEM glass, unlike MW25, did not con-
tain paramagnetic cations that enhance spin-lattice relaxation.

DMFIT software [8] was used to fit the experimental 11B and 27Al
NMR spectra to determine the relative proportion of different species in
the glass samples.

3. Results

3.1. Glass density

Density was determined for each simplified glass by an Archimedes
principle measurement using room temperature DI as the immersion
liquid. The density variation with composition is shown in Table 2. It
decreases monotonically from 2.56 g/cm3 for CaEM to 2.49 g/cm3 for
MgEM. The squared data points plotted in Fig. 1 show that there is a
clear systematic decrease in density as Ca is substituted for Mg on a
molar basis. The diamond and triangle dots represent possible sub-
stitution models (see Section 4.1 for further details).

3.2. Glass local structures

3.2.1. Boron
A stack plot of 11B MAS NMR central transition spectra of three of

the simplified glasses is shown in Fig. 2(a). Each spectrum consists of a
narrow Gaussian peak centred at around 0 ppm which is attributed to B
in four-fold coordination and a broadened quadrupole doublet centred
at around 10 ppm which is attributed to B in three-fold coordination
[9]. The broader [3]B peaks arise from the asymmetric trigonal

configuration of BO3 units, which have larger electric field gradients
(EFGs) compared with more symmetric BO4 units with tetrahedral
configuration. Each [3]B peak is made up of contributions from ring and
non-ring BO3 units, both of which contain a distribution of isotropic
chemical shifts (δiso) as well as EFGs. The spectra are shown normalised
to [4]B intensities in order to compare the [3]B intensities. The relative
intensity of the [3]B peak which is directly proportional to the [3]B
fraction of total B in the glass, increases as more Mg is present. The
intermediate glasses Mg75Ca25 and Mg25 Ca75 are consistent with this
trend, but are omitted from the figure for clarity.

As shown, the central transition peaks of [3]B and [4]B signals are
slightly overlapped. Additionally, due to the small EFG associated with
[4]B units, the first-order satellite transition sidebands are present in the
full spectrum as shown in Fig. 2(b). Quantification of either speciation
therefore needs to take into account these two factors. It was achieved
by curve fitting using DMFIT software by incorporating a quadrupole
first-order spinning sideband manifold. One example of a fitting dia-
gram is demonstrated in Fig. S2 for MgEM glass. Table 3 shows the full
fitting results reported as the relative percentage of B in three- and four-
fold coordination. Excess [3]B is the excess cation mole percentage of
[3]B above that found in the CaEM glass.

Fig. 3 illustrates the 11B MAS NMR spectra of unleached and 112-
day leached MgEM as well as MW25 glasses. Drawn on an absolute
scale adjusted for mass and number of scans in Fig. 3(a), it is observable
that the total spectral intensity drops for both B speciations after
leaching, which highlights the fact that B was indeed lost from the
glass. On the other hand, the spectra in Fig. 3(b) and (c) have been
normalised to make the [4]B intensities equal. The spectra of the glasses
are identical before and after leaching for both simplified and full-
component glasses. The much broader and poorly resolved lines of
MW25 spectra are due to the presence of paramagnetic elements in the
glass and the spinning sidebands are denoted by asterisks as usual.

3.2.2. Sodium
Fig. 4 shows the overlaid plot of 23Na MAS NMR spectra of CaEM

and MgEM glasses. The centre peaks are coincident and centred at
around −20 ppm while δiso lies between 10–20 ppm (asterisks denote
the spinning sidebands). A distribution of both isotropic chemical shifts
and quadrupole interaction parameters contributes to the total

Table 2
The measured glass density from CaEM to MgEM by Archimedes principle.

CaEM Mg25Ca75 Mg50Ca50 Mg75Ca25 MgEM

Density
g/cm3

2.560 ± 0.005 2.550 ± 0.001 2.531 ± 0.001 2.510 ± 0.002 2.486 ± 0.002

Fig. 1. The measured glass densities as a function of Mg content and predicted densities
based on: (i) an isomorphous substitution of Ca for Mg according to the molar mass of
CaO and MgO; and (ii) a volumetric substitution which also takes the molar volumes of
CaO and MgO into account; see Section 4.1 for details.
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linewidth, as expected in glass structures. The spectra of intermediate
compositions are identical to the two endmembers shown here, but
have been omitted for clarity. Despite the distributions, the identical
peak position, linewidth and lineshape clearly suggest that local en-
vironments around Na are unchanged within the Ca/Mg compositional
series of simplified glasses.

3.2.3. Aluminium
27Al MAS spectra of Mg50Ca50 and the two endmember glasses are

shown in Fig. 5. These consist of a predominant, well-defined four-co-
ordinated ([4]Al) and much smaller six-coordinated ([6]Al) peaks. The
presence of five-coordinated Al ([5]Al) is not obvious but also limited by
the resolution at the magnetic field used (11.7 T). The spectra are
presented with [4]Al peaks normalised to compare the minor changes in
concentration of the higher coordinated [6]Al. The predominant Al

(a) 

(b) 

[3]B 

[4]B 

[3]B 

[4]B 

Fig. 2. 11B MAS NMR spectra of the simplified glasses CaEM (black), Mg50Ca50 (red) and MgEM (blue) obtained at 160.34MHz. (a) The central transition lineshape of [4]B and [3]B
peaks; (b) the full spectra that manifest the sidebands of 11B satellite transitions. The intensities of the [4]B peaks are normalised for comparison of the relative proportion of trigonal [3]B.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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speciation is [4]Al with δiso in the range of 60–70 ppm and a tiny fraction
of [6]Al with δiso of around 5 ppm. The resonance position of [5]Al, if
there is any, should lie between these two values. There is some evi-
dence of a small coordination change for Al as Mg is added as shown in
the inset. The relative fraction of [6]Al in these three glasses is
CaEM > MgEM > Mg50Ca50 and the difference between MgEM and
Mg50Ca50 being almost negligible. Since the two peaks are not com-
pletely resolved with slight overlapping at the low frequency side of the
[4]Al peaks, the exact relative fractions of [4]Al and [6]Al in Mg50Ca50
and two endmembers were obtained by curve fitting using a model in
DMFIT program that account for the distribution in δiso and EFGs

(CzSimple). The results are summarized in Table 4. The amount of [6]Al
reduces from 4.8% of total Al or 0.2% of total cations in the CaEM glass
to 1.6% and 0.7% or 0.08% and 0.03%, respectively. An example of the
fit for CaEM glass is shown in Fig. 6 (see Discussion) and the total fitting
results are listed in Table S3.

In addition, for all three compositions, Ca/Mg substitutions almost
do not cause shift in either resonance position.

3.2.4. Magnesium
The similarity of the Mg local environment in both simplified and

full-component glasses is confirmed by the spectra shown in Fig. 7(a):
within the signal-to-noise (S/N) level obtained, the overlaid 25Mg MAS
NMR spectra of full-component MW25 glass and its counterpart simu-
lant MgEM glass assure a good representation of MW25 by the sim-
plified glass from a Mg perspective. The δiso is almost the same for both
glasses, at around 45–50 ppm indicating a similar coordination. In ad-
dition, the lineshape of both centre peaks, i.e., a sharp edge at the high
frequency edge and tails towards the low frequency end, is character-
istic of a distribution in quadrupolar interaction parameters (EFG and η)
with similar δiso values [10,11]. Spinning sidebands are just observable
in the MgEM glass spectrum while not being observed for the MW25
glass (Fig. 7(b)).

Table 3
[3]B and [4]B proportions in the simplified glass series: ‘fraction’ - the proportion of [3]B or
[4]B with respect to the total amount of boron; ‘mole’ - the molar amount of [3]B or [4]B
with respect to 100mol of cations in the glass as presented in Table 1. (Analysed com-
position).

CaEM Mg25Ca75 Mg50Ca50 Mg75Ca25 MgEM

[3]B fraction 48.3% 50.0% 55.0% 57.8% 61.7%
[3]B mole 12.8 13.1 14.6 16.4 17.4
[4]B fraction 51.7% 50.0% 45.0% 42.2% 38.3%
[4]B mole 13.7 13.1 11.9 11.9 10.8
Excess [3]B mole 0 0.3 1.8 3.6 4.6

(a) (b) 

(c) 

Fig. 3. 11B MAS NMR spectra of MgEM glass before (red) and after (black) a 112-day leaching experiments, (a) on an absolute scale and (b) normalised to make the [4]B peak intensities
equal, obtained with the same experiment setup as in Fig. 2; (c) 11B MAS NMR spectra of MW25 glass before (red) and after (black) a 112-day leaching experiments normalised to make
the [4]B intensities equal. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 23Na MAS NMR spectra of simplified CaEM (red) and
MgEM (black) glasses obtained at 105.82MHz with 8192 π/
18 pulse and 1.0 s pulse delay. Spinning speed was 12 kHz in
both cases and the spinning sidebands are denoted by aster-
isks. Spectra are referenced to 1M NaNO3 solution. (For in-
terpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. 27Al MAS NMR spectra of simplified CaEM
(black), Mg50Ca50 (blue) and MgEM (red)
glasses obtained at 130.22MHz with 8192 π/18
solid pulse and 0.3 s pulse delay. The four-co-
ordinated Al peaks are normalised for compar-
ison of the relative proportion of six-coordinated
Al. Spinning speed is 15 kHz in all cases and the
spinning sidebands are denoted by asterisks.
Spectra are referenced to 1M Al(NO3)3 solution.
(For interpretation of the references to colour in
this figure legend, the reader is referred to the
web version of this article.)
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3.3. Initial dissolution rates

As shown in Fig. 3 there is no selective leaching of B associated with
its coordination. However, it is not clear whether the ratio of [3]B/[4]B
would affect the dissolution rate. To probe the effects of primary glass
structure on its solubility, the initial dissolution rate (i.e. before any
significant altered product has been formed on the glass surface) has
been measured for all five glasses via short duration leaching experi-
ments with a very low SA/V ratio (< 22m−1).

The full results for all five simplified glasses are illustrated in Fig. 8:
linear fits of the ET (effective thickness of glass dissolved) evolution
with time yield the dissolution rates (see Eq. (3)). The dissolution rates
based on Si concentration in the leachate all lie between 2.22–2.60 g/
m2/d with no clear dependence on composition. The uncertainty of r0
values measured in this way is at the level of 10% calculated by the
uncertainty propagation methods as presented by Gin et al. [12] so they
are effectively the same within error. However, more recent work by
Fournier et al. [13] suggested that the actual uncertainties are expected
to be greater by taking additional uncertainties associated with the
estimated glass surface area into account. This was demonstrated to be
as high as 25% depending on the exact experimental conditions de-
ployed. The complete initial dissolution data is listed in Table 5.

4. Discussion

4.1. Glass density and boron speciation

As a macroscopic property, density variations can reflect composi-
tional and/or structural changes in glasses. Despite the lower atomic
mass of Mg compared with Ca, predicting the effect of molar substitu-
tion of Ca for Mg on glass density is not trivial. Since the glass density
deceases from CaEM to MgEM monotonically, a simple isomorphous
model could be expected: one Ca in the glass is substituted by one Mg
without causing any structural change, which would result in a density

reduction due to the lower atomic mass of Mg (24.305 g/mol) com-
pared to Ca (40.078 g/mol). On the other hand, because the substitu-
tion is on a molar basis and glasses are made from oxide precursors,
another model based on the relative molar volume of both oxides (CaO
and MgO) should also be considered. In this case, MgO has a lower
molar volume of 11.196 cm3/mol than that of CaO (16.790 cm3/mol)
[14]. Overall, the density reduction would be moderated depending on
relative change of mass and volume associated with the Ca/Mg sub-
stitution in the volumetric model. The prediction of glass density var-
iations based on these two very simple models and the measured den-
sities are depicted in Fig. 1. Neither of the models fully describes the
decrease in glass density with Mg content, particularly for Mg75Ca25
and MgEM, which suggests that local structural changes that reduce the
density, such as coordination change are taking place.

From the 11B NMR data, the observed local structural change as-
sociated with B coordination converting from four to three will influ-
ence the macroscopic density. One of the effects of converting the tet-
rahedral B to trigonal is a reduction in packing efficiency; trigonal B
tends to form open ring-like structures i.e. boroxol rings [9]. This will
reduce the glass density. As the measured density decreases more ra-
pidly with increasing Mg content than the simple models predict, the
results are consistent with the fundamental structural change observed
in B coordination.

4.2. Glass local structures

The main purpose of making simplified glasses is to use them as
surrogates for studying the full-component glasses without losing the
key structural and compositional features. In comparison to other
benchmark nuclear waste glasses such as SON68 and the ISG
(International Simple Glass [15]), the presence of Mg in Magnox glass is
a major compositional difference and is suspected to reduce the glass
aqueous durability. A fundamental requirement for studying the effect
of Mg on dissolution mechanisms with a simplified glass is to ensure a
similar Mg chemical environment to that in the full-component MW25
glass. Due to the difficulties associated with solid-state 25Mg NMR
spectra in general and low concentration of Mg in the MgEM glass (see
Materials and Methods and Table 1), obtaining spectra of sufficient
quality is very challenging. Indeed, as can be seen from Fig. 7, even
acquisitions carried out using a 20.0 T magnet (850MHz 1H) at
52.3 MHz, yield spectra that are still quite noisy after a large number of
scans. In addition, spectra with sufficient S/N and resolution to dis-
tinguish between Mg environments in different simplified glasses could

Table 4
The fraction of four- and/or five-coordinated aluminium and six-coordinated alumi-
nium of MgEM, Mg50Ca50 and CaEM glasses.

[4]Al [6]Al

CaEM 95.2% 4.8%
MgEM 98.4% 1.6%
Mg50Ca50 99.3% 0.7%

Fig. 6. Curve fitting of the CaEM 27Al MAS NMR spectrum with 2 CzSimple lines: [4]Al in green and [6]Al in purple. The blue line represents the experimental spectrum while the
superimposed overall fit is displayed in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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not be obtained (the experimental setup and length of acquisition were
limited by the access time to the UK 850MHz facility). Nevertheless,
the broadly similar 25Mg spectra of MgEM and MW25 indicate that the
simplified glass provides a good representation of the Mg local en-
vironment in the full-component glass. This indicates that local struc-
tural effects, which contribute to the average values and distributions of
EFGs and δiso at the Mg site due to distributions of bond lengths and
angles, are reasonably similar. This marks a good starting point for
investigating the dissolution mechanisms of full-component glass. The
δiso is about 45–55 ppm in both cases (see Fig. 7), which is in the four-
fold coordination regime as demonstrated in other studies on well-de-
fined Mg containing crystalline silicates and glasses [10,11,16]. This
suggests, at least, that some of the Mg acts as a network former in
MgEM and MW25 glasses. On the other hand, some Mg may exist in
higher coordination acting as a charge compensator. However, higher
sensitivity and higher resolution spectra need to be obtained either at
higher magnetic field or applying MQMAS (multiple-quantum MAS)
pulse sequences to make the statement more convincing. Another point

Fig. 7. (a) Overlaid 25Mg MAS NMR spectra of unleached MW25 (black) and MgEM (red) glasses obtained at 52.05MHz with 54,200 π/18 pulse and 0.1 s pulse delay and 102,400 π/18
pulses and 1.5 s pulse delay, respectively. The spinning speed is the same at 14 kHz. Spectra are referenced to 1M MgCl2 solution as 0 ppm; (b) the same spectra as shown in (a) stacked so
that the spinning sidebands on MgEM spectrum can be seen (denoted by asterisks). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. Effective dissolved thickness (ET) of simplified glasses as a function of time in the
initial dissolution rate experiments based on Si concentration in the leachate.

R. Guo et al. Journal of Non-Crystalline Solids 497 (2018) 82–92

89



worth noting is the presence of spinning sidebands for the Mg site in
MgEM and not in MW25, either this indicates that the average EFGs are
greater at Mg sites due to higher distortion in MgEM glass than in
MW25 glass or the paramagnetics in MW25 are preventing the ob-
servation of spinning sidebands. The latter explanation is more likely
because the central lineshapes (as observed) appear similar, if there was
a significant difference in the average EFGs then this would be apparent
from the central lineshapes.

The local bonding requirements of Mg will also influence the local
structure of other network-forming elements. As illustrated in Fig. 2,
the ratio of [3]B/[4]B increases as the Mg content of the glass increases.
This monotonic increase in [3]B is consistent with other studies on
aluminoborosilicate glasses [17,18], in which B coordination is shown
to be affected by the field strength of network modifiers (field strength
is defined as the formal charge of a cation, Z, over the square of the
average M-O distance, d, in its first coordination shell i.e. Z

d2 [19]): [4]B
fraction decreases as the field strength of the added modifier increases.
In this case, Mg has a higher field strength value than Ca because the
ionic radius of Mg is smaller than Ca (e.g. 86.0 pm compared to
114.0 pm in six-fold coordination [21]).

For singly charged Na ions, one [4]B needs to be charge compensated
by one Na+ to achieve local charge neutrality. Such a charge com-
pensator must be released into other structural roles, primarily as a
network modifier which is linked to non-bridging oxygen (NBO), once a
[4]B converts to [3]B. Both Xue and Stebbins [22] and Bunker et al. [23]
have demonstrated that such a structural role change would be re-
flected in a noticeable shift in the 23Na MAS NMR spectrum even for
peaks profoundly broadened due to local structural distributions in
glasses. In contrast, no such local structural changes are evident from
the 23Na spectra of CaEM and MgEM glass, as shown in Fig. 4 (or in
intermediate compositions). In other words, Na ions are not the sole
charge compensators for [4]B speciation; both Ca ions in CaEM glass and
Mg in MgEM glass contribute to charge compensating for [4]B.

Despite relatively high uncertainties exist due to compositional
variation and instrument error, the linear fit in Fig. 9 of excess [3]B to
Mg content gives a gradient of approximately 0.8. If all Ca is charge
compensating [4]B and Mg was replacing Ca but not replacing its charge
balancing role at all, we would expect this gradient to be 2.0 i.e. 1 mol
of [4]B is converted to [3]B per unit of charge. Unfortunately, the exact
amount of Ca that is charge balancing [4]B is unknown since there is a
surfeit of charge compensating cations for the overall charge deficit (see

Table 6 column 1). Nevertheless, this suggests a poorer charge balan-
cing capability of Mg compared with Ca, which is consistent with the
presence of four-coordinated Mg inferred from the 25Mg NMR chemical
shift measured in MgEM and MW25.

Samples of MgEM and MW25 leached for 112-days were examined
to investigate whether the excess [3]B was responsible for the reported
greater dissolution of Mg glasses compared with Ca glasses [2]. The 11B
spectra of unleached and leached glasses (as shown in Fig. 3) show that
the relative proportion of [3]B and [4]B remains the same after the
leaching experiments. This behaviour is consistent between the sim-
plified glass and full-component simulant MW25 glass despite the B
coordination of the latter not being well resolved. This result illustrates
that coordination does not affect the leachability of B and further
confirms that B release is a good proxy for evaluating the dissolution of
UK MW25 radioactive waste glasses.

In inorganic Al-O environments, tetrahedral and octahedral sites of
Al can be well resolved by MAS NMR (e.g., at 11.7 T) owing to the
noticeable difference in δiso as an indicator of coordination. Typically,
the former locates at about 50–80 ppm and the latter at about
−10–15 ppm while that of pentahedral sites are found to be between
these two situations typically in the range of 30–40 ppm as found in
well-defined crystalline compounds [9]. Using the fitted CaEM 27Al
spectrum as an example (Fig. 6), as discussed by Lacaillerie et al. [24],
the fact that the tentatively assigned [4]Al peak can be fitted reasonably
well with only one CzSimple lineshape suggests that five-coordinated Al
must either be absent in the glasses or be in very low concentrations. In
fact, a slight mismatch at the high frequency end of the prominent peak
might imply the existence of [5]Al species. However, curve fitting using
two separate CzSimple lineshapes for the predominant peak does not
improve the fit. In order to resolve a small fraction of [5]Al sites, a
significantly higher magnetic field would be required. It has been re-
ported elsewhere that, when higher field-strength modifiers are added
to aluminoborosilicate glasses, a higher proportion of five-/six-co-
ordinated Al would be present from the conversion of [4]Al [17,18,20].
The results we obtained here show a reversed trend: CaEM glass con-
tains a higher fraction of [6]Al compared with that in MgEM glass.
However, it should be kept in mind that Al constitutes< 5% of the total
cations and the vast majority are in tetrahedral sites. Based on the
analysed compositions, the fitting results (see Table 4) yield that the
[6]Al in CaEM glass constitutes about 4.8% of Al compared with 1.6% in
MgEM glass, these account for only 0.23% and 0.08% of the total

Table 5
Initial dissolution rate of the simplified glass series as determined from the rate of change in the effective thickness of dissolved glass based on Si concentration.

CaEM Mg25Ca75 Mg50Ca50 Mg75Ca25 MgEM

Initial dissolution rate (g/m2/d) 2.33 ± 0.23 2.60 ± 0.26 2.54 ± 0.25 2.42 ± 0.24 2.22 ± 0.22

Fig. 9. The linear fit (dashed line) of the amount of boron that transform from four-fold
coordination to three-fold coordination on substitution of Mg for Ca per 100mol of ca-
tions (filled square).

Table 6
Total charge balancing scheme for the simplified glass series. Note: [4]Al data is only
available for CaEM, MgEM and Mg50Ca50 glasses.

Species (mol%) CaEM Mg25Ca75 Mg50Ca50 Mg75Ca25 MgEM

Four-coordinated network former
[4]B 13.7 13.1 11.9 11.9 10.8
[4]Al 4.5 – 4.9 – 4.7

Charge compensator/network modifier
Na+ 14.9 15.3 14.7 14.8 15.1
Ca2+ 6.1 4.8 3.2 1.6 –
La3+ 1.7 2.0 1.7 1.7 1.7

Four-coordinated network former and charge compensator/network modifier
Mg – 1.6 3.1 4.2 6.5
Excessive positive

charges
3.8 – – – “−4.5”a

a It assumes all the Mg in the MgEM glass are acting as network former.
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amount of cations, respectively. Such a subtle change can easily be
attributed to other factors like compositional uncertainties and thermal
history. The dependence of Al coordination on Tg is complex especially
when compositional effects are involved at the same time [17]. The
subtle changes in Al coordination observed here and its low con-
centration means that it does not contribute significantly to the charge
compensation scheme of network formers when compared to effects
observed in the 11B MAS NMR spectra.

Table 6 lists the network formers that need to be charge compen-
sated ([4]B and [4]Al) and the available charge compensators/network
modifiers (Na+, Ca2+ and La3+). The network forming role of Mg in
the simplified MgEM and full-component MW25 glass is important in
determining the local structure of the glass because Mg in four-fold
coordination ([4]Mg) should be charge compensated due to its positive
charge deficit. However, as mentioned above, despite the observation
that Mg in the MgEM glass is primarily in four-fold coordination, the
exact ratio of [4]Mg to higher-coordinated Mg is unknown.

The similar composition and density of the simplified glasses sug-
gest a similar degree of network connectivity. It has been noted that an
excess of network formers with positive charge deficits could be com-
pensated by REEs acting as charge compensators [25]. Therefore, La3+

ions are able to charge compensate in glasses when there is a lack of
charge provided by usual charge compensators such as Na+ and Ca2+.
On the other hand, when not acting as charge compensators, REEs in
aluminosilicate and aluminoborosilicate glasses normally have a co-
ordination number of around 6–8 [25,26] and they have been assumed
to be charge compensated by cations such as Na+ and Ca2+ through
sharing of NBOs with the latter due to over-coordination [27,28]. As
Table 6 indicates, La in the CaEM glass needs to be charge compensated
due to a surfeit in available charge, this leads to an excessive charge of
3.8 mol per 100mol cations. If all Mg are acting as network former in
four-fold coordination, MgEM would end up with a charge deficit of
4.5 mol per 100mol cations even with all La3+ ions being charge
compensator. Since excessive positive charge lowers glass network
connectivity by creating NBOs, on balance, the contrast in charge bal-
ancing schemes between CaEM and MgEM suggests that part of Mg is
charge compensating, which is in agreement with the role of Mg in
partly converting [4]B to [3]B.

4.3. Initial dissolution rate

Iwalewa et al. [29] measured the initial dissolution rate of full-
component simulant MW25 glass in DI at 90 °C in SPFT (Single-Pass
Flow-Through) mode and found it to be 1.84 ± 0.35 g/m2/d. This
agrees within measurement uncertainty to that measured on the MgEM
simplified glass (see Table 5), which again suggests a good re-
presentation of the simplified glass for the full-component complex
glass. As we discovered in this study, the initial dissolution rates (see
Fig. 8) as a function of Mg content in these glasses are the same within
error. This is in contrast to the data reported in literature for experi-
ments conducted at much longer time scales (up to 12.2 years) [2],
where it was found that the long-term dissolution rates, which are
generally 3–4 orders of magnitude lower than the initial dissolution
rates in these glasses, differ by about one order of magnitude between a
Magnox glass (similar in composition to MW25) and SON68. Despite
other compositional differences between these two complex glasses, the
primary difference is that Magnox glass contains Mg and no Ca and Mg
is absent from SON68, which contains Ca in more or less the same
proportion as MW25 contains Mg.

The residual glass dissolution rates in the long-term situation are
generally believed to be due to a combination of kinetic and thermo-
dynamic effects where transport is hindered by the presence of an al-
tered layer of reconstructed and re-precipitated material on the glass
surface, and thermodynamic driving force for dissolution is inhibited by
solution chemistry (Si saturation) [7,15]. In experiments where fresh
glass was put into Si saturated leachate i.e. altered layer barrier

removed in saturated condition, a similar dissolution rate was observed
as with fresh glass in fresh (unsaturated) water [30]. This suggests that
the mechanism of glass dissolution is similar in the long-term and in the
initial phase. The dissolution rate differences associated with the pre-
sence or absence of Mg are determined primarily by secondary effects
related to the effectiveness of the alteration layer in hindering transport
to the pristine glass surface. Any fundamental change in the pristine
glass, such as B coordination, induced by the presence of Mg appears to
have no effect on the solubility of the glass.

5. Conclusion

A key question for this study was to identify the structural changes
arising from the substitution of Ca for Mg in simplified UK radioactive
waste glasses and determine whether this is the reason for dissolution
differences observed previously for full-component radioactive waste
glasses [1,2]. We conclude that the primary effect of substituting Mg is
to produce a glass of lower density with more three-coordinated B. This
change is not the result of competition for Na, the dominant charge
balancing cation, but the result of the poorer charge balancing cap-
ability of Mg. Some Mg is in four-fold (network-forming) coordination,
but the amount of [4]B to [3]B conversion and overall charge balancing
scheme is consistent with Mg also being present in higher (five-/six-
fold) coordination. These compositional and structural changes do not
impose a noticeable change on the primary (initial) dissolution rate of
the glass. Therefore, the significantly different long-term dissolution
rates between Mg and Ca based radioactive waste glasses, based on this
separate effects study, should be attributed to secondary effects related
to the efficacy of surface layers in retarding dissolution.
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