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ABSTRACT 

In this study, a new pseudopotential Lattice Boltzmann (LB) scheme, 

multipseudopotential interaction (MPI), including boundary conditions is proposed for 

simulation of two-phase flows.  It solves several drawbacks of available schemes such 

as being thermodynamically inconsistent with practical equations of state (EOSs), being 

limited to low-density ratios, not having an independently tunable interface width.  The 

lattice interaction potential is described by a series of consistent sub-potentials.  In 

theory, in addition to being intrinsically consistent with thermodynamics, the MPI-LB 

scheme is stable for a large range of density ratios (up to 106), and tunable for interface 

width.  In engineering applications, the scheme is superior over the previous schemes of 

reproducing practical EOSs by removing the deficiency of creating unphysical 

potentials.  The scheme is unlimited to implement the practical EOSs which can be 

expressed in a polynomial format.  The scheme is studied and verified regarding liquid-

vapour circular and flat interfaces, Laplace law, Galilean invariance, and change of 

viscosity.  Furthermore, the scheme is investigated for the effects of different wall 

boundary conditions on the hydrodynamics of non-ideal single-phase fluids.  The 

suitable boundary condition is chosen based on density variation across the channel, and 

errors because of domain resolution, relaxation time, and compressibility.   
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Chapter 1 – Introduction  

1.1 Perspective 

Multiphase flows in various scales can be modelled by computational fluid dynamics 

(CFD) techniques solving the governing equations numerically using computers [1].  In 

general, the CFD techniques can be categorised based on the length scale of systems, for 

example, continuum and micro-scale methods have fundamentally different strategies to 

solve fluid flows. The Knudsen number, /Kn Lλ= [2], is a useful nondimensional 

number to distinguish these scales, where λ  is the molecular mean free path which is 

about 71 0 m
−  for air and about 101 0 m

−  for water, and L  is the characteristic length 

scale of the flow.  When  ~ 1Kn , fluid is considered as a discontinuous phase.  Such 

system can be modelled by molecular dynamics (MD) [3] which solves Newton’s 

equation of motion for every individual molecule.  The gap between molecular scale 

and continuum is bridged by dissipative particle dynamics (DPD) [4] and the lattice 

Boltzmann method (LBM) [5].  DPD groups several molecules and represents them as a 

particle, and LBM applies the discretised Boltzmann equation for the cloud of particles.  

When 1Kn << , the fluid is a continuous phase, for which the flow dynamics can be 

described by macroscopic continuum theories, Navier-Stokes (N-S) equations [6].  In 

this chapter, after briefly overviewing experimental methods, we review the most well-

known computational methods.  When reaching LBM, we elaborate on different 

multiphase models and then narrow down the review to pseudopotential models.  The 

advantages and drawbacks are studied which lead to the development of a new 

multiphase LB model proposed in this thesis. 

1.2 Experimental techniques for multiphase flows 

A multiphase flow can be investigated experimentally by detecting interfaces, 

velocities, concentrations, and chemical constituents of fluids/phases.  The most popular 

experimental methods are magnetic resonance imaging (MRI), ultrasonic pulsed 

Doppler velocimetry (UPDV), electrical impedance tomography (EIT), X-ray 

radiography, and neutron radiography [7].  Among them the MRI and UPDV are more 

common and available.  While the MRI equipment is much more expensive than the 

UPDV one, the MRI provides more technical information such as chemical constituent 

and interfacial dynamics of fluids/phases.  The application of X-ray and neutron 

radiography is limited due to the safety and amount of data they can provide, for 



Chapter 1– Introduction 

 

2 

example, the latter is used only for studying the multiphase flows involved in liquid 

metals.  The EIT [8-10] is easy to set-up, however, analysing and interpreting the data is 

complicated.  Only the UPDV and MRI can be used to measure velocity and dynamic 

properties of fluids systematically, the rest mainly can detect concentrations in the 

system [7] and need tracers to measure the velocities which is called Particle Image 

Velocimetry (PIV) [11]. 

The MRI has been used in study of fluids dispersion in porous media[12], sedimentation 

[13], suspensions [14], multicomponent stratified flows [15], and blood flow [16].  The 

MRI scanner is sensitive to protons in atoms.  The molecules which have more 

rotational, trinational movements are better detected by the MRI rather than the ones 

which are fixed in a lattice [17].  Therefore, liquid and gas can be tracked but not a solid 

phase.  By stimulating these nuclei and receiving their response the material and their 

thermodynamic state are identified.  The main part of the MRI system is a magnet with 

the strength of 0.5-3 Tesla which can lift a regular car.  It creates a uniform magnetic 

field inside the machine.  The nuclei have a quantum characteristic called “spin” which 

aligns in the same or opposite direction of the main magnetic field [18].  The same-

direction nuclei have less energy; however, the opposite-direction ones have more 

energy to keep their position.  The useful phenomenon is that the number of the nuclei 

whose spin are oriented in the direction of the magnetic field are more than the ones in 

the opposite direction.  The extra low-energy nuclei are the ones that the machine 

records the response of.  The machine signals are sent via radio frequency (RF) coils 

which are absorbed by low energy nuclei.  Their spin orientation changes to the 

opposite direction.  They are not stable at high energy level because when the RF is 

switched off, they come back to their low energy level with the release of magnetic 

energy which is recorded with a receiver RF coil.  But how to scan different locations in 

a domain?  The nuclei only react to the signals at the “resonant frequency” which is 

dependent on the intensity of the magnetic field they are in.  The higher the magnetic 

field the higher is the resonant frequency.  Therefore, in a one-dimensional system, for 

example x  direction, another coil is necessary to change the effect of the main magnet 

and create a gradient field (see Figure 1-1).  For example, in x  direction, the magnetic 

field decreases along the x  axis.  This causes the resonant frequency of nuclei to be 

changed along the x  axis.  Therefore, by sending RF energy at the resonant frequency 
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of 0x x= , only the nuclei placed at 0x x=  respond.  This can be done in three 

dimensions by creating gradients of magnetic field in all x , y , and z  axis.  More 

details of the principle of MRI for detecting the fluids interactions and measurement of 

fluid velocity can be found from Günther’s book [19] for reference. 

 

Figure 1-1.  A simple schematic of an MRI machine. 

The MRI can measure the velocities of fluid flows at the range of as low as 310−  mm/s 

to 210  cm/s [18].  In the rapid MRI systems the velocity and concentrations can be 

measured in the order of 10 ms [17].  It is possible to tag some part of the fluid and 

track them.  In contrast to overall of the domain, that pixel does not send signals, which 

helps find velocities and concentrations in emulsions [17], the images of fluids’ 

interfaces, and size distributions of droplets/particles/bubbles [20].  The phase contrast 

(PC) techniques in the MRI also can be used to measure fluid velocities [16].  The 

resolution of measurements generally depends on gradient of magnetic field, relaxation 

times of samples, and size of the coils [21].   

X-ray is created by ionizing tungsten with the aid of an electron beam from a cathode.  

This beam is accelerated with a high potential voltage between cathode and anode and 

once it hits the anode the electromagnetic radiation is emitted.  X-ray can pass through a 

multiphase system and is collected on a photographic film or digital detector.  The beam 

is attenuated by different phases/materials in different ways.  Therefore, a dense phase, 

that absorbs the most, is seen bright and a light phase is seen dark on the image.  A 
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simple schematic of an X-ray scanner is shown in Figure 1-2.  The attenuation of X-ray 

is described by Beer-Lambert law for multiphase flow [22, 23] 

0 1 2exp[ ((1 ) ) ]I I lε µ εµ= − − +  (1-1) 

where 0I  is the initial energy emitted, I  is the captured beam, 1µ  and 2µ  are the 

absorption coefficients for two phases, ε  is the volume fraction of phase 2, and l  is the 

path of X-ray through the sample.  The absorption depends on the atomic number of 

materials and the intensity of the X-ray [23].   

 

Figure 1-2.  A simple schematic of an X-ray scanner. 

X-ray is widely used in medical industry and can be used to take a sequence of images 

to follow the motion of objects [24].  Moreover, it can be used to study multiphase 

flows, for example, the dynamics of dense liquid jets [25], particle motions in 

concentrated suspensions [26], size and rise velocity of bubbles in a fluidized bed [27] 

[28, 29].  To have better images of 3D complex systems X-ray computed tomography 

(CT) should be used which gives high spatial resolution [30, 31].  A CT scan take 

hundreds of images of a sample in different directions and combine them to create a 2D 

image of a slice through the sample.  By moving forward and finding the other slices a 

3D image of the sample is obtained.  Therefore, X-ray CT has a low temporal resolution 

which makes it suitable for time-averaged phase distributions [23]. 

The UPDV was at first used for blood flow measurement [32], but since then has been 

extended for velocimetry in different types of fluid flows and engineering applications 
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[33] such as flow of paper pulp suspensions [34], and dispersed gas phase in multiphase 

flow [35].  The UPDV, based on the Doppler effect, can measure the velocity of moving 

particles or tracers in the fluids.  A transducer sends ultrasonic waves, and then 

measures the scattered wave that is reflected from the particles.  The wave travels inside 

the fluid with slight, or no attenuation.  The velocity ( zv ) of the particle along the 

channel can then be estimated by  

02 cos

D
z

cf
v

f θ
=  (1-2) 

where Df  is Doppler shift frequency (1/s), c  is the sound speed (m/s), 0f  (1/s) is the 

frequency of the incident wave, and θ  is the angle of transducer relative to the flow 

direction [7].  As shown in Figure 1-3 the distance of the particle from the transducer, 

S (m), can be calculated with the aid of the wave velocity and travel time, τ (s).   

 

Figure 1-3.  The transducer emits ultrasonic waves in a fully developed laminar flow and receives the 

scattered wave from the particle in the fluid.  The distance of the object from the transducer is known by 

the travel time of the wave [7]. 

Laser doppler velocimetry (LDV) is also based on Doppler effect.  However, instead of 

ultrasonic waves, radiations such as He-Ne laser are adopted.  The laser is scattered by 

polystyrene spheres which are placed in the fluid to create a dilute colloidal suspension 

[36].  The method is mostly used in blood flow measurements [37-39].   

Bonnecaze and co-workers [8-10] developed EIT that can be used to find the 

distribution concentrations of particles in a pipe flow, in which 32 electrodes are placed 

around the pipe and a specific current is applied to two opposite electrodes and the 

voltage difference at neighboring electrodes are measured.  Bonnecaze and co-workers 

developed a method that, using this data and the surface conductivity, finds the 

distribution concentrations of suspensions in the fluid [8-10]. 



Chapter 1– Introduction 

 

6 

Neutron radiography is used specifically to study the two-phase flows of liquid metal 

with a gas phase which needs a high flux research reactor and a fast speed, sensitive 

camera [40].  Neutron beam can travel through the liquid metal but is weakened by the 

gas.  A converter changes the neutron beam to visible light and then is captured by the 

camera.  In general, both the X-ray and Neutron radiography techniques provide 2D 

images which are a projection of the 3D system [7].   

Experiments detect and measure the physical phenomena from laboratory facilities or 

the engineering processes, however, they have some disadvantages and limitations in 

comparison with numerical modelling.  Firstly, either the laboratory or the engineering 

measurements are costly, including the cost of experiment equipment and the cost of 

supporting systems, such as MRI, which is currently, with the 1.5 Tesla configuration, 

sold £120,000-£270,000 on the Internet.  Secondly, the equipment usually is not 

versatile to measure different desired fields such as 3D geometry of phases, velocities, 

densities, and temperatures.  Thirdly, the accuracy of the results of an experiment is 

limited to the capabilities of the machine which is used, for example, X-ray CT having 

good spatial but weak temporal resolutions.  On the other hand, the numerical 

simulations relatively cost lower. For example, with a laptop and free open-source 

packages many different flows can be studied for limited time steps and resolutions.  

They have the flexibility to be set for heat-transfer flow, isothermal flow, flow in porous 

media, multiphase flow, and so forth.  The uncertainties of numerical simulation can be 

tested and estimated before further utilization in engineering productions and 

maintenance.  In the following section, we discuss different models for simulating 

multiphase flows. 

1.3 Numerical models for multiphase flows 

Scientists are encouraged to develop numerical models due to the need for predicting 

and analysing the behaviour of multiphase flows in natural processes, such as the 

eruption of volcanos, the formation of fog and cloud, and the transportation of pollutant 

particles, and in industrial processes, such as the processes in boiler, evaporators, 

reactors, and enhanced oil recovery.  A multiphase system in its simplest form is liquid 

and vapour coexistence of a fluid, for example, water and steam.  It can be a mixture of 

multiple immiscible fluids such as air and water which can also be called a 
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multicomponent system.  The system can be even more complex if a solid phase is 

considered together with fluids.  The main characteristic of the multiphase system is the 

existence of an interface between phases where a sharp jump of properties is seen and 

the physical/chemical interactions occur.  Therefore, to describe the system a new set of 

parameters such as density ratio and viscosity ratio between phases appear.  For 

example, the oil-water mixture is considered as low-density ratio system in contrast to 

the water-air mixture. 

The characteristic length and time scales of multiphase flows are the primary points for 

identifying the physics of interfacial interactions and for developing simulation models.  

The Knudsen, Kn , number can be a good criterion for distinguishing fluid flows at 

micro-scale from macro-scale.  For a liquid jet emerging from a nano-size nozzle the 

characteristic length can be the diameter of the channel or thermal fluctuation length of 

the fluid molecules, 2~1 0Kn
− .  Therefore, molecular level models such as MD [3] are a 

practical choice.  Assessing the behaviour of a shell and tube heat exchanger, for which 

the characteristic length is possibly defined based on the internal diameter of a tube, 

71 0Kn
−< , the fluids are continuum and an N-S equation solver is a popular selection.  

DPD [4] is the method applied in between those scales as a mesoscopic approach 

7 410 10Kn
− −< <  (see Figure 1-4).  From a computational viewpoint, the scale analysis 

can help to simplify the system, for instance, it is not necessary to solve the full N-S 

equations when study the flows in a reservoir at the scale of 100m  while the pore size is 

in the order 10 mµ .  In such case, by redefinition of characteristic length, a simplified 

version of the N-S equations such as Darcy’s law is an efficient option. 
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Figure 1-4.  Characteristic length of the system helps choosing the right method of simulation: a) 

molecular dynamics (10-9 m to 10-7 m) where actual atoms and bonds are simulated, b) DPD where a 

particle is a cluster of molecules (10-7m to 10-4 m), c) LBM where a continuous distribution of particles 

are focused, d) continuum solution where all constituent elements form a continuous phase. 

Lattice Boltzmann methods as an N-S alternative has common characteristics with both 

Continuum CFD and particle-based CFD methods.  The Taylor expansion of LB 

equation leads to the incompressible N-S equation at small Mach numbers, 1Ma << , 

which is explained in section 2.5.  Mach number, /Ma u c= , is the ratio of fluid flow 

velocity, u (m/s), to the sound speed in the fluid, c (m/s) [6].  In comparison with 

particle-based methods, LBM uses particle distribution which removes the noise and 

fluctuations.  The interface of a liquid drop with its vapour is smooth in each time step 

and doesn’t require averaging over many time-steps similar to what we observe in 

traditional CFD methods.  This behaviour implies a scale far bigger than nanoscale.   

At the same time, the particle distributions can move very similar to particles.  

Therefore, interaction potentials and particle boundary conditions can be defined for 

them.  The interaction potential can be the ones originating from the molecular level to 

model a two-phase, liquid-vapour, coexistence.  Such system forms automatically 

without the need for tracking interfaces.   

Another important feature of LBM is being run on a lattice (mesh) like traditional CFD 

methods, therefore, the distributions can find each other and next position 

straightforwardly.  Therefore, there is no need for algorithms, which search for 

neighbouring particles, found in MD and DPD.  The collisions of particles happen 
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locally and, usually in multiphase systems, the information only from nearest-nodes are 

requested.  These characteristics make the model suitable for parallel processing.   

Overviewing the particle-based and traditional CFD methods helps to understand 

multiphase models applied in LBM.  For example, the model proposed by He et al. [41]  

is inspired by level-set method (see section 1.4.3) and bounce-back boundary condition, 

found in MD and DPD, is employed in LBM as well (see 5.2.1).  Therefore, to identify 

the characteristics of existed fluids flow models, a brief discussion is made as follows. 

1.3.1 Molecular dynamics 

Molecular dynamics models the motion of every single atom or molecule and, the 

macroscopic and microscopic properties of materials are found from constituent 

particles [3].  The molecules are moving and interact with each other in the 

computational domain based on Newton’s equations of motion.  A system of N  

molecules is solved with N  equations of motion.  They are usually discretized with 

velocity Verlet algorithm or leap frog method which are superior regarding accuracy 

and stability [42].  Position and velocity of particles, being microscopic quantities, are 

calculated in each time step.  In addition to the temperature, which is defined as a type 

of kinetic energy of molecules related to velocity, the instantaneous value of 

macroscopic properties of the system, such as pressure and viscosity fluctuate in time.  

They are sampled and averaged over a short period of time to be comparable with 

experimental data. 

If the particles are spherical, only transitional motion is considered.  In the case of non-

spherical particles, the rotational motion is important and must be modelled as well.  

Particle transitional and rotational velocities are initialized with the aid of Maxwellian 

distribution.  The kinetic temperature of the system is found from these velocities which 

are scaled through an equilibration procedure to match to desired temperature [43]. 

The interactions between particles are either bounded or non-bounded.  Bounded 

interactions are intra-molecular bonds between atoms which have three components: 

interatomic distance, bend angle and torsion angle [44].  The non-bounded interactions 

originate from potential energy of individual atoms, pairs, triplets and so on [3] 
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1 2 3
( ) ( , ) ( , , ) ...

i i j i j k

i i j i i j i k j i

V v v v
> > > >

= + + +∑ ∑∑ ∑∑ ∑r r r r r r . (1-3) 

where r  is the position of particles and i , j , and k  are the index of particles.  The first 

term, 1v , is the external field potential such as walls around the domain.  The second 

term 2v  is the pair potential which is only a function of the distance between pair 

particles.  While 2v  is the most significant potential, 3v  share is also considerable, for 

example, they form 10  per cent of the lattice energy of argon; the share of other 

potentials is negligible [3].  Calculation of triplet interactions is highly time-consuming 

on computers, thus, as a workaround, the pair interactions are modified to partially 

cover the rest [3] 

1 2
( ) ( , )eff

i i j

i i j i

V v v
>

= +∑ ∑∑r r r . (1-4) 

A simple but practical choice of potential is Lennard-Jones 12-6 which predicts the 

properties of argon satisfactorily to replace the second term of Eq (1-3),  

12 6( ) 4 ( ) ( )LJ
v r

r r

σ σ
ε
 

= −  
. (1-5) 

where ε  is well-depth parameter, r  is the distance between particles, and σ  is a 

distance parameter.  In the parentheses, the first term represents short distance repulsion 

and the second term long-range attraction of molecules.  For example, by setting 

/ 120Bk Kε ≈  (where the 231.38064852 10
B

k −= ×  J/K is the Boltzmann constant) and 

0.34nmσ ≈ , the equation models liquid argon [3].  When there are different molecules 

(or components) in the system, for example A and B, besides the pair potentials 

between same molecules A-A and B-B, the interaction potential of different types A-B 

should be constructed.  In this way, the phase separation happens automatically as a 

consequence of different interactions.  The interactions are firstly guessed and by 

simulations refined to obtain desirable macroscopic properties. 

An MD simulation is limited by the number of molecules [45] and time steps in the 

system.  A mole of water, being only 18.015g , contains 236.022 10×  molecules.  The 

current fastest supercomputer, Sunway TaihuLight, has nearly 710  computational cores 

[46].  Therefore, to simulate 1g  of water, every core should process about 153 10×  
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molecules which is far beyond capabilities of current computer memories and 

processors.  Secondly, time step should capture the fastest vibrational frequency of 

molecules which can be extremely small, in the order of femtoseconds i.e.  1510 s
− . 

1.3.2 Dissipative particle dynamics 

Dissipative particle dynamics is a mesoscopic particle based technique introduced by 

Hoogerbrugge and Koelman [47] for predicting hydrodynamic behaviour of fluid in 

mesoscale.  Since then, it has gained significant theoretical supports and refinements [4, 

48-50].  Flexibility of the method made it successful in simulating various complex 

fluids flows [51-54].  DPD particles while showing correct hydrodynamics, move 

randomly in a computational domain to reproduce the desired temperature, thus, thermal 

fluctuations are inherent in such system.  DPD has been used widely to model 

hydrodynamic problems in small scales, such as the simulation of micro-drop breakup 

in a shear flow [55], multiphase fluid flow in microchannels [56], nanojet breakup [57], 

water flow in a microchannel [58] and electroosmotic flow in nano-fluidic devices [59]. 

The method has the inherent capability of building a distinct interface between two 

immiscible fluids, by simply adjusting interparticle forces.  Therefore, finding the 

location of interface and its curvature is not a critical issue.  It can be appropriately used 

for simulation of flows when atomistic fluctuations influence the dynamics of the 

process, for example, the brake-up of liquid jets at small scales (  ~ 1)Kn  [60].   

DPD constituent elements are coarse-grained particles each of which is a cluster of 

atoms or molecules that move randomly in computational domain and demonstrate the 

behaviour of a fluid of interest.  Movement of these particles is governed by the Newton 

second’s law 

,  i i
i i im

t t

∂ ∂
= =

∂ ∂

r v
v f  (1-6) 

where ir , iv , im  are the position, velocity and mass of the particle i , respectively.  The 

mass of a particle as an independent parameter is usually considered to be unity.  The 

total force if  acting on each DPD particle i  is a combination of three pair-wise forces: 

conservative, dissipative and random forces [4] 
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C D R

i ij ij ij

j

= + +∑ F Ff F  (1-7) 

The sum j  runs over all neighbouring particles from a particle.  The magnitude of 

interaction forces decreases with the distance and becomes zero beyond cut-off radius, 

cR .  Therefore, a particle only sees the other ones which are within its cR .  The 

conservative force can be accounted for long-tail attraction and short distance repulsion 

of molecules.  The dissipative force represents the friction between particles which 

defines viscosity in the system.  The random force is a source of kinetic energy which 

counteracts the effect of dissipative force to keep the system temperature constant.  In 

contrast to MD which atoms repel each other through hard forces, here they are soft.  In 

other words, even if two particles overlap the repulsion interaction between them is a 

finite value, similar to “a school of fish” in which the fishes pass through each other 

where each fish resembles an atom and their group a DPD particle. 

Since the method includes random, dissipative and conservative forces, it bears a 

resemblance to a Brownian-dynamics algorithm.  The conservation of momentum is 

guaranteed naturally due to the pairwise nature of forces, and angular momentum is 

conserved since all forces are central forces.  In order to ensure that the system reaches 

the correct equilibrium distribution, the dissipative and random forces must obey the 

fluctuation-dissipation relation: 2 2
B

k Tσ γ= , where σ and γ  are the amplitudes of 

random and dissipative forces respectively, T  is the system temperature and Bk  is the 

Boltzmann constant [48].  The kinematic energy, Bk T , of a stationary fluid is also 

considered as an independent parameter and it is conventionally set at 1 for the sake of 

simplicity [4]. 

In DPD method, the scale of simulations and the number of molecules that each particle 

is representative of can be considered through dominant non-dimensional numbers 

which connect the system to the real world.  However, the thermal fluctuations and 

limitation on the number of particles in the domain, due to the random forces and 

computational resources, keep the scale of simulations between molecular level and 

continuum.  Similar to MD, instant properties, sampled from the system, are noisy and, 
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to obtain a constant value, averaging them over thousands of time steps is inevitable.  

This also includes the geometric shapes and boundaries of components such as phase 

interfaces. 

1.3.3 Continuum scale models 

The flow of a continuum fluid can be described by the N-S equation, which is derived 

by applying Newton’s second law to a continuum fluid [6],  

( )
( ) p

t

ρ
ρ ρ

∂
+ ∇⋅ = −∇ + + ∇⋅

∂

u
uu f σ  (1-8) 

 

where ρ  is the density of fluid, u  the velocity, p  the pressure, and f  a body force 

acting to the fluids, and σ  the stress tensor.  In general, the mass conservation is 

guaranteed by 

( ) 0
t

ρ
ρ

∂
+ ∇ ⋅ =

∂
u  (1-9) 

This set of equations, in principle, can be solved by numerical methods which has 

dramatically evolved since the early 1930s [61].  Due to the limitation of the 

computability, the methods proposed during 1930 to 1950 were mostly focusing on how 

to reconstruct the N-S, linearize the convection term with reasonable assumptions, if 

unable to exclude it, and reduce it to a potential equation [61]. 

The scientists of a group in Los Alamos National Lab made the pioneer work on CFD 

by proposing a set of numerical methods, Particle-in-cell, to describe the original 

governing equations mathematically using finite difference method [62].  Then the more 

general CFD frameworks developed by means of finite volume method (FVM) [63], 

finite element method (FEM) [64] and finite difference method (FDM) [65].  The 

scheme, called as Semi-Implicit Method for Pressure Linked Equations (SIMPLE), and 

then the SIMPLER and SIMPLEST, proposed by Brian Spalding and Suhas Patankar 

[66], fully solved the Naver-Stokes equation by iteration of pressure and velocity.   

Multiphase flow in the continuum scale is commonly studied in the “one-fluid” scheme 

that merely one set of equations govern whole simulation domain [67].  The first 

successful attempt was the marker-and-cell (MAC) method [68] which presented in the 
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early 1960s.  The marker particles in MAC method are positioned uniformly in the 

different fluids and the properties of the fluids are rebuilt from them.  The MAC method 

is currently obsolete.  However, the one-fluid scheme is developed in various ways.   

In the one-fluid scheme, the fluid is solved by the governing equations and a marker 

function differentiates phases from each other.  The flow advects the marker function 

[67].  Several ideas presented for the scheme such as volume-of-fluid (VOF) method 

[69], and the level-set method [70].  If the interface between phases is tracked by points 

and the marker function is constructed from their locations, the method is called front-

tracking [71]. 

The one-fluid’s momentum equation, based on the incompressible N-S equation with 

surface tension force, is [67] 

( ) ( )Tp n
t

ρ ρ ρ µ σκδ
∂

+ ∇⋅ = −∇ + + ∇⋅ ∇ + ∇ +
∂

u
uu f u u n  (1-10) 

where µ  is the viscosity, σ  is the coefficient of interface tension, κ = ∇ ⋅n  is the 

curvature of the interface, n  is the vector normal to the interface, and n  is a normal 

coordinate to the interface.  The variables ρ  and µ  are the same for each phase but the 

value skip at the interface.  The last term is the surface tension force which is acting 

only at the phase interface because of the δ -function.  The mass conservation for 

incompressible system stays the same as a single-phase system 

0∇⋅ =u . (1-11) 

After knowing the fluid interface, the marker function, α , which is a smooth step 

function, is determined: 0  in one phase and 1 in the other phase.  The α  function is 

then advected with the flow velocity 

0
t

α
α

∂
+ ⋅∇ =

∂
u  (1-12) 

Therefore, α  can be found at the next time step by integrating equation (1-12).  The 

density and viscosity across the interface are then defined as  

1 0(1 )ρ αρ α ρ= + − , (1-13) 
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1 0(1 )µ αµ α µ= + − , 

where 0  and 1 are two present phases.  Solving the integral (1-12) is not 

straightforward since a first-order scheme such as upwind scheme produces fast 

artificial diffusion and a second-order scheme such as Lax-Wendroff brings interface 

fluctuations [67].   

 

 

Figure 1-5.  Identification of phase interface by VOF method: a) the actual interface, b) SLIC scheme 

where the horizontal and vertical line define the advection in y and x-direction respectively, c) Hirt-

Nichols where advection is only in one direction, d) PLIC where the interface is at optimal orientation 

[67]. 

VOF method attempts to solve this problem by finding an interface line or plane in 

boundary cells.  Noh and Woodward [69] introduced a simple scheme for VOF in which 

the cell at the interface is divided by a vertical line for advection in x  direction and a 

horizontal line for y  direction.  Hirt and Nichols [72] suggested that either horizontal or 

vertical slice is chosen based on the information of neighbouring cells.  Rudman [73] 

showed both methods suffer from “flotsam” where the interface elements break apart 

unrealistically.  Youngs [74] proposed a method where the interface line in a cell can 

have any orientation which is found from the normal vector to the interface.  It is 

approximated by the average value of α  at the cell and its neighbours.  The quality of 

the outcome mainly depends on the accuracy of the interface reconstruction.  This 
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strategy called piecewise linear interface calculation (PLIC) [73], see Figure 1-5.  

Although interface reconstruction in three-dimensional domains becomes complex, 

VOF method is widely used in free-surface or multiphase flow simulations and adopted 

in many commercial CFD packages.   

Level-set is another marker-function advection method which is presented by Osher and 

Sethian [70] and the same as VOF method it can model coalescence and breakup of 

drops intrinsically.  However, it sees the evolution of the interface differently.  A two-

dimensional interface, from the level-set viewpoint, is an x - y  slice of a three-

dimensional surface at a particular time.  In other words, the observer is a camera inside 

a dark 3D tube which is moving forward with time and only sees a tiny bit ahead.  

Therefore, a level-set function, ( , )tφ x , which is basically a function of the normal 

distance to the interface, is defined (see Figure 1-6).  The function is advected the same 

as equation (1-12).  But φ  doesn’t stay as a distance function which, therefore, 

Sussman, Smereka and, Osher [75] introduced an iterative method to reinitialize it.  

After the correction, a smoothed step function, ( )h φ , interprets viscosity and density 

while the curvature is calculated from φ  function. 

 

Figure 1-6.  Level-set function is a three-dimension function which is defined by the distance to the 

interface.  The slice of the function at desired time and 0φ =  is the desired interface in a 2D system.   

Front-Tracking methods [71, 76-78] try to track the location of the interface with the aid 

of an additional moving mesh (see Figure 1-7).  They can reproduce sharp front with 

high resolution [71].  The most popular front-tracking methods are the boundary-fitted 
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grid method [76], Tryggvason’s hybrid method [77] and the Boundary Element Method 

(BEM) [78]. 

 

Figure 1-7.  Front-tracking considers a moving Lagrangian grid around the suspended phase while the 

main fluid is solved on a stationary Eulerian grid.   

Advecting and tracking the interface have always been challenging in traditional CFD. 

For example, constructing the interface topology in the VOF method is very complex in 

a 3D domain.  Level-set in each time step uses iterative methods which are 

computationally expensive.  In the case of front-tracking methods, handling a moving 

mesh within a fixed grid can be sophisticated, especially when drops break up or 

coalesce.  Moreover, in these systems, the efficient traditional Poisson solvers are not 

applicable anymore as the density is not constant.   

Mixture, diffusion, or averaged-equation model [67] is another one-fluid model which, 

in comparison to VOF and level-set models, the phases can penetrate into each other.  

Continuum and Momentum equations (without turbulence) for the mixture are written 

as  

( ) ( ) 0m m m

t

ρ ρ
∂

+ ∇ ⋅ =
∂

u  

)( ) ( ) (m m m m m m m Dm m m

t

pρ ρ ρ
∂

+ ∇ ⋅ = −∇ + ∇ ⋅ + + +
∂

u u u fσ σ M  

(1-14) 

where m  is mixture, M  is interface tension forces, σ  is stress tensor for the mixture 

and diffusion 
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1

n

m k k

k

α τ
=

=∑σ  

1

n

Dm k k Mk Mk

k

α ρ
=

=∑σ u u  

(1-15) 

where Mku  is the velocity of phase k  relative to the mixture velocity and the volume 

fraction parameter 0 1α≤ ≤  determines the phases.  The mixture model is viable for the 

dilute suspension of particles or widely dispersed small bubbles in the main phase [79].   

Multifluid model, which commonly called two-fluid model, is a general continuum 

model which describes all phases/components as continuum fluids penetrating each 

other with explicit interfaces.  The physical and chemical interactions among the 

phases/components are presented as the source terms in continuum and momentum 

equations, which are written for a laminar flow (without chemical reactions) as 

( )
( ) 0k k

k

t

k k

α ρ
α ρ

∂
+ ∇ ⋅ =

∂
u  

1

( ) ( )
k k k k k

n

k k k k k k jk

t

k

j

p Rα ρ α ρ α α ρ
=

∂
+ ∇ ⋅ = − ∇ + ∇ ⋅ + +

∂
∑u u u σ f  

(1-16) 

where k  indicates the fluids/phase, n  number of phases/fluids, and 
jk

R  is the 

momentum transfer from phase j  to phase k .  Pressure, p , is the same for all 

phases/fluids.  The application of the full multiphase flow models in engineering 

depends on efficiency and computational costs of the sub-models of interphase 

interactions, including the mass and momentum exchanges.  The increase of the 

computation costs by using this model could be estimated by the number of 

fluids/phases of the system, which means the number of sets of the N-S equations to be 

solved, in addition to the cost of turbulence modelling for each phase/fluid.  The system 

of equations are not hyperbolic; to overcome that more assumptions should be made 

[80] such as the interfacial pressure force [81].  For more details, refer to [67].   
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1.3.4 Lattice Boltzmann method 

From the theories of statistical mechanics, a fluid can be described with the aid of 

distribution function ( , , )f tx ξ  which is defined as the number of molecules at time t  

are placed between x  and d+x x , and moving with a velocity between ξ  and d+ξ ξ .  If 

all these molecules could experience same external force F  and there were no 

interactions among them, we could have, based on Newton’s law of motion, 

( , , ) ( , , )f t dx d f dt dt t dt dx d= + + +x ξ ξ x ξ ξ F ξ  [82].  However, in reality, the 

interactions of fluid molecules are inevitable and must be taken into account for 

describing the behaviour of the fluid, therefore, 

( , , ) ( , , ) ( )f dt dt t dt d d f t d d f d d dt+ + + − = Ωx ξ ξ F x ξ x ξ x ξ x ξ  (1-17) 

where Ω  is the collision operator.  By finding the limit of the equation at 0dt → , we 

find 
df

dt
= Ω , i.e.  the Boltzmann equation [82] 

1f
f f

t m

∂
+ ⋅∇ + ⋅∇ = Ω

∂
ξξ F  (1-18) 

where m  is the mass of a particle.  Boltzmann proved function 

3 3
( ) : ( , , ) ln ( , , )H t d d f t f t= ∫ ξ x x ξ x ξ  (1-19) 

always satisfies 

0
dH

dt
≤  

(1-20) 

which is called H  theorem [83].  The Maxwell distribution can be found from H  

theorem and, therefore, such equilibrium guarantees increase of entropy and stability 

[84, 85].   

This equation is mapped on a discrete space and momentum domain to be solved 

computationally, which is called as lattice Boltzmann equation [86] 

1
( , ) ( , ) ( , ) ( , ) ( , ),eq

i i i i i if t t t f t f t f t F t
τ
 + ∆ + ∆ − = − − + x e x x x x  (1-21) 
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where index i  shows the discretized velocity directions, F  the forcing term, τ  the 

relaxation time and 
eq

f  the Maxwell-Boltzmann distribution function.  The first term 

on the right-hand side is the [87] approximation of the collision.  LB equation and 

relative theories will be discussed in section 2.2 in detail.   

The LB equation is an outcome of gradual development.  McNamara and Zanetti in 

1988 [88] presented the LBM as the successor of lattice gas cellular automata (LGCA) 

and a novel method to simulate hydrodynamic behaviour.  Their LBM uses continuous 

distributions instead of Boolean fields in LGCA models and Fermi-Dirac distribution as 

the equilibrium function.  Higuera et al. in 1989 [89] linearized the collision operator.  

Individual collisions are replaced with the BGK approximation of coarse-grained 

collisions by Koelman in 1991 [90] and Qian et al in 1992 [91], independently. 

The LBM is a model developed as improvement of many drawbacks associated with 

LGCA.  The motion and collision of a cloud of particles are investigated, instead of 

each individual particle.  Therefore, it removes the intrinsic noise of its predecessor.  In 

LGCA method, pressure is directly a function of velocity which makes no physical 

sense and transport coefficients are limited in a narrow range of values [92].  Moreover, 

they lack Galilean invariance [86].  Galilean invariance is explained in section 4.6.5.  In 

principle, LBM has a great potential to overcome those drawbacks. 

The Lattice Boltzmann method emerged from the kinetic-theory approach and 

successfully found many applications in various aspects of CFD such as, turbulent flows 

[93], flows in porous media [94, 95], blood rheology [96, 97], and biopolymer 

translocation [98, 99] while having the capability of being combined with the 

continuum CFD methods [100].  Filling the gap between continuum and molecular 

levels, the LB method facilitates incorporating mesoscale interaction potentials.  An 

outstanding outcome of that feature is the capability of modelling two-phase flows, 

which has always been a cutting-edge area of study for scientists and engineers, without 

the necessity of interface tracking or capturing which are technically cumbersome in 

traditional CFD methods. 
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One of the shortcomings of LBM is its instability during simulation of high velocity 

flows because of the appearance of negative distribution functions on the lattice.  This 

issue limits LBM to the application of the flows at a small range of Reynolds numbers.  

Since the H  theorem is not satisfied by employing quasilinear and BGK collision 

approach, there are no constraints to enforce distribution functions to have positive 

values on every node on the lattice all time.  This disadvantage triggers a series of 

studies to define an H  theorem on the lattice to make LBM unconditionally stable.  

Yong and Luo [101] have precisely shown that the LBMs based on polynomial 

equilibria do not satisfy H  theorem.  There have been many efforts to find an 

equilibrium distribution that satisfies H  theorem which is non-polynomial, e.g.  

exponential [102].  The function must have same terms of Taylor expansion at the 

lowest order as polynomial equilibria.  Therefore, these non-polynomial functions 

always compromise the mass and momentum conservation or make the method implicit 

which increase computational cost, reduce the accuracy, or create other spurious effects 

[101].   

Once the BGK-LBM is applied to simulate a thermal fluid, Prandtl number ( Pr /ν α=   

is the ratio of momentum diffusivity or kinematic viscosity to thermal diffusivity) is 

unity since BGK-LBM uses single relaxation time (SRT).  The Multiple-relaxation-time 

(MRT) proposed by d’Humières [103, 104] introduced the relaxation times 

corresponding to the evolution of each macroscopic property.  In fact, it is a more 

general form of LBM reflecting the physics with a collision matrix where moments of 

distribution functions for density and momentum are relaxed with different time scales.  

It also removes the limitation of a unity Prandtl number in the SRT.  In general, the 

MRT-LBM is more numerically stable than SRT LBM [103, 105] and changes the 

limitation of minimum velocity directions of 3D lattices to D3Q13 [104].  Lallemand 

and Luo [105] and d’Humières et al. [103] developed MRT-LBM equations in two-

dimensions (2D) and three-dimensions (3D).  MRT method has been widely used in 

different areas of LBM to enhance its capability to simulate more complex flows, such 

as turbulence flow [106], flow in porous media [107], two-phase flow [108].  Luo et al. 

[109] showed that at least three independent relaxation times for shear viscosity, bulk 

viscosity and bounce-back boundary condition are needed to strengthen the accuracy, 
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efficiency, and stability of the method [109].  The MRT has introduced more flexibility 

to the LBM [5] in one hand, meanwhile, brings 10-20% more computational cost [105] 

and coding difficulties in comparison with the LBM of SRT with BGK collision. 

1.4 Lattice Boltzmann for multiphase flow 

The lattice Boltzmann equation (LBE) was originally developed for ideal gases [86].  

Further efforts have been made to describe the non-ideal gases (i.e., all types of fluid) 

and model the interfacial interactions of multiphase or multicomponent flows [110-

113].  The importance of the work is highlighted when a Van der Waals-like EOS is 

employed which triggers phase separation in the computational domain.  This potential, 

in fact, is considered as one of advantages of the LBM over the traditional CFD 

methods which allows defining meaningful kinetic interactions to reproduce multi-

phase flows without the need for advecting and tracking the interface.  The most 

significant attempts can be categorised into four branches: RK model, free-energy 

model, HSD model, and pseudopotential model which are discussed in the following 

subsections.  The models based on RK model define a secondary collision operator 

which only applies on the interface and separates the phases from each other.  Free-

energy models incorporate Cahn-Hillard’s model.  Shan-Chen models employ an 

explicit interaction force between nodes to trigger phase separation.  HSD models 

define the force as the gradient of a potential field.  It should be noted that in this study 

“interface” means a numerical interface which is diffuse in comparison with a physical 

interface which is sharp in between two phases at mesoscopic and macroscopic scale.   

1.4.1 RK model 

The first approach is the RK model by Gunstensen and Rothman [112] for immiscible 

fluids which is developed based on the work of Rothman and Keller [114].  A 

perturbation in the collision operator causes the pressure tensor to be anisotropic, i.e., 

creates surface tension at the interface of two phases.  The Blue and Red labels are 

assigned to the particles of one phase and another; after calculating collisions of each 

phase separately, a two-phase collision happens to construct the interface between two 

phases.  At the end, a recolouring step is considered to conserve mass of each 

component.  Despite these actions near the interface, it preserves basic lattice 
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Boltzmann equation in homogeneous regions.  Although the model has Galilean 

invariance, it suffers from a lack of thermodynamic basis and microscopic physics 

[115].  Moreover, it is computationally inefficient in the 3D domain and only restricted 

to model fluids with same densities and viscosities.  The method has been extended by 

Grunau et al. [116] to handle different viscosities and densities ratios up to 10.  The N-S 

equations can be recovered from this system with the advantage of setting viscosity, 

density ratio, and surface tension independently.  Reis and Phillips [115], by changing 

two-phase operator, showed that the model can deal with higher density ratios, 

reportedly 18.5.  However, this approach has the ‘lattice pinning’ problem which 

means, in a slow flow regime, recolouring step cannot recognise diffusion from 

convection and make the interface stagnant.  In order to tackle the lattice pinning issue, 

Latva-Kokko and Rothman [117] proposed a recolouring scheme which establishes a 

symmetric distribution of red and blue particles around the interface.  Leclaire et al. 

[118] then combined the algorithm Latva-Kokko and Rothman [117] with the two-phase 

method of Reis and Phillips [115] which provides more improvements in the accuracy 

of surface tension magnitude and reducing spurious currents.  The recent report [115] 

shows that the method is capable of simulating viscosity ratios as high as 410  in the 

case of the layered Poiseuille flow. 

1.4.2 Free-energy model 

The second method of the LBM for two-phase flow is the free energy (FE) approach 

proposed by Swift et al [113, 119].  It benefits from a free energy function that models 

surface tension in a thermodynamically consistent way.  Herein, total density ρ  and 

density difference ρ∆  are the input parameters of the system, instead of density of each 

phase separately.  Two different distribution functions are assigned to them to calculate 

the evolution of density distribution in the simulation domain with the SRT LBE.  The 

FE model enjoys physical basis and conserves momentum locally.  The primary 

drawback of FE model is the lack of Galilean invariance which has been addressed by 

References [120-124], the outcome of these efforts is to recover Galilean invariance to 

the second order by entering density gradient terms into pressure tensor.  Wagner [124] 

identified the higher order terms which are responsible for thermodynamic consistency 
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in FE method.  Zheng et al. [125] developed a new method based on FE approach which 

could simulate systems with density ratios as high as 1000 . 

1.4.3 HSD model 

He, Shan and Doolen (HSD) [126] model was developed as a modification of SC 

model.  This model links to kinetic theory of dense gases by mean-field approximation.  

Therefore, it is thermodynamic consistent and can reproduce Maxwell equal area [127].  

The physics of capillary can be incorporated into the model by the gradient of density 

term, 
2κ ρ∇∇ , and surface tension strength can be adjusted by parameter κ .  The main 

limitation of the scheme is its weak numerical stability [127].  The two-component 

extension of HSD model was proposed by He, Chen, and Zhang (HCZ) [41] which is 

applicable to incompressible multiphase flow.  Two sets of distribution functions are 

applied; one for calculating pressure and velocity fields with the aid of artificial 

compressibility and another for capturing the interface.  It is in nature close to front 

capturing in traditional CFD methods as an index function φ , acts similar to VOF or 

Level set function.  Based on these models, Lee and Lin [128] introduced a new 

discretization scheme to increase the stability of the LBE where could handle the 

density ratio of 1000 . 

1.4.4 Pseudopotential (Shan-Chen) model 

Among all multiphase approaches for the LBM, pseudopotential or Shan and Chen (SC) 

model [110, 111] has been extensively used to study two-phase flows, due largely to its 

straightforward definition and simple implementation, for example, gravitational fall of 

a drop on a surface [129], flow over structured surfaces including gas bubbles [130], 

high density ratio systems [131], two-phase flow in porous media [94], the contact angle 

of a two-phase fluid on a solid surface [132, 133], droplet including nanoparticles and 

surfactant in shear flow [134], and nucleate boiling [135]. 

The SC model incorporates a coarse-grained lattice interaction into the LBE model.  A 

potential, which is indirectly a function of spatial coordinate through density, namely 

pseudopotential, is utilised to calculate the interaction forces.  Then, the forces 

accelerate the fluid particles, which change the equilibrium velocity of a node.  The 

outcome is the phase separation through merely one governing equation or lattice. 
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1.5 Challenges for pseudopotential model 

The original pseudopotential or Shan-Chen model, at first, seemed so promising: 

simulating two-phase system through only one equation without the need of solving 

Poisson's equation and finding or approximating the phase interface.  However, the 

model has several shortcomings, such as large spurious velocities, unstable at high 

density ratios (limited to density ratios of the order of 10) [110], thermodynamically 

inconsistent with practical EOSs [131], vapour-liquid equilibrium densities are 

dependent on viscosity [136], and interface thickness and interface tension cannot be 

tuned independently.  Addressing such issues is the core motive for many researchers in 

the LB community. 

When simulating a two-phase LB system, vortex-like currents or spurious velocities at 

the interface of two phases are observed that have no physical sense.  Regardless of the 

method, they are inherent in all two-phase LB models to various degrees [137].  

Spurious velocities are the outcome of an imbalance between discretized forces and they 

increase with density ratio and interface tension [138].  Shan [139] has proved that the 

main source of these velocities is the non-isotropic part of the forces on the lattice.  

Sbragaglia et al. [140] showed that increasing the grid refinement twice can help to 

reduce spurious velocities 10  times at density ratio of 60 .   

Yuan and Schaefer [131] packed a practical EOS in a single interaction pseudopotential 

to utilise the van der Waals loop for setting up a two-phase system.  They used several 

cubic EOSs such as van der Waals (VW), SRK, Carnahan-Starling (CS), and PR.  This 

idea is great as the temperature can be defined implicitly through the EOS in the 

multiphase system.  They showed that the CS EOS and PR EOS can lessen spurious 

currents significantly, enhance the stability of the model, and reach the density ratios in 

the order of 1000 .  Their proposed scheme is the basis for many extensions which are 

reviewed in the following sections.  The details of the scheme are described in section 

2.6.1. 

Having only one parameter G  to set the interaction force, SC model does not have the 

flexibility of tuning surface tension independent of EOS.  In order to overcome this 

issue, Sbragaglia et al. [140] introduced multirange pseudopotential scheme where two 



Chapter 1– Introduction 

 

26 

different amplitudes are employed for calculation of the force: one for nearest 

neighbours and another one for the next-nearest neighbours.  This feature 

mathematically supported by Shan [141].  Huang et al. [136] found that attraction 

parameter of CS EOS can control the interface width. 

Falcucci et al. [142] proposed a mid-range interaction approach, two-belt model, which 

could lessen spurious currents by one order of magnitude in comparison with original 

SC model at density ratio of 50 .  They could reach a liquid-gas coexistence system with 

density ratio of 500 . 

Through an admirable work, Li et al. [143] showed that changing surface tension 

through multirange pseudopotential causes the equilibrium densities to change.  They 

added a source term to the LB equation that affected only the interface region and could 

add a tunable surface tension to the pseudopotential model. 

1.5.1 The need for a thermodynamically consistent scheme 

A major concern about the SC model arises from its thermodynamic inconsistency 

caused by the discretization effect of the lattice.  The simulated systems recover slightly 

different liquid and vapour densities, in comparison with analytical solutions obtained 

from the Maxwell equal-area rule.  This discrepancy increases as the temperature 

decreases and recedes from the critical point.  The deviation indicates a lack of energy 

conservation in the SC model [144]. 

The aforementioned issue was first noticed by Shan and Chen [110], and the pressure 

tensor on the lattice, they found, gives rise to a mechanical stability that only meets the 

Maxwell thermodynamic condition if the pseudopotential is set to 0 0exp( / )ψ ψ ρ ρ= − , 

where ρ  is density, and 0ρ  and 0ψ  are arbitrary constants.  In this study, mechanical 

stability is the essence of having 0∇ ⋅ =P  along a stationary flat interface where P  is 

the pressure tensor. 

 He and Doolen [145] further pointed out that the pseudopotential must be proportional 

to density, i.e.  ψ ρ∝ , if the continuum integration approach is applied to calculate the 
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non-ideal part of the pressure.  Such treatment, which attempts to resolve the 

thermodynamic consistency, stimulates an unrestrained accumulation of density in the 

liquid phase and leads to mass collapse [132, 145] and, subsequently, a gauge 

invariance in the pressure tensor [140].  Shan [141] then proposed a more general 

approach to address the pressure tensor on the lattice and found that the 

pseudopotential, expressed as 0 0exp( / )ψ ψ ρ ρ= − , is thermodynamically consistent.  

This pseudopotential was then discovered to be associated with increase in numerical 

instability and spurious velocities in practice [146]. 

By using Shan’s approach [141], Sbragaglia and Shan [147] eventually confirmed that 

the SC model coincides with a free energy model when the pseudopotential is given by 

( )
1/

/ ( )
ε

ψ ρ ε ρ= + , where ε  is a constant depending on the lattice.  This function is 

self-bounded and, hence, the distribution function is prevented from accumulating 

excessively.  It is not difficult to find that the pseudopotential ( )
1/

/ ( )
ε

ψ ρ ε ρ= +  

coincides with the exponential function when only nearest-node interactions are 

considered.  This approach was later introduced to multicomponent systems by 

Sbragaglia et al. [148]. 

Numerical tests [141, 147] demonstrated that the exponential-based pseudopotential 

could successfully simulate the liquid-vapour coexistence.  However, it has also been 

noticed that the pseudopotential lacks sufficient free parameters to represent necessary 

two-phase properties such as saturation pressure, saturation densities, and speeds of 

sound in liquid and vapour for an LB system.  In other words, the simplicity of its 

mathematical format and the EOS, which it presents, prevents the approach from 

covering a wide range of real fluids.  In this regard, another approach has been proposed 

to simulate the real fluids by implementing practical EOSs in the LBE, while attempts 

were made to satisfy as largely as possible the Maxwell equal-area rule.  Yuan and 

Schaefer [149] examined different EOSs by implementing selected EOSs directly into 

the SC pseudopotential model and showed that the stability and accuracy of simulations 

were significantly affected.  Assuming the pseudopotential as ψ ρ∝ , Zhang and Tian 

[150] set EOS of the LBE via an equilibrium distribution function; however, the 

approach created larger spurious velocities in comparison with the original SC model 
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and does not guarantee the Galilean invariance [151].  Sbragaglia et al. [140] introduced 

a multirange pseudopotential approach, which, besides the SC forcing term, employs a 

second forcing term acting on the node of interest in the lattice with the aid of 

information from the next-nearest neighbours.  The approach and its sequels [142, 152-

155] are successful in increasing numerical stability and tuning surface tension 

independent of density ratio and can be considered as an improved scheme of an 

inconsistent pseudopotential LB framework.  Kupershtokh et al. [129] proposed a model 

that combines two approaches: local approximation and mean-value approximation; the 

effect of each part is determined by trial and error to remove the thermodynamic 

inconsistency.  Huang et al. [136] used the force calculation scheme of Sbragaglia [140] 

and, by trial and error analyses, found coefficients of the interaction force that result in 

an appropriate representation of the system.  Colosqui et al. [156] changed the spinodal 

region of EOS to eliminate the numerical error due to discretization on the lattice, for 

which, however, an iterative feedback loop (self-tuning procedure) has to be adopted 

during the simulations.  Li et al [143, 151] proposed a new forcing scheme, in addition 

to recovering correct hydrodynamics, which improved the numerical stability; however, 

the thermodynamic inconsistency has not been completely removed, and, for each 

individual case, the mechanical stability solution must be fitted with the solution given 

by the Maxwell equal-area rule. 

In Chapter 3, we propose multipseudopotential interaction scheme for the LB 

pseudopotential models that is fundamentally consistent with thermodynamics and has a 

greater flexibility in setting a desired thermodynamic state.  We demonstrate the 

applicability of the scheme in representing thermodynamic states of interest through 

simulations of planar interfaces and buoyancy-free droplets of two real fluids.  

Additionally, it is posited that the proposed methodology provides the potential to 

improve the LBE for modelling multiphase flows by mitigating the unphysical side 

effects, such as spurious velocities.  We also discuss the possible reasons behind the 

common problems of collapsing simulations in practical applications when an EOS of a 

real fluid is implemented directly into the SC model.  We finally provide the 

suggestions on setting the boundary conditions for the proposed multipseudopotential 

interaction scheme.   
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1.5.2 Multipseudopotential scheme extended 

While in the first version of the multipseudopotential scheme, discussed in Chapter 3, 

the forces are determined to achieve a specific thermodynamic coexistence of interest.  

The scheme becomes very versatile if they are analytically set to represent cubic 

equations of state in a wide range of temperatures.  This is the motivation for the 

extension of the multipseudopotential scheme. 

It is found that the different forcing schemes (the ways in which the SC force is inserted 

in the LB equation) affect pressure tensor, thermodynamic consistency, and stability of 

the simulated system differently [136, 151, 157].  These studies, adopting the CS EOS, 

showed that the forcing schemes proposed by Guo et al. [158] and He et al. [159] can 

similarly recover the N-S equations to the second order and they reproduce the 

predicted interface tensions well.  Moreover, these forcing schemes [158, 159] and 

exact difference method (EDM) [129] could effectively separate VLE densities from the 

change of viscosity.  However, while EDM can reach to the density ratio of about 1000 , 

the forcing schemes of Ref.  [158, 159] can reach density ratio of about 100 .  Wagner 

[124] compared the two methods of simulating non-ideal fluids: force method [145] and 

pressure method [120].  After successfully identifying spurious interfacial terms with 

the aid of Taylor expansion to fifth order and removing them from the pressure tensor in 

the force method, both pressure method and force method showed similar consistent 

results.  Li et al. [160] showed that the forcing scheme proposed by Wagner [124] is 

identical to the one proposed by Guo et al. [158].  Li et al [151] successfully identified 

the effective part of EDM, which improves the instability, and implemented it into 

forcing scheme proposed by Guo et al. [158] to reach higher density ratios (with the aid 

of the CS EOS), and then used a free parameter to approximately fit the mechanical 

stability on the solution of the Maxwell equal-area.  They further combined the scheme 

with Multi-relaxation-time LB to improve the numerical stability [161].  The study 

showed that the interface thickness can be controlled by attraction parameter of the CS 

EOS.  Lycett-Brown and Luo [162] analysed the LB with a general forcing scheme with 

the aid of Taylor expansion to the third order and used the third-order errors to 

counteract the thermodynamic inconsistency.  They concluded that the scheme can 

simulate arbitrary density ratios and increasing interface width can improve the 

thermodynamic consistency.  However, it is inevitable for the methods to fit mechanical 
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stability on the Maxwell construction for the entire coexistence curve or a specific 

thermodynamic state. 

In Chapter 3, we show that using single pseudopotential to recover practical EOSs can 

cause non-physical interactions to happen in the simulation domain and, moreover, the 

mechanical stability of the system is significantly affected by the lattice scaling and type 

and parameters of EOSs.  Such a behaviour can be found in Ref.  [162], where 

increasing the attraction parameter of the EOS while favouring shortening the interface 

width, the vapour equilibrium density is considerably affected even at relatively low-

density ratios.  Furthermore, we have introduced a multipseudopotential scheme which 

is thermodynamically consistent and can be initialized with the desired VLE state, 

independent of lattice spacing and the type of EOSs being recovered at least at low-

density ratios.   

In Chapter 4, we propose a multipseudopotential scheme to incorporate most of the 

popular cubic EOSs into the LB equation consistently.  While in Chapter 3 forces are 

determined to achieve a specific thermodynamic coexistence of interest, in this study 

they are analytically set to represent cubic equations of state including VW, CS, PR, and 

SRK in a wide range of temperatures.  It is shown that the scheme is numerically stable 

and high-density ratios are achievable.  Assigning each part of EOSs (attraction and 

repulsion) to the consistent pseudopotentials is discussed.  The EOS parameters that 

govern the interface width are identified and applied to improve the accuracy of VLE 

simulations at very high-density ratios.  The simulation results are supported by 

theoretical analysis which helps to present them in reduced formats and to link them to 

real world thermodynamic systems. 

1.5.3 Boundary condition for pseudopotential models 

Setting up proper treatments at the boundaries of the simulation domain is necessary to 

achieve the desired correct results while satisfying the given flow conditions, such as 

velocity, pressure, or periodic planes.  The treatments should keep the accuracy of the 

solution at a minimum computational cost.  In the N-S based solvers the boundary 

conditions are directly imposed on macroscopic quantities.  However, in the LBM, 

similar to particle-based methods such as MD and DPD, the microscopic characteristics 
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give rise to the desired macroscopic flow conditions.  After a streaming process, the 

distribution functions of a boundary node should be defined.  This requires redefining 

all of them, or only the unknowns, as the node has some defined particle populations, 

coming from the inside of the domain. 

It has been well-studied, and proven, that the conventional LBM has the second order of 

accuracy, in phase space inside of the flow domain [91, 163].  Therefore, a proper 

boundary treatment should provide the same, otherwise degrading the entire simulation 

accuracy.  For example, bounce back scheme, implemented in lattice gas automaton 

method for straightforward treatment of no-slip boundaries, is found to have the first 

order of accuracy in the LBM [164, 165].  The scheme could be of the second order if 

the wall line is considered to be halfway between the fluid and solid nodes [166]. 

The extrapolation treatments are able to provide the second order of accuracy.  The 

finite difference-based scheme of Chen et al.[167]  requests information from two 

neighbouring node layers.  The non-equilibrium extrapolation scheme of Zhao-Li et al. 

[168] needs information from the nearest fluid nodes to determine a new set of 

distribution functions for the nodes whose pressure or velocity is defined.  To keep the 

great assets of local collision operations which suit parallel processing, an LBM 

boundary condition better finds the unknown distribution functions of a node, merely by 

the use of the information available at the node itself. 

On the other hand, the on-site boundary condition proposed by Zou and He [169] 

imposes pressure or velocity condition on the focused node regardless of neighbours.  It 

finds the unknowns with the aid of conservation of mass and momentum, and bounce 

back rule for the non-ideal part of distributions.  Moreover, the method keeps the 

second order of accuracy for simulations.  Inamuro et al. [170] suggested the missed 

distributions are found from the equilibrium distribution function that is calculated by a 

fictitious density and velocity.  Skordos [171] filled all the distribution functions on the 

boundary node using the stress tensor which is related to strain rate tensor.  The strain 

rate tensor can be evaluated by second order finite difference approximation of velocity 

over neighbouring nodes.  Latt et al. [172] proposed replacing all the distribution 

functions of the boundary node by the use of a stress tensor evaluated by bounce back 
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of the non-equilibrium part of distribution functions.  Latt et al. [172] compared 

boundary treatments proposed by [169-171] and found that despite the fact that they all 

had a second order of accuracy, the ones which determine the other unknown 

distributions after streaming step through closure relations have better accuracy at low 

Reynolds number flows.  Additionally, the boundary conditions, which fill all the 

distributions at the boundary node, demonstrate better numerical stability.  Therefore, 

they are suitable for high Reynolds number flows. 

It should be noted that bounce back applicability is not limited by the geometry of the 

wall.  However, the others need to find the vectors tangent and normal to the wall, for 

which various probable situations should be assessed beforehand.  They also require 

further treatments for corner nodes.  Bounce back has been going through considerable 

extensions; it is combined with spatial interpolations to handle moving boundaries 

[173].  Junk and Yang [174] modified bounce back to increase the accuracy of velocity 

and pressure fields whilst keeping the procedure completely local.  Nash et al. [175] 

studied this category of boundary condition treatments regarding accuracy and 

performance in various types of flow. 

In spite of the popularity, the boundary treatments for pseudopotential models have not 

been studied thoroughly.  It has been well studied and known that adjusting the 

pseudopotential force at the boundaries can help defining wettability of a solid surface.  

However, in the case of a half-saturated porous geometry, there exist channels where a 

single-phase fluid is flowing and its interactions with solid should be correctly 

modelled.  The other applications are the simulations of two-phase flows in which some 

solid walls are merely interacting with one phase such as the flow regimes of slug, 

annular and dispersed, in a pipe.  During this, one phase flows in the center of the pipe 

and the other one is interacting with the pipe wall. 

In Chapter 5, we implement different solid-liquid force interactions into the bounce-

back and on-site Zou and He [169] treatments, to build non-slip wall boundary 

conditions.  We assess these methods for a single-phase real fluid (the compressed 

water) flows in a two-dimensional channel, to recover macroscopic poiseuille flow.  The 

accuracy of simulations, density variation, and velocity profiles due to these treatments 
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are studied.  We demonstrate that the choice of solid-liquid interaction can effectively 

change the flow behaviour. 

1.6 Conclusion and research goal 

We reviewed the most popular methods in simulation of multiphase flows at various 

scales.  MD is the paramount choice for modelling individual molecules or atoms where 

different molecular interactions give rise to phase separation.  Each DPD particle 

simulates a cluster of molecules which moving randomly in computational domain, 

therefore, they cover a scale between molecules and macroscopic.  Continuum scale 

models mostly employ the N-S equations where phase interface should be identified by 

a secondary method such as VOF, level-set, and front-tracking method.  The LBM 

shows the characteristics of both macroscopic and molecular levels.  The particles are 

moving on a lattice which produce noise-free results, conserve mass and reproduce the 

N-S equations to the second order. 

The well-known multiphase models in the LBM are the RK, Free-energy, HSD, and 

pseudopotential model.  Among them, pseudopotential model is popular due to ease of 

use and the meaningful physics based on underlying molecular interactions.  While 

employed in many applications, it suffers from thermodynamic inconsistency, being 

limited to low-density ratios, and unable to control interface width independent of EOS.  

Moreover, the model has been studied for modelling wettability phenomena but the 

effect of solid-fluid interactions on bulk flow is missed in the literature.  These 

shortcomings are the main core motive of this study to develop a new LBM multiphase 

model, multipseudopotential interaction, with boundary conditions. 
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Chapter 2 – Pseudopotential model for lattice Boltzmann method 

2.1 Introduction 

Pseudopotential or SC model in the lattice Boltzmann framework has been a simple and 

successful route for simulating multiphase flows.  In this chapter, firstly Boltzmann 

equation and its relation to the LBM is studied.  Then, the N-S equations are derived 

from the LBM.  After covering the basics, different aspects of the pseudopotential 

model are studied in detail.  The common way in reproducing practical EOSs is 

described.  The isotropy of the SC force, as an element for decreasing spurious 

velocities and linking to macroscopic equations, is investigated.  Thermodynamic 

consistency of the model from two different points of view is assessed.  Multirange 

pseudopotential as an extension of SC force is studied.  Different approaches to 

implementing an internal or external force to the LBM are explained.   

2.2 BGK Boltzmann equation 

The Boltzmann equation having the BGK collision is 

df f g
f

dt τ

−
+ ⋅∇ = −ξ , (2-1) 

where ( , , )f tx ξ  is the single-particle distribution function, τ  is the collision relaxation 

time, ξ  is the microscopic velocity, g  is the Maxwell-Boltzmann distribution function 
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where R  is the ideal gas constant, D  is the number of dimensions, ρ  is density, u  is 

macroscopic velocity, T  is temperature.  The macroscopic properties are linked with 

microscopic ones through moments of the distribution function [176] 

f d gdρ = =∫ ∫ξ ξ , 

f d gdρ = =∫ ∫u ξ ξ ξ ξ , 
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En RT f d dgρ = = − = −∫ ∫ξ u ξ ξ u ξ , 

(2-3) 

where Enρ  is the energy and 0D  is the number of degrees of freedom a particle. 
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2.3 The lattice Boltzmann method 

The LBM is recurring streams and collisions of a set of finite distribution functions 

( , )
i

f tx  which reproduce the hydrodynamic behaviour.  These distributions are confined 

to move from their positions x  along discrete microscopic velocities 
i

e  to the 

neighbouring discreet positions 
i

+x e .  At each node, they collide simultaneously; in a 

sense, their mass and momentum are conserved.  Every node tries to approach local 

equilibrium by delivering a part of the excess mass to the nearest neighbours.  The 

evolution of the distribution functions is governed by lattice Boltzmann equation 

1
( , ) ( , ) ( , ) ( , ) ( , ),eq

i i i i i i
f t t t f t f t f t F t

τ
 + ∆ + ∆ − = − − + x e x x x x  (2-4) 

where x  is the position, t  the time, τ  the nondimensional relaxation time, 

{ : 0,..., 1}
i

i q= −e  discrete microscopic velocity vectors to 1q −  neighbouring nodes, 

and 
i

F  is an arbitrary source term to introduce a correction or new capability.  The link 

between the LBM and Boltzmann equation was not clear at first [86] but He and Luo 

well derived the LBM from Boltzmann equation [176] and showed that equation (2-4) 

can be considered as the first-order-in-time approximation of the Boltzmann equation.  

eq

i
f  is the local equilibrium distribution function 

( )
2

2

.. .
( , ) 1

2( ) 2

ieq i
i i

f t w
RT RT RT

ρ
 

= + + − 
  

e ue u u u
x , (2-5) 

where 
i

w  are the weights.  RT  is related to the sound speed, 2

s
c RT= , in the LBM as 

it has an ideal gas equation of state.  The sound speed depends on the lattice 

configuration which several examples will be given in the following.  ρ  and u  are the 

macroscopic fluid density and velocity given by 

1

q

i

i

fρ
=

=∑ , (2-6) 
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1

.
q

i i

i

fρ
=

=∑u e  

The Lattice or mesh structure is named as DnQq  where n  is the number of dimensions 

and q  is the number of discrete velocity vectors.  The symmetric 2D and 3D lattices 

which are widely used in the literature are 2 7D Q , 2 9D Q , 3 15D Q , 3 19D Q , and 

3 27D Q .  The 2 7D Q  is usually used in the early LB simulations 

0 1 2 3 4 5 6[ , , , , , , ] =e e e e e e e  

1 1 1 1
0 1 1

2 2 2 2

3 3 3 3
0 0 0

2 2 2 2

c

 
− − − 

 
 

− −  

. 

(2-7) 

in which weights are 

1/ 2, 0

1/12, 1,2,...,6
a

w
α

α

=
= 

=
 (2-8) 

and sound speed is obtained from 

2 2 / 4
s

c RT c= = , (2-9) 

where /c x t= ∆ ∆  is the lattice speed.  In the LBM t∆  is set to be unity which causes c  

to be representative of lattice spacing as well.  Therefore, microscopic velocities and 

lattice nodes are coupled. 

The uniform square lattices are more popular nowadays where sound speed in them is 

defined as 

2 2 / 3
s

c RT c= = . (2-10) 

The 2 9D Q  lattice is described as 

0 1 2 3 4 5 6 7 8[ , , , , , , , , ] =e e e e e e e e e  (2-11) 
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0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1
c

− − − 
 − − − 

. 

where the weights are 

4 / 9, 0

1/ 9, 1,2,3, 4

1/ 36, 5,6,7,8.

i

i

w

i

i

=


= =
 =

. (2-12) 

The 3 15D Q  is a lattice in which each element or box has velocities toward 8 corners 

and perpendicular to 6 faces besides the rest velocity 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14[ , , , , , , , , , , , , , , ] =e e e e e e e e e e e e e e e

0 1 0 0 1 0 0 1 1 1 1 1 1 1 1

0 0 1 0 0 1 0 1 1 1 1 1 1 1 1

0 0 0 1 0 0 1 1 1 1 1 1 1 1 1

c

− − − − − 
 − − − − − 
 − − − − − 

 

 

(2-13) 

where the weights are 

2 / 9, 0

1/ 9, 1, 2,...,6

1/ 72, 7, 20,...,14

i

i

w i

i

=


= =
 =

 (2-14) 

The 3 19D Q  is obtained if, besides the rest velocity, the velocities pointing to the 18 

midpoints of box edges and perpendicular to 6 faces are considered 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19[ , , , , , , , , , , , , , , , , , , , ] =e e e e e e e e e e e e e e e e e e e e  

0 1 0 0 1 0 0 1 1 1

0 0 1 0 0 1 0 1 1 1

0 0 0 1 0 0 1 0 0 0

c

− −
 − −
 −

1 1 1 1 1 0 0 0 0

1 0 0 0 0 1 1 1 1

0 1 1 1 1 1 1 1 1

− − − 
− − − 
− − − − 

 

(2-15) 

where the weights are 
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1/ 3, 0

1/18, 1, 2,...,6

1/ 36, 7, 20,...,18.

i

i

w i

i

=


= =
 =

 (2-16) 

Once all velocities in 3 15D Q  and 3 19D Q  are included, 3 27D Q  is constructed 

3 19 3 19 3 19 3 15 3 15 3 15

0 1 26 0 1 18 7 8 14
[ , ,..., ] [ , ,..., , , ,..., ]D Q D Q D Q D Q D Q D Q=e e e e e e e e e  (2-17) 

with the weights 

8 / 27, 0

2 / 27, 1, 2,...,6

1/ 54, 7,8,...,18

1/ 216, 19, 20,..., 26

i

i

i
w

i

i

=
 =

= 
=

 =

 (2-18) 

2.4 Boltzmann equation to LBM 

The local equilibrium distribution function, ( , )eq

i
f ρ u , is obtained from the Chapman-

Enskog expansion of Maxwellian to the second-order at constant temperature [176].  

The moments of single-particle distribution function (2-3) are approximated by 

quadrature rule to bridge Boltzmann equation to the LBM one 

( ) ( , , ) ( ) ( , , )
i i i

i

f t d W f tφ φ=∑∫ ξ x ξ ξ ξ x ξ  (2-19) 

where φ  is a polynomial function of ξ , 
i

W  are the weights, 
i
ξ  are the discrete 

velocities.  For example, from equations (2-3) and (2-19) we have 

1

q

i

i

f d fρ
=

= =∑∫ ξ  (2-20) 

in which 

( , , )
i i i

f W f t≡ x ξ . (2-21) 

when the lattice is selected, the weights can be found from equality of the lattice 

velocity moments with its corresponding over the Maxwell distribution for particles in 

rest.  The equality of zeroth to the third order moments is necessary to obtain Navier-

Stokes equation for isothermal systems.  The fourth order equality should be considered 
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for thermal systems.  For example, considering stationary 2D equilibrium for 

Boltzmann equation 

0 0( , 0)g g ρ ρ≡ = =u  (2-22) 

and the LBM (0) 0( , 0)eq eq

i if f ρ ρ= = =u , the zeroth, second, and fourth order moments 

are [86] 

(0) 0 0

eq

i

i

f g d ρ= =∑ ∫ ξ  

(0) 0 0

eq

i i i

i

f e e g d RTα β α β αβρ δ= =∑ ∫ ξ ξ ξ  

2

(0) 0 0
( ) ( )eq

i i i i i

i

f e e e e g d RTα β γ δ α β γ δ αβ γδ αγ βδ αδ βγρ δ δ δ δ δ δ= = + +∑ ∫ ξ ξ ξ ξ ξ  

(2-23) 

where α  and β  are Cartesian coordinates.  The odd moments are zero due to the 

symmetry of integrals.  By equating very left-hand side with very right-hand side of 

above equations we obtain 

1
i

i

w =∑  

i i i

i

w e e RTα β αβδ=∑  

2( ) ( )
i i i i i

i

w e e e e RTα β γ δ αβ γδ αγ βδ αδ βγδ δ δ δ δ δ= + +∑  

(2-24) 

Looking at equations (2-24) the dependence of temperature or sound speed to the lattice 

spacing is clearer.  Weights are found by this set of equations. 

2.5 LBM to Navier-Stokes equation 

Lattice Boltzmann equation leads to the Navier-Stokes equations through multiscale 

analysis and Taylor expansion.  Here, we explain the idea of Wagner [124, 177].  The 

below conditions are necessary for the derivation of an isothermal system 



Chapter 2– Pseudopotential model for lattice Boltzmann method 

 

40 

( ) 0,

( )( ) ,

( )( )( ) ,

eq

i

i

eq

i i

i

eq

i i i

i

eq

i i i i

i

f

f

f

f

ρ

ρθ

=

− =

− − =

− − − =

∑

∑

∑

∑

e u

e u e u I

e u e u e u Q

 (2-25) 

where αβ α βδ=I e e  is the identity matrix, Qαβγ α β γ=Q e e e  and { , , ,...}α β γe e e  with Greek 

indices are unit vectors in Cartesian coordinate (do not confuse them with { , , ,...}
i j k

e e e  

having English indices which represent lattice vectors).  Q  should be a zero tensor to 

satisfy Galilean invariance which is not the case for many popular LBMs. 

It is desirable for forcing term only changes momentum of particles by Fα α=F e  but not 

mass conservation or higher order terms 

0
i

i

F =∑  

( )
i i

i

F − =∑ e u F  

( )( ) 0
i i i

i

F − − =∑ e u e u  

(2-26) 

Comparing the first equation with the second one we immediately find 

0

( )
i i i i i

i i i

i i

i

F F F

F

=

− = −

=

∑ ∑ ∑

∑

e u e u

e F

���

 (2-27) 

and expanding the third one we obtain 
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0

( )( ) 0

( ) 0

( ) ( ) 0

( ) ( ) 0

i i i

i

i i i i i

i

i i i i i i i i

i i i i

i i i i i i i

i i i

i i i

i

F

F

F F F F

F F F

F

=

− − =

+ − − =

+ − − =

− − =

= +

∑

∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑

e u e u

e e uu e u ue

e e uu e u u e

e e e u u e

e e Fu uF

�����

 (2-28) 

The Taylor expansion can be written for the distribution function  

0

( , ( , )
!

)
n

n

ii i i

n

f t t t
t

D f t
n

∞

=

+ ∆
∆

+ ∆ =∑ xx e . (2-29) 

where n

i
D  to second order is 

2 2

1

2

( )

( ) 2

i t i t i

i t i t i t i i

e

e

D

e eD

α α

α α α β α β

= ∂ + ⋅∇ = ∂ + ∂

= ∂ + ⋅∇ = ∂ + ∂ ∂ + ∂ ∂

e

e
 (2-30) 

 and putting this into (2-4), and setting 1t∆ = , we have 

1

1 1
( , ) ( , ) ( , )

!

n eq

i i i i i

n

D f t f t f t F
n τ

∞

=

 = − − ∑ x x x  (2-31) 

The order of the derivatives is shown by ( ) ( )O O D∂ = .  Equation (2-31), expanded to 

the second order, is 

2 31 1 1
( , ) ( ,(

2
) )eq

i i i i ii i
D f D f F fO t f tD

τ
 + =++ − x x  (2-32) 

As a result, we can approximate 
i

f  from its higher order derivatives and eq

i
f   

1 2 3(( , ) ( , )
2

)eq

i i iii ii
f t f t D f D f OF D

τ
τ τ− − += −x x  (2-33) 

Putting this approximation into itself  
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2 3

2 2 3

1 1

31

( , ) ( , ) ( , )
2

(

( )

2
) ( )) (,

2

eq eq

i i i i ii i i

i i

i

eq

i i i ii i

f t f t D f t D O D

O

f D f F

DD f t D f D F F Df O

τ
τ τ τ

τ τ
τ τ τ

 
− − +  

 
− − − + − +

= − −

−  

x x x

x

 (2-34) 

and getting rid of higher-orders we find 

2

1 1

3

( , ) ( , ) ( , )

( , )
2

( )

eq eq

i i i i

i

i i i

eq

i i i O

f t f t D f t D f F

D t F F Df

τ τ τ

τ
τ τ

 − 

 

= − −

− − − + 

x x x

x
 (2-35) 

We still have if  at right hand side, thus, we put (2-33) again inside (2-35)  

1 1 1 2 3

2 3

( , ) ( , )

( , ) ( ( )

( )

, )
2

( , ,)
2

eq

i i

eq eq

i i i i i i

e

i i i

i

i

q

ii i

f

O D

O

t f t

D f t D

D

f t D f D f F F

D f t F F

τ
τ τ τ τ τ

τ
τ τ

  
− − + −  

  

 − − − +

− −



=

−

x x

x x

x

 (2-36) 

remove higher order terms at the second line and rearrange 

3

1

2

( , ) ( , )

( , )

1
)( (( , )

2
)

eq

i i i

eq

i i

q

i

i

e

ii

f t f t

O

F

D f t F

D f t F D

τ

ττ

τ

τ

τ

−

 − 

 + − − + 

=

−

x x

x

x

 (2-37) 

By this process, we show the dependency of if  to itself through higher-order 

derivatives.  Now we are able to find the LBE while its streaming step is approximated 

with the aid of the equilibrium distribution function and force term at the current time 

and position. 

2

3

1 1
( , ) ) ( , )

2

1
( , )

(

)( , ) (

eq eq

i i i i i

eq

i i

i iF D f t F D f t F

f t f Ot D

τ τ

τ

τ+

 −

   − − − − =   

+ 

x x

x x

 (2-38) 

By calculating the zeroth order velocity moments,
i

∑ , the continuity equation is 

obtained 
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31
) ( )

2
(t Oρ ρ − =∂ + ∇ ∂u F  (2-39) 

In which the actual fluid velocity is obtained 

1

2ρ
= −v u F  (2-40) 

From the first order velocity moment, 
i

i

∑e , of equation (2-38), we find Navier-Stokes 

equations  

3( ) ( )R O
t

ρ ρ ρθ
∂

+ ∇ ⋅ = −∇ + + ∇⋅ + ∇ ⋅ + ∂
∂

v
v v F σ  (2-41) 

where ( )
Tσ νρ  = ∇ + ∇ v v  is the stress tensor and 

23 ( )R Oν= − ∇ ⋅ + ∂Q   is the excess 

part. 

2 ( 0.5)scν τ= −  (2-42) 

is the kinematic viscosity. 

2.6 Pseudopotential model 

Shan and Chen [111] proposed the model where particles experience an internal lattice-

interaction force.  It, resembling the gravitational force, between node x  and ′x  is 

defined as  

( )2
( , ) ( , )Gw t tψ ψ′ ′ ′− − −

′= −x x x x x xF c x x c  (2-43) 

where G  is the amplitude of the force, w  is the weight function which decreases with 

distance, c  is the vector from x  to ′x , ( )ψ ψ ρ=  is the potential which is not directly 

dependent on space but related via density; because of that it’s called pseudopotential.  

Should we focus on node x  having N  close neighbours, the force acting on it becomes 

( )2

1

( , ) ( , ) ( , ) ,
N

i i i

i

t G t w tψ ψ
=

= − +∑F x x c x c c  (2-44) 
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If 0G < , the force is attractive and if 0G > , it acts as repulsion force.  Hence, for the 

case of attraction force, if ψ  is a function which increases with density, a small noise in 

a uniform system causes nodes with higher density attract neighbouring distribution 

functions and form a liquid phase.  In contrast, the low-density regions are less eager to 

attract distribution functions and they form gas phase.  ψ  must be selected with care, 

since a monotonic and limitless function leads to an infinite accumulation of 

distributions.  In other words, from a molecular point of view, it seems that hard sphere 

repulsive part of Lennard-Jones potential is neglected [147]. 

The interaction forces obey Newton’s third law; whatever node � exerts on �′ acts in 

opposite direction on itself.  As the force involves neighbouring nodes, by applying that, 

momentum will be conserved in the whole domain, but, of course, not locally. 

The first potential function used by Shan and Chen [111] was 

[ ]0 0( ) 1 exp( / )ψ ρ ρ ρ ρ= − −  (2-45) 

and a year after that they [110] proposed a consistent pseudopotential 

0 0( ) exp( / )ψ ρ ψ ρ ρ= −  (2-46) 

where both 0ψ  and 0ρ  are arbitrary constants.  By choosing one of these potentials, 

from (2-44) the force exerted on each node is found.  In the primitive model, it is 

assumed that the force simply changes the momentum of the fluid after the collision by 

τ F .  Because τ  is considered as the time scale of the collision.  The node finds a new 

equilibrium velocity 

/eq τ ρ= +u u F  (2-47) 

which is used in the LBE (2-4) with 0
i

F = .  The pressure of the system at the limit 

0c →  was found as 

21

2
p Gρθ ψ= +  (2-48) 

As it can be seen 2
Gψ  defines the equation of state, and there is no other parameter in 

the interaction force defined for the interface width or surface tension.   
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The kind of pseudopotential function, the way the force inserted into the LBE, the 

format of the force is the topics of many research papers.  We discuss them in the 

following subsections. 

2.6.1 Single pseudopotential interaction (SPI) for Cubic EOSs 

Application of merely one forcing term (herein we name it as the single-

pseudopotential-interaction (SPI) force scheme) is a common method of recovering an 

EOS [129, 131, 136, 151].  Following the Yuan et al. [131], the single pseudopotential, 

Sψ , in the SC model can be obtained by EOS directly, 

 
2

2

2[ ( , ) / 3]S p T c

Gc

ρ ρ
ψ

−
= , 

(2-49) 

where ( , )p Tρ  can be calculated by the equations of state described in the following 

section.  This selection of pseudopotential makes the magnitude of G  non-functional, 

as it will be cancelled out in the calculation of the interaction force (2-44), though its 

sign can help to keep the radicand positive.  This scheme makes it possible to impose 

the desired EOS directly on the interaction force and attempts to remove the ideal gas 

pressure created by streaming and collision of distribution functions.  It is demonstrated 

in section 2.6.4 that, however, no practical EOSs placed into (2-50) could satisfy the 

thermodynamic condition.  Moreover, in this SPI LBE scheme [131], the micro-velocity 

is usually set to unity, 1c = , and the temperature is independently set to model different 

isothermal systems.  As we show in the next chapter discussion, the thermodynamic 

equilibrium state of SPI will change with the value of c , i.e.  grid refinement. 

2.6.2 Isotropy of the interaction force 

For an arbitrary pseudopotential function, the Taylor expansion yields 

, ,

1
( ) ( ) ( ) ( ) ... ,

2!
i i i ic c cα α β

α αβψ ψ ψ ψ+ = + + +x c x x x  (2-50) 

where 
,

/ xα αψ ψ= ∂ ∂ .  The conservative force in the continuum limit can be found by 

substituting (2-50) into equation (2-44) [139] 
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(2) (4) 6

, , ,

1 1
... ,

3! 5!
F G E E Eα αβ β αβγδ βγδ αβγδε βγδεψ ψ ψ ψ

 
= − + + + 

 
 (2-51) 

 

where E  is the rank-n tensor 

( ) 1 2

1 2

2( )

... ... ,n

n

N
pp pn

p p p i i i i

i

E w c c c=∑ c  (2-52) 

Isotropy of 2nE  ensures the interaction force is isotropic and aligned with gradient of 

pseudopotential function and its derivatives, i.e., 

( )

( )

0,

, ,

n

n n

n

n odd

e c n even


= 

∆
E  (2-53) 

where 
n

e  are arbitrary constants, c the lattice constant, and ( )n∆  fully symmetric tensor 

of the rank-n [178].  By adjusting weight function, w , it is possible to make (2 )nE

isotropic to some extent, however, reaching a higher order of isotropy needs more 

neighbouring nodes to be in the range of the force.  Shan [139] and Sbragaglia et al. 

[140] showed that the well-known spurious currents of SC model at the liquid-gas 

interface are as a consequence of the anisotropic part of the conservative force and their 

strength will be damped by increasing the order of isotropy. 

Here we find ( )n∆  for the isotropy to 8th order, which can be used to find weights of a 

designed system or Taylor expansion of the force, equation (2-50).  8th order isotropy is 

the maximum isotropy can be obtained if the 2D force extends to next-nearest 

neighbours.  We start from the definition of the function 

1 2 2 1 2 1 1 2

2
( ) (2 ) 2 2

... ... ...

2
k j j j k

k
n k k

p p p p p p p p p

j

δ
− +

−

=

∆ = ∆ = ∆∑  (2-54) 

where 
j

p  are Cartesian coordinates.  For the second order 2n =  and 1k = , we find  

1 2 1 2

(2)

p p p pδ∆ = . (2-55) 
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In a 2D system, 
j

p  is the repetition of x  and y. 

2

2

(2) (2)

(2)

(2) (2)

1

0

1

xx xxx

xy xy

yy yyy

δ

δ

δ

∆ ∆ =

∆ =

= ∆ =∆

= =

=

=

 (2-56) 

Therefore, we can write them as  

(2) [1,0,1]∆ =  (2-57) 

for the fourth order 4n =  and 2k =   

1 2 4 1 2 1 1 4 1 2 3 4 1 3 2 4 1 4 3 2

1 2 3 4 1 3 2 4 1 4 3 2

4
(4) (2) (2) (2) (2)

... ... ...

2
j j jp p p p p p p p p p p p p p p p p p p p p

j

p p p p p p p p p p p p

δ δ δ δ

δ δ δ δ δ δ

− +

=

∆ = ∆ = ∆ + ∆ + ∆

= + +

∑
 (2-58) 

in the 2D case is 

4

3

2 2

3

4

(4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4) (4) (4) (4)

(4) (4)

3

0

1

0

3

xxxx x

yxxx xyxx xxyx xxxy x y

yyxx xyyx xxyy yxxy x y

xyyy yxyy yyxy yyyx xy

yyyy y

∆ = ∆ =

∆ = ∆ = ∆ = ∆ = ∆

∆ = ∆ = ∆ = ∆ = ∆ =

∆ = ∆ = ∆ = ∆ = ∆ =

∆ = ∆ =

 (2-59) 

where for the ease of reading the index notation 2
xx x= , 2

yy y= , 3
xxx x= , and so forth 

is adopted.  The result can be simply written as 

(4) [3,0,1,0,3]∆ =  (2-60) 

For the sixth order 6n =  and 3k =  

1 2 1 2 1 1 6

1 2 3 4 5 6 1 3 2 4 5 6 1 4 2 3 5 6 1 5 2 3 4 6 1 6 2 3 4

6

5

6
(6) (4)

... ... ...

2

(4) (4) (4) (4) (4)

j j jp p p p p p p p p

j

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

δ

δ δ δ δ δ

− +

=

∆ = ∆

= ∆ + ∆ + ∆ + ∆ + ∆

∑
 (2-61) 

After expanding for 2D case becomes 
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6 5 4 2 3 3 2 4 5 6

(6)

, , , , , ,

3[ 5, 0, 1, 0, 1, 0, 5 ]

x x y x y x y x y xy y

∆ =
�������������

 (2-62) 

For the eighth order, 8n =  and 4k =  , we find 

1 2 1 2 1 1

1 2 3 4 5 6 1 3 2 4 5 6 1 4 2 3 5 6 1 5 2 3 4 6

1 6 2 3 4 5 1 2 3 4 5 1 2

8 8

7 8 7 8 7 8 7 8

7 8 7 6 8 8 64 5 73

8
(8) (6)

... ... ...

2

(6) (6) (6) (6)

(6) (6) (6)

j j jp p p p p p p p p

j

p p p p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p

p p p

p p p p

p p p p p

p p p p pp p p p p

δ

δ δ δ δ

δ δ δ

− +

=

∆ = ∆

= ∆ + ∆ + ∆ + ∆

+ ∆ ∆+ + ∆

∑

 

After expansion, we obtain 

8 7 6 2 5 3 4 4 3 5 2 6 7 8

(8)

, , , , , , , ,

3 [35, 0, 5, 0, 3, 0, 5, 0, 35 ]

x x y x y x y x y x y x y xy y

∆ =
���������������

 (2-63) 

Now we can calculate Taylor expansion, (2-51) to the fourth order of isotropy.  Note 

that in it Einstein summation convention is adopted and terms are adding up.   

(2) (2) (2)

, , ,x x y yE E Eαβ β α αψ ψ ψ= +  

(4) (4)

, ,

(4) (4) (4)

, , ,

(4) (4) (4)

, , ,

(4)

,

xxx xxx

xxy xxy xyx xyx yxx yxx

xyy xyy yxy yxy yyx yyx

yyy yyy

E E

E E E

E E E

E

αβγδ βγδ α

α α α

α α α

α

ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ

=

+ + +

+ + +

+

 

(2-64) 

We now expand them by α  which are components of the force in x  and y  directions 

�

�

(2) (2) (2)

, , ,

0

(2) (2) (2)

, , ,

0

x xx x xy y

y yx x yy y

E E E

E E E

β β

β β

ψ ψ ψ

ψ ψ ψ

=

=

= +

= +
 (2-65) 
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4 3 2 2 2

(4) (4)
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(4) (4) (4)
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3
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E E

E E E
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E

E E

βγδ βγδψ ψ
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ψ ψ ψ

ψ

ψ ψ
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=

=

+ + +

+ + +

+

= +

���������������

�����
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βγδ βγδψ ψ

ψ ψ ψ

ψ ψ ψ

ψ

ψ ψ

=

=

=
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���������������

  

Note that 
(2) (2) 2

2xx yyE E e c= = , 4 4

(4) (4) 4

43
x y

E E e c= = , and 2 2

(4) 4

4x y
E e c=  can be found by (2-56) 

and (2-59), therefore (2-51) be 

4 3 2 2 2

4 3 2 2 2

3 2

3 2

(2) (4) (4)

, , ,

(2) (4) (4)

, , ,

2 4 4

2 , 4 4, ,

2 4 4

2 , 4 4, ,

1
( 3 ) ...

6

1
( 3 ) ...

6

1
(3 3 ) ...

6

1
(3 3 ) ...

6

xx x xx x x y xy

yy y yy y x y x y

x xx xy

y y x y

G E E E

G E E E

G e c e c e c

G e c e c e c

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

 
= − + + + 

 

 
− + + + 

 

 
= − + + + 

 


− + + +



F e

e

e

y




e

 (2-66) 

which gives 

2 4 2

2 4

1
( ) ...

2
Ge c Ge cψ ψ ψ ψ= − ∇ − ∇ ∇ +F  (2-67) 

Where 2 1e =  and 4e  is found as [147] 

4

1
(1) 2 (2) 8 (4) 25 (5) 32 (8)

2
e w w w w w= + + + + + ⋅⋅⋅  (2-68) 
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2.6.3 He’s thermodynamic consistency assessment 

In the continuum mechanics, the contribution of internal force in the pressure tensor is 

calculated by 

.non ideal−∇ ⋅ = −P F  (2-69) 

Hence, a straightforward approach to obtain modified pressure tensor is to integrate the 

above equation and add it to ideal part 

22 2 4 2 41 1 1 1
[ ( )]

2 2 2 2
Gc Gc Gcρθ ψ ψ ψ ψ ψ ψ= + + ∇ + ∇ − ∇ ∇P I  (2-70) 

The first two terms are the equation of state and the last term stands for surface tension 

part.  It can be shown that this method suffers from gauge invariance, i.e., different 

pressure tensors can be found that satisfy equation (2-69) [140].  Moreover, the 

integration is taken over (2-67) which is a continuum approximation of the interaction 

force for the discrete lattice.  Furthermore, if we compare (2-70) with the free energy 

model 

22( )
2

p
κ

κρ ρ ρ κ ρ ρ= − ∇ − ∇ + ∇ ∇P I  (2-71) 

where κ  is the surface tension parameter, ( ) ( )p ρψ ρ ψ ρ′= −  and /ψ ψ ρ′ = ∂ ∂ .  We 

see another consequence of that assumption leads to the idea that the pseudopotential 

function must be proportional to density, i.e. ψ ρ∝ , to be thermodynamically 

consistent [132, 145].  Such pseudopotential can’t show excluded volume of molecules, 

therefore, when used, the density at some point is increased monotonically and two-

phase coexistence is not achievable. 

2.6.4 Shan’s thermodynamic consistency assessment 

In order to compute non-ideal part, Shan [141] used the fundamental definition of the 

pressure tensor, i.e., the total force acting on a volume is equal to pressure felt at its 

surface 

. ,
x

=∑ ∑P A F  (2-72) 
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where A  is the vector area.  Therefore, the pressure corresponding to every single 

discreet force can be accurately calculated and the arbitrary gauge will be removed.  In 

the case of D2Q9, if interactions range to the next-nearest neighbours, generally, they 

can be categorised into five different groups based on their range.  The pressure tensors 

associated with group 1 and 2, which are as consequence of interactions with the nearest 

neighbours, are 

( ) ( )
16

2(1)

9

( ) ,
2

i i i i

i

G
x wψ ψ

=

= +∑P c x c c c  (2-73) 

The pressure of groups 4 and 8 includes the effect of pair interactions between the 

central node with its neighbours and ones between neighbours themselves 

( ) ( )

( )

16
2(2)

9

16
2

9

( )
4

.
4 2 2

i i i i

i

i i
i i i

i

G
x w

G
w

ψ ψ

ψ ψ

=

=

= +

   
+ −   

   

∑

∑

P c x c c c

c c
c x x c c

 (2-74) 

The group 5 similar to group 4 and 8 includes two parts.  The first part which related to 

interaction of central node is 

 ( )
24

(3)

17

(5) ( ) ,
4

i i i

i

G
w xψ ψ

=

= +∑P x c c c  (2-75) 

and the second part which is pair products among the nearest nodes is 

 

( )

( )

( )

( )

(4)

(1,1) ( 1,0) (1,0) ( 1, 1) 17 17

(1,1) (0, 1) (0,1) ( 1, 1) 18 18

(0,1) (1, 1) ( 1,1) (0, 1) 19 19

( 1,1) (1,0) ( 1,0) (1, 1) 20 20

(5)
4

.

G
w ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

− − −

− − −

− − −

− − −

= +

+ +

+ +

+ + 

P e e

e e

e e

e e

 
(2-76) 

where ( , ) ( )
m n x y

m nψ ψ= + +x e e . 

By substituting (2-50) into Eqs.  (2-73)-(2-76) and summing all equations, pressure 

tensor can be calculated in the continuum limit.  For the case of planar liquid-gas 

interface where all gradients of the pseudopotential function are in one direction, for 
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example along the x  coordinate, one can obtain it to the second order derivatives as 

below 

 

22 4 2
2

1 2 2
,

2 12
xx

GC GC d d
P a a

dx dx

ψ ψ
ψ ψ

  
= + +  

   
 

22 4 2
2

3 4 2
,

2 4
yy

GC GC d d
P a a

dx dx

ψ ψ
ψ ψ

  
= + +  

   
 

0,
xy yx

P P= =  

(2-77) 

where 1 41 3a e= −  , 2 41 6a e= +  , 3 4[ (5) 4 (8)]a w w= − +  , 4 3 4a a e= + . 

By considering mechanical equilibrium along the interface 

 0x xxP∂ =  (2-78) 

and boundary conditions ( )
gas

ρ ρ−∞ =  and ( )
liquid

ρ ρ+∞ = , one obtains 

 

2
2

0 1
0.

2

liquid

gas

Gc
p T d

ρ

ε

ρ

ψ
ρ ψ ρ

ψ +

′ 
− − = 

 
∫  (2-79) 

To have a thermodynamic consistency, Maxwell equal area rule yields 

 ( )0 2
0,

liquid

gas

d
p p

ρ

ρ

ρ

ρ
− =∫  (2-80) 

where p  is the pressure obtained from the equation of state.  By equating (2-79) and (2-

80) we find 

 1 2

d d
ε

ψ ρ
λ

ψ ρ+
=  (2-81) 

where λ  is an arbitrary constant.  As suggested by [147], we see the only shape of ψ  

which satisfy both equations at the same time is 

 

1/

( ) ,
C

ε
ρ

ψ ρ
λε ρ

 
=  

+ 
 (2-82) 
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where C  is an arbitrary constant and 1 2 4 42 / (6 2) / (6 1)a a e eε = − = − + .  We call this as 

thermodynamically consistent ψ .  For the case of nearest neighbours, 0ε =  and 

 
/( ) .e

λ ρψ ρ −=  (2-83) 

By matching (2-79) and (2-80), the equation of state of such a system is turned out to be 

 
2 ( ).

2

G
p ρθ ψ ρ= +  (2-84) 

2.6.5 Multirange pseudopotential for tuning surface tension 

The primitive SC force basically has the minimum range; it only sees the nearest 

neighbours of the node of interest.  What if the range is increased?  Sbragaglia et al. 

[140] defined the following interaction force 

 ( )[ ]
2

1 2

1

( , ) ( , ) ( , ) ( 2 , ) ,
N

i i i i

i

t t w G t G tψ ψ ψ
=

= − + + +∑F x x c x c x c c  (2-85) 

where 0 0( ) [1 exp( / )]ψ ρ ρ ρ ρ= − − .  In this force, besides the SC force, the interaction 

between node x  and some of next-nearest nodes are counted as well.  The isotropy of 

the force is not increased as the weight functions are the same for both nearest and next 

nearest forces.  However, it introduces a new free parameter and instead of G  we have 

1G  and 2G .  The main reason for achieving a new parameter was the introduction of 

tuning surface tension independent of the equation of state.  Based on the continuum 

integration of the force, explained in subsection 0, the pressure tensor is  

 
2 4 4

22 4

1 2 2 2

1
( )

2 12 6 6

c c c
A A A A cρθ ψ ψ ψ ψ ψ ψ= + + ∇ + ∆ − ∇ ∇P I  (2-86) 

where 1 1 22A G G= + , 2 1 28A G G= +  .  The surface tension is 

 

24

2( )
2

yy xx

A c
P P dx dx

x

ψ
σ

+∞ +∞

−∞ −∞

∂
= − = −

∂∫ ∫  (2-87) 

where has the independent 2A  coefficient.  However, Li et al. [143] with the use of 

Shan’s idea, explained in subsection 2.6.4, found the below pressure tensor 
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2 4 4
22 21 1 2 2

4 4

1 2 2

( 6 )
( )

2 12 6

( 6 )

6 3

A c G G c G c

G G c G c

ρθ ψ ψ ψ ψ

ψ ψ ψ ψ

+
= + + ∇ − ∇

+
+ ∇∇ − ∇ ∇

P I

 (2-88) 

which means not only surface tension cannot get close to zero 1 2, 0G G →  , but also 

change of 2A  affects the mechanical stability of the system., i.e., equilibrium densities 

of liquid and vapour. 

2.6.6 Forcing term 

There are many ways to implement internal or external forces such as the gravity, 

magnetic, and interparticle forces into the LBE.  Here, we bring the most successful 

ones.  The first idea is Shan and Chen [110] which is explained in section 2.6. 

The second idea is the one proposed by He et al. [159] where the effect of Boltzmann 

equation force is interpreted as  

 2

eq eq

s

f f f
c

−
⋅∇ ≈ ⋅∇ = − ⋅ξ ξ

ξ u
F F F  (2-89) 

which gives the following source term 

 2

1 1
(1 ) ( )

2

eq

i i i

s

F f
cτ ρ

= − ⋅ −F e u  (2-90) 

where the actual and equilibrium fluid velocity are defined as  

 
2

i i

i

t
f

ρ

∆
= +∑v e F  (2-91) 

The third scheme is by Guo et al. [158] which is found by considering lattice effects and 

conversion of the LBM to Navier-Stokes equations to the second order 
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 2 4

1 1 1
(1 ) [ ( ) ( ) ]

2
i i i i i

s s

F w
c cτ

= − − + ⋅ ⋅e u e u e F  (2-92) 

Where the actual and equilibrium fluid velocities are identical and the same as equation 

(2-91). 

The fourth forcing term introduced by Kupershtokh et al. [129] where found from the 

Boltzmann equation 

 ( , / ) ( , )eq eq eq eq

i i i
F f t fρ ρ ρ= + ∆ −u F u  (2-93) 

In this scheme, the actual fluid velocity, / (2 )
i i

i

f t ρ= + ∆∑v e F , is different to the 

equilibrium velocity 
eq

i ii
f=∑u e . 

Huang et al. compared these force terms and found the first and fourth schemes are the 

same if terms of the order 
2( / )O F F tα β ρ∆  are removed.  The second and third schemes 

are the same if terms of the order 3( )O u  and higher are neglected.  The choice of the 

forces for single phase flow is negligible.  However, when multiphase systems are 

simulated they show different behaviours.  The third scheme, Guo scheme, brings 

consistent results which are independent of the choice of the relaxation time, τ  .  For 

the first scheme, the original SC method, a good stability is seen but equilibrium 

densities and surface tension are dependent on τ .  The fourth scheme, Kupershtokh 

scheme, causes the density ratio to be slightly affected by the change of τ   while 

showing good stability.  However, the Taylor expansion of first and fourth scheme have 

several extra terms in addition to Navier-Stokes ones [136]. 

2.7 Conclusion 

It is shown that lattice Boltzmann equation can be derived directly from Boltzmann 

equation and Navier-Stokes equations can be recovered from them.  We studied 

pseudopotential model in detail.  SPI model as a popular choice of recovering equations 

of state is studied. 
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We showed how isotropic long-range forces, beyond nearest nodes, can be constructed.  

Based on this topic, the forces in the continuum limit can be found.  He’s strategy to 

study thermodynamic inconsistency of pseudopotential models is revisited where the 

pressure tensor is found by integration of macroscopic shape of the force.  Their 

consistent pseudopotential is proportional to density and unable to simulate liquid-

vapour coexistence.  On the other hand, Shan’s idea is to find pressure tensor from its 

basic definition on the lattice which gives rises to the different thermodynamic 

condition.  Their consistent potential can simulate phase change.  Multirange 

pseudopotential model as a successful extension of SC model with tunable interface 

tension is investigated.  The most famous ways of implementing an internal and 

external force are explained.   
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Chapter 3– Multipseudopotential interaction 

3.1 Introduction 

Pseudopotential lattice Boltzmann models have been recognised as efficient numerical 

tools to simulate complex fluid systems, including those at thermodynamic equilibrium 

states and with phase transitions.  However, when the equation of state (EOS) of real 

fluids is implemented, the existing pseudopotential LB models suffer from 

thermodynamic inconsistency.  In this chapter, we present multipseudopotential 

interactions scheme, which is fully consistent with thermodynamics and applicable to 

engineering applications.  In this framework, multiple pseudopotentials are employed to 

represent dominant interaction potentials at different extents of the mean free path of 

particles.  By simulating van der Waals and Carnahan-Starling fluids, it is demonstrated 

that the MPI scheme can correctly simulate the physical nature of two-phase systems on 

the lattice including the continuum predictions of liquid-vapour coexistence states and 

the sound speeds in liquid and vapour phases.  It is also shown that the lattice 

interactions of the MPI scheme represent underlying molecular interactions, as they 

vary in a broad range from strong short-distance repulsions to weak long-distance 

attractions during phase transitions.  Consequently, MPI is proved to be a reliable LB 

scheme, as it avoids generating unphysical potentials in implementing the EOSs of real 

fluids and limiting the spurious velocities at the interface of two-phase systems.  

Additionally, a straightforward procedure is suggested and discussed to pre-set the MPI 

system with the two-phase properties of a selected fluid.   

3.2 Multipseudopotential interaction scheme 

Considering the unique EOS presented by the consistent pseudopotential function (2-

82),  

 

2/

21

2
j j

p Gc
C

ε

ρ
ρθ

λ ε ρ

 
= +   + 

 (3-1) 

the system is a faithful model for the liquid-vapour coexistence.  However, such a 

consistent system is unable to present experimental data and the practical EOSs such as 

those of VW and CS.  This shortcoming comes, in mathematics, from the fact that only 

three free parameters – G , C , and λ  – are not sufficient to describe the desired 

relations among the properties of real fluids in two-phase coexistence such as pressure, 
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liquid density, vapour density, and sound speeds in the vapour and liquid phase.  To our 

understanding, this pseudopotential represents one part of molecular potential, and such 

a system lacks contributions of other parts of interparticle interactions of fluids, and, 

hence, it is unable to represent a wide variety of experimental data of states of real 

fluids. 

To overcome the above-mentioned shortcoming, here we introduce the concept of the 

multipseudopotential interaction, in comparison with the single-pseudopotential 

interaction (see section 2.6.1), as the pair interactions scheme to describe the 

hydrodynamic properties of real fluids, under the condition that each potential satisfies 

the thermodynamic requirement (2-82) 

 ( )

(1) (2) ( )

2

1 1

...

( , ) ( , ) ,

total n

n N

j j i j i i

j i

G t w tψ ψ
= =

= + + +

= − +∑ ∑

F F F F

x c x c c
 (3-2) 

where n  is the number of pseudopotentials, 
j

G  the amplitude, and 
j

ψ  the consistent 

pseudopotential of the j -th part of the force 

 

1/

( ) .
j

j j
C

ε

ρ
ψ ρ

λ ε ρ

 
=   + 

 (3-3) 

Here, the interparticle potential is presented with the contributions of different parts.  

Therefore, as shown in Figure 3-1, for example, the interaction force between node A 

and its neighbours ( 1, 2,..., 24)i =  in a given lattice, total

A i−F , is composed of a set of sub-

forces at various potentials, which are the functions of particle densities, i.e.  the inverse 

of the mean free path of particles.   
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Figure 3-1.  Node A and the eight nearest-neighbour nodes ( 1,2,...,8)i =  and sixteen next-nearest nodes 

( 9,10,..., 24)i =  that it can interact with, on the D2Q9 lattice.  The interaction of node A with each 

neighbour node, total

A i−F , is composed of a series of consistent sub-forces.  Each one represents a part of the 

interparticle potential. 

It is noteworthy that the concept and physics of multi-pseudopotential interaction are 

different to those of the multi-range interaction (or pseudopotential with mid-range 

interactions) model proposed by Sbragaglia et al. [140] in which different set of forces 

are introduced to the scheme with different ranges (or cut-off radii) linking to the 

neighbourhood nodes.  For instance, one set of forces with amplitude 1G  act on the 

nearest nodes and the others with amplitude 2G  act on next-nearest nodes.  Such a 

multi-range interaction model provides capabilities for the pseudopotential models, such 

as flexibility of setting surface tension independent of EOS [140], achieving stable 

spray-like fluid [152, 154], and increasing numerical stability [142, 153].  However, it 

has to be noted that the multirange interaction scheme [140] does not take the 

thermodynamic consistency into consideration, as all of its ranges utilise the same 

inconsistent pseudopotential 0 0( ) (1 exp( / ))ψ ρ ρ ρ ρ= − −  where 0ρ  is a constant. 

As defined in (3-2) and (3-3), and discussed in subsection 3.3, the MPI scheme we 

proposed is fully thermodynamically consistent.  Meanwhile, in principle, the MPI 

scheme utilises different pseudopotentials but requires the force interactions within a 

specific range and order of isotropy.  For example, if the nearest-neighbour interactions 

are considered, all sub-forces only act on nearest nodes { : 1,2,...,8}j

A i
i− =F  and have 

fourth order of isotropy.  Once the interactions extend to next-nearest neighbours, all 

sub-forces act within these lattice nodes { : 1, 2,..., 24}j

A i
i− =F  and have an eighth order 
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of isotropy (see Figure 3-1).  Therefore, the method is grounded on the Shan’s theory of 

calculation of exact pressure tensor in pseudopotential LB systems [141] and its 

extension by Sbragaglia and Shan [147].   

3.3 Thermodynamic consistency analysis 

Here we prove that MPI inherently satisfies thermodynamic consistency and begin with 

the procedure similar to that stated in Refs.  [110, 141].  By employing the general rule 

of the force balance  

 
x

⋅ =∑ ∑P A F  (3-4) 

[141], the pressure tensor can be exactly expressed by the MPI force on a discrete lattice 

for the nearest and next-nearest interactions.  Taking the D2Q9 lattice, following Ref.  

[141], and considering the continuum limit where all gradients are in the x  direction, 

the contribution of the total potentials of the MPI force to the pressure tensor can be 

calculated in the x y− plane 

22 4 2

2

1 2 2
1

,
2 12

n
j j j j

xx j j

j

G c G c d d
P a a

dx dx

ψ ψ
ψ ψ

=

  
= + +  

   
∑   

22 4 2

2

3 4 2
1

,
2 4

n
j j j j

yy j j

j

G c G c d d
P a a

dx dx

ψ ψ
ψ ψ

=

  
= + +  

   
∑   

0,
xy yx

P P= =  

(3-5) 

where 1 41 3a e= − , 2 41 6a e= + , 3 4[ (5) 4 (8)]a w w= − + , 4 3 4a a e= + , and 1 22 /a aε = − . 

The mechanical stability along a planar interface states that the normal component of 

the pressure tensor is equal to a constant pressure 0p .  Hence, by adding the ideal-gas 

part of pressure, we find 
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22 4 2

2

0 1 2 2
1

.
2 12

n
j j j j

j j

j

G c G c d d
p a a

dx dx

ψ ψ
ρθ ψ ψ

=

    
= + + +   

      
∑  (3-6) 

This equation, unsurprisingly, is the extended version of the pressure for the single 

pseudopotential force model [141] with the potentials up to n-th part.  It is noteworthy 

that 2e , which is the constant of the second-order isotropy and must appear in front of 

2

jψ  terms, is merged with 
j

G at a more general format.  Equation (3-6) can then be 

rearranged in the format including only derivatives with respect to density 

 

4 1 2 2

2 2

0

1 1

( ) ,
8(1 ) 2

n n
j j j j

x j

j jj j

G c G cd
p

d

ε

ε

ψ ψ
ρ ρθ ψ

ε ψ ρ ψ

+

= =

 ′
∂ = − − 

′−   
∑ ∑  (3-7) 

where /d dψ ψ ρ′ = .  Replacing 
1 /j j

εψ ψ+ ′  with 
2 / jρ λ , we are able to integrate all 

terms of  (3-7) along the interface 

 

4 2 2

2 2

0 2
1 1

( ) .
8(1 ) 2

n n
j j j

x j

j jj j

G c G c d
p

ε

ψ ρ
ρ ρθ ψ

ε λ ψ ρ= =

′  
∂ = − −  −  

∑ ∑∫  (3-8) 

We can then solve (3-8) to find the density profile 
x
ρ∂  across the interface under the 

boundary conditions of ( )
v

ρ ρ−∞ = , ( )
l

ρ ρ+∞ = , and 0 ( ) ( )
l v

p p pρ ρ= = .  We further 

utilise the fact that in both liquid and vapour phases far from the interface, density has a 

uniform profile 
x
ρ∂ , which makes all terms on the left-hand side of (3-8) zero; 

therefore, we obtain, in bulk liquid and vapour, 

 

2

2

0 2
1

0.
2

l

v

n
j

j

j

G c d
p

ρ

ρ

ρ
ρθ ψ

ρ=

 
− − =  

 
∑∫  (3-9) 

It is obvious that (3-9) is the expression of the Maxwell construction, which means, 

with the first assumption that each individual force is thermodynamically consistent, the 

summation of these interparticle forces, therefore, is thermodynamically consistent.  

The corresponding EOS is 
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2

2

1

.
2

n
j

j

j

G c
p ρθ ψ

=

= +∑  (3-10) 

This virial-like EOS (3-10) is the result of the multi-pseudopotential interaction forces 

(3-2).  The MPI pseudopotential proposed in this study can be further applied to predict 

the interfacial forces in terms of the surface tension.  In the case of a planar interface, 

surface tension can be calculated from 

 ( ) ( ) ,
N T xx yy

p p dx P P dxσ
+∞ +∞

−∞ −∞

= − = −∫ ∫  (3-11) 

where 
N

p  is the local pressure normal to the interface and 
T

p  the local pressure 

tangential to the interface.  Solving Eq.  (3-11) with the condition 0
x
ρ∂ =  again in both 

liquid and vapour phases far from the interface, we can obtain 

 

4
24

1

( ) ,
2

l

v

n

j j x

j

c e
G d

ρ

ρ

σ ψ ρ ρ
=

 
′= − ∂ 

 
∑∫  (3-12) 

where 
x
ρ∂  is solved by (3-8). 

Eqs.  (3-10) and (3-12) are the general expressions of the EOS and the surface tension 

for the MPI LBE model, which are thermodynamically consistent.  In physics, each 

potential of MPI forces provides a certain order of interparticle interactions to correct 

the ideal gas pressure, i.e., the first term of (3-10).  In mathematics, each term has a set 

of free parameters to describe the detailed dynamics of physics.  In addition, following 

the work of Sbragaglia and Shan [147], it can be straightforwardly demonstrated that 

the proposed MPI has the format that leads to a consistency between the lattice pressure 

tensor and the free energy density developed from the square gradient theory which is 

explained in section 3.4. 
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3.4 Finding free energy density 

The aim of this section is to show that the pressure tensor of the MPI scheme in the case 

of one-dimensional interface Eq.  (3-5), matches a free energy density.  Following Ref.  

[147], we start from the free energy density [147] 

 
2( ) ( )( ) ,

x
lρ ϕ ρ ρ ρΞ = Ψ + ∂ −  (3-13) 

where Ψ is the bulk free energy, l  is a Lagrange multiplier, ( )ϕ ρ  is a function 

depending only on the density.  From the equilibrium equation 0
δ

δρ

Ξ
= , it can be shown 

that [147]  

 

2
2

0

( )
,x

b

d
p p

d

ϕ ρ
ρ

ρ ρ

 ∂
− = − 

 
 (3-14) 

where 
b

p  is the bulk pressure.  Equating the left-hand sides of (3-7) and (3-15), we find 

4 1 2 2
2 2

1

( )
( ) .

8(1 )

n
j j j x

x

j j j

G c d d

d d

ε

ε

ψ ψ ϕ ρ
ρ ρ

ε ψ ρ ψ ρ ρ

+

=

 ′  ∂
∂ = −   ′−     

∑  (3-15) 

By multiplying all terms by 2/dρ ρ  and integrating by parts, we obtain 

4 1 2 2 1

2 2

2 2
1

2

( ) ( )
8(1 )

( )
.

n
j j j j j

x x

j j j j j

x

G c d
d

d

ε ε

ε ε

ψ ψ ψ ψ
ρ ρ ρ

ε ψ ρ ψ ψ ρ ψ ρ

ϕ ρ

ρ

+ +

=

      ′ ′ 
∂ − ∂      

′ ′−             

∂
= −

∑ ∫
  (3-16) 

Rearranging equation (3-16), the ( )ϕ ρ  function can be determined as 

4 2 1

2 2
1

( )
( )

8(1 ) ( )

n
j j j x j j

j x j j

G c d
d

d

ε

ε

ψ ψ ψ ψρ
ϕ ρ ρ

ε ρ ρ ψ ρ ψ ρ

+

=

 ′ ∂ 
= − −   

′− ∂     
∑ ∫  (3-17) 

Since Eq.  (3-15) was derived with the assumption that ϕ  is a function of the density 

and not a function of the gradient of the density, the second term in the curly brackets 

should be zero.  To enforce this condition, for all pseudopotentials we set 

1

2
0,

j

j

d

d

εψ

ρ ψ ρ

+ 
= 

′  
 (3-18) 
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4 4 2

1 1

( )
( ) .

8(1 ) 8 (1 )

n n
j j j j j

j j j j

G c G c
ε

ψ ψ ρ ψ
ϕ ρ

ε ρ λ ε ψ= =

′ ′
= − = −

− −
∑ ∑  (3-19) 

Eq.  (3-18) exactly reproduces the thermodynamic condition (2-81), which demonstrates 

the consistency of the pressure tensor with the Maxwell equal-area rule and the free 

energy model.  In the domain, far away from density gradients, the bulk free energy is  

0

2 2

2
1

( )
ln ,

2

n
j j

j r

G c n
dn

n

ρρ ψ
ρθ ρ θ

=

Ψ = − +∑ ∫  (3-20) 

where 0r  is a constant.  Substituting (3-3) into (3-20) and calculating the integration, the 

bulk free energy simplifies to 

 

2

2

1

ln .
2 (2 )

n
j

j

j j

G c
ε

ρ
ρθ ρ θ ψ

λ ε
−

=

Ψ = − +
−

∑  (3-21) 

The bulk chemical potential can be found from ( )ρµ ρ= ∂ Ψ , i.e., 

2 2 2

1

(ln 1) .
2 (2 )

n
j j j

j j

G c
εψ ψ

µ θ ρ
λ ε ρ

−

=

 
= + + +  − 

∑   (3-22) 

Therefore, the free energy is 

4 2

2

1

( )
( ) .

8 (1 )

n
j j

x

j j j

G c
ε

ρ ψ
ρ

λ ε ψ=

′
Ξ = Ψ − ∂

−
∑  (3-23) 

3.5 Results and discussion 

Herein, we practically analyse MPI for two-phase flows by considering a buoyancy-free 

steady droplet in equilibrium with its vapour and liquid-vapour coexistence with a 

planar interface, which is the classical case studied previously for testing the interfacial 

models [131, 136, 139].  The MPI capability in reproducing VW and CS EOS is 

thoroughly investigated in comparison with another common scheme.  The scheme is 

verified in several ways.  Firstly, according to the mechanical stability of a flat 

interface, the total normal component of the pressure tensor, 0 xx
p P ρθ= + , across the 

phase interface must be constant which is studied in section 3.5.4.  Secondly, we expect 

the simulated systems give equilibrium vapor-liquid densities the same as analytical 
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solutions of Maxwell construction which is investigated in section 3.5.5.  Thirdly, in 

section 3.5.8, a liquid-vapor thermodynamic state is considered; an MPI EOS is 

developed based on the desired system and the results of simulations and expectations 

are compared.   

3.5.1 Equations of state 

The fluids are VW and CS fluids.  For VW, the EOS, 

 
2
,

1

T
p a

b

ρ
ρ

ρ
= −

−
 (3-24) 

exists as the basis of many other EOSs of real fluids.  Here its parameters are set as 

9 / 49a =  and 2 / 21b = .  The fluid’s critical point (critical density 1/ 3
c

bρ = , critical 

temperature 8 / 27
c

T a b= , and critical pressure 2/ 27
c

p a b= ) is deemed to be the 

reference point for nondimensionalization.  The CS EOS, 

 

2 3
2

3

1
,

(1 )
p T a

η η η
ρ ρ

η

+ + −
= −

−
 (3-25) 

which modifies the hard sphere repulsion part of the VW equation, is a popular EOS in 

the pseudopotential LB community.  Here / 4bη ρ= , 4b =  and for a  two values are 

considered 1,5.5a = .  The properties of the critical point are 0.18727 / (0.4963 )
c

T a b=  

and 0.18727 /
c c

p T b= .  ,a b  values are adopted from the previous pseudopotential 

studies [131].  Based on critical points reduced (nondimensional) pressure, /
R c

p p p=  , 

reduced density /
R c

ρ ρ ρ= , and reduced temperature /
R c

T T T=  are defined. 

Weight functions are constants (1) 1/ 3w = , and (2) 1/12w =  [140].  The nearest-node 

(nodes 1 8−  in Figure 3-1) interactions are employed such that, according to (2-68), 

4 1/ 3e =  and ε  approaches zero; therefore, if we set 1c = , from (3-3), we find 

 ( ) exp( / ),M

j jψ ρ λ ρ= −  (3-26) 
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where the superscript ‘ M ’ indicates the pseudopotential of MPI.  The choice of C does 

not change the shape of the pseudopotential function of (3-26).  Therefore, the EOS of 

such a system is 

 

2

1

exp( 2 / ).
2

n
j

j

j

G c
p ρθ λ ρ

=

= + −∑  (3-27) 

3.5.2 Single pseudopotential and multipseudopotential interactions 

Application of merely one forcing term, SPI scheme, is a common method of recovering 

an EOS (see subsection 2.6.1).  For the SPI, the mechanical stability is characterised by 

the exact pressure tensor on the lattice, which is obtained from nearest-node 

interactions.  It leads to 

( )
2 2

2

0

( )
0

3 2

l

v

s
S

s

Gc
p d

ρ

ρ

ς ψ
ρ ψ ρ

ψ

′ 
− − = 

 
∫   (3-28) 

The thermodynamic consistency in this scheme is characterised by means of the 

Maxwell construction 

 ( )0 2
( , ) 0,

l

v

d
p p T

ρ

ρ

ρ
ρ

ρ
− =∫  (3-29) 

which is considered the benchmark. 

For the case of MPI, the mechanical stability and Maxwell thermodynamic condition 

are the same and identified as 

( )
22

2

0 2
1

0.
3 2

l

v

n
j M

j

j

G c d
p

ρ

ρ

ς ρ
ρ ψ

ρ=

 
− − =  

 
∑∫  (3-30) 

Eqs.  (3-28)-(3-30) are solved numerically along with the conditions 

0 ( ) ( )
l v

p p pρ ρ= = , to find 
l

ρ , 
v

ρ , and 0p  for each scheme.  Examining (3-30), 

recalling (3-27) for 0p , and knowing cς ∝  , it can be realised that c  can be crossed out 

from (3-30).  It means that the MPI scheme under grid refinement or scalability, i.e.  

change of c , shows the same densities in the given equilibrium state.  Nonetheless, the 
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mechanical stability of SPI, Eq.  (3-28), is affected by the choice of c , ( ) /s sψ ψ′  as is a 

nonlinear function of .c  

3.5.3 Simulation setup 

All simulations are run on a two-dimensional square lattice including nine velocities (

2 9D Q ).  The computational domain contains 200 200×  nodes which is considerably 

bigger than the drop.  The nondimensional relaxation time is set to unity 1τ =  which is 

the default value for most LB tests.  Higher τ  increases the viscosity of the system.  It 

should be noted that τ  should be 0.5τ >  based on equation (2-42).  The internal forces 

are embedded in the LBE by the method proposed by Guo et al. [158], which 

reproduces Navier-Stokes equations to the second order.  For the case of the planar 

interface, half of the domain is filled with liquid density and the other half with the 

vapour density.  For the case of the curved interface, a droplet with the radius 0 40r =  

lattice unit is placed initially in the middle of the domain.  The drop radius is chosen big 

in comparison with the interface width which occupies at least a few lattice sites.  The 

periodic condition is applied at all boundaries.  
l

ρ  and 
v

ρ  are initially set, in a sense, to 

ensure that the system is in the saturation state.  To avoid initial instability, a diffuse 

interface should be adopted at the beginning of simulations.  We utilise the suggestion 

of Ref.  [136] 

 ( ) tanh
2 2

l v l v r R
r

W

ρ ρ ρ ρ
ρ

+ − − 
= −  

 
 (3-31) 

where W  controls the interface width and, in all simulations, is set at 5W = , R  is the 

distance between the interface and the reference point, r , is the variable distance from 

the reference point.  For the case of the circular drop, the reference point is the centre of 

the drop, and for the case of the planar interface, it can be one of the boundaries parallel 

to the phase interface.  The maximum spurious velocity 
max

u , which is a common 

parameter to assess the LBM force schemes [131, 136], is measured regularly during the 

runs of drop simulations.  The error of the simulations is calculated from deviation from 

Maxwell construction results (3-29) 
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simulation Maxwell

Maxwell

Error
ρ ρ

ρ

−
=   (3-32) 

Here the consistent pseudopotential, (3-26), is used.  As the MPI EOS is scalable, as an 

option, we can simply set lattice temperature as the scale of a simulation and, therefore, 

EOS temperature T  coincides with lattice temperature θ .  Such a choice fixes micro-

velocity at 3Tς = , which is the strategy we selected in the case of the VW fluid.  In 

order to recover VW fluid, we fit MPI EOS on to VW EOS, whereby, by trial and error, 

we found that four potentials in (3-27) with their free parameters, 
j

G  and 
j

λ , are 

needed.  For the case of CS fluid, we impose no constraint on ς  and disconnect it from 

system temperature, as in the SPI scheme.  We employ it only as another free parameter 

for fitting.  Following this strategy, by trial and error in curve-fitting, we found only 

3n =  pseudopotentials in (3-27) are needed to implement CS into MPI. 

Table 3-1, Table 3-2, and Table 3-3 show the parameters we have used to fit MPI EOS 

on to VW and CS EOS.  The fitting has been done around the two-phase coexistence 

region.  These tables are brought, mainly, to show the capability of MPI in representing 

EOSs.  Therefore, these values can be used directly to achieve the mentioned systems or 

utilised for an initial guess of curve fittings for other thermodynamic states including 

other EOSs or experimental data (the interested reader can contact the authors for the 

details).  Here 2R  (R-squared) is the coefficient of determination of the curve fittings.  

Four potentials are found suitable for VW EOS and three for CS EOS.  It should be 

noted that for VW EOS ς  is fixed at system temperature, while it is a free parameter for 

CS EOS. 
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Table 3-1.  Parameters at which MPI follows VW EOS with 9 / 49a =  and 2 / 21b =  for 4n =   

R
T  0.78 0.82 0.86 0.90 0.94 0.98 

ς  1.156 1.186 1.214 1.242 1.269 1.296 

1G  15241 8478 5336 3474 1795 1721 

2G  -2.89 -2.94 -2.790 -2.61 -3.03 -2.54 

3G  -17.2 -15.4 -13.7 -12.2 -10.8 -9.32 

3

4 10G ×  -238 -283 -277 -267 -430 -415 

1λ  31.57 29.31 27.56 25.99 23.70 23.44 

2λ  1.719 1.850 1.873 1.885 2.250 2.208 

3λ  5.105 5.185 5.155 5.115 5.415 5.110 

3

4 10λ ×  386.2 442.8 452.0 458.8 622.0 605.0 

2R   1.0 1.0 1.0 1.0 1.0 1.0 

 

 

Table 3-2.  Parameters at which MPI follows CS EOS with 1a =  and 4b =  for 3n =   

R
T  0.78 0.82 0.86 0.90 0.94 0.98 

310ς ×  424.8 444.4 459.0 471.3 472.4 749.6 

3

1 10G ×  -126 -101 -86.1 -75.8 -88.1 -78.9 

3

2 10G ×  -845 -699 -588 -497 -436 -333 

3G  156.1 114.6 85.03 64.40 36.69 577.3 

3

1 10λ ×  61.35 56.85 55.00 54.40 64.45 33.18 

3

2 10λ ×  196.8 187.7 181.1 175.6 183.4 168.1 

3λ  1.126 1.071 1.015 0.963 0.864 1.289 

2R   1.0 1.0 0.999 0.999 1.0 0.999 

 

 



Chapter 3– Multipseudopotential interaction 

 

70 

Table 3-3.  Parameters at which MPI follows CS EOS with 5.5a =  and 4b =  for 3n =   

R
T  0.78 0.82 0.86 0.90 0.94 0.98 

ς  0.991 1.015 1.076 1.104 1.102 1.132 

3

1 10G ×  -129.5 -122.2 -86.0 -76.54 -93.68 -88.49 

3

2 10G ×  -850 -722 -588 -498 -439 -377 

3G  155.7 108.5 85.38 64.06 34.58 20.0 

3

1 10λ ×  62.65 65.00 55.00 54.8 66.95 68.0 

3

2 10λ ×  198 195.7 181.1 176.1 186.6 186.3 

3λ  1.124 1.051 1.016 0.962 0.854 0.777 

2R   1.0 1.0 0.999 0.999 1.0 1.0 

 

3.5.4 Flat phase interface 

The first set of simulations is run to build planar interfaces using the MPI scheme and 

VW EOS.  As spelled out in subsection 3.3, according to the mechanical stability of a 

flat interface, the total normal component of the pressure tensor, 0 xx
p P ρθ= + , across 

the phase interface must be constant.  Here, we can compute 
xx

P  from Eq.  (3-5) where 

1 0a =  and 2 3a =  are constants for nearest interactions [141].  Second spatial derivative 

of pseudopotential is obtained by use of the second order central difference 

approximation.  Figure 3-2 shows, 0p  nondimensionalized by 
Maxwell

p  along the phase 

interface for 0.86,0.88,0.90
R

T = .  Calculating the change of pressure along the 

interface 
0 /liquid liquidp p p p∆ = − , we estimated the maximum error of 0.011% , 

0.008% , and 0.008%  for each case, respectively, which validates the mechanical 

stability of the system.  The errors are suggested to associate with higher-order terms of 

the pressure tensor, which are neglected in equation (3-5). 
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Figure 3-2.  Profile of the total normal component of pressure tensor (normalized by 
Maxwell

p ) along the 

phase interface for MPI scheme showing VW EOS at different temperatures. 

The second set of simulations is run to investigate MPI, using CS EOS, when 

constructing a planar interface in comparison with SPI.  Figure 3-(a) demonstrates the 

equilibrium (reduced) density versus (reduced) temperature achieved for the liquid 

branch of the liquid-vapour coexistence curve.  For the case of 1a = , SPI starts 

deviating from the Maxwell construction as temperature decreases.  At 0.78
R

T = , the 

error is 1.2% .  On the other hand, MPI results follow those of the liquid branch very 

well, where the error at 0.78
R

T =  is 0.3% .  If the attraction part of CS EOS increases 

to 5.5a = , both SPI and MPI show satisfactory results, though SPI simulations 

unconditionally collapse if temperature decreases to less than 0.84
R

T = .  This is not the 

case for MPI, which successfully simulates the Maxwell construction at the lower 

temperature 0.78
R

Τ = .  As the case of CS EOS with parameters of 1a =  and 4b =  has 

been used commonly in the literature, we deliberately have chosen 5.5a =  and 4b =  to 

show a shortcoming of SPI schemes, which will be discussed in subsection 3.5.6.  The 

vapour branch of the coexistence curve of the CS EOS is shown in Fig.  3-(b).  In the 

case of 1a = , the deviation of SPI from the Maxwell construction is more severe than 

the liquid branch where the error reaches 79%  at 0.78
R

T = .  In contrast, the MPI error 

at that temperature is about 1% .  For the case of 5.5a = , SPI shows improvement 

where the error at 0.84
R

T =  is 2.6%  and MPI shows 1.8% .  Nonetheless, as described 

above, SPI collapses as temperature decreases to less than 0.84
R

T = . 
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Figure 3-3.  Results obtained from MPI and SPI simulations of CS EOS in comparison with analytical 

results of the Maxwell construction: (a) reduced density of liquid vs.  reduced temperature, (b) reduced 

density of vapour vs.  reduced temperature.  The thin lines indicate where the SPI simulations collapse. 

 

3.5.5 Circular droplet 

The third set of simulations is devoted to the case of the buoyancy-free steady VW 

droplet.  Figure 3-4 shows the reduced density of the saturated liquid and vapour versus 

the reduced temperature.  Both schemes satisfactorily predict the liquid branch of the 

VW EOS, shown in Figure 3-4(a), whereby the maximum deviation from the Maxwell 

construction by the SPI scheme is 0.6%  at 0.92
R

T = , and by the MPI scheme, 0.4%  at 

0.98
R

T = .  On the vapour branch as predicted and shown in Figure 3-4 (b), the SPI 

scheme exhibits mechanical stability (3-28) and deviates gradually from the Maxwell 

construction (3-29) with decreasing temperature.  It has been noticed that the SPI 

scheme works well with reduced temperatures larger than 0.83 , but collapses when the 

reduced temperature decreases further the same as for CS EOS.  The details on this 

collapse behaviour, observed as the major shortcoming of the SPI scheme, will be 

discussed in subsection 3.5.6.  In contrast, the MPI scheme, down to lower 

temperatures, demonstrates good agreement with the thermodynamic condition (3-29). 
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Figure 3-4.  Results obtained from MPI and SPI simulations of VW EOS in comparison with analytical 

results of the Maxwell construction and mechanical stability: (a) reduced density of liquid vs.  reduced 

temperature, (b) reduced density of vapour vs.  reduced temperature.  The vertical thin lines indicate 

where the SPI simulations collapse. 

This behaviour can be seen clearly in Figure 3-5, which illustrates the error resulting 

from the deviation from the vapour branch of the Maxwell construction (3-29).  

Whereas the SPI scheme error increases remarkably with the decrease in temperature, 

the errors generated by MPI stay consistently under 1.5%  and are generally 

independent of temperature.  When temperature decreases, in principle, the liquid-

vapour density ratio rises; hence, the MPI predictions are generally steady while the 

density ratio increases. 

 

 

Figure 3-5.  Errors due to deviation from the vapor branch of Maxwell construction.  Results are 

obtained from MPI and SPI simulations of VW EOS. 

The spurious velocities produced by the SPI (using VW EOS) and MPI (using VW 

EOS) schemes are examined and the results are shown in Table 3-4.  Spurious velocities 

for both models rise as the saturation temperature decreases.  The maximum spurious 
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velocities observed from the MPI simulations at different temperatures are about 50%  

of those obtained from SPI.  The details are demonstrated by the distribution of spurious 

velocities in Figure 3-6, where both schemes are applied to simulate the VW fluid at 

0.84,0.88,0.94
R

T = , and the results are depicted at the same scale.  The spurious 

velocities generated at left, right, top, and bottom of the SPI droplets are much greater 

than what are observed at the MPI droplets. 

Table 3-4.  Maximum spurious velocities of VW drop at various temperatures and their reduction levels 

by use of MPI over SPI. 

R
T  

max
/

SPI
cu  

max
/

MPI
cu  Reduction

0.74 - 6.85E-02 - 

0.78 - 2.48E-02 - 

0.84 1.63E-02 8.40E-03 48.57% 

0.86 1.26E-02 5.90E-03 53.02% 

0.88 9.16E-03 4.45E-03 51.40% 

0.90 6.32E-03 2.99E-03 52.67% 

0.92 3.93E-03 1.85E-03 52.93% 

0.94 2.21E-03 1.03E-03 53.50% 

0.96 9.48E-04 4.34E-04 54.24% 

0.98 2.19E-04 1.03E-04 52.76% 
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Figure 3-6.  Spurious velocities are shown, SPI: (a), (c), and (e) and MPI: (b), (d), and (f), for simulating 

the VW fluid at different temperatures with droplets having reached the equilibrium state. 

 

3.5.6 Physical analysis of SPI 

Running different cases with the SPI scheme, we have found that LBE simulations 

collapse and the mechanical stability (3-28) integrations tend to diverge at low 

temperatures (see Figure 3-3 and Figure 3-4), where obviously spurious velocities are 

not the cause.  The collapse of simulations for the VW fluid has been reported by Ref.  

[131]; however, the reasons for its occurrence was not clarified.  It is in fact due to, 

considering Eq.  (2-49), the difficulty in guaranteeing 
Sψ  to be a real value.  For 

example, by setting 0G < , 
Sψ  could only be a real value if / 3 0p ρ− ≤ .  We discuss 

the details by using the reduced format of the equation, (3 / )
R R

p b a ρ− , which is 

depicted versus the reduced density for VW EOS at three different temperatures in 

Figure 3-7.  It can be seen from Figure 3-7 that there are regions close to the subcooled 

liquid and superheated vapour where the term above is positive.  If only these states are 

simulated, it is possible to set G  as a positive value and make 
Sψ  physically 

meaningful.  Nonetheless, if a saturated fluid is modelled, the change in sign of G  may 

not be of any help.  As shown in Figure 3-7, at the high temperature of 0.90
R

T = , a 
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physically meaningful 
Sψ  can be obtained for both liquid and vapour if we set 0G < ; 

since the term (3 / ) 0
R R

p b a ρ− < .  However, if temperature is reduced to 0.83
R

T <  (

(3 / ) 0
R R

p b a ρ− =  at 0.83
R

T = ), the term (3 / )
R R

p b a ρ−  is positive for vapour while 

being negative for liquid.  Lower than this temperature, obviously, the SPI scheme 

using VW EOS fails to calculate 
Sψ  by (2-49) either through setting G  as a positive or 

negative value.  The threshold temperature, 0.83
R

T = , which is first identified in this 

study, is found by numerically solving Eq.  (3-28) for the case of VW fluid with 

parameters 9 / 49a =  and 2 / 21b = .  Physically, this is the reason that no results could 

be illustrated in Figure 3-3 (for case 5.5a = ) and Figure 3-4 from the SPI model for 

lower temperatures.  The threshold temperature depends on the ratio of /b a  for VW 

fluids.  This means that the available domain of SPI must be investigated for a given 

fluid individually in order to preclude the collapse of the simulation. 

It should be noted that the difficulty in guaranteeing the real value for 
Sψ  is a general 

drawback of the SPI scheme using Eq.  (2-49), as long as a VW-like EOS, such as the 

EOSs of Peng–Robinson, Redlich–Kwong, Carnahan-Starling, is employed. 

 

Figure 3-7.  Behaviour of (3 / )
R R

p b a ρ− , which is used to compute Sψ , as a function of density for the 

VW equation. 

3.5.7 Physical analysis of MPI 

The LBE EOS recovers the CS EOS accurately when the proposed MPI scheme is used 

as shown in the inset graph of Figure 3-8.  The contributions of each pseudopotential to 

the dynamic properties of a CS fluid is examined with the aid of the potential factors,  
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2

21
,

2

j

j j

G c

T
ψ

ρ
Π =  (3-33) 

which are shown in Figure 3-8 at the reduced temperature 0.8
R

T =  versus reduced 

density, which can represent the inverse of the mean free path of a particle.  As 

demonstrated in Figure 3-8, when the density approaches zero, all potential factors 

approach zero and the fluid acts as an ideal gas.  As density increases, 1Π , which has 

the nature of attraction of particles, begins to play a relatively major role in controlling 

the long-distance-particles (low density) interactions in the vapour region.  In the 

interface region of liquid and vapour, 2Π , which has the nature of additional attraction 

of particles, gradually becomes more dominant for coupling the long-distance with 

short-distance (high density) interactions.  Finally, approaching the liquid phase, 2Π  

becomes saturated, but the relatively powerful 3Π , which has a repulsion nature of 

particles, dominates in simulating the short-distance interactions.  While 1Π  and  act 

as the attraction moieties of the interactions, 3Π  reflects the hard sphere model of CS 

EOS.  It should be noted that 3Π  is still a soft force that will be saturated in a place 

much higher than 1Π  and 2Π .  These results demonstrate two important physical 

characteristics of MPI; firstly, the mass collapse (or over-accumulation of mass) is 

prevented by powerful repulsive 3Π , which differs from, at least, the original 

pseudopotential idea that the hard sphere model is achieved by the saturation of 

pseudopotential.  Secondly, considering the fact that, here, the interactions are between 

nearest nodes only, all the physics of molecular short-distance repulsion and long-

distance attraction are achieved without the need for increasing the LB force cut-off 

radius (i.e.  extending the interactions to the next-nearest nodes or more).  This 

advantage comes from the nature of MPI that the total interaction between two specific 

nodes is not solely attractive or repulsive.  On the other hand, the physical meaning of 

the SPI scheme is unclear as discussed in the subsection 3.5.6.  The repulsion part of the 

original SC model is provided by the ideal pressure created by streaming and collisions 

of distribution functions.  This leads to the two-phase systems in which the speed of 

sound in liquid is less than the vapour phase and, perhaps, generates instability [129].  

As shown in this work, MPI follows VW and CS EOSs well, indicating that MPI 

2
Π
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models the sound speed of two fluids appropriately.  MPI shows that in two-phase 

systems, in which a jump of densities exists, the multiple pseudopotentials are necessary 

to explain the underlying physical molecular interactions in the region of two 

neighbouring nodes on the lattice.  Such an MPI makes it possible that the different 

forces take the responsibility for interparticle interactions in the different regions of the 

thermodynamic equilibrium state. 

 

Figure 3-8.  The potential factors of the MPI model contributed to the reproduction of the CS isotherm at 

temperature 0.86
R

T = .  The parameters are listed in Table 3-1. 

3.5.8 Pre-set thermodynamic state 

In subsections 3.5.5 and 3.5.4, we showed that the equation of state of MPI can be 

constructed by fitting on the real EOSs such as VW and CS, and, therefore, the LBE 

simulation system reflects the equilibrium states of those EOSs.  Alternatively, a simple 

method rather than using curve fitting can be developed by implementing the 

thermodynamic conditions of liquid–vapour phase equilibrium into the MPI.  Similar 

work has been carried out by Colosqui et al. [156], where a piecewise linear EOS is 

adopted.  Because the pseudopotential applied in their study violates thermodynamic 

consistency, a self-tuning procedure was adopted during the simulations to perturb the 

unstable branch of the EOS and satisfy the consistency.  In contrast, MPI is intrinsically 

consistent and capable of precisely representing the pre-set pressure tensor, as shown in 

Figure 3-2, without additional corrections. 

Taking the VW EOS as an example, we briefly demonstrate the method of pre-setting 

MPI as follows.  The VW fluid with the parameters 9 / 49a =  , 1/ 21b =  is considered, 

which has the critical point of 3
c

p =  , 7
c

ρ =  , and 1.143
c

T = .  The characteristics of 

0.0 0.1 0.2 0.3 0.4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

ρl

 

 
P

o
te

n
ti
a

l 
F

a
c
to

rs

ρ
R

 Π1

 Π2

 Π3

ρv

0.0 0.2

0

1

 

p
R

MPI
CS(TR=0.86)



Chapter 3– Multipseudopotential interaction 

 

79 

the saturated fluid at temperature T  such as saturation pressure 
sat

p , density of liquid 

l
ρ , density of vapour 

v
ρ , sound speed in the liquid phase ( / )

l
p ρ∂ ∂  , and sound 

speed in the vapour phase ( / )
v

p ρ∂ ∂  can be determined from the EOS and employed 

for pre-setting the MPI LB system.  Table 3-5 shows these values at 

0.80,0.86,0.90.
R

T = To model one of these states in an LB system, we need to impose 

the five characteristics mentioned above on the MPI EOS (3-27) and thus identify MPI 

forces. 

Table 3-5.  Thermodynamic properties of the saturated VW fluid with the parameters 9 / 49a =  , 

1/ 21b =  and the critical point of 3
c

p =  , 7
c

ρ =  , and 1.143
c

T = . 

c

T

T
 

sat
p  

v
ρ  

l
ρ  ( / )

v
p ρ∂ ∂  ( / )

l
p ρ∂ ∂  

0.80 1.150 1.678 13.529 0.464 2.254 

0.86 1.594 2.369 12.457 0.378 1.362 

0.90 1.941 2.980 11.601 0.302 0.873 

 

Here we set the lattice temperature at fluid temperature Tθ = , i.e.  3Tς = .  

Therefore, the first term of (3-27) is identified.  For the sake of simplicity and 

precluding the non-linearity of equations, only 
j

G  are considered as unknowns in (3-

27).  Therefore, five pseudopotentials, 5n = , are considered.  Based on the pattern of 

j
λ  in VW and CS EOSs (see Table 3-1, Table 3-2, Table 3-3), we can set 1 c

mλ ρ= , 

1

14 j

jλ λ−= , and then 

 
5

1

2

33
exp( 2 / ) exp( 4 / 2 )

2 2

j j

c c

j

TGTG
p T m mρ ρ ρ ρ ρ

=

= + − + −∑  (3-34) 

where m  is a free parameter discussed in the following. 

The conditions of pressure and sound speeds can constrain (3-34) and its first 

derivative.  Generally, the pseudopotential models achieve a two-phase coexistence 

based on the VW loop observed in EOSs.  Therefore, to have such a shape in (3-34), the 
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Maxwell equal-area rule (3-30) and its boundary condition are put into effect.  Variable 

m  is chosen to guarantee a VW-like loop with a single maximum pressure point and a 

single minimum pressure point can be created without singularity in the system of linear 

equations.  Here, we set it as 0.057m = . 

The system of linear equations of the pre-set MPI is derived by setting the lattice 

temperature at fluid temperature Tθ = , i.e.  3Tς = , and imposing the desired 

conditions on MPI EOS (3-27): the saturation pressure 

 
5

1

3
exp( 2 / )

2

j

sat v j v

j

TG
p Tρ λ ρ

=

= + −∑ , (3-35) 

the sound speed in the vapour phase  

 
5

2
1

3
( / ) exp( 2 / )

j j

v j v

j v

T G
p T

λ
ρ λ ρ

ρ=

∂ ∂ = + −∑ , (3-36) 

the sound speed in the liquid phase 

 
5

2
1

3
( / ) exp( 2 / ).

j j

l j l

j l

T G
p T

λ
ρ λ ρ

ρ=

∂ ∂ = + −∑ , (3-37) 

Maxwell equal area rule (3-30) 

 

5

1

31 1
( ) ln( / ) exp( 2 / ) exp( 2 / )

4

j

sat l v j l j v

jv l j

TG
p T ρ ρ λ ρ λ ρ

ρ ρ λ=

 − − = − − − ∑  (3-38) 

and the boundary condition, ( ) ( )
l v

p pρ ρ= , 

 

  
5 5

1 1

3 3
exp( 2 / ) exp( 2 / ).

2 2

j j

v j v l j l

j j

TG TG
T Tρ λ ρ ρ λ ρ

= =

+ − = + −∑ ∑  (3-39) 

If we set 1 c
mλ ρ=  and 

1

14 j

jλ λ−= , { }: 1, 2,3, 4,5jG j =  are the unknowns which can be 

found by solving this system of five linear equations and using the data listed in Table 

3-5 for the case of this study.  Therefore, MPI forces are determined and can be 

implemented in the LB system to achieve the desired two-phase system.  Figure 3-9 

shows the MPI EOS obtained via this method, in comparison with VW EOS at 
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0.86
R

T = .  As we expected a VW-like loop is achieved where the MPI curve lays on 

the VW EOS near saturation liquid density and vapour density. 

 

Figure 3-9.  The pre-set EOS of MPI versus VW EOS at 0.86
R

T = .  In addition to creating a VW-like 

loop, the MPI curve mimics the VW curve in the vicinity of the saturation densities. 

 

Figure 3-10.  Profile of density along flat interfaces for the pre-set MPI at 0.80,0.86,0.90
R

T = .  

We further examined the pre-set MPI by performing simulations for the cases of the 

planar interface.  The simulation results are given in Figure 3-10 which show the 

density profile along the planar interfaces.  The MPI satisfactorily reproduces the input 

parameters.  The errors due to the deviation of reproduced 
v

ρ  and 
l

ρ  from the input 
v

ρ  

and 
l

ρ  are 0.002%  and 0.0002%  for the case of 0.90
R

T = , 0.02%  and 0.0009%  for 

the case of 0.86
R

T = , 0.06%  and 0.001%  for the case of 0.80
R

T = , respectively.  The 

errors should be associated with the higher-order terms of Eq.  (3-5), which are 
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neglected, along with spurious velocities because of the lack of higher degrees of 

isotropy. 

 

3.6 Conclusion  

In summary, we have developed a new scheme based on the original SC model [110, 

111] to eliminate the numerical errors as a consequence of the discretization effect of 

the lattice.  In this framework, the real EOSs and experimental data can be consistently 

implemented into the LB system.  The fundamental ingredients of the original method 

are preserved, while the forcing scheme is further developed to include different 

portions of particle interactions.  The outcome EOS of the MPI scheme has a virial-like 

shape with an arbitrary number of terms and free parameters.  Each term is assigned to a 

pseudopotential whose effect is dependent on the mean free path of particles.   

The proposed model is compared with the commonly used SPI scheme in reproducing 

VW and CS EOSs and other major characteristics of two-phase flows.  It is found that, 

first of all, in contrast to the SPI scheme, the MPI scheme is scalable and shows the 

independency of equilibrium densities under grid refinement.  In other words, its 

mechanical stability condition is not influenced by the choice of the lattice spacing.  

Secondly, when reproducing the Maxwell construction, both methods show small 

discrepancies at the saturated liquid branch.  Regarding the vapour branch, the SPI 

prediction deviates significantly with a decrease in temperature, whereas the MPI 

scheme shows much better results, and their accuracies are independent of temperature, 

the density ratio, and the type of chosen EOS.   

The MPI scheme used in this work only considers the nearest-node interactions, but the 

interaction between two nodes is not solely attractive or repulsive.  The MPI scheme 

adjusts the interactions automatically according to local densities.  Such a behaviour can 

effectively reflect the underlying molecular interactions. 

A shortcoming of the SPI scheme in recovering the VW-like EOSs is addressed.  There 

exist the thermodynamic states where the SPI pseudopotential has real values in the 
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liquid (vapour) region and imaginary values in the vapour (liquid) region, thereby 

causing the collapse of simulations.  This problem could be resolved by constraining the 

parameters of simulations by decreasing the degree of freedom for engineering 

applications.  The nature of the MPI scheme is free from this shortcoming. 

An alternative procedure in simply achieving a specific MPI two-phase system is 

suggested using only the properties of pressure, liquid density, vapour density, and 

sound speeds in vapour and liquid phase.  The simulated system only knows the MPI 

EOS (not liquid and vapour densities).  The liquid-vapour densities found from the 

simulated system show good agreement with the desired values. 
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Chapter 4 – Multipseudopotential interaction for cubic EOSs  

4.1 Introduction 

A method is developed to analytically and consistently implement cubic equations of 

state into the multipseudopotential interaction scheme in the class of two-phase Lattice 

Boltzmann models [179].  An MPI forcing term is applied to reduce the constraints on 

the mathematical shape of the thermodynamically consistent pseudopotentials; this 

allows the parameters of the MPI forces to be determined analytically without the need 

of curve-fitting or trial and error methods.  Attraction and repulsion parts of EOSs, 

representing underlying molecular interactions, are modelled by individual 

pseudopotentials.  Four EOSs, van der Waals, Carnahan-Starling, Peng-Robinson, and 

Soave-Redlich-Kwong, are investigated and the results show that the developed MPI-

LB system can satisfactorily recover the thermodynamic states of interest.  The phase 

interface is predicted analytically and controlled via EOS parameters independently and 

its effect on the vapour-liquid equilibrium system is studied.  The scheme is highly 

stable to very high-density ratios and the accuracy of the results can be enhanced by 

increasing the interface resolution.  The MPI drop is evaluated with regard to surface 

tension, spurious velocities, isotropy, dynamic behaviour, and the stability dependent on 

the relaxation time. 

4.2 Analysis of MPI 

It has been shown that the MPI scheme is intrinsically consistent with thermodynamics 

to the second order of spatial derivatives [179].  The pressure tensor of the MPI system 

can be exactly expressed by the MPI force on a discrete lattice for the nearest and next-

nearest interactions.  In the case of D2Q9 lattice and continuum limit where all 

gradients are in the x  direction, the contribution of the all potentials of the MPI force to 

the normal component of the pressure tensor can be found on the x y−  plane (to the 

second order) [179] equation (3-5).  The system results in bulk pressure of  

2

2/

1

( )
2

n
j

j j j

G c
p

C

ερ
ρθ

λ ε ρ=

= +
+

∑ . (4-1) 

In this equation of consistent pressure,
j

G , 
j

λ , 
j

C  are free parameters, however, ε  is 

constrained by the order of isotropy of the interaction force on the lattice, see Eqs.  (2-

68) and (2-82).  Therefore, as discussed in the previous study [179] the functions in the 
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formats, such as 
hρ  and ( / (1 ))h

Cρ ρ+ , where h  is an arbitrary number, are not 

accepted in the MPI EOS while they are the necessary parts of well-known cubic 

equations of state including the VW, CS, SRK, PR.  To eliminate this constraint, in the 

following section, the forcing scheme is modified to make ε  flexible. 

4.3 A more flexible MPI scheme 

To incorporate the lattice force, shifting the particles momentums in the equilibrium 

distribution functions was proposed by Shan and Chen [111].  However Guo et al. [158] 

demonstrated that the following forcing term is necessary to consider the discrete effects 

of the lattice, 

2

2 4

(3 )
3

2

i ii

i i

e e ce
F w t

c c

αβ α β αβα α
δ −

= ∆ + 
  

CB
, (4-2) 

where the Einstein summation convention is adopted.  This equation gives rise to the 

stress tensor in the continuum limit, as follows, 

2 1 1
( ) ( ) ( )( ) ( )

3 2 2 2

c
t v v t v F v Fαβ α β β α α β β α αβ βα

τ
σ τ ρ δ δ τ

 
= − ∆ + + ∆ − + − +  

C C , (4-3) 

where v  is the actual fluid velocity, applied in the equilibrium distribution function, and 

defined as 

/ 2v u F tα α α ρ= + ∆ , (4-4) 

where /
i ii

u f eα α ρ=∑ .  If 
1

(1 )
2

Fα α
τ

= −B , and αβC  is set at 
1

(1 )(2 )
2

NS v Fαβ β α
τ

= −C , 

Navier-stokes stress tensor is recovered [158] as, 

2 1
( ) ( )

3 2

NS c
t v vαβ α β β ασ τ ρ δ δ= − ∆ +  . (4-5) 

Li et al. [151] showed that considering the additional term 
2/F Fα β ψ  to the stress tensor 

can effectively modify ε  which appears in the thermodynamic consistency condition 

(2-81).  The leading term of 
2/F Fα β ψ  is [151] 
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2 4 4

2
( )

F F
G c O

α β

α βψ ψ
ψ

= − ∂ ∂ + ∂  . (4-6) 

Here, for the MPI, we use a similar term and set tensor αβC  as 

( ) ( )

2

1
(1 )(2 )

2

j jn
jMPI total

j j

s F F
v F

α β

αβ β α
τ τψ

= − +∑C , (4-7) 

where 
j

s  are arbitrary constants.  Substituting (4-7) into (4-2), we obtain 

2 4

( ) ( ) 2 ( ) ( )

4 2

31
3 (1 )

2

3
(3 )

2

i i totali

i i

n
j j j j ji

i i

j j

v e ee v
F w t F

c c

sw t
F F e e c F F

c

β β αα α
α

α β α β α α

τ

τψ

 −
= ∆ − + 

 

 ∆
+ − 

  
∑

. (4-8) 

As a result, the macroscopic approximation of the MPI-LB equation leads to 

( ) ( )

2
( ) ( )

j jn
jNS

t

j j

s F F
v v v p F t

α β

β α α β β α αβ β αρ ρ σ
ψ

∂ + ∂ = −∂ + ∂ + − ∆ ∂ ∑ , (4-9) 

where p  is the ideal gas pressure.  The excess terms on the right-hand side of (4-9) can 

be considered a part of the pressure tensor  

4 2

1

n
original

j j

j

P P tc s Gαβ αβ α βψ ψ
=

= + ∆ ∂ ∂∑ . (4-10) 

where equation (4-6) is used.  For the case of a one-dimensional planar interface, the 

component of the pressure tensor which is normal to the interface now takes the form 

(compare with Eq.  (3-5)) 

22 4 2

2

1 2 2
1

( 12 )
2 12

n
j j j j

xx j j j j

j

G c G c d d
P a ts G a

dx dx

ψ ψ
ψ ψ

=

  
= + + ∆ +  

   
∑  . (4-11) 

Therefore, ε  in equation (4-1) now becomes 

1/

( )

j

j

j j jC

ε

ρ
ψ ρ

λ ε ρ

 
=   + 

, 
(4-12) 
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1 2
2( 12 ) /

j j j
a ts G aε = − + ∆ , (4-13) 

which is the relation derived to release the constraint of the MPI as by which 

{ : 1, 2,..., }
j

j nε =  become flexible and independent of each other in the 

pseudopotentials of the MPI.  The MPI EOS is, therefore, defined as  

2

2/

1

( )
2

j

n
j

j j j j

G c
p

C

ερ
ρθ

λ ε ρ=

= +
+

∑ . (4-14) 

As expected, in comparison with (4-1), the additional term in (4-7) modifies the 

thermodynamic condition only through 
j

ε  and the rest stays intact.  In other words, 
j

ε  

is a function of the free parameter 
j

s .  To obtain the interface shape, the equation (3-8) 

becomes 

2 2 2

2 22
04 2

1 1

( )
12 2 2

j

v

n n
j j j

x j j j

j j

G c G ca d
c p

ρε

ρ

ψ ρ
ρ λ ψ ρθ ψ

ρ ρ= =

 
∂ = − −  

 
∑ ∑∫ . (4-15) 

The surface tension of the two-phase MPI system can be presented by the mechanical 

route definition; in the case of a planar interface, it is calculated from 

( )N Tp p dxσ
+∞

−∞

= −∫ , where Np  is the local pressure normal to the interface and Tp  the 

local pressure tangential to the interface,  

4
2

1

( ) ( )
12

l

v

n

j j j x

j

c
G K d

ρ

ρ
σ ψ ρ ρ

=

′= ∂∑∫   (4-16) 

where 
4

6 12
j j j

K e tG s= − + ∆  and xρ∂  is solved by (4-15).  Considering Eq.  (4-13), we 

have 

4 4

1
(3 ) 3 1

2
j jK e eε= − + − − . (4-17) 

4.4 Mapping cubic equations of state onto the MPI scheme 

Here we show how the cubic equations of state such as the VW, CS, SRK, and PR can 

be implemented analytically and consistently into the MPI-LB system. 

For the VW, the EOS, 
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2

1

T
p a

b

ρ
ρ

ρ
= −

−
, (4-18) 

exists as the basis of many other EOSs of real fluids.  The fluid’s critical point (critical 

density 1/ 3c bρ = , critical temperature 8 / 27cT a b= , and critical pressure 

2/ 27 )
c

p a b=  is deemed to be the reference point for normalisation.  It should be noted 

that, based on critical points, reduced (nondimensional) pressure, /R cp p p=  , reduced 

density /R cρ ρ ρ= , and reduced temperature /R cT T T=  are defined. 

According to (4-14), the functions such as 
hρ  or ( / (1 ))h

Cρ ρ+  are thermodynamically 

consistent as pseudopotentials, and the parameters of pseudopotentials of the MPI can 

be adjusted, in a sense, the MPI EOS matches the VW EOS.  We describe the 

procedures step by step as follows by means of three pseudopotentials ( 3)n = .  

Considering (4-14), firstly we remove the lattice ideal pressure ( )ρθ  from the MPI 

EOS; therefore, the first pseudopotential ( 1)j =  is assigned to it 

1

2 2
2/2 1

1 1

1
1

1

( )
2 2

G c G c

C

ερ
ψ ρθ

λ ε ρ
= = −

+
 . (4-19) 

From this equality, we find 1 2 / 3G = − , 1 0C = , 1 2ε = , and 1 1/ 2λ = .  The second 

pseudopotential ( 2)j =  represents the repulsion term of the VW EOS, 

2

2 2
2/2 2

2

2 2

2

2

( )
2 2 1

G c G c T

C b

ερ ρ
ψ

λ ε ρ ρ
= =

+ −
, (4-20) 

from which, we obtain 2

2
2 /G T c= , 2C b= − , 2 2ε = , and 2 1/ 2λ = .  The third 

pseudopotential ( 3)j =  demonstrates the attraction term of the VW EOS, 

3

2 2
2/2 23

3

3 3 3

3 ( )
2 2

G c G c
a

C

ερ
ψ ρ

λ ε ρ
= = −

+
, (4-21) 

then we find 2

3
2 /G a c= − , 3 0C = , 3 1ε = , and 3 1λ = .  It should be noted that 

j
s  can 

be found from (4-13) and applied in Eq.(4-8).  Consequently, it can be seen that each 

pseudopotential is assigned to the physics, one describes the dynamics of an individual 

molecule, the second creates solely short-range repulsion interactions, and the third 



Chapter 4– Multipseudopotential interaction for cubic EOSs 

 

89 

mimics the long-range attraction of particles.  All parameters are listed in Table 4-1 for 

reference.  Because the procedure of determining the MPI forces parameters for the VW 

EOS, conditions (4-19)-(4-21), is the same as those to be used for the other EOSs, no 

details will be given in the following discussions. 

The CS EOS, 

2 3
2

3

1

(1 )
p T a

η η η
ρ ρ

η

+ + −
= −

−
 , (4-22) 

which modifies the hard sphere repulsion part of the VW equation, is an EOS widely 

used in the pseudopotential LB community.  Here / 4bη ρ= , 2 /
a c c

a T P= Ω , 

/b c cb T P= Ω , / 4c cbρ = Ω , 0.496388aΩ = , 0.187295bΩ = , 0.130444cΩ = .  The 

reduced form of the CS EOS is 

2 3
2 2

3

1 ( ) ( ) ( )
(4 / ) (4 / )

(1 )

c R c R c R
R c b R R a c b R

c R

p T
ρ ρ ρ

ρ ρ
ρ

+ Ω + Ω − Ω
= Ω Ω − Ω Ω Ω

− Ω
. (4-23) 

The CS EOS can be rewritten as 

2 2 3
2

2 3
.

(1 ( / 4) ) 8 (1 ( / 4) )

b T
p T bT a

b b

ρ ρ
ρ ρ

ρ ρ
= + + −

− −
  (4-24) 

Therefore, the CS EOS is in accordance with the MPI EOS.  The relevant parameters of 

the MPI EOS are listed in Table 4-1.  It should be noted that the first pseudopotential 

has two parts: the first part is utilised to remove the lattice ideal pressure ( )ρθ  while 

second part exerts the CS fluid ideal pressure ( )Tρ . 

The SRK EOS is the well-known two-parameter cubic equation of state and the first 

modern EOS which is widely applied to design of hydrocarbon-treatment plants [180].  

The SRK is the significant modification of RK EOS proposed by Soave [181] 

2

1 1

T a
p

b b

ρ α ρ

ρ ρ
= −

− +
, (4-25) 

where 2 /
a c c

a T P= Ω , /b c cb T P= Ω , / 3c c cT Pρ = , 1 (1 )Rm Tα = + − , 0.427480aΩ = , 

0.086640bΩ = , 
2(0.480 1.574 0.176 ),m ω ω= + −  and ω  is Pitzer’s acentric factor.  α  
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is determined from experimental vapour pressures of non-polar substances.  The 

properties of the critical point can be found from the fact that the first and second 

derivatives of pressure with respect to density at the critical point are zero.  In contrast 

to RK EOS, the reduced format of the SRK depends on the acentric factor ω , which 

helps to treat non-polar substances 2( 3 / (1 3 ) 9 / (1 3 ))
R R R b R a R b R

p Tρ ρ αρ ρ= − Ω − Ω + Ω .  

By decomposing the second term of the SRK EOS, we obtain 

1 (1 )

T a a
p

b b b b

ρ α α ρ
ρ

ρ ρ
= − +

− +
. (4-26) 

Now, the SRK EOS is well consistent with the MPI EOS.  The relevant parameters of 

pseudopotentials of the MPI scheme are listed in Table 4-1. 

The PR EOS [182] is devised to overcome the weakness of the SRK in predicting liquid 

phase density [183] 

2

2 21 1 2

T a
p

b b b

ρ α ρ

ρ ρ ρ
= −

− + −
, (4-27) 

where 2  / 
a c c

a T P= Ω , b=   / b c cT PΩ , c cbρ = Ω , =0.457236aΩ , 0.077796bΩ = , 

0.253077cΩ =  and α is similar to that in the SRK equation but m  is correlated with 

the aid of vapour pressure data from normal boiling point to the critical point 

20.37464 1.54226 0.26992m ω ω= + − . 
(4-28) 

The reduced form of the PR EOS is 

2
2

2 2
( ) ( )

1 1 2

c cR R R
R a

b c R c R c R b

T
p

ρ α ρ

ρ ρ ρ

Ω Ω
= − Ω

Ω − Ω + Ω − Ω Ω
. (4-29) 

The PR EOS can be rearranged into the following shape 

( ) ( )1 2 2 2 21 1 2 1 1 2

T a a
p

b b bb b

ρ α ρ α ρ

ρ ρ ρ

   
= + −   −    + + + −

. (4-30) 

Therefore, each term of the PR EOS now agrees with the MPI EOS.  The corresponding 

pseudopotential parameters are listed in Table 4-1. 
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Table 4-1.  The MPI forces parameters which reproduce the selected EOSs in the LB system 

EOS j-th pseudopotential 
j

G  
j

ε  
j

λ   
j

C   

VW 1 2

3
−   

2  1

2
  

0   

2 
2

2
T

c
  

2   1

2
 

b−   

3 
2

2
a

c
−  

1 1 0 

CS 1 
2

2 2

3

T

c
− +   

2  1

2
  

0   

2 
2

2
bT

c
  

1  1 

4

b
−   

3 2

2

2

8

b T

c
 

2

3
  

3

2
  

4

b
−  

4 
2

2
a

c
−  

1 1 0 

SRK 1 
2

2 2

3

a

b c

α
− −   

2  1

2
  

0   

2 
2

2
T

c
  

2   1

2
 

b−   

3 
2

2a

b c

α
 

2  1

2
 

b  

PR 1 2

3
−   

2  1

2
  

0   

2 
2

2
T

c
  

2   1

2
 

b−   

3 ( ) 2

2
/ 2 2a b

c
α  

2   1

2
 ( )1 2b +  

4 ( ) 2

2
/ 2 2a b

c
α−  

2   1

2
 ( )1 2b −  
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It is worth mentioning that in contrast to many other studies [129, 136, 151, 162], where 

thermodynamic consistency is sought by trial and error methods, curve-fitting, or 

solving a nonlinear equation, the consistent MPI forces proposed here, exactly represent 

the selected EOSs.  Moreover, for the sake of brevity only the abovementioned cubic 

EOSs are focused on, but the principle of the method is not limited to the cubic EOSs, it 

is applicable to the EOSs in other function formats, such as polynomial and virial 

functions, and the versions of EOSs developed based on them (see section 4.5). 

Using the MPI scheme, the interaction force between two nodes is calculated by 

summation of n  (number of pseudopotentials) sub-forces.  For the case of the two-

dimensional nearest-node interactions, a node experiences 8n  interactions.  Therefore, 

increasing the number of pseudopotentials, we expect more computational costs, for 

example, the MPI code running the SRK or VW EOSs is faster than the one 

implementing the PR or CS EOS (see Table 4-1), however, it is slower than a non-

modified SPI code [131] running the SRK, VW, PR, or CS. 

4.5 Mapping VW-like and virial EOSs 

We illustrate that the virial equation and the general form of the VW-like EOSs can be 

incorporated into the MPI-LB.  The virial EOS is defined based on the theories of 

statistical mechanics as an unlimited series of molar density [183] 

2 3

2 3
p T B Bρ ρ ρ= + + +⋯  , (4-31) 

where 2B , 3B , etc., are functions of temperature only, and are the second, third, and so 

on virial coefficients.  The virial EOS is well in conformity with the MPI EOS with the 

corresponding parameters listed in Table 4-2. 

Almost all VW type EOSs, such as Schmidt-Wenzel EOS [184], Patel-Teja EOS[185], 

can be expressed in the general form of [183] 

2

2 21 1 2

T a
p

b u w

ρ ρ

ρ ρ ρ
= −

− + −
, 

(4-32) 

where a , u , and w  don’t depend on density but, possibly, other parameters such as 

critical point specifications and the acentric factor.  After some lengthy but simple 

algebra, we can rewrite the EOS as 
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( )

( )

2 2 2 2

2 2 2 2

1 2 1

.
2 1

T a
p

b u w u u w

a

u w u u w

ρ ρ

ρ ρ

ρ

ρ

= −
−  + + − +

  

+
 + + + +
  

  

(4-33) 

Now, we can straightforwardly set the MPI forces to consistently implement the general 

form of VW-like EOSs as shown in Table 4-2.  The first force is used to remove ideal 

gas pressure which is automatically made by lattice Boltzmann.  The other forces are 

assigned to attraction and repulsion part of cubic equations of state and higher order 

terms of virial equation of state. 

Table 4-2.  The MPI forces parameters which reproduce virial and VW-like EOSs in the LB system 

EOS j-th pseudopotential 
j

G  
j

ε  
j

λ  
j

C  

virial 1 
2

2 2

3

T

c
− +  

2  1

2
 

0  

1j >  
2

2
jB
c

 
2

j
  

2

j
 

0  

VW-like 1 2

3
−  

2  1

2
 

0  

2 
2

2
T

c
 

2  1

2
 

b−  

3 

2 22

a

u w
−

+
 

2  1

2
 

2 2
u u w− +  

4 

2 22

a

u w+
 

2  1

2
 

2 2
u u w+ +  

 

 

4.6 Results and discussion 

To verify the theoretical derivations and demonstrate how the proposed method works, 

simulations of planar interfaces are carried out.  In subsection 4.6.1 the parameters and 

details of simulations are described.  The thermodynamic consistency and interface 

shape are discussed in subsection 4.6.2, and the mechanism of the scheme in controlling 
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the interface width is studied in subsection 4.6.3.  The capability of the method in 

reproducing Maxwell construction curves is investigated in subsection 4.6.4.  The MPI 

droplet is thoroughly studied in 4.6.5. 

4.6.1 Simulation setup 

All simulations are run on a two-dimensional square lattice including nine velocities 

(D2Q9).  The computational domain for one-dimensional planar interfaces contains 

1 500×  nodes and for two-dimensional cases contains 300 300×  in most of the 

simulations, while, for the simulations of very wide interfaces a larger number of lattice 

nodes are utilised, for which the details will be given individually.  The nondimensional 

relaxation time is set to unity 1τ =  unless otherwise stated.  It should be noted that 

increase of τ   increases viscosity and based on (2-42) 0.5τ > .  The nearest-node 

interactions are considered which set (1) 1/ 3w = , (2) 1/12w = , 1 0a = , 2 3a =  [141].  

The MPI forces are calculated by use of Eqs.  (3-2), and (4-12) whose parameters, for 

the selected EOSs, can be found in Table 4-1.  The internal forces are embedded in the 

LBE using Eq.  (4-8), which reproduces Navier-Stokes equations to the second order.  

For the case of the planar interface, half of the domain is filled with liquid and the other 

half with the vapour.  The periodic condition is applied at all boundaries.  lρ  and vρ  

(the densities of liquid and vapour) are initially set, in a sense, to ensure that the system 

is in the saturation state.  To avoid an initial instability, a diffuse interface should be 

adopted at the beginning of simulations.  We utilise the suggestion of Ref.  [136] for 

initializing interfaces 

( ) tanh
2 2

l v l v r R
r

W

ρ ρ ρ ρ
ρ

+ − − 
= −  

 
 , (4-34) 

where W  controls the interface width and, in all simulations, is set at 5W =  which 

gives a stable initial state, R  is the distance between the interface and the reference 

point, and r , is the variable distance from the reference point.  For the case of the 

planar interface, it can be one of the boundaries parallel to the phase interface.  Unless 

otherwise stated, lattice spacing parameter is set to unity 1c =  and EOS parameters for 

all types are set at 0.01a =  and 0.2b =  (the effect of the change of , ,a b c  will be 

studied in section 4.6.3).  The simulations are run for at least 510  steps and pressure 
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tensor profile in VLE systems are monitored to verify that the equilibrium state is 

reached. 

4.6.2 Thermodynamic consistency 

To investigate the thermodynamic consistency, the first set of simulations is performed 

to measure the total normal component of the pressure tensor, 0 xxp P ρθ= + .  Based on 

the mechanical stability of the flat interfaces, 0p  must be constant across the phase 

interface (for more details refer to [124]). 

 

Figure 4-1.  Error due to the change of the normal component of pressure tensor along flat interfaces at 

different temperatures for the selected EOSs: (a) VW, (b) CS, (c) SRK, and (d) PR.  Pressure is 

normalised with the aid of the saturation pressure predicted by the Maxwell equal-area rule.  In graph 

(a) EXP-MPI symbols represent the MPI made of exponential functions from Chapter 3..  The errors are 

smoothly changing from one phase to the other one.   

xxP  is calculated from Eq.  (4-11) where both first and second spatial derivatives of 

pseudopotentials are computed by use of the second order central difference 

approximations.  The results are shown in Figure 4-1.  For the selected EOSs and 

specified temperatures, the errors are small and less than 0.15% which validates the 
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mechanical stability of the proposed scheme.  The errors increase with the decrease of 

temperature which will be discussed in 4.6.4. 

The gradient of density along the phase interface can be calculated analytically from Eq.  

(4-15) as the right-side integral has an analytical solution.  Then, by numerically solving 

1

( )/2
( )

v l
xx d

ρ

ρ ρ
ρ ρ−

+
= ∂∫ , the spatial profile of density can be achieved.  Figure 4-2 

depicts the phase interfaces for the selected EOSs and the comparisons of the simulation 

results with the theoretical predictions.  The main graphs of Figure 4-2 are focusing on 

liquid phase densities and inset graphs put emphasis on vapour phase densities; the 

simulations are in good agreement with the theory which means the interface shape can 

be ably predicted. 

 

Figure 4-2.  The Phase interfaces found from MPI simulations and the theoretical predictions, Eq.  (4-

15), at different temperatures for the selected EOSs: (a) VW, (b) CS, (c) SRK, and (d) PR.  

When a high-density ratio system is desired an initial guess of equation (4-34) may not 

be of help and the simulation crashes because of instabilities generated at the interface.  
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Therefore, knowing the equilibrium interface shape in advance can effectively enhance 

the starting point stability of the system in practical cases. 

4.6.3 Scalability and interface width control 

Herein, for the sake of brevity, we merely focus on the SRK EOS and investigate EOS 

parameters thoroughly.  If we divide both sides of Eq.  (4-15) by /c cp ρ  and use the 

MPI SRK pseudopotentials of Table 4-1, the equation could be normalised.  Therefore, 

after some lengthy but simple algebra, we obtain 

( )
( )

2
2 2

2 2 2

0( ) 2

3 33
( )

24 (1 3 ) (1 3 )

.
R

v R

a a aR
x R

R b b b R b b R

SRK R
R R

R

a Tbc
c

a

d
p p

ρ

ρ

α α
ρ

ρ ρ ρ

ρ

ρ

 Ω Ω Ω
∂ − − + + 

Ω Ω − Ω Ω + Ω 

= −∫

  (4-35) 

It can be seen that the right-hand side of (4-35), which is the Maxwell construction 

integral, is in the reduced format which means it is independent of EOS parameters a  

and b , and lattice scaling parameter c .  Therefore, the reduced VLE densities are not 

affected by the change of those parameters.  It is understood that the terms, which are 

multiplied by the gradient of density, are impacting the interface shape.  In the left-hand 

side of (4-35), all terms are in the reduced format as well, except the first term in the 

brackets which is a function of ratio parameter 
2 /bc aχ = .  Therefore, it is expected 

that this parameter, χ , is the sole parameter responsible for the change in the width of 

the phase interface.  As the VLE system is independent of χ in Eq.  (4-35), the sound 

speed in liquid and vapour is independent of χ  as well and is consistent with the EOS.   

 Four simulations are run for the different attraction parameter values 

0.001,0.01,0.09,0.25a =  while the SRK EOS is set at 0.80RT = , 0.2b = , and 1c = .  

The results are shown in Figure 4-3.  It is found that the increase of parameter a  

(decrease of χ ) can effectively reduce the interface width.  Another set of simulations 

have been run by keeping 0.01a = , 1c =  and changing b  to have the same χ  values as 

the previous simulations; the results are exactly the same as those of Figure 4-3 where 

the interface width increases as parameter b rises.   
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It is worth to mention that changing χ  from 200  to 2.2  the interface is perfectly 

predicted by (4-15), however, for the case of 0.8χ =  a very thin interface is partly 

predicted from vapour phase to liquid phase (see Figure 4-3).  This can be understood 

by checking the right-hand side of Eq.  (4-15), which is the Maxwell construction 

integral and is always negative for v lρ ρ ρ< < .  To have a meaningful gradient of 

density, the left-hand side of Eq.  (4-15) should be negative throughout the given 

density interval.  Therefore, in the case of 0.8χ = , we cannot predict interface shape 

near the liquid phase as the left-hand side of Eq.  (4-15) becomes positive there.  

Moreover, slight oscillations of density near the liquid phase of the simulated system 

are observed.  We only experienced the partial prediction of the interface in very sharp 

and thin interfaces. 

 

Figure 4-3.  The phase interface is widened by decreasing 2 /bc aχ =  for a particular VLE, the SRK 

EOS at 0.80
R

T = .  Parameters are set at 0.2b = , 1c = , and 0.001,0.01,0.09,0.25a = .  The theoretical 

profiles are obtained from Eq.  (4-15).  The theoretical profile of density at 0.8χ =  is incomplete that is 

explained in section 4.6.3. 

In χ  another parameter, c , being the numerical resolution to capture the physical 

details, contributes to the interface width.  For the pseudopotential LB models, it is 

predicted that the interface width is varied directly as the lattice scaled by means of c .  

This behaviour might not be of interest as the interface width of the fluids such as liquid 

water with its vapour is in the scope of molecular scale and LB simulations aim micro-

scale phenomena, therefore scaling an LB simulation domain in the interval of micro-

scale, a change in the interface shape should not be seen.  The results shown in Figure 
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4-4 are those from the simulations with the domain being scaled at 0.1,1,10c =  but 

parameters a  and b  are utilised to keep 20χ = .  It is demonstrated that the same 

interface shape is obtained.  The simulation results are supported by the prediction of 

theory (4-35). 

It should be noted the VW, CS, and PR EOSs have the same behaviour as the SRK EOS 

and a normalised governing equation like (4-35) for the phase interface.  Therefore, 

from the simulations and theoretical analysis, the parameter χ  is identified as the only 

parameter that governs the interface width for the selected cubic EOSs. 

 

Figure 4-4.  The phase interface preserves its shape through lattice scaling by keeping 20χ = .  The 

theoretical profiles are obtained from Eq.  (4-15). 

In addition to the discussion on the effects of EOS parameters a  and b , and lattice 

spacing parameter c  on the numerical simulations of the phase interface, it is also 

important to investigate the effects of those parameters on the VLE state of interest.  

Such a discussion, in our previous study [179], through examining the single 

pseudopotential scheme recovering cubic EOSs showed that the mechanical stability 

condition is remarkably sensitive to the changes in these parameters.  Figure 4-5 shows 

the errors for vapour density deviation of simulations, using the MPI scheme proposed 

in this study, from Maxwell construction due to the change of a , b , and c .  It can be 

seen from Figure 4-5 that error in simulating vapour density is increasing with the 

increase of lattice scaling parameter, c , increase of a , and decrease of b .  However, all 

the simulations errors are less than 0.6% for the SRK EOS at 0.80RT =  which means at 
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relatively low-density ratios (high temperatures) the thermodynamic state is 

satisfactorily independent of the change of those parameters. 

 

Figure 4-5.  Error in vapour density due to change of EOS parameters a  and b , and lattice spacing 

parameter c .  The SRK EOS at 0.80
R

T =  is applied. 

4.6.4 Liquid-vapour saturation curves 

To further test the proposed scheme, VLE systems are simulated from a temperature 

near the critical point to the lowest stable temperature for planar interfaces whose width 

are controlled via parameter χ .  As the interface width theoretically goes to infinity in 

the case of diffuse interfaces, the non-dimensional interface width is defined as 

2% 0.98 1.02 /
l v

l x x xρ ρ ρ ρ= == − ∆ .  The one-dimensional domain is long enough to make sure 

the vapour and liquid densities reach plateau profiles.  The VW, CS, SRK, and PR 

EOSs are examined in a sense that parameter χ  is changed at each temperature to have 

constant interface widths of 2% 20,30,60l = .  The χ  values are listed in Table 4-3 and 

Table 4-4.  Figure 4-6 compares the MPI simulations of VLEs with the predictions of 

the Maxwell construction.  It can be found that all EOSs almost perfectly simulate the 

liquid phase.  Regarding the vapour branch, in all cases, we have satisfactory results at 

high temperatures and different interface widths.  In the case of short interface width 

2% 20l =  the increase of error is more obvious by decreasing temperature.  Widening 

interface width 2% 30,60l = , the error significantly decreases which is more apparent at 

lower temperatures.  Therefore, at lower temperatures a higher-resolution interface is 

necessary for the MPI to be in accordance with the thermodynamic requirement. 
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Figure 4-6.  MPI results at different interface widths 
2%

20,30,60l =  in comparison with Maxwell 

construction curves for (a) VW, (b) CS, (c) SRK, and (d) PR EOSs. 

The errors due to the deviation of the vapour and liquid branch from the Maxwell 

construction are plotted versus temperature for the selected EOSs in Figure 4-7 (a), and 

(b).  The errors of the liquid branch for all cases are less than 0.01% and generally 

decrease to a local minimum and, after a rise, decrease continuously again by decrease 

of temperature.  In general, the errors at liquid branch decrease as the interface widens 

at a given temperature, however, there are some exceptions such as SRK EOS at 

0.80RT = .  Regarding the vapour branch shown in Figure 4-7 (a), in all cases the error 

increases but faces a fall immediately and then again increases limitlessly when 

temperature recedes from the critical point.  Widening the interface, the vapour branch 

error can be effectively reduced but it might not be very helpful near the local minimum 

errors, such as for VW and CS at 0.7RT = , and SRK and PR at 0.8RT = . 

When checking the liquid branch error versus density ratio in Figure 4-7 (d) the local 

minimum errors can be identified, which are located around density ratio of 20 for all 

EOSs (except PR EOS) at 2% 20,30l = .  The local minimum errors move to density ratio 
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of 500 when interface width broadens to 2% 60l = .  Concerning the vapour branch, 

errors are shown in Figure 4-7 (d), for all cases, the local minimum errors are at density 

ratio around 25.  Beyond the density ratio of 50, regardless of the type of the EOS, the 

errors are only a function of the interface width whose increase reduces the error 

significantly. 

Considering Eqs.  (4-35) and (4-15), and knowing different EOSs having different VW-

loop shape, the geometrical shape (or xρ∂ ) of the interfaces should vary even at the 

same interface width.  Therefore, we expect the different EOSs at the same density 

ratios and interface widths show relatively different behaviour. 

 

Figure 4-7.  The errors due to deviation of MPI results, the saturation densities, from Maxwell 

construction predictions at interface widths 
2%

20,30,60l =  for the VW, CS, SRK, and PR EOSs: (a) the 

vapour branch errors vs.  reduced temperature, (b) the liquid branch errors vs.  reduced temperature, (c) 

the vapour branch errors vs.  density ratio, and (d) the liquid branch errors vs.  density ratio.  The inset 

graphs are for clarifying some regions of the graphs.  All graphs have the same symbol legend which is 

shown in graph (b). 

The current MPI scheme is basically constructed on the previous idea [179].  However, 

from the stability viewpoint, in comparison to that, the current scheme provides an 
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straightforwardly enhance the stability of simulations.  Therefore, the maximum 

achievable density ratio from order 10  in Chapter 3 could successfully reach to 610 .  

The values of the χ  parameter used in reproducing the Maxwell construction curves at 

different interface widths are shown in Table 4-3, and Table 4-4. 

Table 4-3.  The χ parameter values to obtain interface widths of 
2%

20,30,60l = with VW and CS EOSs at 

different temperatures. 

EOS VW  CS 

RT  χ  for

2% 20l =

  

χ  for 

2% 30l =

 

χ  for 

2% 60l =

 

χ  for

2% 20l =

  

χ  for 

2% 30l =

 

χ  for 

2% 60l =

 

0.95 5.26 11.76 46.95 7.35 16.39 65.57 

0.90 8.23 18.35 73.26 11.49 25.64 102.04 

0.85 10.42 23.26 92.59 14.49 32.15 128.21 

0.80 12.05 26.81 106.38 16.53 36.70 145.99 

0.75 13.16 29.28 116.28 17.86 39.45 156.25 

0.70 13.79 30.72 121.95 18.35 40.57 161.29 

0.65 14.08 31.20 123.46 18.18 40.08 158.73 

0.60 13.89 30.82 121.95 17.09 38.46 150.38 

0.55 13.33 29.54 116.96 16.39 36.04 142.86 

0.50 12.58 27.10 106.95 14.71 32.36 120.48 

0.45 11.83 24.63 96.15 12.99 28.57 111.11 

0.40 10.20 21.62 84.03 12.20 25.97 92.59 

0.35 9.09 20.10 74.63 10.81 22.47 68.97 

0.30 7.69 15.38 60.98 9.30 18.18 66.67 

0.25  - -  -  7.87 14.71 52.63 
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Table 4-4.  The χ parameter values to obtain interface widths of 2% 20,30,60l =  with SRK and PR 

EOSs at different temperatures. 

EOS SRK PR 

RT  χ  for

2% 20l =   

χ  for 

2% 30l =  

χ  for 

2% 60l =  

χ  for

2% 20l =   

χ  for 

2% 30l =

 

χ  for 

2% 60l =

 

0.95 4.58 10.20 40.65 3.62 8.10 32.15 

0.90 7.19 16.00 63.49 5.71 12.74 50.51 

0.85 8.97 20.00 79.05 7.19 16.00 63.29 

0.80 10.10 22.32 88.50 8.16 18.02 71.68 

0.75 10.58 23.36 92.59 8.62 19.05 75.47 

0.70 10.58 23.34 89.69 8.66 19.05 75.47 

0.65 10.15 21.88 83.33 8.37 18.35 68.97 

0.60 9.52 20.20 83.33 7.75 16.95 66.67 

0.55 8.70 19.05 74.07 7.55 14.60 62.50 

0.50 8.33 16.95 64.52 7.27 14.60 57.14 

0.45 7.14 15.04 57.14 6.67 12.50 45.45 

0.40 6.45 12.50 50.00 5.88 11.43 38.46 

 

 

4.6.5 Circular droplet 

MPI drops are analysed regarding measuring surface tension, spurious velocities, 

isotropy, dynamic behaviour, and assessing the stability dependent on the relaxation 

time. 

To understand the effect of χ  on surface tension, the SRK EOS is considered.  

Therefore, by substituting the SRK MPI parts from Table 4-1 into Eq.  (4-16) and 

normalising surface tension by / ( )R cc pσ σ= , we obtain 

( ) ( )

2

3 3

5
( )

24

3 3
3 ( )

1 3 1 3

l

v

R
R

R

a a aR
R

b b bb R b R

d
c

dx

Tbc
d

a

ρ

ρ

ρ
σ

ρ

α
α ρ

ρ ρ

−
=

 Ω Ω Ω
× − − + + 
 Ω Ω Ω− Ω + Ω 

∫
  (4-36) 
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where 1 2 3 5K K K= = = −  is used.  All terms depend only on SRK constant parameters 

except /Rcd dxρ  and the first term inside the brackets which are functions of 

2 /bc aχ = .  In fact, while widening the interface, χ  helps attraction interaction forces 

around the interface. 

We make use of the Laplace test to validate equation (4-36).  For measuring the surface 

tension in the Laplace test, it is necessary to find the accurate radius of drops in 

simulations.  We consider a domain where density at the centre ( 0r = ) is lρ  and it 

continuously declines to reach vρ  at r R= ; we assume it is equivalent to a domain 

where a drop of the radius mR   with a homogenous density of lρ  is immediately in 

contact with a vapour phase with density vρ .  By use of the mass equality, we obtain 

the mean radius 

2

2 0
2

.

R

v

m

l v

rdr R
R

ρ ρ

ρ ρ

−
=

−

∫
 The simulations are run in a 300 300×  domain 

and SRK EOS at 0.80RT =  is employed.  Figure 4-8 shows the results of the Laplace 

test for drops with different radii.  The surface tensions of the drops with interface 

widths 2.5,10, 25χ =  are satisfactorily predicted by Eq.(4-36).  As it can be seen, 

surface tension increases with a slow rate proportional to χ , thus we advise χ  is better 

used for adjusting the interface width rather than tuning surface tension, which will be 

investigated in future. 

 

Figure 4-8.  Laplace test for MPI SRK drops at 0.80
R

T = .  The interface width is widened by increasing 

2.5,10,25χ = .  The solid lines show the theoretical predictions of Eq.  (4-36).   
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As it had been discussed in the previous study [179], the MPI scheme reduces the 

spurious velocities as the MPI is thermodynamically consistent.  In this study, the 

effects of interface width, which can be adjusted freely by χ , on the generation of 

spurious velocity are further discussed.  Two 2D drops with density ratio of 1000 are set 

up using CS EOS at 0.486RT =  and VW EOS at 0.37RT = .  Similar to Ref.  [162], we 

define the distortion ratio 45 0 451 /DR r r= −  where 0r  is the radius of the drop along the 

horizontal line ( 0
°

) and 45r   is that at 45
°

.  The interface shapes are created by setting 

200, 20, 4χ =  for both the VW and CS drops which are demonstrated in Figure 4-9 

where the interface becomes sharper with the decrease of χ .  The maximum spurious 

velocities for both VW and CS EOSs drops increase about 1000 times in the order of 

magnitudes.  The drops distortions are quite negligible as CS drops give 

4 3 3

45
1.6 10 ,1.6 10 ,1.7 10DR − − −= × × ×   shown in Figure 4-9 (d),(e),(f) respectively, and 

VW drops give 4 3 3

45
3.3 10 ,1.1 10 ,7 10DR − − −= × × ×   shown in Figure 4-9 (a),(b),(c). 

 

Figure 4-9.  Effect of interface shortening on spurious velocities and isotropy of the VW drop at (a) 

200χ = , (b) 20χ = , and (c) 4χ =  and CS drop at (d) 200χ = ,(e) 20χ = ,(f) 4χ = . 

A system has Galilean invariance if Newton’s law of motion is not changing in different 

inertial frames.  With regards to fluid flows, one consequence of Galilean invariance is 
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that the viscose forces in a stationary frame 
origin

=u 0   must be the same in a moving 

frame with constant velocity 
0origin

=u u .  This is valid for N-S equations as the viscose 

term, ( )Tµ∇ ⋅ ∇ + ∇u u , depends on relative velocity.  Simulations are run for moving 

circular drops to study the dynamic behaviour and assess the Galilean invariance of the 

proposed scheme using SRK EOS.   

 

Figure 4-10.  Testing Galilean invariance of an MPI SRK drop at different diagonal bulk velocities (a) 

0b =u , (b) 
2

/ 7.071 10b c
−= ×u , (c) 

1
/ 1.414 10b c

−= ×u , and (d) 
1

/ 2.818 10b c
−= ×u . 

For all three cases, the MPI SRK drop is set with an initial density ratio of 

approximately 1000 at the thermodynamic state of 0.59RT = , 35.762 10
R

p −= × , 

3.177R

l
ρ = , and 33.288 10R

v
ρ −= × .  The SRK parameters are set as 0.01a =  and 

0.2b =  which leads to 20χ = .  With radius  30r x= ∆  the drop is initialized in the 

centre of a two-dimensional domain with 200 200×  nodes and the periodic boundary 

condition is applied in both horizontal and vertical directions.  To access the Galilean 

invariance, the distortion ratio is defined, 90DR , as the ratio of the longest diameter of a 

drop to the diameter perpendicular to the longest one [186].  The MPI SRK drop 

experienced three stages: the rest, acceleration, and the long rest for each case run.  In 

the beginning, the drop is kept staying at the rest state for 45 10×  steps to ensure it 

reaches the equilibrium shape.  Then the drop is accelerated diagonally by 
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0.0001
x y

a a= =  for period of 500 t∆  (case 1), 1000 t∆  (case 2), and 2000 t∆  (case 3), 

respectively.  The accelerated drop is then released for 55 10×  time steps, for all three 

cases, to remove the transit effects and enable the drop along with its surroundings to 

move diagonally at constant velocities.  The simulation results are discussed as follows. 

At equilibrium state, the MPI SRK drop keeps a perfect circle drop with 90 1.0DR =  and 

has density of 3.195R

l
ρ =  in contact with vapour density of 35.505 10R

v
ρ −= × .  The MPI 

drop and the pattern of its spurious velocities are shown in Figure 4-10 (a). 

As the drop and its surroundings reach higher velocities, the shape eventually distorted 

from the circle to 90 1.004DR =  (case 1), 90 1.018DR =  (case 2), to 90 1.087DR =  (case 

3), which is demonstrated in Figure 4-10 (b),(c),(d).  The changes in densities are 

neglectfully small, in comparison with those of equilibrium case, for all cases smaller 

than 0.03% for liquid and 3.2% for vapour.  The flow pattern, however, is more 

sensitive to the changes in bulk velocity whose increase from 
2/ 7.071 10b c −= ×u (case 

1) to 
1/ 1.414 10b c −= ×u  (case 2) and then to 

1/ 2.818 10b c −= ×u (case 3) causes the 

flow to deviate more from the uniform distribution. 

Considering case 3, which is a critical case demonstrated in Figure 4-10 (d), the drop is 

disfigured noticeably and the system highly violates Galilean invariance as the fluid is 

unable to damp spatial velocity differences by time.  This means that the proposed MPI 

scheme is well Galilean invariant for / 0.15c <u  but violates Galilean invariance 

beyond this ratio. 

As had been discussed in [123, 187, 188], the mechanism of violation of Galilean 

invariance for the LBM is due to the insufficiency of the equilibrium distribution 

function, which is Maxwellian expansion to the second order at constant temperature.  It 

introduces the cubic velocity term, .( )τ ρ∇ uuu , to the viscous momentum flux of the LB 

system.  In this study, the equilibrium distribution function is employed without any 

modification, therefore the term, .( )τ ρ∇ uuu , is the only term which violates the 

second-order Galilean invariance.  If 
2

/θu  or / cu  is very small the cubic velocity 
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term is negligible in compare with Naiver-Stokes viscous term.  That is why when the 

bulk velocity is increased, the spatial velocity differences are not dissipated by time and 

the drop shape is distorted. 

The MPI SRK drop is tested to obtain its minimum stable relaxation time minτ .  The 

drop, at different temperatures and interface widths, is located at the centre of the 

computational domain.  The relaxation time is set at 1τ =  initially; after the drop 

reaches its equilibrium state, τ  is gradually and in a quasi-equilibrium process 

decreased to achieve new lower viscose systems.  The process is monitored to record 

the point before the system crashes at which the relaxation time is taken as the 

minimum possible relaxation time minτ .  As shown in Table 4-5, the decrease of the 

temperature and interface width weaken the τ -related stability. 

Table 4-5.  The minimum possible relaxation time of the MPI SRK drop at different temperatures and 

interface widths.  The interface width is measured from the flat interface simulations and can be obtained 

by setting χ  at a given temperature found in Table 4-4. 

RT   Interface 

width ( x∆ ) 

minτ   

0.60 20 0.562 

30 0.546 

60 0.523 

0.75 20 0.526 

30 0.518 

60 0.514 

0.90 20 0.514 

30 0.514 

60 0.513 

 

4.7 Conclusion 

To summarise, the MPI scheme is extended, which is based on original SC model, in 

order to eliminate the numerical errors as a result of the discretization effect of the 

lattice when cubic equations of state are implemented.  The thermodynamic consistency 
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condition has been made more flexible by modifying the forcing scheme by which in 

addition to cubic EOSs other types such as virial EOS can be employed analytically and 

consistently in pseudopotential models.  In such a way, different pseudopotentials can 

be identified by the attraction and repulsion parts of cubic EOSs without the need for 

curve-fitting or trial and error methods. 

The most basic and popular cubic EOSs are adopted including the VW, CS, PR, and 

SRK to demonstrate the validity of the proposed MPI scheme by performing a set of 

simulations of planar interfaces.  For all the cases, the normal component of the 

pressure tensor is satisfactorily constant along the flat interfaces. 

The LB system is analysed in a reduced format which can be compared to real physical 

systems.  The equilibrium interface shapes are predicted from mechanical stability 

condition and found in good agreement with the simulations.  Interface width could be 

systematically adjusted with the aid of the EOS parameters, while they can positively 

affect the accuracy of the VLE densities.  Such a feature helps to control the interface 

width in the case of grid refinements. 

The proposed MPI scheme provides stable two-phase systems even for very high-

density ratios.  The liquid branch of the Maxwell construction curve is almost perfectly 

achieved.  Regarding the vapour branch, the errors are negligible and small at low and 

midrange density ratios (less than 1000) but, at higher density ratios, exponentially 

grow.  The errors can be suppressed by broadening the interface width, i.e.  increasing 

the interface resolution. 

We have shown that the isotropy of the circular drops are satisfactorily preserved in the 

process of shortening the interface width.  An MPI SRK drop is moved diagonally in a 

periodic domain which showed its Galilean invariant at relatively low bulk velocities in 

addition to being stable.  The minimum available relaxation time for the stationary MPI 

drop is obtained which increases with the decrease of temperature and interface width.
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Chapter 5- Boundary conditions for non-ideal fluid flow  

5.1 Introduction 

Pseudopotential lattice Boltzmann has been viable in modelling intricate non-ideal fluid 

behaviours such as multiphase flow in porous media.  The method, in comparison with 

the conventional LB, offers the flexibility of dealing with solid-fluid potential 

interactions.  This capability has been well utilised and studied for the purpose of 

defining wettability of the solid surfaces, where a contact angle can be defined, but not 

in each phase separately.  In this study, we investigate the effect of solid-fluid 

interactions on the hydrodynamics of non-ideal single-phase fluids, due to wall 

boundary conditions.  We introduce the interaction forces, simulated by 

pseudopotentials, into two on-site boundary conditions: standard bounce-back (SBB) 

and Zou and He (ZH) [169] to determine the distributions functions of the boundary 

nodes.  Three different interaction forces are tested: pseudopotential-based interaction (

ψ -BI), modified pseudopotential-based interaction (mψ -BI), and a ZH-based 

interaction (ZH-BI), which is proposed by this study based on the ZH method.  The 

criterion is the achievement of macroscopic poiseuille flow of real fluids which is 

simulated by the recent multipseudopotential interaction scheme [189].  It is found that 

the scheme of ψ -BI coupled with SBB creates a relatively high variation and 

fluctuation of density across the channel.  Whilst, the schemes of mψ -BI with SBB, m

ψ -BI with ZH, and ZH-BI with ZH generate much less density variation across the 

channel.  Among them, ZH-BI with ZH treatment is superior regarding density 

fluctuation and the error associated with the resolution, relaxation time, and 

compressibility. 

5.2 Boundary conditions 

We begin with a brief discussion on the Standard bounce back scheme which will be 

tested.  We then demonstrate how the fluid-solid interaction forces can be implemented 

into Zou and He scheme [169] for the pseudopotential model.  Finally, the various 

schemes of solid-fluid interactions are discussed. 

5.2.1 Standard bounce back 

The standard bounce back is the simplest but popular LBM scheme to treat non-slip 

boundary conditions.  It reverses and sends back the distribution functions penetrated to 
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the stationary solid surface.  For a fluid node in contact with the wall, the unknown 

distribution functions, if , coming from the solid surface can be found from 

( , 1) ( , )
i i

f t f t+
′+ =x x , (5-1) 

where i′ is the opposite direction to i  and t
+  is a post-collision time but before 

streaming.  If the nearest solid nodes are the solid surface especially in complex 

boundaries, the method is of first-order accuracy [164, 165].  However, if the surface 

line drawn at halfway between the solid and fluid nodes, the second order of accuracy is 

achieved [166].  It should be noted in the case of a moving boundary, SBB can be 

applied straightforwardly by taking into account solid to fluid momentum transfer [5]. 

5.2.2 Zou and He (ZH) treatment with interaction force  

Zou and He [169] proposed a boundary condition scheme, which can be used to set 

density or velocity at a particular node.  The idea is to find unknown distribution 

functions with the aid of macroscopic values and known distribution functions.  Here, 

we focus on the D2Q9 lattice.  For a solid or boundary node, A, at the bottom of a 

domain shown in Figure 5-1, the distribution functions 2f , 5f  , and 6f  have to be 

defined after every collision-and-stream step. 

 

Figure 5-1.  After a collision-and-stream step in D2Q9 lattice, the boundary node A placed at the bottom 

of simulation domain has five known distribution functions
1

f , 
3

f , 
4

f , 
7

f , and 
8

f   and three unknown 

distribution functions as 
2

f , 
5

f , and 
6

f   . 

For the pseudopotential LBM and two-dimensional flows, we consider interaction 

forces acting on node A, namely xF  and
y

F .  We can set three neighbouring nodes at the 

bottom as three ghost nodes.  Ghost nodes are the nodes which are not a part of the 

physical domain but form a virtual layer around the boundary of the domain.  The 

densities of wall surface nodes are copied on to the nearest ghost nodes to calculate 
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A
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interaction force through equation (3-2).  The velocity of node A is related to 

distribution functions via equation (4-4), 

1 5 8 3 6 7

1

2
x xv F f f f f f fρ − = + + − − −  , (5-2) 

2 5 6 4 7 8

1

2
y yv F f f f f f fρ − = + + − − −  , (5-3) 

 

and the density of the node is 

0 1 2 3 4 5 6 7 8f f f f f f f f fρ = + + + + + + + + . (5-4) 

Therefore, we have three equations for four unknowns as the density is not set as a 

condition.  It should be noted even if density is defined along with the velocity, the 

system of equations doesn’t have a unique solution as 2f , 5f  , and 6f  have the same 

coefficients in (5-4) and (5-3). 

To close the system of equations, we follow the Zou and He [169] that the bounce back 

rule is valid for the non-equilibrium part of the distribution function perpendicular to the 

wall, 

2 4

2

3
yf f vρ= + . (5-5) 

As a result, the equations are found with solutions  

0 1 3 4 7 82( ) 4( )

2(1 )

y

y

f f f f f f F

v
ρ

+ + + + + −
=

−
 , (5-6) 

5 7 1 3

1 1 1 1
( ) ( )

6 2 2 4
y x x yf f v v f f F Fρ ρ= + + + − + − +  , (5-7) 

6 8 1 3

1 1 1 1
( ) ( )

6 2 2 4
y x x yf f v v f f F Fρ ρ= + − + − − − + . (5-8) 

For a stationary solid node, velocity in the above equations are set to 0u v= = .  It 

should be noted that since the pseudopotential LBM pressure is directly related to 

density via EOS, the pressure boundary condition can be applied straightforwardly.  
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However, the velocity component tangent to boundary surface, in this example xv , 

should be defined along with the density, or a relation between velocity components 

should be given, for example, the angle of the velocity vector is known.  In such a case, 

equation (5-6) can be solved for velocity and equation (5-5), (5-7), and (5-8) are treated 

the same as velocity boundary condition to find 2f , 5f  , and 6f .   

These solutions can be generalised for all four directions of boundaries of a 2 9D Q  

lattice domain.  Let’s define n  as vector normal to a boundary plane toward outside 

domain, O  the summation of distribution functions that are toward the outside of the 

domain . 0i >e n , and T   the summation of the ones which are tangent to the boundary 

. 0i =e n .  Then, the density-velocity relation can be expressed as,  

2 4

2(1 )

T O n F

n v

α α

α α

ρ
+ +

=
+

, (5-9) 

The general form of the solution for three unknown distribution functions is 

4

1

1 1 2
( , ) 1

6 2 4 3
i i i i x y j j i i i i

j

m
f f v v f

m
ρ ρ ρ′

=

 
= + ⋅ + ⋅ − ⋅ + − ⋅ 

 
∑t e t e e F t e v , (5-10) 

where if ′  is the distribution function opposite to if , (1,3)m = ⋅n   and it  is the tangent 

of ie  vector on the boundary surface ( )i i i= − ⋅t e e n n .   

In addition to the intersection of a solid wall and periodic boundary, corner nodes are 

almost inevitable situations.  For a D2Q9 lattice, a corner node leaves five unknown and 

three known distribution functions.  For example, node B placed at the bottom left of 

the domain in Figure 5-2 has 1f , 2f , 5f , 6f  , and 8f  as unknowns and 3f , 4f , and 7f  

as known values.  To calculate the interaction force on this node, the densities of solid 

surface nodes are considered for nearby ghost nodes.  We set 0
x y

v v= =  and assume 

the density of the node is known due to the side pressure (density) boundary or 

extrapolation over nearby nodes.  Moreover, we make use of the bounce back rule of 

non-equilibrium part of both perpendicular distribution functions, equation (5-5) and 
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1 3

2

3
xf f vρ= + , (5-11) 

where give 2 4f f= , 1 3f f= .  The others , , and  now can be found from the 

system of equations  (5-2), (5-3), and (5-4) for which determinant is nonzero, equal to 4.  

Therefore, we obtain 

5 7

1 1

4 4
x yf f F F= − −  , (5-12) 

6 0 3 4 7

1 1 1

2 2 4
xf f f f f Fρ= − − − − +  , (5-13) 

8 0 3 4 7

1 1 1

2 2 4
yf f f f f Fρ= − − − − + , (5-14) 

 

 

Figure 5-2.  After a collision-and-stream step in the D2Q9 lattice, the boundary node B which is placed 

at the bottom left corner, the intersection of the solid wall and another boundary condition such as 

pressure or velocity condition, has three known distribution functions 
3

f , 
4

f , and 
7

f  and five unknown 

distribution functions to be found 
1

f , 
2

f , 
5

f , 
6

f , and 
8

f . 

It should be noted for complex geometries where the surface is rugged, ZH condition is 

not as straightforward as SBB.   

5.3 Solid-Fluid interactions 

In the pseudopotential LBM, the interaction between solid and fluid is considered to 

control the wettability of a solid surface in contact with two-phase fluid.  This idea, in 

fact, mimics the interactions observed at the molecular level and scales up to macro-

scale.  However, here we focus on the cases where pseudopotential fluid is in single 

phase such as compressed liquid and is in contact with stationary solid boundaries.  In 

5
f

6
f

8
f
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such cases, the wettability is less focused but obtaining correct density and velocity 

profiles along and across the channel are of importance. 

The most well-known pseudopotential fluid-solid interactions can be formalised as  

( ) ( ) ( )
fs fs f s i i i i

i

F G x w sφ φ= − + +∑ x e x e e  , (5-15) 

where 
fs

G  is the amplitude, 
f

φ  and sφ  are fluid and solid potentials respectively, s  is a 

switch function gives 0  for fluid-fluid interactions and 1 for fluid-solid interactions.  If 

a non-wetting fluid is simulated 
fs

G  should be positive otherwise negative.  Martys and 

Chen [190] defined a fluid-solid interaction force setting ( ) ( )
f

φ ρ=x x  and 1sφ =  for a 

single component system.  Raiskinmäki et.  al [191] and Sukop et.  al [192] proposed to 

replace the fluid density factor with pseudopotential as ( ) ( )
f

φ ψ=x x  and 1sφ = .  Kang 

et al. [193] consider a constant density for solid nodes ( ) ( )
f

φ ρ=x x  and s sφ ρ=  where 

sρ   is an imaginary density set for a solid node.  The pseudopotential version of this 

model is introduced by Benzi et.  al [132] where ( ) ( )
f

φ ψ=x x  and ( )s sφ ψ ρ= .  Li et al. 

[133] assumed the solid node has a density equal to the fluid node which it is interacting 

with, 
2( ) ( )fφ ψ=x x  and 1sφ = .  In this way, the fluid-solid force has the same order of 

magnitude as fluid-fluid interactions if G  and 
fs

G  are in the same order.  They called 

their interaction model modified pseudopotential-based interaction (m -BI). 

Martys and Chen [190] and Kang et al. [193] models are the same because sρ  is a 

constant and can be merged with 
fs

G ; they are called density-based interactions.  The 

same applies to versions of Raiskinmäki et.  al [191] and Benzi et.  al [132], 

pseudopotential-based interactions, where ( )sψ ρ  can be considered as the amplitude of 

the force.  Li et al. [133] assessed all these forces regarding static contact angles and 

found that pseudopotential-based interaction is more suitable for modelling small 

contact angles and mψ -BI performs better than the others for achieving greater contact 

angles.   

ψ
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When using the ZH boundary condition to construct solid nodes, i.e., imposing no-slip 

boundary condition, a density, ZHρ , for the solid node is calculated by (5-9).  As such, 

we define the fluid-solid interaction, ZH-based interaction (ZH-BI),  

( ) ( , ) ( )
fs fs i i ZH i i

i

F G w sψ ψ ρ= − + +∑x x e x e e   (5-16) 

This force similar to modified -based force keeps the order of magnitude as fluid-

fluid interactions which is the most important point of defining such an interaction force 

[192]. 

In this study, we investigate the effects of boundary condition treatments on real fluid 

flow dynamics.  The treatment schemes are the schemes of -based interaction, 

modified -based interaction, and ZH-based interaction in combinations with either the 

bounce-back or the ZH boundary treatments.   

5.4 Result and discussion 

Simulations are performed to assess boundary treatments discussed in section 5.2 for 

non-ideal fluid flow in 2D Poiseuille flow.  The results from simulations are discussed 

in comparison with the analytical incompressible solution. 

5.4.1 Simulation setup 

All simulations are run on a two-dimensional square lattice including nine velocities (

2 9D Q ).  The detail of domain sizes for each case will be given individually.  The 

general setting, unless otherwise stated, is listed as follows.  The nondimensional 

relaxation time and lattice spacing parameter are set to unity 1τ = , 1c = .  It should be 

noted that based on (2-42) τ  should be 0.5τ > .  c  represents the scale of the 

simulation which is not focused here.  ZH pressure boundaries opt for driving force of 

walled poiseuille flow.  The MPI forces are calculated by use of Eqs.  (3-2) and (4-12) 

whose parameters, for the SRK EOS, can be found in Table 4-1.  The internal forces are 

embedded in the LBE using Eq.  (4-8) which reproduces Navier-Stokes equations to the 

second order.  The thermodynamic values of SRK EOS at the saturation state 0.7RT =  

are listed in Table 5-1.  0.7RT =  is selected as middle value in the stable range of MPI-

ψ

ψ

ψ
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LB for SRK EOS 0.40 1RT≤ <  (see section 4.6.4).  The amplitudes of fluid-solid 

interaction are kept at fluid-fluid interactions 
j

j sfG G= . 

The simulations are run for at least 510  steps and velocity of nodes all over the system 

is monitored to verify that the equilibrium state is reached by 

10max max

max

( ) ( 1)
10

( 1)

v t v t

v t

−− −
≤

−
. (5-17) 

where maxv  is the velocity magnitude of the node which has the maximum value in the 

computational domain.  The equilibrium time depends on viscosity, domain size, and 

type of boundary conditions.   

Table 5-1.  Pressure, density, and temperature of SRK EOS for water at 0.7
R

T =   for at 0.01a =  and 

0.2b =  and 0.344ω = .  The numbers are in lattice unit.  
R

β  is reduced compressibility. 

310

T

×
 

2
10

c
T

×
 

4
10

sat
p

×
 

3
10

c
p

×
 

sat

l
ρ  

210

sat

v
ρ

×
 

cρ  α  

2

( )

10

sat

R l
β ρ

×
 

7.0936

90 

1.0133

84 

1.9867

63 

4.3899

98 

3.7860

23 

2.9481

38 

1.2996

05 

1.3535

99      

1.5548

78 

 

We assess the results in comparison with the analytical solution of poiseuille flow in a 

no-slip channel.  It is assumed that the flow is fully developed and uniform in x  

direction and pressure drop is linear along the channel / / xdp dx p L= ∆ , 

2

2
L

( )  - ( )
2

y

x y y

p y y
u

L L Lµ

 ∆
=  

  
. (5-18) 

where 
y

L  is the height of the channel, xL  is the width of the channel, µ  is the dynamic 

viscosity, p∆  is the pressure drop along the channel (see Figure 5-3).  If a body force, 

bF , is exerted on the fluid with the acceleration of a , the term / xp L∆ is replaced by 

b ρ=F a . 
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Figure 5-3.  Sketch of the poiseuille flow.  The fluid is driven by either pressure difference 

high low
p p p∆ = −  or body force bF  and it has zero velocity at top and bottom boundary.  The flow 

profile is described by equation (5-18). 

 

5.4.2 Periodic poiseuille flow 

The first set of simulations are run for poiseuille flow where no solid boundary 

condition is applied [194] as an ideal test case that the fluid itself creates a poiseuille 

profile.  To do so, we charge MPI fluid in a fully periodic rectangular domain and exert 

two equal but opposite body forces.  The first one only acts on the top half and the other 

one moves the bottom half.  The sketch of the simulation domain is shown in Figure 5-

4.  The body force is added to equation Eq.  (4-8), thus, total b MPI= +F F F . 

 

Figure 5-4.  Sketch of the periodic poiseuille domain. 

Figure 5-5 shows the velocity profile for half of the periodic domain.  Different results 

are coming from various channel resolutions 4,8,16
y

N = .  The errors against 

resolutions for different relaxation times 0.6,0.8,1.1τ =  are shown in Figure 5-6.  It 

should be noted based on (2-42), increase of τ  increases the viscosity of the system.  

The errors show that the pseudopotential LBM has the second order of accuracy same as 
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the conventional LBM.  In fact, after inspection of density throughout the domain, we 

found that no density change is observed in the whole domain in all simulations.  It 

means the pseudopotential forces are neutralising each other since pseudopotentials are 

calculated by node density and, therefore, the model acts similar to the conventional 

LBM.   

 

Figure 5-5.  The poiseuille profile of velocity across the channel for half of the periodic box for different 

channel sizes 4,8,16
y

N =  compared with analytical solution (5-18). 

 

Figure 5-6.  The errors of periodic box simulations due to the deviation of velocity from analytical 

solution (5-18) at various channel sizes.  The errors show the second order of accuracy. 

5.4.3 Pseudopotential-based interaction 

To simulate poiseuille flow in between two stationary plates, we first employ -based 

interaction and set SBB, Eq.  (5-1), at top and bottom of the channel, abbreviated as -

SBB.  The MPI fluid at density 1.03 sat

initialization l
ρ ρ=  is initially charged in the channel 
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which is equivalent to 3% compressed water at 0.7RT = .  The domain size is 120 16×

which is considered long enough to reach a steady state and wide enough to create 

poiseuille flow based on results of section 5.4.2.  The flow is driven by pressure (or 

density) difference at left and right boundaries with the aid of ZH boundary treatment.  

Densities at left and right boundaries are set as 1.03
left initial

ρ ρ=  and 
right initial

ρ ρ=  

respectively.  A virtual density should be considered for the walls from which the 

pseudopotential can be calculated.  We consider three scenarios, large density

1.1
s left

ρ ρ= , average density ( ) / 2
s left right

ρ ρ ρ= + , small density 0.9
s right

ρ ρ=  for all 

solid nodes.  The sketch of the simulation domain is demonstrated in Figure 5-7.  The 

interaction between the fluid and solid nodes are found from equation (5-15) which is 

calculated for each potential of MPI scheme.   

 

 

Figure 5-7.  The sketch of simulation domain for the ψ -based interaction.  For top and bottom 

boundaries SBB is considered while left and right boundaries are ZH pressure condition at 
left

ρ  and 

right
ρ .  As 

left right
ρ ρ>  the fluid flows from left to right. 

s
ρ  is the virtual density of solid surface.   

Figure 5-8 (a) depicts profiles of density across the channel at / 2xx L=  with 

1.1
s left

ρ ρ=  for 0.1,0.01,0.001a =  , and 0.2b =  i.e.  
2 / 0.4, 4, 40b aϒ = = .  Because 

2 /b aϒ =  changes the compressibility here we only change a  without losing the 

generality of studying the effect of b .  In the case 40ϒ = , which repulsion part of SRK 

EOS is dominant and the fluid acts more compressible, the density of fluid from wall 

decreases smoothly in a parabolic distribution to a minimum density slightly lower than 

the average density.  By increasing the attraction parameter or decreasing ϒ , where the 

fluid is more approaching to incompressible fluid, the density forms a plateau in the 

centre closer to average density but density fluctuations near the wall increases.  The 
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velocity profile of these cases are shown in Figure 5-8 (d).  The best agreement with 

analytical results (incompressible fluid flow) comes from 0.4ϒ = , but with increase of 

ϒ  the fluid moves faster than incompressible one. 

The relatively same results are observed when 0.9
s right

ρ ρ=  which are demonstrated in 

Figure 5-8 (c).  The density of liquid increases from wall density to the average density 

at the centre and decrease of ϒ  moves the profile of density from smooth parabolic 

shape to flat profile at the centre with fluctuations close to the wall.  The associated 

velocity profiles are shown in Figure 5-8 (f).  The best consistency between simulation 

and the incompressible theory (5-18) is for 0.4 4< ϒ < .  The worse deviation is seen at 

the highly compressible fluid, 40ϒ = . 

According to Figure 5-8 (b), the less density gradient is seen across the channel if wall 

density is set to average density s aveρ ρ= .  However, we show in section 5.4.4 that this 

only happens here because the sample is taken at the halfway along the channel.  The 

velocity profiles, seen in Figure 5-8 (e), stays relatively the same as previous cases. 

 

Figure 5-8.  The profile of density and velocity across the poseuille flow channel for ψ -SBB treatment 

(a),(d) 1.1
s left

ρ ρ= , (b),(e) 
s ave

ρ ρ=  and (c),(f) 0.9
s right

ρ ρ= . 
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5.4.4 ZH-based and modified Pseudopotential-based interaction 

To simulate walls in poiseuille flow, here, we investigate three cases of fluid-solid 

treatment: ZH-based solid-fluid interaction coupled with ZH zero velocity (ZH-ZH), 

modified ψ -based interaction with bounce-back (mψ -SBB ), and modified ψ -based 

interaction with ZH zero velocity (mψ -ZH ).  The MPI fluid and inlet (or left), and 

outlet (or right) boundaries are set the same as Section 5.4.3.  The tests focus on density 

fluctuations across the channel and errors due to resolution, relaxation time, and 

parameter ϒ .  The error is defined as a deviation from macroscopic poiseuille flow, 

equation (5-18). 

 

Figure 5-9.  Contours of density over the simulation domain for (a) ψ -SBB (b) mψ -SBB (c)  mψ -ZH 

(d) ZH-ZH boundary treatments.  Contour levels are made based on 1000( / 1)
ave

ρ ρ − .  For the case m

ψ -SBB no density required to be defined for the wall nodes and for ψ -SBB 
s ave

ρ ρ= .  For all cases 

0.4ϒ =  is chosen. 

Figure 5-9 shows the contours of density field over the computational domain for ψ -

SBB, mψ -SBB, mψ -ZH, and ZH-ZH treatments.  The density variation across the 

channel for ψ -SBB is much larger than the others.  It is seen that only around halfway 

through the channel an almost vertical contour level, 1000( / 1) 0aveρ ρ − = , is formed.  

Since the wall density is set at s aveρ ρ= , that is the location where the density of fluid 
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coincides with the density of the wall.  Therefore, any density difference between fluid 

and solid causes the density fluctuation.  Due to high fluid fluctuation, this treatment is 

not comparable to the others, and hereafter we concentrate on the other treatments.  

Figure 5-10 demonstrates the density variation across the channel for the three cases 

ZH-ZH, mψ -SBB, and mψ -ZH.  Since at macro-scale desired flow field has a constant 

density across the channel, we define a simple parameter, 

max min max( ) /fluctuation ρ ρ ρ= − .  In section 5.4.3, we have seen that at 0.4ϒ =  the 

system shows highest density fluctuations close to the boundary wall, therefore, this 

value is chosen for these simulations.  The density fluctuation is very small for all these 

cases.  mψ -SBB and mψ -ZH show the same accuracy but ZH-ZH treatment gives one 

order of magnitude less in fluctuation.  Moreover, when using ZH-ZH, the wall density 

calculated by ZH method will be well in accordance with interior nodes.  The density 

jumps near the wall, filled circles, can be observed in mψ -ZH treatment. 

 

Figure 5-10.  Profile of density across the channel for three boundary treatments ZH-ZH, mψ -SBB, and 

mψ -ZH.  The filled circle and triangles represent wall nodes defined by ZH boundary treatment.   

The error is depicted versus vertical resolution of the domain in Figure 5-11.  As 

expected, the error decreases with the increase of domain resolution.  ZH-ZH treatment 

is superior at different resolutions.  After that, mψ -SBB placed which shows lesser 

error than mψ -ZH.  It should be noted the horizontal resolution is accordingly 

increased to make sure that the dynamics of the simulations stay the same. 
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Figure 5-11.  Error due to the vertical resolution of the channel for three boundary treatments ZH-ZH, m

ψ -SBB, and mψ -ZH. 

The effect of relaxation time is shown in Figure 5-12.  In the range of 0.6 1.1τ≤ ≤ , the 

mψ -ZH method shows more error than the others but the error almost reaches a plateau 

after 0.8τ =  .  Similar behaviour is seen for ZH-ZH treatment which has the lowest 

error.  However, mψ -SBB error increases proportionally with τ .   

 

Figure 5-12.  Error due to change of relaxation time for three boundary treatments ZH-ZH, mψ -SBB, 

and mψ -ZH. 

If we increase ϒ  in SRK EOS, in fact, the compressibility of the liquid is increased 

which intensify compressibility error of lattice Boltzmann.  Such behaviour can be seen 

in Figure 5-13 which demonstrates the error dependency to parameter ϒ .  ZH-ZH 

treatment is better than the others and mψ -SBB is placed after mψ -ZH.   
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Figure 5-13.  Error due to parameter ϒ  for three boundary treatments ZH-ZH, mψ -SBB, and mψ -ZH. 

5.5 Conclusion 

We have chosen the two most popular boundary treatments, SBB and ZH.  The aim is 

applying them in the pseudopotential LBM to obtain the ability to simulate compressed 

single-phase flow involved with stationary walls especially water in a channel.  MPI 

scheme with SRK EOS is utilised to model water.  Three force interactions between 

fluid and solid are considered ψ -based, and modified ψ -based, which are found in the 

literature, and ZH-based which is defined in this chapter.  They are combined with SBB 

and ZH.  The criterion is closeness to macroscopic poiseuille flow. 

The first case periodic poiseuille flow is studied as an ideal poiseuille flow purely made 

of LB equation without the need of boundary conditions.  It is shown that the method is 

second order accurate as density is constant all over the channel and the method 

coincides with conventional LB without pseudopotential interactions. 

ψ -based interaction along with SBB gives high-density gradient and fluctuations near 

the wall.  The choice of wall density plays the key role.  The closer it is to neighbouring 

fluid nodes, the less fluctuation is observed which makes it hard to use in complex 

geometries.  The velocity profile is very close to analytical poiseuille flow unless the 

parameter ϒ  is greatly increased which makes the fluid more compressible and 

consequently strengthens compressibility error of LB method. 
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The density fluctuations of ZH-ZH, mψ -SBB, and mψ -ZH are far less than and not 

comparable to ψ -SBB.  Therefore, those three treatments are studied together.  The 

performance of them assessed based on density variation across the channel, and error 

because of domain resolution, relaxation time, and ϒ  parameter.  ZH-ZH in all cases is 

superior.  It has one order of magnitude less variation of density across the channel in 

comparison with others.  It shows less error in different resolutions, a low relaxation 

time dependency and less compressibility error.  In all cases, mψ -ZH takes the third 

place after mψ -SBB. 
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Chapter 6 – Summary and future work 

6.1 Summary of the thesis 

The overall aim of this thesis was to develop a new LBM multiphase scheme, 

multipseudopotential interaction, which overcomes the current shortcomings seen in the 

pseudopotential schemes such as thermodynamic inconsistency, being limited to low-

density ratios, and unable to control interface width independent of EOS.  The 

multipseudopotential interaction scheme has been studied for the effect of solid-fluid 

interactions on the bulk flow as well. 

At the first step, the SC force is expanded in a way that each sub-force has a 

thermodynamic consistent shape.  We showed that the summation of these forces 

satisfies the thermodynamic requirement as well.  The outcome equation of state has a 

virial-like shape with an arbitrary number of free parameter.  This EOS could be fitted 

on the practical EOSs and simulate them in the LB system.   

The MPI scheme is compared with the commonly used SPI scheme in reproducing VW 

and CS EOS.  It is found that, first of all, in contrast to the SPI scheme, the MPI scheme 

is scalable and shows the independency of equilibrium densities under grid refinement.  

Secondly, when reproducing the Maxwell construction, at the vapour branch, the SPI 

prediction deviates significantly with decrease in temperature, whereas the MPI scheme 

shows much better results, and their accuracies are independent of temperature (for 

0.74 0.99RT< < ), and the type of chosen EOS.   

There exist the thermodynamic states where the SPI pseudopotential has real values in 

the liquid (vapour) region and imaginary values in the vapour (liquid) region, thereby 

causing the collapse of simulations.  The nature of the MPI scheme is free from this 

shortcoming. 

Besides curve-fitting, an alternative procedure in achieving a specific MPI two-phase 

system is suggested using only the properties of pressure, liquid density, vapour density, 

and sound speeds in vapour and liquid phase.  The results from the simulated system 

show good agreement with the requested data. 
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At the second step, the MPI scheme is extended for cubic and virial equations of state.  

The thermodynamic consistency condition has been made more flexible to employ those 

EOSs analytically and consistently in pseudopotential schemes, without the need for 

curve-fitting or trial and error procedures. 

The LB system is analysed in a reduced format which can be compared to real physical 

systems.  The equilibrium interface shapes are predicted from mechanical stability 

condition and found in good agreement with the simulations.  Interface width is 

systematically adjusted with the aid of the EOS parameters.  It can positively affect the 

accuracy of the results.   

The proposed MPI scheme provides stable two-phase systems even for very high-

density ratios.  The liquid branch of the Maxwell construction curve is almost perfectly 

achieved.  Regarding the vapour branch, the errors are negligible and small to density 

ratio of 1000.  However, at higher density ratios, the errors grow exponentially.  The 

errors can be suppressed by broadening the interface width. 

The main drawback of multipseudopotential scheme is higher computational costs in 

comparison with original Shan-Chen model.  For example, in the case of SRK EOS, 

three interaction forces are calculated in one time-step between two nodes.  Moreover, 

the scheme is completely based on Shan-Chen model, therefore, it inherits the Shan-

Chen frame work.  For instance, it is only applicable to isothermal flows and 

compressibility error is inherent in the scheme. 

We have shown that the isotropy of the circular drops is satisfactorily preserved in the 

process of shortening the interface width.  An MPI drop is moved diagonally in a 

periodic domain which showed the Galilean invariant.   

At the third step, we investigate the effect the two most popular wall boundary 

treatments: SBB and ZH on the (non-ideal) bulk flow.  Three force interactions between 

fluid and solid are considered ψ -based, modified ψ -based, which are found in the 

literature, and ZH-based which is defined in this thesis.  They are combined with SBB 

and ZH.  The criterion is closeness to macroscopic poiseuille flow. 
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ψ -based interaction along with SBB gives high-density gradient and fluctuations near 

the wall.  The velocity profile is very close to analytical poiseuille flow unless the 

parameter ϒ  is greatly increased which makes the fluid more compressible and 

consequently strengthens compressibility error of LB method. 

The density fluctuations of ZH-ZH, mψ -SBB, and mψ -ZH are much less than ψ -

SBB.  Therefore, those three treatments are studied together.  ZH-ZH in all cases is 

superior.  It has one order of magnitude less variation of density across the channel in 

comparison with others.  It shows less error in different resolutions, a low relaxation 

time dependency and less compressibility error.  In all cases, mψ -ZH takes the third 

place after mψ -SBB.   

6.2 Future work proposals 

The multipseudopotential interaction scheme introduced in this thesis is limited to 2D, 

isothermal, single component, two-phase flow.  However, it is the basis for many other 

developments such as the addition of an interface tension force, multi-relaxation time 

technique, heat transfer, and other fluid components.   

Pseudopotential schemes lack a specific independent force or source term describing 

interface tension.  However, recent modifications, especially the work of [143], show 

that this capability is achievable.  Therefore, adding tunable interface tension to MPI is 

doable and makes the scheme more versatile.   

MRT is a more general form of the LBM with a collision matrix where moments of 

distribution functions like density, momentum are relaxed with different time scales.  It 

solves the deficiency of constant Prandtl number in the SRT.  MRT is more stable than 

SRT and can simulate flows on D3Q13 lattice.  Studying multipseudopotential 

interaction in the MRT framework is another important target. 

Pseudopotential schemes found many applications in fuel cells and heat transfer 

phenomena involving with boiling and evaporation.  They utilise a secondary lattice 

Boltzmann equation to account for heat transfer in the fluid.  Such idea can be imported 
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to powerful multipseudopotential interaction scheme as it has intrinsic thermodynamic 

consistency by itself. 

One of the advantages of pseudopotential schemes over the other multiphase systems is 

the ease of handling multicomponent systems.  For a two-component system, two 

lattices simply simulate two fluids, however, in the case of MPI, the interface 

interactions can be complex due to multiple interaction forces.  Therefore, interface 

forces should be separately defined and investigated. 
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