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ABSTRACT 

 

There are many chemicals that crystallize into more than one form.  This phenomenon is 

called polymorphism.  In each form or polymorph, inter and intra-molecular binding differ to 

varying degrees.  As a result of this structural variation, the physical properties of the solid 

phases may also differ.  Even the smallest of changes at the molecular level can result in a 

significant change in the final adopted crystal structure. Polymorphism in crystal structures 

allows studies of structure-property relationships since it is only the packing motifs that differ 

between polymorphs.  

In this thesis, a ‘computationally assisted’ approach to crystal structure solution was taken. 

X-ray powder diffraction was used to generate unit cell dimensions and space groups while 

historical in-house molecular modelling methods were used to generate possible trial 

structures that would be the starting point for refinement. 

 

Finally, a review of the latest methodologies for crystal structure prediction and consideration 

of polymorphism within the pharmaceutical industry completes this work. 
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1 

CHAPTER 1 – INTRODUCTION 

 
1.1 Polymorphism and Structure Solution 

 
“Polymorphism is the ability of any element or compound to crystallize as more than one 

distinct crystal species” [1.1] 

 

There are many chemicals that crystallize into more than one form.  In each form, or 

polymorph, inter and intra-molecular binding can differ to varying degrees [1.2].  As a result 

of this structural variation, the physical properties of the solid phases may also differ [1.3]. 

Consequently, the phenomenon that is polymorphism in crystal structures allows studies of 

structure-property relationships [1.4]. 

 

There are different categories of polymorphism.  Conformational polymorphism is prevalent 

in “effect chemicals” such as pharmaceuticals since most pharmaceutical compounds contain 

flexible moieties in their molecular structure.  For example, the antiepileptic drug 

Carbamazepine exists in four reported anhydrous forms alone.  The monoclinic and trigonal 

forms have been examined in this thesis.  Packing polymorphism occurs when the same 

conformational structure can be packed in more than one way in the crystalline state.  Forms 

I and II of Acetaminophen being one such example [1.5, 1.6 and 1.7].  Concomitant 

polymorphism is when more than one polymorph crystallizes in the same batch.  Whilst being 

an interesting phenomenon to research, it is obviously undesirable within pharmaceutical 

production [1.8]. 

 

Industrial processes including drying, filtration and powder compression need to be optimized 

for effect chemicals such as pigments and dyes, pharmaceuticals and agrochemicals, where 

reliable production of a particular polymorph under reproducible conditions is required [1.9]. 

Consequently, detailed knowledge of the different molecular conformations and subsequent 

packing motifs manifested by the polymorphs of a given material becomes highly desirable.  

Logically, it might be predicted that the most likely packing motif for a crystal will be the 

most thermodynamically stable.  However, in some circumstances, this is not the case [1.10, 

1.11]. 

 

Such structural information can be used as a basis for carrying out molecular modelling 

simulations when attempting to predict differences in the performance of polymorphs.  Such 

differences include variations in crystal morphology, crystal purity and mechanical properties 

of the solids.  Research has shown that there is considerable occurrence of multiple packing 
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motifs in organic molecular crystals [1.2].  Taking the example of pharmaceutical 

compounds, the bio-availability or toxicity of one polymorph will most likely differ from 

another, resulting in a mixture of polymorphs being potentially lethal, or at the other end of 

the scale, totally ineffective. 

 

Since polymorphism is so unpredictable [1.12, 1.13, 1.14], every system will provide a novel 

problem.  Without necessary experimentation, there is no way of knowing how many 

different forms exist or what the processing effects on each form might be [1.15, 1.16, 1.17, 

1.9 and 1.18].  This could lead to expensive delays in production, even starting the process 

all over again. 

 

Solid-form screening during the initial stages of pharmaceutical design has become 

increasingly important.  However unless sufficient time is given to this stage of the process, 

it is still likely that despite the numerous techniques available, the solid-form screen will not 

find some of the most useful polymorphic forms until the later stages of development [1.19, 

1.20, 1.21]. 

 

High through-put screening methods have been widely used in order to expose the compound 

under investigation to hundreds of different experimental conditions.  Whilst this ‘trial-and-

error’ approach considered the variations of crystallization processing conditions, it could not 

take into account the complexities of the individual molecule.  Particularly within 

pharmaceutical compounds, hydrogen bonding can have a large effect on the final structure 

[1.22] since even weak hydrogen bonds maintain a directional preference [1.23].  

Consequently, ‘bespoke’ manual methods of screening should be used to complement the 

automated techniques. 

 

A great deal of interest has been shown in the study of crystals comprising more than one 

chemically distinct molecule in the molecular unit.  Known as cocrystals, they have been seen 

to display enhanced properties over the individually formulated active pharmaceutical 

ingredients (API’s) [1.24].  It is common to use an API teamed with a ‘biologically passive 

structure-directing component’.  This is not the only advantage of utilizing co-crystals. 

Another attractive feature is that enhancing chemical properties can be brought about without 

the inconvenience of making or breaking any covalent bonds [1.25, 1.26 and 1.27]. 

 

One long-term goal of the scientific community is to be able to predict crystal structures ab 

initio from knowledge of the molecular structure [1.11, 1.28, 1.29 and 1.30].  A lesser but 

still considerable problem is to develop X-ray powder data into a routine method in the 
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laboratory.  The main problem with this method of structure solution is the generation of 

reasonable starting structures to refine [1.31]. 

 

There have been many methods for structure determination proposed, especially in the latter 

half of the 20th century aided by all the advances and improvements made in electronics and 

mechanics.   

 

Since single crystal analysis is now a routine method along with the advances in computer 

power and experimental techniques, the number of solved crystal structures has risen 

dramatically.  In the mid-1960s, in an attempt to provide a bibliographic collection of 

chemical and structural data obtained from X-ray or neutron diffraction, the Cambridge 

Structural Database (CSD) was developed [1.32].  It contains organic and organometallic 

compounds, each one having a specific reference code.  There is another database called the 

Protein Data Bank (PDB) [1.33], which as the name suggests contains biological 

macromolecular structures.  This is managed by the Research Collaboratory for Structural 

Bioinformatics (RCSB).  A third database called Isostar [1.34(a)] contains information on the 

intermolecular non-bonded interactions of structures.  It has used data from the CSD and the 

PDB combined with theoretical energy calculations using the InterMolecular Perturbation 

Theory (IMPT) [1.34(b)]. 

 

A popular and reliable technique for unit cell and space group determination is X-ray 

diffraction.  As previously mentioned, it is now considered routine to analyze structures using 

single crystal diffraction [1.35].  However this method is limited to compounds where crystals 

of sufficient size and quality may be grown.  X-ray powder diffraction can be used as an 

alternative, although its application is not straightforward [1.36-1.39]. 

Synchrotron radiation sources have made vast improvements in the quality of collectable 

powder data [1.40, 1.41].  The advantages of Synchrotron radiation over conventional sources 

is that of high intensity, tuneable wavelength and a high degree of polarization.  Accurate 

peak positions are produced, which make it ideal for indexing and refinements. 

X-ray powder diffraction coupled with molecular modelling techniques has been applied to 

determine the structure of many small inorganic compounds [1.42, 1.43] and, as time passes, 

the structures of more and more organic molecules and metallic clusters of increasing size 

and complexity are being solved [1.44, 1.45]. 

 

Since 1999, the CCDC (Cambridge Crystallographic Data Centre) has arranged a series of 

problems designed to test the strengths of the variety of techniques available to the field of 

CSP.  Research groups use their preferred methods to predict the crystal structures of a 
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number of ‘unknown’ structures from the CSD.  The structures range from small rigid 

structures to large flexible molecules and structures with more than one molecule in the 

asymmetric unit.  The methods and results are discussed and progress of methodologies 

within the community is assessed. 

 

In this research, a ‘computationally assisted’ approach to crystal structure solution was taken. 

X-ray powder diffraction was used to generate unit cell dimensions and space groups while 

molecular modelling methods were used to generate possible trial structures that would be 

the starting point for refinement.   

 

Using this combination of experimental and theoretical techniques, the following work was 

carried out:  

• Validation of an in-house computational search method involving a systematic search 

of the unit cell.  Results are ranked based on final lattice energy and comparison of 

the generated and experimental X-ray powder diffraction patterns.  A comparison of 

this method with a simulated annealing ‘random search’ method was also carried out.  

Two examples of polymorphic pharmaceuticals were used for this purpose, 

Carbamazepine (monoclinic and trigonal) and the two published structures of 

Primidone. 

• The simulated annealing method was tested further to solve the crystal structure of 

the co-crystal of the dihydroxybenzene catechol and urea. 
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1.2 2016 Review 

Since this research was completed, the stages in Crystal Structure Solution (CSS) from 

Powder Diffraction Data (PDD) haven’t changed significantly.  Ultimately the stages [1.3] 

still consist of; 

1) Conformational analysis and selection of Degrees of Freedom (DOF).  A sensible 

starting molecular conformation is advantageous.  Decisions about degrees of 

freedom can be made by looking to the CSD for similar structures/structural 

fragments.  Alternatively, the changes in energy associated with changes in 

conformation can be calculated.  It makes sense to allow a small number of degrees 

of freedom to be treated in the search and to have an idea as to the range of values 

they are likely to take.  Whilst keeping computing time to a minimum is desirable, it 

is also essential not to discard potential conformations at the outset. 

2) Selection of the theoretical set which will describe the intramolecular energy, the 

electrostatic intermolecular energy and selection of the potential function to describe 

intermolecular repulsion/dispersion forces.  The development of potentials for 

dispersion forces has been considerable and have had significant effects in the quality 

of structures generated to take into the optimisation stage. 

3) The global search of the unit cell which will generally find numerous pockets of low-

energy regions with similar lattice energy values.  In modern stochastic searches, 

functions have been implemented to avoid losing the molecule in a local minima or 

basin.  The practitioner does well to optimise the balance between the amount of 

search space investigated and the length of computational time spent searching.  

Current methods can be divided into four categories; 

a. Deterministic Methods – given the same input, the same output will be 

generated. 

b. Stochastic Methods – given the same input, the output will be unpredictable. 

c. Heuristic Methods – a method which might not give a perfect result, but one 

that will provide suitable results for the current purposes. 

d. Smoothing Methods – a statistical method to remove irregularities to improve 

accuracy. 

4) Local Lattice-Energy Minimization of the lowest energy/highest ranking structures 

generated within the previous stage.  The molecular conformation may be treated as 

rigid in this step, however greater accuracy has been seen when further degrees of 

freedom, such as torsions and bond angles, have been considered. 

 

Therefore, in terms of organic compounds, the advances in CSS have been changes in both 

computational structure prediction methods and experimental diffraction methods.  
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Complementary analytical techniques used in combination with crystal structure prediction 

methods, such as polymorph screening and NMR [1.46], have been shown to obtain 

repeatable and reliable results.  Routine crystal structure solution of molecular crystals 

remains a formidable problem however [1.47].  The complexity of the molecular structure, 

the quality of the powder data and the number of possible polymorphs are just a few key 

factors which can hinder an analyst’s progress to finding the global minimum of the energy 

landscape [1.48].  It is still hoped that when crystal structure prediction methods are reliable 

enough, only the chemical diagram should be required as input data.  In this way, the design 

of new molecules crystallizing with favourable structural and physical properties may be 

computationally led prior to any laboratory work taking place.  If the crystal structure of a 

molecule is already known, crystal structure prediction methods may also be used to predict 

the likelihood of as-yet unknown polymorphs being formed which have undesirable physical 

properties. 
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A. APPENDIX 

A.1 Principles of X-ray Diffraction 

X-rays were first discovered by Röntgen in 1895 and it wasn’t until 1912 in Münich that 

Laue, Friedrich and Knipping performed diffraction experiments.  However, it was Bragg in 

1913 who developed the method of X-ray diffraction and realised its potential as a technique 

for crystal structure solution.  Laue had found that it was possible to treat crystals as a three-

dimensional diffraction grating where the atoms were arranged in large clusters.  However, 

the real breakthrough came from W.L. Bragg when the father and son team considered 

crystals as layers or planes of atoms.  The Braggs discovered that diffracted X-ray beams 

were produced when the path differences between reflections from successive planes were 

equivalent to an integral number of wavelengths.  This observation gave rise to the well-

known Bragg equation, equation (1), which is illustrated in figure 1. 

 

n = 2dhklsinθ     (A.1) 

 

Figure A.1; X-ray beam incident on a pair of parallel planes P1 and P2 with interplanar 

spacing d.  The parallel incident rays 1 and 2 make an angle of  with these planes.  Electrons 

positioned at O and C are forced to vibrate and radiate in all different directions.  Where 

parallel secondary rays 1’ and 2’ radiate out from the planes at angle , a diffracted beam of 

maximum intensity is produced assuming the rays are in phase. 

 

The perpendiculars dropped from O to A and B reveal that the angles created AOC = BOC = 

 and that AC = BC.  Waves in ray 1’ will be in phase with waves in ray 2’ if AC + CB (or 

2AC) is an integral number of wavelengths , giving rise to the expression 2AC = n where 

‘n’ is an integer.  Since AC/d = sin, we arrive at Bragg’s Law. 
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X-rays lie in the region of the electromagnetic spectrum between UV and  radiation 0.1 

(lower ) to 100Å (upper far UV) (see figure 2).  X-rays for crystal structure analysis lie in 

the region of 0.5 to 2.5Å. 

 

 

 

 

 

 

 

 

 

 

Figure A.2; the electromagnetic spectrum. 

 

X-rays are produced when electrons of a source material are accelerated towards a target 

material as shown in figure 3.  Multiple collisions of the accelerated electrons with the target 

material causes reductions in the electron velocity but does not bring them to a standstill.  The 

loss of energy produced from these multiple collisions is emitted as a continuum of X-ray 

radiation. 

 

 

Figure A.3; accelerated electrons bombarding a target. 

 

The min(Å), or the maximum energy, of the radiation is determined using a combination of 

physical constants including Plank’s constant and the speed of light.  The relationship 

 

between these constants, the charge on the electrons and the accelerating voltage is shown in 

equation (2). 
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𝐸𝑚𝑎𝑥 =  𝑒𝑉𝑎𝑐𝑐 =  ℎ𝑐
𝜆𝑚𝑖𝑛

⁄     (A.2i) 

𝜆𝑚𝑖𝑛 =  12398
𝑉𝑎𝑐𝑐

⁄      (A.2ii) 

 
Where h (Plank’s constant) = 6.626 070 040 × 10−34 𝑚2  𝑘𝑔/𝑠 

c (the speed of light) = 299 792 458 𝑚/𝑠 

e is the charge of an electron = 1.602 × 10−19 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 

and V is the accelerating voltage, measured in electron-volts. 

 

The efficiency () of X-ray production can be calculated using equation (3) where Z is the 

atomic number and V is the voltage. 

 

= 
electron

photon

E

E
 = 1.1𝑍𝑉10−9 (A.3) 

Since absorption of X-rays will occur the actual intensity of the radiation used can be 

calculated using; 

 

)(

0 exp)()( xII    (A.4) 

 

I(), I0() are the resultant and incident radiation respectively, x is the width (depth) of sample 

in cm,  is the mass absorption coefficient in cm2g-1 and  is the density of material in gcm-3 

 

The absorption of X-rays () is dependent on two factors, photoelectric absorption () and 

scattering effects () and can be considered as the stopping power of the material. 
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A.2 Crystal Lattices and Crystal Systems 

Crystals are solid chemical substances with a three-dimensional periodic array of atoms, ions 

or molecules.  This array is called a crystal structure.  When the substances are defined as 

single points, a ‘point lattice’, figure 4, is formed.  This can then be built up from a two 

dimensional form to a three dimensional structure.  The vectors describing the sides of this 

basic unit are chosen to be right handed (the right thumb runs along a, first finger along b and 

middle along c).  The crystallographic axes (also known as the base vectors) a, b and c are 

assigned in the same manner.  The angles between these base vectors are called ,  and  

where ={b,c}, ={a,c} and ={a,b}.  The basic three-dimensional lattice known as the ‘unit 

cell’ therefore, is the three dimensional array of the smallest repeating unit of the substance.  

Figure 5 shows the three-dimensional lattice with a unit cell showing how the cell edges and 

angles are related. 

   

 

 

 

 

(a) (b) (c) 

Figure A.4; regular 2 dimensional array - the point lattice.  (a), (b) and (c) show how the 

points can be fixed within the two-dimensional lattice structure. 

 

 

 

 

 

 

 

 

Figure A.5; the three-dimensional array – the unit cell is highlighted in bold. 
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There are seven crystal systems that are defined using the relationships of the unit cell 

parameters, these are listed in table 1. 

 

Crystal System Lattice Parameters Degrees of Freedom 

Triclinic abc;  6 

Monoclinic abc; ==90, 90 4 

Orthorhombic abc; ===90 3 

Tetragonal a=bc; ===90 2 

Trigonal (rhombohedral) a=b=c; ==90, =120 2 

Hexagonal a=bc; ==90, =120 2 

Cubic a=b=c; ===90 1 

 

Table A.1; the seven crystal systems, the lattice parameter conditions and the resulting 

degrees of freedom. 

There are also different ways atoms or molecules may be arranged within the unit cell.  These 

factors have been classified too and are shown in table 2. 

 

Cell Symbol Arrangement 

Primitive P Atoms only at corners of cell 

Body-centred I One atom in the centre of the cell 

Face-centred F An atom at the centre of each face 

Base-centred C Atom at centre of each face on a pair of opposite faces 

Rhombohedral R Special case for primitive trigonal cell 

 

Table A.2; the various atomic arrangements occurring in the unit cell, the cell nomenclature 

and identifying symbols. 

 

 

In 1866, Bravais devised a classification system for every possible type of lattice.  The 

Bravais classifications are shown in table 3 and figure 6. 
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Crystal System Type of Centring Possible 

Triclinic Primitive 

Monoclinic Primitive, base centred 

Orthorhombic Primitive, base centred, face centred, body centred 

Tetragonal Primitive, body centred 

Trigonal (rhombohedral) Primitive 

Hexagonal Primitive 

Cubic Primitive, face centred, body centred 

 

Table A.3; the 14 Bravais lattice classifications. 

 

 
 

Figure A.6; the 14 Bravais lattices: Image clipped from; 

https://www.slideshare.net/praying1/972-b3102005-cullity-chapter-2/17 

https://www.slideshare.net/praying1/972-b3102005-cullity-chapter-2/17
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A.3 Symmetry Operators and Space Groups 

Molecules in the unit cell are related to each other by functions called symmetry operators.  

In other words, the molecules can be superimposed onto each other using a number of 

different operations such as rotations or inversions.  The point about which this operation 

occurs is called the symmetry element.  The group of functions, excluding any translation 

operations, is called the point group.  In three dimensions, there are 32 different point groups, 

known as crystal classes, which are divided up between the seven crystal systems introduced 

above.  Each point group is described using symbols such as a rotation axis of order x, an 

inverse rotation axis of order ¯, or a mirror plane m.  In summary, the crystallographic point 

group is the operation or operations that will leave at least one point of the molecule unmoved 

and does not change the appearance of the crystal structure.  Space groups also define 

symmetry in crystal structures.  This group of operations not only includes the symmetry 

operations (reflection and rotation) of the point group, but also translational symmetry, which 

allow the repetition of the unit cell ultimately creating the infinite periodic system.  There are 

three types of translational symmetry; lattice translations, screw axes and glide planes.  

Lattice translations allow movement of the repeat unit along a cell direction, screw axes 

involve a rotation of order 360/x immediately followed by a translation of n/x.  Finally, a 

reflection in a plane followed by a translation parallel to the plane of half the repeat distance 

defines a glide plane.  There are 230 different space groups defining all possible crystal 

symmetries. 

 

The unit cell is the smallest repeating unit of the crystal structure and may contain one or 

more molecules.  The total number of molecules in the unit cell is defined as Z.  The 

asymmetric unit (Z’) is the smallest subset Z which replicates into a complete unit cell 

following the application of symmetry operators.  The space group defines the position and 

relationship of the molecule or molecules in the unit cell. 

 

A.4 Miller Indices and the Reciprocal Lattice 

It can also useful to describe sets of lattice planes as well as lattice points in unit cells.  Series 

of parallel lattice planes are constructed such that every lattice point lies on one plane in the 

series.  The edge is always cut up into an integral number of common fractions.  The 

reciprocals of these factions become a triplet of numbers expressing the sets of possible 

planes.  For example if a plane cuts the x, y and z-axes ½, ½, 1, the triple of reciprocal 

numbers becomes (221).  These representations of a lattice planes are called Miller Indices, 

some examples of which are shown in figure 7. 
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Figure A.7; Miller Indices, so named after Miller who devised the nomenclature in 1839. 

Image taken from; 

http://www.smartway2study.com/2016/03/salient-features-of-miller-indices-of.html 

 

So far, the lattice has been considered in direct space.  In the Bragg equation sinθ is a measure 

of the deviation of 1’ and is inversely proportional to the lattice interplanar spacing d. 

 

sinθ = nλ/2(1/d) (A.5) 

 

Therefore, structures with large d values will have compressed diffraction patterns and vice 

versa. 

 

By constructing the reciprocal lattice based on 1/d, the inverse relationship between sinθ and 

d becomes a direct one, thus facilitating the interpretation of X-ray diffraction patterns. 

 

Generally, the reciprocal lattice parameters; reciprocal base vectors A*, B* and C* and 

reciprocal interaxial angles *, * and * are sometimes marked with an asterisk and are 

calculated using the direct lattice parameters and the unit cell volume as shown in equations 

(6), (7a), (7b) and (7c). 

 

V

ba
C

V

ac
B

V

cb
A

^
*

^
*

^
*   (A.6) 






sinsin

coscoscos
*cos*;**


 cb


 (A.7a) 






sinsin

coscoscos
*cos*;**


 ca


 (A.7b) 






sinsin

coscoscos
*cos*;**


 ba


 (A.7c) 

http://www.smartway2study.com/2016/03/salient-features-of-miller-indices-of.html
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The reciprocal lattice can be considered as normals to all direct lattice planes (h,k,l) radiating 

from one lattice point which is designated as the origin.  These normals all end at a distance 

1/dhkl from the appointed origin and dhkl is the perpendicular interplanar distance between the 

set (hkl).  These normal points make the reciprocal lattice.  Figure 8a shows a representation 

of a reciprocal lattice where the asterisks are the reciprocal points and the integers are the 

direct indices of the relevant planes.  Like the direct lattice, the reciprocal lattice can also be 

built up from two dimensions to three and this is shown in figure 8b.  Since the reciprocal 

points are derived from the planes in the direct lattice, these values correspond to the Miller 

indices. 

 

 

 

 

 

 

 

 

Figure A.8(a); 2D representation of points on a reciprocal lattice (green points).  Miller 

indices are shown in blue.  Image taken from; 

http://orlaningsolidstate.blogspot.co.uk/2010/03/reciprocal-lattice.html 

 

A.5 Atomic Scattering 

Incoming X-rays are scattered by electrons of atoms within the unit cell.  An atomic scattering 

factor ‘f’, can be calculated using equation (8a) since only electrons are involved in the 

scattering of X-rays.   

 

 

𝑎𝑡𝑜𝑚𝑖𝑐 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓 =
amplitude scattered by an atom

amplitude scattered by a single electron
 (A.8a) 

 

A structure factor is represented by Fhkl and it expresses both the amplitude and the phase of 

a diffracted beam in other words, how the material scatters incoming radiation. 

http://orlaningsolidstate.blogspot.co.uk/2010/03/reciprocal-lattice.html
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Figure A.9; (left) the characteristics of a wave.  Image taken from; 

http://www.sunapeeschools.org/smhs/staff-directory/mr-baker/physical-science/waves 

and (right) the magnitude (green) and phase (red) of a structure factor (blue). 

 

The amplitude of the scattered wave is given by the magnitude of the structure factor 

expressed as a ratio; 

 

|𝐹ℎ𝑘𝑙| =  
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑏𝑦 𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑏𝑦 𝑜𝑛𝑒 𝑎𝑡𝑜𝑚
 (A.9a) 

 

The structure factor is also directly related to the intensity of a reflection. 

 

|𝐹ℎ𝑘𝑙|
2  =  𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑤𝑎𝑣𝑒 (A.9b) 

 

For any given structure with atomic positions at uvw, the structure factor is also used to 

determine which reflections to expect in a diffraction pattern. 

 

𝐹ℎ𝑘𝑙 =  ∑ 𝑓𝑖
𝑁
𝑖=1 𝑒2𝜋𝑖(ℎ𝑢𝑖+𝑘𝑣𝑖+𝑙𝑤𝑖) (A.9c) 

 

The structure factor is also required to estimate electron density (ρ) at a point in a unit cell 

(xyz) which has a volume of V and a phase αhkl. 

 

𝜌(𝑥𝑦𝑧) =  
1

𝑉
∑ |𝐹ℎ𝑘𝑙|𝑒𝑥𝑝(𝑖𝛼ℎ𝑘𝑙)𝑒𝑥𝑝(−2𝜋𝑖ℎ𝑥+𝑘𝑦+𝑙𝑧) (A9.d) 

 
 
 
 
 
 
 

𝐹ℎ𝑘𝑙 =  |𝐹ℎ𝑘𝑙|𝑒𝑥𝑝(𝑖𝜑ℎ𝑘𝑙) 

|Fhkl| 

Im 

Re 

φ 

Fhkl 

http://www.sunapeeschools.org/smhs/staff-directory/mr-baker/physical-science/waves
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CHAPTER 2 – METHODOLOGIES 

2.1 Introduction 

The procedure for determining crystal structures from materials presented in a powdered 

form consists of numerous steps [2.1, 2.2]: 

• Collection of good quality X-ray diffraction data.  The theory of X-ray diffraction and 

basic crystallography is not discussed within this chapter but is included in this thesis 

in Appendix 1.  Suffice to say that depending on the types and the positions of the 

atoms in the crystal structure, X-rays will be diffracted in specific directions. 

• Indexing the peak positions of the X-ray powder pattern to generate unit cell 

parameters and to identify the space group.  This reveals the size and shape of the 

smallest repeating unit of the lattice and how the lattice can be displaced without 

being changed. 

• The three-dimensional picture of the electron density can be generated by measuring 

the angles and intensities of the diffracted beams.  This electron density ‘picture’ may 

be used to calculate the positions of the atoms and the bonds between them.  Phase 

definition is required for this calculation however, which is information that is lost 

in the powder diffraction experiment.  Values for phases are usually calculated by 

empirical methods where prior knowledge of electron density or structure is assumed.  

Methods which have been used to produce initial estimates of phases are; 

• Ab Initio Phasing or Direct Methods 

• Molecular Replacement 

• Heavy Atom Methods 

• Trial structure generation in the unit cell using the estimated phases and the space 

group information.  This chapter reviews the modelling methods employed during 

the period of this research.  A modern perspective looking at modifications of the 

original methodologies is also included to bring this overview up to date. 

• Refinement of best trial structures generated. 
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2.2 X-ray Diffraction in Crystal Structure Prediction 

2.2.1 Sample Preparation 

Samples used in X-ray powder diffraction should be ground until they are a very fine 

powder in order to attain a reasonably constant particle size.  The ground sample is then 

prepared for analysis by tightly packing and sealing it into a glass capillary tube.  The 

smaller the particle size, the more of the sample will be exposed to the X-rays and the 

more representative the result.  Powder diffraction is based on a truly random distribution 

of crystallites of equal size.  Deviating from this random distribution will have an effect 

on the measured intensities of the peaks in the diffraction pattern.  This effect of non-

randomness is called ‘preferred orientation’ [2.3] the effects of which are shown in figure 

1. 

Figure 2.1; preferred orientation effects in powder samples.  Reference from [2.3](c). 

 

The finely ground sample in the sealed capillary tube is mounted onto a goniometer and 

rotated in the beam of X-rays in order to try and overcome any orientation effects (figure 

3).  The fewer air pockets and gaps in the sample packing, the higher the signal to noise 

ratio will be. 

 

 

 

 

 

 

 

Figure 2.3; a laboratory goniometer head used to mount a capillary packed with finely 

ground sample.  A and B are moveable arcs, C and D are moveable sledges.  Reference 

from [2.3](c). 
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Finally, the thinner the sample, the better the peak definition will be.  This is due to a 

scattering coefficient determining interference effects which is described in Appendix 1. 

 

2.2.2 Calculating Unit Cell Dimensions and Space Group Assignment 

Once a powder diffraction pattern of sufficient quality has been generated, the unit cell 

dimensions can be determined and its accuracy proven.  De Wolff developed a figure of 

merit which calculated the reliability of powder pattern indexing using the geometry of 

the diffraction pattern [2.4].  A decade later, Smith and Snyder published a criterion for 

rating powder diffraction data [2.5], giving each pattern a ‘quantitative quality factor’.  

As long as the pattern is of sufficient quality the indexing step is relatively 

straightforward.  It is necessary to index the X-ray diffraction pattern in order to determine 

which planes give rise to which peak, sometimes even when the pattern is of poor quality.  

Early indexing methods required the user to define a series of peaks from experimental 

data for the program to calculate the unit cell parameters [2.6 – 2.11].  These methods 

break down into two types of methods, the search methods and the deductive methods.  

Search methods, also known as optimization or dichotomy methods, such as DICVOL 

[2.11], generate unit cell parameters and generate peak positions for this unit cell.  The 

suitability of the solution is given a ‘Figure of Merit’ by comparing the calculated peak 

positions with the experimental peak positions.  The parameters are successively reduced 

until an exhaustive search of all parameters has been carried out.  Deductive methods, 

such as TREOR [2.10a] and ITO [2.7] recognize well-defined relationships between sets 

of peak positions and propose unit cell parameters based on these comparisons.  A new 

approach proposed by Kariuki [2.12] suggested that the previous methods were 

susceptible to user error and put forward a ‘whole-profile’ fitting and global optimization 

process for powder pattern indexing called GAIN. 

 

Since the original three ‘classic’ programs for indexing (DICVOL, TREOR and ITO), 

[2.23, 2.24] revisions of these methodologies and new processes have been developed to 

generate a host of options available to the practitioner.  Monte Carlo and Artificial Neural 

Networks are just a couple of the approaches being used in the more recent programs 

[2.13 – 2.19].  In order to be as ‘user-friendly’ as possible, ‘user interfaces’ and ‘wizards’ 

guiding the practitioner through the process have been developed considerably too [2.20 

– 2.22, 2.25]. 
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Figure 2.4; Monte Carlo indexing protocol, taken from [2.16] 

 

 

Figure 2.5; indexing using an artificial neural network approach, taken from [2.18] 

 

 



24 

Next a space group is assigned using the systematic extinctions in the powder pattern.  

Due to the extent of peak overlap in powder diffraction experiments, absent peaks may 

be difficult to spot therefore during this stage of the process, consideration is also often 

given to the likelihood of a space group occurring based on information relating to similar 

organic compounds [2.26]. 

 

Occasionally, the intensities of certain reflections from a plane will be equal to zero i.e. 

the reflection is forbidden or systematically absent [2.3b].  Such absences can arise from 

the centering of the unit cell and/or the presence of translational symmetry elements like 

glide planes or screw axes.  Therefore, systematic absences of groups of specific 

reflections can imply the presence or absence of certain symmetry elements. 

 

2.2.3 The Phase Problem 

The intensities of waves scattered from planes within a crystal are measured in diffraction 

experiments [2.27].  Since the contribution of the nucleus to scattering is negligible, the 

electron density, which is centered on the nucleus, is effectively measured by X-ray 

diffraction.  In order to calculate the position of the electron density in a unit cell however, 

the phase related to the particular structure factor amplitude is required and it is this 

information which cannot be calculated.  This is the phase problem and has led to a 

number of phasing methods being developed to try and determine as many unique 

intensities as accurately as possible [2.28- 2.34]. 

 

Program Description www 

Superflip 
Program for solving structures by charge flipping. Distributed 

with Jana and immediately available. 
superflip.fzu.cz  

MCE 

Program for electron densities visualization. Distributed with 

Jana, available after defining the path in Tools->Preferences->3d 

map visualization. 

www.vscht.cz 

VESTA 

Program for electron densities visualization. Available after 

download, installation and defining the path in Tools-

>Preferences->3d map visualization. 

www.geocities.jp 

SIR97, 

SIR2002, 

SIR2004 

Program for solving structures by direct methods from single 

crystal diffraction data. Available after download, installation and 

defining the path in Tools->Preferences. 

www.ic.cnr.it 

EXPO, 

EXPO2004 

Program for solving structures by direct methods from powder 

diffraction data. Available after download, installation and defining 

the path in Tools->Preferences. 

www.ic.cnr.it 

 

Table 2.1; summary of a sample of methods for deconvolution and structure solution in 

reciprocal space.  Sourced from http://jana.fzu.cz/ 

http://superflip.fzu.cz/
http://www.geocities.jp/kmo_mma/crystal/en/vesta.html
http://www.ic.cnr.it/registration_form.php
http://www.ic.cnr.it/registration_form.php
http://jana.fzu.cz/
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2.3 Crystal Structure Solution Methods from X-ray Powder Diffraction Data 

2.3.1 Solving the Phase Problem in Reciprocal Space; Direct methods, Patterson 

method, Maximum Entropy and Likelihood Ranking. 

Direct methods were developed to be an effective way of solving the phase problem, for 

small structures.  The methods don’t rely on the presence of an atom which acts as a 

dominant scatterer or prior knowledge of the geometry of a well-defined fragment.  Direct 

methods assume a crystal is made up of atoms which are similar in shape and all have a 

positive electron density.  As a result, statistical relationships exist between sets of 

structure factors and these relationships are used in order to assign possible values for the 

phases.  However, problems with this method arise as the number of atoms increases and 

the statistical relationships become weaker.  Problems also occur with this method when 

the quality of the diffraction data is low.  Even weak reflections are required in these 

calculations and some are lost in the background noise, and in the case of powder 

diffraction, from overlapping peaks [2.35 – 2.37]. 

 

Direct methods are still useful for processes for example in isomorphous replacement 

where phase values are deduced from the way the structure factors are perturbed.  

Changes in the crystal will give rise to this effect and in isomorphous replacement, this is 

achieved by the addition of a heavy atom. 

 

In the Patterson method, calculations require quantities directly available from 

experimental data such as the angular positions and intensities of the diffracted beams.  

The Patterson function is then used to construct a “map” of the relative positions of the 

atoms in the unit cell.  The peaks actually relate to the locations of the interatomic vectors 

rather than the atoms themselves.  The Patterson function is most useful to use when 

attempting to define the location of a heavy atom (a dominant scatterer) for a cell also 

containing many light atoms.  Here the dominant scatterer produces a large peak, which 

is easy to define.  The drawbacks to this method arise when only light atoms occur in the 

unit cell; the peaks overlap and became difficult to resolve [2.38]. 

 

The maximum entropy coupled with the likelihood ranking method supports a single 

crystal like approach to structure solution and has been described as an improved direct 

method approach.  Data from powder diffraction experiments is compressed into one 

dimension, unlike single crystal data, which causes peaks to overlap.  When attempting 

to extract the intensities, ambiguities arise potentially causing errors when trying to 
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generate a trial structure.  Prior to the development of this method the overlapping peaks 

were either assigned arbitrary values or were simply ignored, neither approach being 

acceptable for accurate structure generation.  With maximum entropy and likelihood 

ranking, the starting structure was believed to consist of atoms whose chemical identity 

was known but whose positions were random and unknown.  Structure solution 

effectively ‘reduced the randomness’, of the atomic positions.  Since the method relied 

on dominant scatterers, it was only really suitable for compounds containing a “heavy 

atom” [2.39 – 2.45]. 

 

Dual space methods have since been developed which use information from both the 

reciprocal space data and the real space information [2.46 – 2.48] 

 

2.3.2 Crystal Structure Solution in Direct Space 

Alternative methods allow structure solution methods to search direct space for possible 

trial structures [2.49 – 2.51].  As well as comparing diffraction patterns, calculated 

structures can be ranked based on their lattice energies and by monitoring the separation 

distances between non-bonded interactions. 

 

At the time of this research, the methods using the asymmetric unit to search direct space 

included Monte Carlo (and Metropolis or ‘modified’ Monte Carlo), Simulated Annealing, 

Systematic Searching, Clustering and Genetic Algorithms. 

 

The Monte Carlo and the modified Monte Carlo (Metropolis) methods involve a random 

search of the unit cell.  The molecular unit, treated as a rigid body, is given three degrees 

of translational and three degrees of rotational freedom.  The differences in a function 

reflecting the new structure quality determine if the move is permissible.  If the move is 

accepted, the new position is then redefined as the new starting position. 

 

Typically the energy change in the system or the fit of the calculated and experimental 

diffraction profiles are the functions employed to accept or reject a move [2.52 – 2.53]. 

 

The equation to calculate the energy of the system is shown in equation (1). 

 

𝐸 =
1

2
∑ ∑ 𝑉(đ𝑖𝑗)𝑁

𝑗=1
𝑁
𝑖=1     (2.1) 
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where E is the potential energy of a system, N is the number of particles in the system, i 

is one particle, j is a second particle, V is the potential energy between particles i and j 

and đij is the minimum distance between particles i and j 

 

The crystallographic agreement factor is calculated using equation (2) 
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Rwp = the crystallographic agreement factor 

wi = a weighting factor for the ith point in the pattern 

yi = the intensity of the ith observed point in the experimental pattern 

yci = the intensity of the corresponding ith point in the calculated powder pattern 

 

New structural models are generated independently of any diffraction data to begin with.  

The diffraction pattern of the new model is then calculated and compared against the 

experimental data.  This approach avoids the need to extract information from 

overlapping or weak reflections [2.54 – 2.56]. 

 

Simulated annealing, similarly a random search of direct space, involves ‘melting’ the 

material until a predefined number of consecutive moves are accepted.  Here the 

‘temperature’ is the normalising quantity in the calculation of the Boltzman probability 

factor.  The temperature is increased until the requisite number of consecutively accepted 

moves is achieved.  The system is then described as being in ‘a molten state’.  The molten 

condition implies that all rotations (including sub-rotations) are acceptable, after which 

the system is ‘cooled’ to a user-defined temperature.  At the lower temperature the system 

is described as frozen (the heating and cooling rates are also user-defined).  More moves 

allowed per unit temperature change give greater coverage of the potential energy surface, 

however, this also means many similar structures are generated [2.57 – 2.63].  It becomes 

difficult to determine significant differences between structures having a similar rating.  

This has been an issue which the blind tests organized by the CCSD have addressed.  

More details of these tests are in section 2.6. 

 

Systematic searching, as the name implies, employs a grid-based search of a unit cell [2.1] 

using molecular packing considerations and lattice energy calculations [2.64 – 2.65].  The 
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asymmetric unit, treated as a rigid body, is given three degrees of rotational freedom and 

three degrees of translational freedom.  In further studies, intramolecular degrees of 

freedom are also allowed.  User-defined limits are set to constrain various parameters of 

the search.  If a trial structure is accepted it is stored for assessment and refinement.  To 

find the global minimum, the molecule is set in a defined starting position and all local 

minima nearby are visited.  This is carried out for a selection of starting positions.  The 

local minima are then ranked according to energy values, the lowest of which is expected 

to be the global minimum.  The generated structures are assessed using lattice energy or 

powder pattern fits in a similar way to the random search methods described above.  The 

limitations to this method are seen when predictions of flexible structures are attempted.  

The method becomes time consuming, especially if large unit cells are being searched, 

although consideration of symmetry aspects does sometimes allow for only a fraction of 

a cell direction to be considered.  Also at this time, the method could not be used if the 

asymmetric unit contains more than one molecule. 

 

In the clustering approach, small units are constructed (usually dimers) using the most 

commonly encountered symmetry elements.  The assessment of the resulting structures 

is carried out using statistical analysis of known assemblies with a similar structure.  A 

full crystal structure is then built in the most frequently encountered space groups by 

translation of the initial cluster, and a final lattice energy is calculated [2.66 – 2.69]. 

 

Genetic algorithms employ a genetic approach to trial structure generation by mating, 

mutating and using natural selection to generate a population of “fittest” structures [2.50, 

2.70 and 2.71].  These are the structures with the lowest energy.  Like the previous random 

search methods, the diffraction patterns are usually compared as the acceptance criteria, 

however lattice energy may also considered as acceptance criteria to allow two different 

ranking methods. 
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Figure 2.6; steps in a Genetic Algorithm Sequence.  From [2.49] 

 

2.4 Review of Crystal Structure Solution Methods 

Since the conclusion of the practical side of this research, the dominant method in CSS 

are Global Optimization methods [2.49, 2.72], also known as direct space methods, model 

building methods and sometimes real space methods.  In structure determination from 

powder diffraction data, these methods involve moving a molecular model of the study 

molecule around a known unit cell.  The conformation, position and orientation are 

constantly being adjusted until the best agreement with the observed diffraction data is 

obtained or the global minimum on the energy surface is reached. 

 

Figure 2.7; steps in a Global Optimization process. From [2.49]. 



30 

Finding the global minimum of the energy surface is not guaranteed and there isn’t a way 

to test if the generated result lies within it or whether only one of the local minima has 

actually been found.  One simple approach to testing for the global minimum has been to 

generate many random starting conformations and to perform optimizations on each.  

Clearly, this can only work for very small systems.  Another simple approach has been to 

apply a weighting using a Boltzmann distribution by the Monte Carlo method.  The 

generated structures are weighted based on their energy; the lower the energy the higher 

the weighting.  However, when the thermal energy (kBT) is low, the high energy regions 

cannot be crossed and simulations become trapped in a catchment basin.  Even when a 

transformed potential energy surface is used whereby the energy restrictions from funnels 

are effectively removed by assigning the only the local minima energy value in each 

catchment basin, there are still energy barriers between the different levels of the 

transformed surface which cannot be crossed. 

 

Since the completion of the practical work in this research, different types of Global 

Optimization methods have been developed; 

 

2.4.1 The Grid search 

As previously described in 2.3.2, the unit cell is broken down into a grid and the 

asymmetric unit is systematically moved within it.  With this method, the global minimum 

is guaranteed to be found if the grid search is fine enough.  The balance must be struck 

between computational time and fineness of the grid.  Since fine grid searches can be too 

time consuming, it is often preferable to run numerous searches in parallel [2.73].  

However, for complicated examples such as larger, flexible molecules, even with Parallel 

Computing, this might not be the best overall approach. 

 

Rigid molecular conformations have been used in stepwise searches.  The rigid conformer 

is used to probe the regions of conformational space in a grid-based search to determine 

which areas may give rise to low-energy structures [2.74, 2.75]. 

 

The benefits of a Monte Carlo approach has been combined with a grid search in the 

program ‘Organa’ [2.76].  Here an energy-guiding Monte Carlo search of direct space is 

used with the option of a grid-based search. 
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2.4.2 Random searches; 

Monte Carlo (MC) sampling was initially used in Crystal Structure Solution (CSS) from 

Powder Data, with Simulated Annealing (SA) following soon afterwards.  SA quickly 

became the more popular search method thanks to its ease of use and quick computational 

time compared to grid searching.  Parallel Tempering (PT) offered further advantages to 

SA since fewer starting parameters were required (e.g. annealing rates, starting 

temperatures).  The PT method is also generally able to escape from local minima within 

the search space [2.77]. 

 

Evolutionary Theory (ET) – which includes Genetic Algorithms (GA) – is a population 

based search using evolutionary algorithms [2.78-2.88].  USPEX [2.89-2.90], EVO 

[2.91], XTALOPT [2.92] are notable examples.  Evolutionary algorithms mimic 

evolutionary theory by forming new generations using selection, cross-over and mutation 

until a ‘stop’ condition is reached.  GA [2.93] avoid the restrictions imposed using a single 

starting point by beginning with an initial population of structures and EAs tend to search 

different areas of the energy landscape simultaneously. 

 

Both SA and GA have been modified to improve the rates of convergence and improve 

minimization strategies.  This is achieved by adding Variable or Dynamic Penalty 

Functions [2.94]. 

 

Other modifications or complementary methods to GO methods include; 

• Hybrid Monte Carlo (HMC) combines a Monte Carlo (MC) approach and 

Molecular Dynamic (MD) calculations [2.95, 2.96]. 

• Hybrid GA [2.97].  The efficiency of the GA is improved in this method with the 

implementation of neural network within the procedure.  A neural network is an 

information processing technique which mimics the learning capability of the 

brain. 

• Semi-global and local searches – optimizing the rates of convergence during the 

optimization step at the end of the SA cycle [2.98]. 

• The Monte Carlo Minima hopping (MCMH) algorithm has been developed to try 

to alleviate the catchment trapping problem.  This method effectively recognizes 

when a low energy region has been visited already, does not try to search it again, 

but can then hop across high energy regions if necessary in order to reach other 

local minima (“tabu” regions [2.99]).  Minima hopping methods also look to cross 
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the lowest energy barriers when possible since local minima are more likely to be 

found behind a low energy barrier than a high energy barrier.  The Minima 

Hopping Method has been modified to allow for a systematic search approach 

[2.100 – 2.102]. 

• Multi-Canonical Basin hopping (MCBH) method.  This global optimization 

method works by proposing a change to a current system and accepting this 

change if it reduces the energy.  It combines the advantages of using the basin 

hopping method with the Monte Carlo method.  Therefore, it can efficiently find 

minima on the energy surface and can avoid being trapped in them by making a 

move (‘hop’) out of local minima in order to continue searching the energy surface 

[2.103 – 2.105]. 

• Data Mining requires a large database of experimentally observed structures from 

which to gather information and predict properties [2.106 - 2.108].  “Cluster 

analysis” is an important tool within Data Mining.  As the name suggests, cluster 

analysis compares and groups crystal structures with similar traits.  There are 

different ways in which data is assessed [2.109] and different ways of linking data 

within these assessments; 

o Hierarchical Clustering undertakes a series of steps to partition structures 

into particular clusters.  Clustering does not occur within one step. 

o Agglomerative Clustering works the opposite way from hierarchical 

clustering.  Each structure starts from a single point and with each step, 

the structures are grouped into clusters. 

• Parallel GA; these can be broken down into three types; 

o Single population master-slave PGA 

o Single population fine-grained PGA 

o Multiple population coarse-grained PGA 

The third type offering the biggest difference in the original GA methodology 

by not only generating more than one population in parallel, but by adding in a 

new evolutionary operation “migration”.  By allowing communication between 

multiple populations, the operator adds further diversity to the population and 

helps prevent stagnation [2.110, 2.111]. 

• Differential Evolution (DE); is an evolutionary algorithm which generates 

populations of structures over many generations.  The Cultural Differential 

Evolution Hybrid (CDEH) methodology uses the experiences of previous 

generations to influence the outcome of future ones.  Dynamic boundaries 
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‘shadow’ the evolution and clustering of a population over generations [2.112].  

DE has also been combined with MC methods to predict the structure of 

disordered systems [2.113]. 

• Particle-swarm Optimization (PSO) [2.114].  This method has been described as 

an EA like GA but without the crossover and mutation processes.  PSO was 

“inspired by the choreography of a bird flock” which searches areas of 

multidimensional space.  Within PSO, an individual learns from previous 

experiences and can change its direction and “flying speed”. 

• Periodic Graph Approach [2.115] which has been applied mostly to 

supramolecular architectures containing intermolecular bonds.  Instead of 

describing a crystal structure as a set of points in space, topological 

representation focuses on describing the system of chemical bonds within the 

structure.  Topology-based ab initio computational approaches for CSS and more 

recently Crystal Structure Prediction (CSP) excludes random walk 

approximations in the search for new crystal structures [2.116].  New structures 

are generated using ‘topological nets’ collected from databases.  Relevant 

structures are selected at this stage by examining bond lengths and angles 

[2.117].  A quick geometrical relaxation is performed using classical force-fields 

or approximate DFT and the structures with the lowest energy are retained.  A 

full DFT calculation is finally performed on these structures. 

• GA with Dynamic Diversity Control (DDC).  At the outset of the search, a 

threshold value is set for population diversity.  Following an iteration, the 

population is assessed.  If the diversity is calculated to be below the threshold 

value, the structures with the highest ‘fitness’ factor will be extracted while 

remaining structures will be rejected.  As this is happening, artificial structures 

with greater diversity will be introduced into the population.  The iteration starts 

again and the diversity calculation should be higher than the threshold.  Once it 

is, the search continues along the normal GA routes [2.118].  This process is also 

carried out with multiple starting populations (MDDCGA). 

• MUSE [2.119]: Multi-Algorithm-Collaborative Universal Structure-Prediction 

Environment.  Crystal Structure Prediction is achieved by combining 

Evolutionary Algorithms, Simulated Annealing and Basin Hopping techniques.  

The MAC (Multi-Algorithm Collaborative) also includes two new functions to 

increase diversity; slip and twist. 
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Slip; moves a molecule a random distance along a random direction which is 

parallel to a specific plane.  This operation was inspired by real crystal phase 

transitions. 

Twist; the atoms are rotated in the cell around an axis which is chosen at random.  

Only the atomic fractional co-ordinates are moved in this operation, the cell 

remains fixed. 

MAC also incorporates a ‘ripple’ function.  This function shifts the co-ordinates 

of each atom along a randomly chosen axis.  The ripple has been combined with 

a mutation operator (the ‘mutation-ripple’).  With this hybrid operator, the ripple 

function is applied directly after a mutation. 

 

2.5 Molecular Simulations from X-ray Diffraction Patterns 

When constructing a chemical model, the aim is to make simulations reflecting reality as 

accurately as possible and in order to use Molecular Dynamics or Monte Carlo methods, 

the user must first define the interactions between the atoms in the system.  To be 

effective, it is important that a potential model describing these interactions is transferable 

between related systems.  Various approaches have been developed in the past which 

include; 

 

2.5.1 Empirical Potential Functions (Pair Potentials)  

Molecular mechanics (MM) calculations are based on a simple classical-mechanical 

model of molecular structure, resulting in highly simplified versions of an actual physical 

model.  Early force fields contained very few parameters and as such only really worked 

for very small molecules.  They included terms to describe each chemical bond, 

disregarding any non-bonded interactions.  Included in these early data sets were terms 

for bond stretching, angle bending and torsional parameters.  As such they were called 

the “Valence Force Fields”.  The need to describe interatomic interactions was considered 

though and these were included in later MM force fields such as MM2 (and subsequently 

MM3 and MM4), CHARMM, AMBER, All-Atom and UFF [2.120 – 2.136].  These 

proved useful for small organic molecules (mainly hydrocarbons).  The user assumes a 

functional form for the potential function and selects parameters to fit experimental data.  

Pair potentials, as the name suggests consist of only pair-wise terms.   

 

In MM calculations, molecules are described as hard spheres, lying in equilibrium with 

respect to each other where the potential energy is at a minimum and bond terms are in a 
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‘natural’ state.  The molecules are treated as an array of atoms governed by a set of 

classical-mechanical potential functions derived from experimental data.  The overall 

potential energy (Epot) of a system is calculated by a summation of the energy functions; 

 

Epot = Eb + E + E + Ew + Evdw + Eel + b
E  + Ehb   (2.3) 

 

 

 

where the energy ‘E’ terms are Eb = bond 

stretching, E = angle bending, E = torsions, Ew 

= out of plane deformations, Evdw = non-bonded 

interactions, Eel = electrostatic, b
E  = bond 

stretching, angle bending and Ehb = hydrogen 

bonds. 

 

 

Figure 2.8; (left) bonded and non-bonded interactions parameterized in force fields. 

 

In a simple structure, the bond stretching term for example is well defined by the Morse 

curve, figure 9 (right), where D0 is the bond energy in kcal/mol, R0 is the equilibrium 

bond distance in Å.  For the majority of examples, this is more fitting than the idea of the 

hard-sphere potential where atoms are considered as spheres which cannot overlap in 

space.  This model assumes that when the interatomic distance is too short, the potential 

energy very quickly tends towards infinity. 

 

 

 

 

 

 

 

Figure 2.9; (left) graphical representation of the Hard Sphere Potential and (right) the 

Morse Potential.        = strong repulsive forces when the atoms are too close together.    

     = atomic separation is at an energy minimum and       = weak attractive forces.   

∞ 



36 

Most bond lengths will lie at an optimum distance that can be described using Hooke’s 

law, equation (4) where Epot is the potential energy, k is a defined constant, R is the 

interatomic distance and R0 is the equilibrium bond length. 
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      (2.4) 

 

This term becomes relatively easy to fit, but inaccuracies arise when bond lengths are 

extended due to steric effects and charge distribution.  The bond lengths then lie outside 

the optimum region, though extra terms could be added to the equation, making it more 

and more complicated to carry out the calculations.  Other terms such as bond angle 

related terms could also be treated using equation (4) by replacing the term for (R - R0) 

by ( - 0). 

 

Extensive parameterization of MM methods is required to enable treatment of different 

types of systems (e.g. proteins, flexible hydrogen bonded systems, carbohydrates [2.137 

– 2.141]).  The generic Dreiding Force Field [2.126], chosen for this study, has calculated 

lattice energy expressed as a sum over all atom pairs with three independent terms in the 

summation the form is shown in equation (5). 
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where; 

N is number of surrounding molecules, n is number of atoms in the central molecule, n’ 

is number of atoms in each of the N surrounding molecules, Vkij is interaction between 

atom i in the central molecule and atom j in the kth surrounding molecule.  The valence 

term in Dreiding consists of equation (6). 

 

Eval = EB + EA + E + El  (2.6) 

 

where EB is the term for bond stretching, EA for bond-angle bend, E describes dihedral 

angle torsion and El for inversion terms. 

 

Prior to this research, it was considered for small molecules that charges could be 

calculated using a quantum mechanical ‘Hartree-Fock’ wave function.  However, for 
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more complicated systems, this approach would not provide a timely solution.  

Consequently, at this time, in Dreiding, which is a force field which can be used with 

structures containing many atoms and more than one degree of flexibility, the charges on 

the atoms are either ignored completely or Gasteiger [2.142] estimates also termed ‘point-

charges’ are employed.  This is instead of using the ‘population analysis’ procedure 

proposed by Muliken [2.143] where overlapping charges were divided equally between 

the two contributing atoms, or various ‘charge equilibrium’ or distribution methods 

proposed by Politzer [2.144]  and Rappé [2.145] which determined charge distributions 

based on geometry and the atomic environment. 

 

The non-bonded interactions (attractive and repulsive short-range interactions) in 

Dreiding are expressed using a Lennard Jones 6-12 type potential energy term.  The 

attractive forces include dipole/dipole, dipole/induced dipole and induced dipole/induced 

dipole (London or dispersion) interactions [2.146].  The repulsive forces tend to dominate 

when the atoms are brought closer than the Van der Waals radii (this is the sum of the 

radii of the two atoms).  In the form used in equation (7), R equals the atom separation. 

 

E AR BR
VdW

LJ   12 6
     (2.7) 

 

where AR-12 describes the repulsive forces and BR-6 the attractive forces. 

 

Secondly, a specific term with a 10-12 functional form is used to represent hydrogen 

bonds in the crystal lattice where; RDH is the distance between the donor and the acceptor, 

DHA, the angle between the donor, hydrogen and acceptor atoms (D, H and A). 

 

Ehb = Dhb[5(Rhb)/RDA)12 - 6(Rhb/RDA)10]cos4(DHA)  (2.8) 

 

This hydrogen bond expression is depicted in figure 10. 

 

 

 

 

 

 

Figure 2.10; expression of the hydrogen bond in equation (2.8) taken from [3.47]. 
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The simplistic nature of the point charge approach assumes that the charge distribution 

around an atom is spherical.  This would seem to be an unrealistic approach [2.147] which 

is addressed with the more recent use of multipoles to describe the electrostatic 

contribution of a system [2.148– 2.150, 2.154].  Multipolar electrostatics can describe 

both the directionality and the strength of a bond.  Since hydrogen bonds are both 

directional and are often a strong interaction, this approach would seem to offer an 

improvement on the point charge method [2.151]. 

 

Finally, Dreiding uses a coulombic energy term [2.152] to describe the polar interactions. 

 

EQ = (322.0637)QiQj/Rij  (2.9) 

 

Qi, Qj are the charges assigned to the atoms in electron units, Rij is the interatomic distance 

in Angstroms,  is the dielectric constant (normally = 1) and 322.0637 is a constant that 

converts the energy into kcal/mol. 

 

2.5.2 Semi-Empirical Potential Functions 

Electronic wave-functions for fixed atomic positions contain information about a given 

system and, for simple systems, can be calculated by solving equation (10), the time-

independent Shrödinger equation. 

 

𝐸Ψ =  �̂�Ψ     (2.10) 

 

where; 

Ĥ is the Hamiltonian Operator corresponding to the sum of the Potential and Kinetic 

Energy of all the atoms in the system, Ψ is the wavefunction and E is the energy of the 

wavefunction. 

 

This calculation becomes impossible for many bodied systems and approximations are 

required.  Empirical atom-atom force fields alone are useful when considering small 

systems, however, these are not accurate enough to use for larger flexible molecules 

[2.153, 2.154].  One compromise has been to use the faster empirical force fields coupled 

with the slower but more accurate ab-initio calculations [2.141, 2.155].  A second 

approach has been to calculate charge density rather than relative energies of crystal 

structures [2.156 – 2.157]. 
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2.5.3 Ab-initio functions 

Ab-initio methods only use approximations in their equations derived from theoretical 

consideration and do not contain any experimental data [2.169].  The simplest form of 

ab-initio calculation use the Hartree-Fock Method, which is an extension of the Molecular 

Orbital Theory.  Hartree-Fock averages the electron-electron repulsion effects over a 

system in order to average the wave function of that system.  Hartree-Fock methods 

assume the system is in a stationary state and in earlier articles it is referred to as the Self-

Consistent Field Theory (SCFT). 

 

Many post-Hartree-Fock methods begin with the Hartree-Fock approximation and use an 

electron-correlation addition to the equation.  This is more accurate since in Hartree-Fock 

the electron-electron repulsions are only averaged.  Examples of Post Hartree-Fock 

methods are configuration interaction, coupled cluster, Møller-Plesset perturbation theory 

(for example MP2, MP3, MP4), Quadratic Configuration Interaction and quantum 

chemistry composite methods (G2, G3, CBS, T1) [2.158, 2.159]. 

Despite the cost in time when using ab-initio calculations within crystal structure 

prediction strategies, it is still recognised as a more accurate and desirable approach 

[2.153].  Compromises in search strategies to minimise computational time have been 

proposed especially when treating flexible molecules.  Ab-initio calculations are used to 

propose a set of rigid configurations which are used to search for low energy crystal 

structures.  Accurate intermolecular potentials are used to optimise the results from this 

initial ‘exploratory’ search [2.160].  Reasonable results from the initial search are then 

used in subsequent cycles of the same strategy.  Recently a Quantum Mechanically 

Derived Force Field which provides a ‘black box’ approach to generate classical potential 

energy functions which are molecule-specific [2.161] has been presented.  This would 

allow the computation of systems where standard parameterisation is not possible. 

 

Density Functional Theory (DFT) is a technique to treat many bodied systems [2.162-

2.165].  Where a function is a process which relates an input to an output, a functional is 

a process which takes a function as the input to produce an output.  Hohenberg and Kohn 

stated that the energy of a polyatomic system is uniquely determined by a functional of 

the electron density [2.165].  Kohn and Sham then determined that the total ground state 

energy of a polyatomic system is a functional of the electron density.  Their formulation 

which proposes the electrons do not interact with external potentials such as the nuclei is 

shown in equation (11). 
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𝐸0[𝜌(𝑟)] =  ∫ 𝐸𝐾𝐸[𝜌(𝑟)] + 𝐸𝐻[𝜌(𝑟)] + 𝐸𝑋𝐶[𝜌(𝑟)]   (2.11) 

where; 

𝐸0[𝜌(𝑟)] is the ground state energy as a functional of the electron density. 

𝐸𝐾𝐸[𝜌(𝑟)] is the kinetic energy term. 

𝐸𝐻[𝜌(𝑟)] is the Hartree term (electron – electron repulsion) 

𝐸𝑋𝐶[𝜌(𝑟)] is the exchange-correlation term which is not known precisely but 

approximations may be calculated for it. 

 

Methods to calculate the exchange-correlation energy functional, including 

approximating for vdW interactions [2.166 and 2.167], have improved the accuracy of 

results when simulating molecular energy surfaces. 

 

In summary; 

Table 2.2; some advantages and disadvantages of Molecular Modelling Methods 

[2.169] 
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2.6 Testing Crystal Structure Prediction Methods – Cambridge Crystallographic 

Data Centre Blind Tests from CSP1999 to CSP2016 

Since 1999, the CCDC (Cambridge Crystallographic Data Centre) has arranged a series 

of collaborative workshops designed to gain insight into the variety of techniques 

available to the field of CSP, how well they perform and if there is one approach which 

suits all systems. 

 

2.6.1 CSP1999 [2.168] 

In 1999 for the first collaboration, eleven participants were given only the atomic-

connectivity data of four organic compounds.  Each group was allowed to provide up to 

three proposals for the correct structure of each compound.  The molecules chosen for 

this workshop fell into one or more of the following categories; 

 

(I) A small rigid structure containing no more than 20 atoms 

when only C, H, N and O were allowed. 

 

 

 

(II) A small rigid structure containing a less common element. 

 

 

 

 

(III) A molecule with a small degree of conformational 

flexibility. 

 

 

 
 

(VII)  Propane was also suggested by one of the 

participants. 

 

 

 

 

Figure 2.11; Molecular diagrams of the structures investigated in CSP1999 [2.168] 
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2.6.2 CSP2001 [2.169] 

The second blind test was carried out by seventeen participants in 2001.  Again the groups 

were provided with only the chemical diagram of the three compounds of interest.  A 

similar set of criteria as in CSP1999 was set out for the selection of molecular structures 

to study in this test.  These were; 

 

 

(IV) A small rigid structure containing no more than 20 

atoms when only C, H, N and O were allowed. 

 

 

 

 

 

 

(V) A small rigid structure containing a less common element. 

 

 

 

 

 

 

 

(VI) A molecule with a small degree of conformational 

flexibility. 

 

 

 

 

Figure 2.12; Molecular diagrams of the structures investigated in CSP2001 [2.169] 
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2.6.3 CSP2004 [2.170] 

The third workshop was carried out in 2004 with eighteen participants taking up the 

challenge.  The previous workshops had shown that when the asymmetric unit is a small 

rigid body (where Z’ = 1) and when a common space group is used, CSP of the correct 

structure was no longer an impossible task.  The major problems facing CSP at this time 

were less common space groups, more than one molecule in the asymmetric unit and large 

flexible molecular structures. 

 

The chemical diagrams of the compounds investigated in this blind test are shown in 

figure 13. 

 

(VIII) A small rigid structure containing no more than 25 atoms 

when only C, H, N and O were allowed. 

 

 

 

(IX) Rigid structures containing elements or functional 

groups which provide problems for CSP methods. 

 

 

 

 

 

(X) Molecules with several degrees of conformational 

flexibility. 

 

 

 

 

(XI) A further example of a small rigid structure 

containing no more than 25 atoms when only C, H, N and 

O were allowed. 

 

 

Figure 2.13; molecular diagrams of the structures investigated in CSP2004 [2.170] 
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2.6.4 CSP2007 [2.171] 

There were fourteen participants in the fourth blind test in 2007 which included three 

single component systems and one 1:1 cocrystal.  No significant changes were noted in 

the generation of the starting molecular conformation and most participants still ranked 

the generated structures based on static lattice-energy values.  Two participants went 

further and considered lattice-dynamics contributions to the lattice energy calculation.  

The inclusion of a cocrystal added the possibility of hydrogen bonding analysis to aid 

ranking the structures generated. 

 

The chemical diagrams of the compounds investigated in this blind test are shown in 

figure 14. 

 

 

(XII) A small rigid structure containing no more than 25 

atoms when only C, H, N and O were allowed.  

 

 

 

(XIII) Rigid structures containing elements or functional 

groups which provide problems for CSP methods, 

containing around 30-40 atoms. 

 

 

(XIV) Molecules with several degrees of conformational 

flexibility. 1 relates to the orientation of Ca, 2 relates to the 

orientation of Cb. 

 

 

 

(XV) A two component crystal of 

rigid molecules 

 

 

 

Figure 2.14; molecular diagrams of the structures investigated in CSP2001 [2.171] 
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2.6.5 CSP2010 [2.172] 

Fourteen groups took part in this blind test in 2010 which included four molecules similar 

to those in CSP2007; two small rigid bodies, one semi-flexible molecule and one salt.  In 

addition, one larger more flexible molecule and one hydrate with more than one 

polymorph were also included. 

 

(XVI) A small rigid structure containing no more 

than 25 atoms when only C, H, N and O were allowed. 

 

 

(XVII) Rigid structures containing elements or 

functional groups which provide problems for CSP 

methods, containing up to 30 atoms. 

 

 

 

(XVIII) Molecules with moderate conformational 

flexibility and containing up to 40 atoms.  

 

 

(XIX) Multiple independent rigid molecules 

containing up to 30 atoms, any space group.  

 

 

(XX) A molecule with 4-8 internal 

degrees of freedom, Z’≤2, any space 

group, 50-60 atoms.  

 

 

 

 

(XXI) Any molecule which falls into any of the 

first four categories but has more than one known 

polymorph. 

 

Figure 2.15; molecular diagrams of the structures investigated in CSP2010 [2.172] 
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2.6.6 CSP2016 [2.173] 

Twenty-five groups took part in this blind test which included five different systems; a 

small nearly rigid molecule, a polymorphic former, a chloride salt hydrate, a cocrystal 

and large flexible molecule. 

 

(XXII) Rigid molecules with functional groups up to 30 

atoms.  Restricted to atoms C, H, N, O, Halogens, S, P and 

B. 

 

 

 

(XXIII) Partially flexible molecules up to 40 

atoms with between 2-4 internal degrees of 

freedom. 

 

 

 

(XXIV) Partially flexible molecule, up to 40 

atoms, as a salt, with up to 2 internal degrees of 

freedom, in any space group. 

 

(XXV) Multiple independent 

molecules in the asymmetric unit as 

a cocrystal or salt.  Up to 40 atoms, 

up to 2 internal degrees of freedom. 

 

 

(XXVI) 4-8 internal degrees of freedom, 

any space group.  Between 50-60 atoms 

and no more than two molecules in the 

asymmetric unit.  

 

 

 

Figure 2.16; Molecular diagrams of the structures investigated in CSP2016 [2.173] 
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2.6.7 The Methods of CSP throughout the Blind Test Series 

At the time of the first Blind Test in 1999, the most straightforward approach to solving 

the molecular packing problem was to search for the global minimum with energy being 

the most likely function chosen for minimization.  From the first blind test in 1999 the 

majority of groups calculated the lattice energy of a stationary system with the lowest 

energy result being taken as the most thermodynamically stable form.  In these tests, free-

energy contributions from the vibrational enthalpy and entropy were ignored.  Statistical 

analysis of data extracted from the CSD was also being considered as a fitness function, 

the idea being that the most likely polymorph would compare well with the most 

frequently seen patterns from extracted data. 

 

Commonly the molecular model was described as a rigid structure which was calculated 

using ab initio calculations.  When no flexibility was considered in the molecular 

structure such as with DMAREL and MOLPAK, the teams carried out multiple searches 

using different starting conformations.  The choice of method used to determine a rigid 

molecular structure is important since the effect of molecular structure can have a 

significant effect on the overall crystal energy calculation.  Programs such as CRYSCA 

and MPA were able to add conformational flexibility into the search by defining rotations 

of rigid fragments around selected bonds.  UPACK and MSI-PP however were relaxing 

the full molecular structure within the crystal structure once the search had found a 

packing arrangement at an energy minima. 

 

There were a variety of methods utilized to generate crystal structures from the optimized 

molecular structure.  These mostly involved searching space using random steps (Genetic 

Algorithms such as Rancel, Simulated Annealing such as PackStar), building 2D grids 

and 3D lattices using co-ordination geometries (Promet), however a grid-based search 

method (UPACK) was also employed. 

 

Of the methods used, seven predicted structures which were considered as the correct 

result.  These were (I) MPA, MSI-PP, UPACK and Zip-Promet, (II) MSI-PP, (III) UPAK 

and (VII) UPACK.  Overall, the results of this workshop were considered to be 

encouraging.  The success of a method was concluded to be dependent more on the search 

and generation algorithm and the fitness function rather than minimization.  The summary 

of methods used are shown in table 3.   
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Table 2.3; summary of methods used in CSP1999 [2.168] 

 

At the time of the second blind test in 2001, the main problem for solving crystal 

structures had shifted from generation of stable crystal structures to selection of a likely 

structure from a large group of nearly equi-energetic possibilities.  An optional secondary 

test of prediction was set at this time.  The groups were also supplied with simulated X-

ray powder diffraction patterns for the test molecules and submissions from this data were 

called ‘powder-assisted predictions’. 

 

The 2001 test methods used molecular mechanics or analogy with other CSD models to 

construct a 3D molecular model.  The crystal structures were generated using various 

space groups and likely structures were selected using a preferred criterion, usually the 

calculated lattice energy.  Volume/chemical intuition, density, morphology and elastic 

constraints were alternative selection criterion used in conjunction with CRYSTCA, 

MOLPAK and DMAREL programs respectively.  The variety of force fields was more 

diverse in this workshop, ranging from simple atom-atom potentials to time intensive 

intermolecular potentials with some including polarization effects. 

 

The summary of methods used are shown in table 4.  The results supplied by each group 

were the top three energy rankings.  From the searches, two of fifteen submissions 

predicted IV correctly with those results ranked 2 out of 3 and 3 out of 3 respectively.  

Four of fifteen submissions correctly predicted V with these results ranked 1, 1, 1 and 3 

out of 3.  None of the eleven submissions supplied a correct result for VI in their top three 

results.  The correct structure was found sometimes but in a much higher ranked structure 

even though the energy difference was still very low.  Hydrogen bonding potentials and 
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multipolar electrostatics were affected by small movements in molecule VI and this is 

presumably where the difficulties arose. 

 

 

 

Table 2.4; summary of methods used in CSP2001 [2.169] 

 

Following the collaboration in 2001, the test in 2004 showed no significant changes in 

the first step of building a molecular structure from the chemical bonding diagram.  The 

same two approaches were still being used.  The first; treating the molecule as a rigid 

structure and calculating the starting geometry using gas-phase quantum chemical 

calculations.  This assumes the crystal environment has no effect on bond lengths, angles 

and torsions.  The second; adding conformational flexibility in the search, varying bond 

lengths, angles and torsions described within a suitable force-field. 

 

This test did highlight some new algorithms for generating crystal structures were being 

employed.  These new algorithms were taking advantage of the increased computing 

capability which had become available such as parallel computing.  In general, and as in 
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previous tests, the methodologies included building up of dimers and layers, grid-based 

systematic searches, genetic algorithms, Monte Carlo and random searches.  By their 

nature, random searches often exhibit gaps and clustering of points.  Replacing the 

random number generator with a low-discrepancy sequence, these effects are reduced 

resulting in more efficient sampling (Sobol’ sequences [2.174]).  This smoothing is shown 

in Figure 17 and this method was followed by some participants in CSP2004. 

 

 

 

 

 

 

Figure 2.17; effects of gaps and clustering in a truly random search (left) compared with 

the more even effects of a quasi-random search (right). 

 

In order to reduce necessary computing time, space-group symmetry if often used.  Each 

space group and each number of molecules in the asymmetric unit would be treated as a 

unique search.  Ideally, it would be possible to search all space groups with different 

numbers of molecules within the asymmetric unit.  As this is too time consuming both to 

run and to process, clearly the choice of space group is an important consideration in the 

search methodology.  Fortunately, structures of organic molecules tend to be found in 

only a handful of space groups and it is these that are commonly used.  This is where 

parallel computing becomes a powerful tool.  Networks of computers can be used in order 

to search more than the usual number of space-groups without taking an unrealistic 

amount of time.  Alternatively, it is possible to carry out searches without considering 

space-group symmetry, keeping the space-group as P1 but varying the number of 

molecules in the asymmetric unit and adding space-group information in the final 

structures.  In CSP2004, the majority of groups used around ten to fourteen space-groups 

with Z’=1, and 2.  Three out of the eighteen participants only used P1 symmetry varying 

the number of molecules in the asymmetric unit and one group searched fifty-nine space-

groups with Z’=1 or 2. 

 

The differences in ranking the resulting structures was usually still based on lattice energy 

calculations and these vary between participants depending on the choice of model for 

inter- and intra-molecular energies.  The entropic contributions to the free energy are 
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generally neglected although at this point, certain groups were introducing estimates of 

vibrational contributions to the overall free energy (Price et al [2.175]) and free energy 

minimization was also considered by Day [2.176], Della Valle and Venuti [2.177].  While 

some improvement to the thermodynamic model was achieved with the above 

considerations, it is clear that thermodynamics are not the only factors controlling the 

crystallization process.  Kinetic contributions will also play a part.  In CSP2004, two 

groups included mechanical properties and morphological calculations to re-rank the 

lattice energy predictions.  Unfortunately these did not improve on the final result and in 

fact reduced the ranking of a submission which would otherwise have been correct. 

 

Overall in CSP2004, no significant progress was found since the previous blind test 

CSP2001.  Confidence had grown in the methodologies being developed, with significant 

interest in the PIXEL program [2.178] which quantified intermolecular interactions, 

however improvements were required in order to achieve better results for flexible 

molecules and structures with more than one molecule in the asymmetric unit. 

 

In the blind tests before CSP2007, no single method showed success for general 

application.  In the fourth test however, one method did achieve success for all four test 

structures with each submitted result being their top ranked result too.  The review of 

CSP2007 also highlighted that the success rate for the flexible molecule was up on 

CSP2004 which in itself was a promising sign and that, as anticipated, the cocrystal had 

the lowest successful structures proposed. 

 

The two methods of deriving the molecular structure had undergone little refinement 

compared to CSP2004.  In the case of rigid molecules, it is considered highly unlikely 

that current CSP methods will fail due to a poor choice in the starting molecular structure.  

The success of a method tends to rely more on the generation of all possible crystal 

structures and the subsequent evaluation and ranking of these results.  Therefore starting 

structures for CSP were still derived from either a force-field or from quantum-mechanics 

electronic structure calculations.  The molecular models were treated as either rigid 

bodies, rigid bodies during searches with flexibility added during the minimization step 

or as flexible structures throughout the process. 

 

There have been many different approaches to searching the energy landscape in order to 

generate trial crystal structures.  Within CSP2007 the most popular method was to use 
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random or quasi-random variables which generated large numbers of trial structures.  

Other methods included Monte Carlo, genetic algorithms and systematic grid-based 

searches.  The construction of crystal structures using dimers, chains and layers was also 

used by one group within CSP2007. 

 

All but two participating groups used the most commonly found space groups for the 

crystal structure searches – the number of space groups used ranging from four to twenty.  

One of the two alternative approaches did not consider symmetry at all but varied the 

number of molecules in the asymmetric unit.  The final approach was to consider all two 

hundred and thirty space groups for all four of the trial structures under investigation. 

 

Ranking of results was based on the calculated lattice energy of structures generated from 

the searches.  In this step, variations arose due to differences in the choice of model for 

calculating the crystal energy.  Most participants used atomic charges in conjunction with 

an empirical force field, while others used quantum mechanics atomic multipoles with an 

empirical repulsion term.  The limitations of using empirically fitted parameter sets is that 

a large dataset is usually required, which is fine for commonly found atoms but becomes 

more problematic for less common examples.  Also, structural data in empirical 

parameterization is usually calculated at temperatures other than absolute zero.  An 

alternative method for lattice energy calculations is periodic (solid state) DFT where all 

electron density and nuclear positions are optimized together.  This allows the molecular 

conformation, and electron distribution, to change when changes are made to the 

crystalline environment. 

 

Two of the participants also included lattice-dynamics contributions to their energy 

calculations.  Molecule XV in this test (the cocrystal) was capable of forming strong 

hydrogen bonds.  This non-energetic factor was also included in the assessment of 

possible results by comparing the predicted crystal structures with known structures of 

similar cocrystals.   

 

 

The molecular diagram of molecule (XIV) was shown in 

Figure 14 taken from [2.171], and is repeated here.   
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Two of the fourteen participants did not attempt molecule (XIV) and of the remaining 

twelve, three groups used the gas-phase minimum structure which was kept rigid 

throughout the search.  Five participants used a combination of optimizing 1 and 2 

choosing different angles of  for multiple starting conformations.  The conformations 

were kept rigid throughout the search but were then allowed to move during minimization 

steps.  Finally, four groups treated all three torsions as flexible throughout searches and 

minimization.  Intramolecular energy was calculated using either force fields such as 

Dreiding (Boerringer; Desiraju) or GAFF (Facelli), by derived torsional potentials (van 

Eijck, Price, Schmidt) or included in DFT calculations (Neumann, Scheraga). 

 

Three participants (van Eijck; Neumann, Leusen & Kendrick; Price, Karamertzanis, 

Misquitta and Welch) predicted the observed crystal structure within their three submitted 

results for molecule (XIV).  The observed crystal structure was also present in the 

extended lists of six other participating groups and three groups did not find the observed 

structure within their search.  The rate of success for this flexible molecule was now 

comparable to the success rates for rigid molecules in previous tests and a significant 

improvement for previous results with flexible molecules. 

 

Cocrystals had not been included in previous blind tests and of the fourteen participants, 

twelve attempted to predict the cocrystal structure with two groups (Neumann, Leusen & 

Kendrick and van Eijck) predicting the observed cocrystal structure.  There were two 

different approaches to the searches.  The first being to treat the positions and orientations 

of each molecule independently which will significantly increase the required search 

time.  Alternatively the molecules may be considered as a dimer where intermolecular 

interactions influencing molecular orientations are considered prior to trial structure 

generation.  This approach works well when there is the possibility of strong interactions 

between the two molecules, as in the case of molecule (XV).  Five groups took the first 

approach, six groups the latter and one group performed a combination of the two ideas 

with starting points of dimers or independent molecules.  The two groups finding the 

observed structure in their official submitted predictions treated both molecules 

independently in their search strategies.  A further three groups also predicted the 

observed structure in their extended lists.  Two of these groups had used the dimer 

approach and the third treated the molecules independently.  It is not possible to say which 

approach is more successful however, since the submitted predictions and extended lists 
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of the seven remaining groups, also using either strategy, did not contain the observed 

structure. 

 

CSP2007 had shown for the first time that a single method was capable of predicting the 

observed crystal and cocrystal structures of the rigid and flexible molecules set in this 

blind test.  This was the approach used by Neumann, Leusen and Kendrick [2.179] who 

used random searches in all two hundred and thirty space groups, with a flexible 

molecular model.  Plane-wave DFT was used to calculate lattice energy.  Plane-waves 

are another way of representing electron wavefunctions.  They consider all areas of space 

equally and are therefore independent of the type of crystal under consideration.  Prior to 

this, basis sets had used localized functions, dependent on ion positions, such as 

Gaussians to represent atomic orbitals.  It was known that when using DFT in energy 

calculations, the model used for the exchange correlation functional was very sensitive 

and was often poorly described.  The two models most frequently used were the Local 

Density Approximation (LDA) or generalized gradient functionals (such as PW91).  The 

first model would lead to over binding in crystal structures while the second would tend 

to under bind.  In an attempt to improve the description of long range dispersion 

contributions to intermolecular interaction energies, the solution by Neumann and Perrin 

[2.180] was to augment DFT with an empirically derived additional dispersion (C6R
-6) 

term.  This was the DFT+D model which could be adjusted for the structure under 

investigation.  Neumann, Leusen and Kendrick used a “Tailor Made Force Field” 

(TMFF), fitting an atom-atom force field specifically for each molecule during structure 

generation.  The generated trial structures were then re-optimized using DFT+D.  This 

method does come at a significant computational cost compared to other methodologies 

in CSP2007 and the process is shown in Figure 18. 

 

 

 

 

 

 

 

 

Figure 2.18; using the hybrid method with a TMFF for structure generation and 

subsequent ranking [2.181]. 
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In CSP2007 crystal structures were generally still being ranked by calculated energies 

alone.  The main use of non-energetic data for ranking purposes was the synthon-based 

approach (Desiraju and Thakur [2.182]) for the cocrystal, molecule (XV).  Data from the 

CSD and from an in-house database was used to compare likely hydrogen bond motifs 

for the dimer.  Using data from known crystal structures could be a way of including some 

kind of kinetic information in order to rank likely predicted structures.  The predicted 

hydrogen bond motif was the same as the observed structure, however the choice of 

electrostatic potential was considered to be inadequate and the final prediction was not 

the observed cocrystal structure. 

 

CSP2010 continued to test the methodologies employed for CSP to see if similar success 

rates could be obtained.  Two new categories were introduced; a larger more flexible 

molecule and a hydrate with more than one known polymorph.  Flexibility of the starting 

molecular structure was considered by the majority of participants whether it be in the 

crystal structure search and/or for energy minimization. 

 

In CSP2010, similar methods for crystal structure generation were applied including 

random searches, quasi-random searches, genetic algorithms and modified Monte Carlo 

methods. 

 

There was an increase in the number of participating groups using more than the most 

commonly found space groups in their crystal structure searches and more than one group 

in CSP2010 attempted to search all two hundred and thirty space groups.  One participant 

did not consider symmetry at all, using P1 with varying Z (= 2, 4, 8). 

 

Ranking of results was again based on the calculated lattice energy of structures generated 

from the searches.  Extremely accurate calculations were required to differentiate between 

many structures which all lay within a few kJmol-1 to the global minimum.  The results 

from this test showed that generic force fields could not provide this level of accuracy.   

 

The DFT-D method had previously successfully produced accurate lattice energies 

(Neumann [2.181]).  Improved force fields including distributed multipoles were also 

capable of improving energy results on minimization (Stone, [2.183]).  However the 

limitations of these methods were highlighted during this test.  Use of plane-wave ab 

initio methods for isolated ions in a vacuum lead to problems with force-field 
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parameterization.  Generally, exp-6 potentials are fitted to crystal structures of neutral 

ions.  It is this fitting which limits their use with molecular salts.  Clearly it is important 

to design a methodology which suits the nature of the molecule under investigation. 

 

In CSP2010, two participants successfully predicted the observed structure of molecule 

(XX).  This was a large molecule with more degrees of flexibility than had been attempted 

in previous tests.  The first method was referred to as Flexible CrystalPredictor-

CrystalOptimizer (FCC) method; the second, referred to as Rigid CrystalPredictor-

Molecular Mechanics method (RCM).  The key features of these two programs are listed 

in table 5. 

 

 

Table 2.5; Details of the two methods applied to CSP2010 molecule (XX). [2.184] 

 

As the table shows, each method follows the four key steps in CSP; 

1) Conformational analysis. 

2) Extensive crystal structure search. 

3) Lattice energy minimization. 

4) Examination of the lowest energy structure and other energetically feasible crystal 

structures. 

 

FCC uses quantum mechanical scans during the first step of conformational analysis.  

This reduces the amount of search space to include only energetically meaningful regions. 
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This is combined with an analysis using the CSD for two purposes.  Firstly, feasible 

torsion angles could be identified for the unknown molecule by comparing fragments of 

this molecule with similar structures from the CSD.  Secondly, the likely number of 

molecules in the asymmetric units and common space groups could be examined through 

statistical analysis.  During the crystal structure search, intramolecular energy was 

assessed using ab initio calculations for the flexible torsions and the semi-empirical AM1 

for the rest of the molecule.  Intermolecular electrostatic interactions were modeled using 

the charges derived from the intramolecular calculations and all intermolecular energy 

terms were derived using ‘FIT’ [2.185] an empirical exp-6 potential.  For the refinement 

stage, CrystalOptimizer [2.186] was used to re-minimize all stable structures within 

10kJmol-1 of the global minimum.  Finally a clustering process was used to eliminate and 

reduce the number of possible solutions. 

 

The RCM method also started by using the CSD for molecular structure assessment.  

However, since statistical data for the angle distribution of torsion R-SO2 was insufficient, 

a DFT constrained geometry scan was carried out.  This produced forty-eight starting 

conformations for the rigid search.  Polarization of the charge density was considered 

which had previously been shown to have an influence on conformation energies and 

electrostatic interactions for polar, flexible molecules [2.187].  The forty-eight starting 

conformations were searched in the twenty-one most common space groups using 

CrystalPredictor with one rigid molecule in the asymmetric unit for all searches.  The 

refinement method was carried out using two stages.  First, using a Molecular Mechanics 

force field to optimize the molecular geometry.  In this investigation, two separate force 

fields were used to compare the parameters and charges; COMPASS, using its own 

charge set, and DRIEDING, using Gasteiger derived charges.  The second stage of re-

optimization was to calculate accurate electrostatic interactions without changing 

molecular geometry.  Single point DFT calculations and polarization effects were 

assessed to derive the intramolecular energy and atomic multipole moments for each 

conformation.  Intermolecular terms were calculated using the empirical W99 potential 

[2.188].  Clustering was employed to remove duplicate structures and reduce the number 

of possible solutions.  Further DFT and PCM minimization steps were carried out on the 

remaining top structures keeping the torsion geometries constant.  Hydrogen bond motifs 

in the final structural models were assessed using an LHP (logit hydrogen-bonding 

propensity) model [also discussed in chapter 4 section 4.4.3] which resulted in a re-

ordering of the final structures selected for submission. 
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Overall in CSP2010 there a slight dip in success rates compared with previous blind tests 

for the smaller, slightly flexible structures.  This was offset however with the continued 

successes reported when using dispersion-corrected DFT.  For the larger more flexible 

molecule however, the success of this method was limited with the observed structure 

being seventh in the submission list.  The more successful methods for this molecule 

considered the problem in smaller more manageable pieces and mined the CSD for 

significant statistical data.  The most considerable challenge in this test was in developing 

models to predict the hydrate (structure XXI).  None of the groups submitted the observed 

structure in their top three predictions, the best ranked submission was outside the top 

three in twelfth place. 

 

Going into the sixth blind test, CSP2016, it was summarized that the tests so far had 

highlighted many challenges which included the ranking of possible structures, the 

computational costs of CSP and whether there was a methodology to successfully predict 

all types of solid-form types. 

 

Since the fifth blind test in 2010, methodologies had moved away from predicting ‘the’ 

crystal structure of a molecule and towards understanding the solid-form landscape of the 

generated structures [2.189].  Much work had also been invested in using CSP to aid 

solid-form screening of pharmaceuticals [2.190] and other effect chemicals.  Using 

density-functional approximations to rank the results of crystal structure searches based 

on their stability had proved successful and progress had also been seen with these 

methods especially for molecular materials [2.180, 2.191]. The differences in the 

augmented DFT methods were usually found in the origin of the C6 coefficients and 

which higher order terms were included.  Progress had also been made with the CSP 

algorithms for flexible molecules, hydrates, multicomponent complexes and salts [2.192].  

As such, in 2014, the sixth blind test was launched with a group of more realistic 

structures to highlight the current challenges still facing the developing methods of CSP. 

 

CSP2016 contained five different categories which are shown in Figure 16.  The main 

difference in submissions for this test was instead of providing the top three structures, 

the participants were required to submit a list of the top one hundred structures.  The top 

structures were considered the most likely structures based on a chosen fitness function.  

Participants were also allowed to submit a second list containing the top one hundred 

structures generated from using a second, alternative fitness function.  In order to test re-
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ranking methods being developed by different groups, it was also permitted for 

participants to re-rank a list of submitted structures from a completely different group. 

There were two main approaches to generating the molecular starting geometry.  The first 

was via ab initio calculations of the isolated molecule in the gas-phase.  Torsions were 

investigated and predefined using information from the CSD.  The second method was to 

employ force fields to explore molecular geometries and to optimize the resulting 

conformations using ab initio methods. 

 

Along with the usual crystal structure generation methods (e.g. Monte Carlo simulated 

annealing, parallel tempering, systematic grid searches and quasi-random searches) a 

shape matching method was also used in CSP2016.  This method matched target systems 

to known experimental structures in the CSD to generate possible results [2.193]. 

 

Most of the participating groups imposed crystallographic symmetry in their search 

methods, selecting the most likely space groups from the CSD. 

 

The final ranking of the resulting structures was always carried out using energy data in 

this test.  In a number of submissions, the initial evaluation of energy is carried out using 

a less intensive, and therefore faster, algorithm with the final minimization step using a 

more intensive method for the structures closest to the global minimum [2.179, 2.180].  

Distributed multipole electrostatics potentials [2.183, 2.194], ab initio intramolecular 

energies [2.186, 2.192(a)] as well as dispersion-repulsion potentials were also utilized to 

rank generated structures.  Force fields were also used as part of a ranking protocol.  Here 

the generic force fields were improved with ab initio data [2.195, 2.196].  Further 

submissions used DFT calculations to derive potentials using symmetry-adapted 

perturbation theory [SAPT(DFT)], [2.197]. 

 

Normally, structures are re-ranked based on lattice energy but this does not take into 

account thermal motion or disorder.  It has been shown that these effects may affect the 

overall ranking order of structures [2.198] and one of the groups did consider kinetic 

aspects in their methodology. 

 

Post-processing techniques are common in CSP methods and often this results in many 

initial results converging to the same structure.  This effect has been used to determine 

the completeness of the search [2.199] but in order to prevent repetition of processing, 
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methods are employed to assess and remove duplication of results.  These include powder 

pattern similarity and fingerprint functions [2.200].  The CSD has also been used to filter 

results down to prevent duplicates appearing in the final list of results. 

 

In general, CSP2016 search methods were seen to be using more exhaustive searches of 

the conformational space as well as being able to consider more space groups than in 

previous tests.  The use of DFT in ranking results has increased significantly even since 

CSP2010 and the potentials being used in calculations are much more computationally 

demanding.  It was concluded that when methods failed to find the observed structure it 

was down to using incorrect molecular conformations in the initial structure.  By placing 

limitations or assumptions of intermolecular interactions also limited the success of the 

method.  Searches of the conformational space which were not exhaustive enough were 

also found to miss reporting the observed structure.  Lattice dynamics are routinely used 

to estimate vibrational contributions in the harmonic limit and were used by a handful of 

groups in this blind test, significantly in the reordering of results for molecule (XXIII).  

However, when the system deviates from harmonic oscillations, they become anharmonic 

vibrations which along with thermal expansion are not widely understood.  Anharmonic 

lattice dynamics methods have been investigated [2.201] but are still in the relatively early 

stages of use.  Disorder in crystals could be investigated further too as this could also 

assist in the estimation of thermodynamic stability [2.202, 2.190].  The additional use of 

these calculations could start to become computationally expensive however, and these 

may not be methods included in everyday use. 

 

2.7 Cerius2 – A Molecular Modelling Program 

Cerius2 is a molecular simulation package, which allows numerous calculations to be 

performed on molecules and crystals by applying parameters from predefined force fields.  

In this study, Cerius2 was used in order to visualize molecules, build and examine crystal 

structures and to generate powder diffraction data.  It was also used to calculate lattice 

energies and optimize these results using the crystal packer module. 

 

MOPAC (Molecular Orbital PACkage) [2.203] is the semi-empirical molecular orbital 

package within Cerius2.  There are five distinct self-consistent field methods available 

within MOPAC, these are MINDO/3, MNDO, AM1, PM3 and MNDO-d.  They all take 

into account electrostatic repulsion and exchange stabilization.  MINDO/3 contains sets 
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of parameters for atoms and diatoms, whereas MNDO, AM1, PM3 and MNDO-d only 

use single-atom parameters [2.204 - 2.206]. 

 

As previously mentioned, force fields play an important role within the simulation of 

crystal structures and therefore within the Cerius2 simulation package.  In fact, it is the 

base from which most calculations take place.  A force field provides various structural 

parameter constants like bond lengths, angles and energies that other modules draw from 

to perform the various operations and calculations.  Quantum mechanics calculations are 

then able to perform geometry optimization on sketched drawings of the molecule.  In 

this study, the AM1 method was used in order to calculate atomic positions. 

 

The unit cell parameters may be defined and a crystal built using the crystal builder 

options, and symmetry operations applied using space group assignment.  In this way, an 

entire unit cell may be built from scratch with lattice energy calculated using the crystal 

packer module.  Crystal packer sums all Van der Waals interactions, coulombic charges, 

hydrogen bonding, internal rotations and hydrostatic pressure.  However, in this study 

only the first three terms were considered.  Before any calculations are carried out, the 

unit cell is ‘initialised’, which means that all rigid groups are defined. 

 

Another option in this module is to minimise the packing arrangement.  This is carried 

out using the minimiser option, defining any constraints before commencing the 

operation.  Constraints include the unit cell parameters, translational and rotational 

variables and finally sub-rotations.  Throughout this study, only translations and rotations 

were varied using the crystal packer option.  Any other adjustments were either dealt with 

in the search itself (torsions) or in the refinement stage (unit cell parameters). 

 

2.8 Crystal Morphology 

Morphology is a term used to describe the sets of faces and edges enclosing a crystal.  

Crystal faces lie parallel to lattice planes and crystal edges are parallel to lattice lines.  

Miller indices may be used to describe a crystal face and the lattice point co-ordinates 

[uvw] used to describe a crystal edge.  Crystal growth can be considered in two stages: 
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• Nucleation 

 

Figure 2.18; the initial stages of crystal growth when a few molecules have come together 

to form a nucleus (a), a three-dimensional structure (b).  The crystal faces may already be 

observed but they are only a few unit cells in size (c). 

 

• Development of a nucleus into a crystal 

 

 

 

 

 

 

Figure 2.19; the periodicity of the nucleus determines how attracted molecules are 

positioned, thus forming new lattice planes (d). 

 

Temperature, pressure and the saturation of solution can have an effect on the rate of 

crystal growth [2.207].  Crystal faces which grow at faster rates than other faces will 

appear smaller. 

(a) (b) 

 

Figure 2.20; crystal growth – (a) the rates of different faces are similar and (b) where the 

rates vary.  The growth rates are labelled v1 and v2. 
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Crystal shapes are defined by their ‘habits’, i.e. the relative sizes of the crystal faces.  

Essentially, there are three types of crystal habit.  From left to right; equant, planar or 

tubular and prismatic or acicular (needle shaped). 

 

 

 

 

 

 

 

Figure 2.21; the three basic crystal habits.  The arrows show the different growth rates 

and directions. 

 

Although a number of methods to calculate crystal morphology exist [2.208], four are 

available in Cerius2 and these are the Bravais-Friedel-Donnay-Harker (BFDH) method, 

the Attachment Energy method, the Surface Energy method and the Hartman-Perdok 

method [2.209].  The first of these two methods deduces the likely growth planes and 

their respective growth rates.  It does not however take any consideration of the energetics 

of the system and is therefore simply an approximation.  This method was also useful for 

predicting morphologies of ionic compounds but when it came to considering detailed 

interaction energies, like hydrogen bonds for example, the method failed to produce 

satisfactory results. Hartman and Perdok made some adjustments to the BFDH method 

by adding an intermolecular interaction component.  Further modifications to this method 

resulted in the Attachment Energy method.  Surface attachment energy was defined as 

the fraction of the total lattice energy released on the attachment of a growth slice to a 

growing crystal surface.  

 

The crystal lattice energy was therefore defined using the attachment and slice energies; 

 

Elatt = Eatt + Esl (2.11) 

 

In the HABIT95 program [2.210], an updated version of the Attachment Energy method, 

morphology predictions are allowed in the presence of impurity or solvent molecules 

[2.211 – 2.214].  Both can have an effect on the on the crystal surface during crystal 

growth.  Lattice energies of molecular crystals are calculated using a summation 
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(averaging) of all atom-atom interactions up to a range where interactions become 

negligible.  In other words interactions are summed until a convergence point is reached.  

In the HABIT95 program, the slice energy (the sum of all interactions lying within a 

defined layer of thickness dhkl) is optimised until the most negative value is reached.  The 

slice energy is optimised by moving the position of the slice but keeping the value of dhkl 

and the position of origin constant. 

 

2.9 Refinement of Trial Structure 

In 1968, Rietveld published a method for the refinement of calculated crystal structures 

[2.215], which involved using the whole X-ray diffraction pattern instead of reducing the 

powder data into a ‘single-crystal’-like pattern.  This meant the problem of determining 

intensities of overlapping peaks was removed and all the information in the experimental 

profile could be utilized.  In this study Rietveld refinement was carried out using the 

computer suite GSAS.  As the name of the method implies, Rietveld is a refinement 

method and as such, a reasonable trial structure close to the global energy minimum is 

required. GSAS is used to optimize peak shape, peak positions and overall background 

of the simulated diffractogram to ensure the profile has as close fit as possible to the 

experimental data [2.216 – 2.218]. 

 

The refinement parameters are made up of two sets of data, the profile parameters, 

defining peak positions, widths, asymmetry and properties of the powder, and the 

structural parameters, defining the contents of the asymmetric unit cell. 

 

The contributions of the profile parameters give rise to a near Gaussian peak shape for 

each Bragg peak.  The Bragg peak shape in a profile yi at position 2θi can therefore be 

described as in equation (12) and is compared to a measured diffraction peak as shown in 

figure 22. 
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where Hk is the ‘full width at half maximum (FWHM) of the peak. 2θk is the calculated 

position of the peak after it has been corrected for the zero-point shift of the counter.  Ik 

is the calculated intensity of the peak, which includes the sum of the structure factor, 

Lorentz factor and reflection multiplicity.  At any one point on yi, multiple peaks may 

contribute to the profile.  So Ik is really the sum of all peaks at the point 2θi 
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Figure 2.22; comparing a Gaussian peak 

shape distribution (solid line) with a 

measured diffraction peak (dotted line). 

 

The Bragg peak can be affected by 

asymmetry at very low diffraction angles.  

This is known as a ‘vertical divergence 

effect’ causing the peak maximum to shift to 

a lower angle.  This effect can be corrected 

in the Rietveld method using the asymmetry 

factor. 
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where P is the asymmetry factor and s is +1, 0, or –1 depending on the outcome of 2θi - 

2θk. 

 

 

 

 

 

 

 

 

 

 

Figure 2.23; comparison of a measured diffraction peak showing asymmetry effects 

(dotted line), a symmetric Gaussian peak (solid line) and a corrected calculated peak 

(dashed line). 
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Bragg peaks have a tendency to broaden at higher Bragg angles.  This angular dependence 

of Bragg peak half-widths has been defined by Caglioti, Paoletti and Ricci (referenced in 

[2.215]) and is defined in equation (14). 

 

WVUH kkk   tantan22
   (2.14) 

 

U, V and W are the half-width parameters.  This equation has also taken the effects caused 

by particle size (peak broadening) and scattering angle (variation of half-width) into 

consideration. 

 

 

 

 

 

 

 

 

 

Figure 2.24; graph to show the variation of peak half width with Bragg angle 2θ.  

Measured half widths (dotted line) and calculated curve (solid line). 

 

Preferred orientation in crystalline samples can cause variations in peak intensities that 

would be expected in true randomly distributed samples [2.3].  When these effects are not 

too pronounced, Rietveld determined a correction factor. 

 

 2G

obscorr eII   (2.15) 

 

Iobs is the intensity from random distribution, G is the preferred orientation parameter and 

α is the angle between the Bragg reflection and the preferred orientation direction. 

 

Included in the terms for the structural parameters are terms for the structure factor, 

temperature dependency factors and the fractional co-ordinates. 
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For profile refinement, the quantity to be minimised using a least-squares method is 

described as a function ‘M’.  Approximate starting parameters are used for the initial 

cycles until a convergence criterion has been met [2.215]. 
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Σi is the sum over the independent observations, wi is the statistical weight factor and c is 

the overall scale factor to make ycalc≡yobs.  The function used in the Rietveld method 

compares the integrated intensities of calculated and observed peaks instead of profile 

intensities.  The function is described by a weighted R-factor. 

 

𝑅𝑤𝑝 =  √
(∑ 𝑤𝑖

𝑁
𝑖=1 (𝑦𝑖(𝑜𝑏𝑠)−𝑦𝑖(𝑐𝑎𝑙𝑐))2)

(∑ 𝑤𝑖
𝑁
𝑖=1 (𝑦𝑖(𝑜𝑏𝑠))2)

 (2.17) 

 

In programs supporting Rietveld refinement methods, this calculation is often adjusted to 

remove any background effects [2.219].  Recently, GSAS (including EXPGUI) has been 

extended into GSAS-II with changes to many Rietveld refinement parameters to improve 

peak fitting and rigid body fitting [2.220].  A further development for Rietveld refinement 

is in making it more accessible to more users with the toolkit SrRietveld.  This has made 

the software more automated, faster and easier to use [2.221]. 

 

 

2.10 Differential Scanning Calorimetry 

Differential Scanning Calorimetry is often used to detect phase transitions such as melting 

points in chemicals.  An inert reference sample is heated alongside an experimental 

sample and both are heated to the same degree i.e. the same amount of energy is put into 

both samples.  When the experimental sample undergoes a phase change like melting 

where it becomes a liquid, more energy or heat will be required for this sample than for 

the reference sample.  The difference in applied heat is calculated and recorded [2.222]. 
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Figure 2.25; From left to right; showing the features recorded on a typical DSC graph 

and the measurement of sample phase change compared to a reference sample. 
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CHAPTER 3 – USING TWO POLYMORPHS OF TWO KNOWN CRYSTAL 

STRUCTURES, CARBAMAZEPINE AND PRIMIDONE TO VALIDATE THE 

SYSTEMATIC AND SIMULATED ANNEALING SEARCH METHODS. 

3.1 Introduction 

A systematic search method of small unit cells for rigid bodies had already proved 

successful [3.1, 3.2].  Its success lay mostly in the fact that the volumes being searched 

were small, ensuring a step-wise search method would be thorough without becoming 

excessive in terms of computational time.  The random nature of alternative search 

methods might not find the same number of energy minima as a systematic search and, 

initially, have the potential to miss the global energy minimum.  However, when unit cell 

volumes increase, the advantages of random search methods outweigh the systematic 

search method as the latter becomes too time-consuming. 

 

Prior to this research, the systematic search program had not been tested using flexible 

molecules.  This additional component of the search had the potential to increase 

computational time but it was not known to what extent. 

 

At this time, a new ‘in-house’ simulated annealing search method had been developed 

[3.3] and required validation.  The simulated annealing method is described in chapter 2.  

This method is essentially a random search method using temperature ramps to ‘melt’ and 

‘freeze’ a molecule in a certain conformation based on how acceptable the energy of that 

structure is. 

 

The aim of the work in this chapter was threefold: 

• To extend the systematic search to include flexible structures and evaluate its 

success. 

• To validate a new simulated annealing method using the same flexible structures. 

• A comparison of the results generated from both searches to determine which may 

be the preferred method. 

 

The pharmaceutical compounds carbamazepine and primidone were chosen to use in this 

study.  Carbamazepine has one degree of freedom and primidone has two.  The structures 

also have the ability to form intermolecular hydrogen bonds within the unit cell.  This 

feature would also provide a good test of the Dreiding Force Field which was used in all 

searches. 
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3.1.1 Carbamazepine 

Carbamazepine (5H-Dibenz[b,f]azepine-5-carboxamide) was first synthesized by 

Schindler at Geigy in 1953 [3.4].  It was designed to alleviate the effects of seizures by 

blocking the sodium channels [3.5, 3.6].  Clinical trials on carbamazepine began in the 

early 1960’s and it was finally introduced as a prescribed drug by the end of that decade.  

The molecular structure of carbamazepine is shown in figure 1. 

 

 

 

 

 

 

Figure 3.1; the molecular structure of carbamazepine. 

 

In 1997, two polymorphs of carbamazepine already had full crystal structure data 

recorded.  These were the monoclinic [3.7, 3.8] and the trigonal [3.9] forms.  The unit 

cell parameters of the triclinic form had also been calculated at this stage, but the crystals 

were too thin for the atomic positions to be determined [3.10].  In 2003 however, the full 

crystal structure of triclinic carbamazepine was published from single crystal data [3.11].  

A C-centred monoclinic structure of carbamazepine was also reported in 2002 [3.12].  

The structures of numerous pseudopolymorphs have been solved including the acetone 

and dioxane solvates [3.13, 3.14] and dihydrate modifications 1 and 2 [3.15 - 3.17].  The 

decomposition product iminostilbene also had structure data published [3.18].  There 

have been many studies carried out on the physicochemical properties of the various 

forms of carbamazepine, which have helped understand the relationship between 

chemical form and subsequent effect on such properties [3.19 – 3.27]. 

 

Figure 2 shows how the four anhydrous polymorphic forms of carbamazepine can be 

prepared from commercial carbamazepine [3.11]. 
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Figure 3.2; preparation methods of the anhydrous forms of carbamazepine. 

 

In this study, the monoclinic and trigonal polymorphs of carbamazepine were used.  It 

was found that the trigonal molecular configuration differed quite significantly with the 

monoclinic form and this is described in more detail later in this chapter. 

 

3.1.2 Primidone 

Primidone (5-ethyl-5-phenyl-hexahydro-pyrimidine-4,6,dione) has a molecular structure 

similar to the barbiturate phenobarbitone.  In the 1950’s, Phenobarbitone was an 

established anti-epileptic drug when primidone was introduced as an anticonvulsant 

[3.28, 3.29].  Over time however, the introduction to the market of more effective 

alternatives with fewer side effects reduced the demand of this product [3.30].  The 

molecular structure of primidone is shown in figure 3. 

 

 

 

 

 

Figure 3.3; the molecular structure of primidone. 
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The structure of the most stable polymorph of primidone was recorded in 1975 by Yeates 

and Palmer [3.31] using direct methods and refined using full-matrix least-squares 

calculations.  Primidone B, the less stable form, was also isolated and characterised in the 

early 1970’s by Daley 1973 [3.32], Summers and Enver 1976 [3.33].  In 1996, the 

mechanical properties of the two polymorphs were discussed [3.34] and in 1999, the full 

crystal structure of the second polymorph, primidone B, was published [3.3, 3.35]. 

 

3.2 The Hydrogen Bond 

The nature of the hydrogen bond has been debated since the early 1900’s.  Initial research 

attempted to describe the hydrogen bond as a purely electrostatic interaction [3.36].  

However, subsequent examinations from the 1930’s onwards have modified this 

approach to incorporate the possibility of bonding to exist that is more covalent in nature 

depending on the distance between the contributing atoms [3.37].  Valence bond theories 

put forward around the 1950’s and 1960’s [3.38] stated that when distances between the 

two contributing atoms are long, the interactions are predominantly electrostatic, but 

when the distances are shorter, repulsion and delocalization also have an effect.  More 

recent research however, has stated that evidence now exists in some cases for describing 

the hydrogen bond as almost a covalent bond [3.37, 3.39 - 3.40].  In 2011, IUPAC issued 

a provisional report on the definition of the hydrogen bond [3.41]. 

 

For the purpose of this study however, the hydrogen bond is understood to be an 

electrostatic interaction between a slightly positive donor atom and a slightly negatively 

charged acceptor atom (+ -- -).  As the strength of the covalent bond determines the 

stability of the molecule, the strength of the hydrogen bond determines the stability of the 

molecular assembly. 

 

 

Figure 3.4 (a); representation of the relative strengths of different bonds. 
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Figure 3.4 (b); representation of the relative strengths and composite nature of different 

interactions.  This image is referenced from [3.53 and 3.55].  Shading of the diagram aims 

to give a visual guide to the energy scale. 

 

The nature of different hydrogen bonds environments have been examined within 

literature [3.42-3.55] and various forms of hydrogen bonding dimers have been found 

[3.43]. 
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Figure 3.5;  Reference from [3.55](b).   

 Linear: H1 and H2 are in the xy plane while H3 and H4 are in the xz plane. 

  Bifurcated: H1 and H2 are in the xy plane while H3 and H4 are in the xz plane. 

  Cyclic: All atoms are in the xz plane. 

 R is the distance between the oxygen atoms and ranges from 2.53Å to 

3.00Å. 

  θ ranges from 0° to 57°. 

 

The data stored within the Cambridge Structural Database (CSD) provides an opportunity 

to retrieve and examine vast quantities of information [3.56] concerning the geometry of 

the hydrogen bond which lead to the view that some directionality exists.  These statistics 

have affected the design of some force fields in that geometrical restrictions have been 

included in the hydrogen bonding term.  Describing hydrogen bond systems can become 

very complicated when numerous donor/acceptor sites are available.  Attempts to isolate 

the basic geometric and energetic features of single hydrogen bonding systems have led 

to a classification system being developed by Etter, and MacDonald [3.56].  In both 

studies it was noted, however, that the exact position of hydrogen atoms using x-ray 

powder diffraction was problematic purely because of the nature of the hydrogen atom 

having very little electron density.  This does not pose much of a problem in rigid 

structures as the hydrogen positions may be calculated using geometric calculations.  The 

issue becomes considerable when examples are used that will tend to assume positions 

depending on their environment.  Neutron analysis has in the past proved much more 

useful for such studies [3.57] but at the time of this work, it was not readily available. 

 

As would be expected, it is the nature of the non-hydrogen atom which has a significant 

effect on the bond length, but in molecular crystals, the lattice also has a considerable 

input. 

 

In both carbamazepine and primidone, there are multiple opportunities for hydrogen 

bonding to occur.  Hydrogen bonds can form between the carbonyl group and the 

hydrogens of the primary amine in the case of carbamazepine and between the carbonyl 

groups and the secondary amines in the case of primidone.  As a result of this feature, it 

may be seen that the observed crystal structures are not the structure that has the lowest 

lattice energy value, as has often been the case [3.41].  In addition, the maximum number 

of possible hydrogen bonds predicted to occur may not always form in practice.  This 
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could be due to steric hindrance or due to the low energy value of the hydrogen bond 

itself [3.51]. 

 

3.3 Crystal Structures of Carbamazepine 

Table 1 lists published crystal structure data and measurements calculated using Cerius2, 

while figure 6 shows the crystal structures of the (a) monoclinic and (b) trigonal 

polymorphs available from the Cambridge Structural Database. 

 

Parameter Monoclinic Trigonal 

a[Å] 7.54 35.45 

b[Å] 11.16 35.45 

c[Å] 13.91 5.25 

[º] 90.00 90.00 

[º] 92.86 90.00 

[º] 90.00 120.00 

Volume[Å 3] 1168.3 5718.30 

Space Group P21/n [3.8] R-3 

Torsion Angle [º] 178.00 -176.10 

H-Bond Length [Å] 2.04 2.16 

Z 4 18 

Table 3.1; summary of published unit cell dimensions, space group and Z numbers for 

monoclinic and trigonal forms of carbamazepine [3.8, 3.9].  Cerius2 was used to measure 

torsion angles and H-bond lengths 

 

 

Figure 3.6 (a) 

Figure 3.6 (b) 
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The crystal structure for both forms of carbamazepine used in this study were built in 

Cerius2 using the fractional co-ordinates, bond lengths and bond angles previously 

published [3.8 and 3.9].  Hydrogen atoms were added in Cerius2 once the main body of 

the molecule had been built. 

 

Methods used in previous studies on both forms of carbamazepine include XRPD, DSC, 

NMR, FT-IR, TGA, SEM and thermo-microscopy [3.20 - 3.25].  The results show that 

the monoclinic polymorph is more stable at room temperature and is more frequently 

formed when carbamazepine is crystallized from solvents with high dielectric constants 

at slow cooling rates.  The monoclinic polymorph is most dense at 1.35 Mgm-3, the 

trigonal form at 1.23 Mgm-3. 

 

Amide groups are generally planar and this is seen in the monoclinic form of 

carbamazepine, in figure 7(a) as it aids the most beneficial way of packing the aromatic 

molecules within the unit cell (edge to face) [3.59]. 

 

The amide group can be distorted by rotation through the C-N bond or by 

pyramidalization of the amine group [3.58].  The latter is usually the more energetically 

feasible option although a combination of effects is normally observed. 

 

The pyramidalization of the amine group is seen in trigonal carbamazepine, in figure 7(b), 

as this also aids the packing of the aromatic molecules within the unit cell (offset pi 

stacking).   

 

 

 

Figure 3.7(a)  Figure 3.7(b)  

Both images referenced from [3.59]. 

 

As the morphologies of the two forms will show, the monoclinic polymorph crystallizes 

into well-defined prisms, and the trigonal form into needle like hollow hexagonal tubes. 
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Carbamazepine has good hydrogen bonding capabilities and although possessing a 

reasonably rigid backbone, it does comprise one degree of conformational flexibility.  The 

introduction of a flexible side group would test the ability of the search methods to cope 

with more than just rigid structures.  Figure 8 shows the degree of conformational 

flexibility in carbamazepine. 

 

 

 

 

 

 

Figure 3.8; the flexible group within a molecule of carbamazepine. 

 

3.3.1 Monoclinic Carbamazepine 

The unit cell dimensions of monoclinic carbamazepine are already listed in table 1. 

The carbamazepine molecule in the monoclinic structure has the following properties: 

• The central ring adopts a boat conformation relative to the C(1), C(6), C(9), C(14) 

plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The two benzene moieties are planar and form a 126.6° dihedral angle. 

• The torsion angle between the central ring and the amide group is 170.7º.  

Measured in Cerius2 and referenced in [3.8]. 

N(2) 
C(15) 

N(1) 

Figure 3.9; numbering the 

atoms within the plane in the 

central ring and in the torsion 

angle described in Figure 10. 

 

Figure 3.10; showing the torsion angle 

between the central ring and the amide 

group involving atoms C(14), N(1), 

C(15), N(2).  Numbering taken from 

Figure 9. 
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• Centrosymmetric dimers are formed, which 

are held together by hydrogen bonds.  This 

means the dimer, comprising two 

carbamazepine molecules linked together 

via hydrogen bonds, has a symmetrical 

arrangement radiating around a central 

point. 

 

Figure 3.11; dimers of monoclinic carbamazepine with hydrogen bond length of 2.043Å 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12; dimers of monoclinic carbamazepine built up to show the crystal packing 

motif. 

 

Figure 13 shows (a) Kofler hot stage microscopy – a polarised light image at room 

temperature of prismatic crystals of monoclinic carbamazepine [3.25]; (b) the crystal 

habit, the description of the visible external shape of a crystal, for monoclinic 

carbamazepine.  This was calculated using the BFDH method in the Morphology menu 

of Quantum Mechanics in Cerius2, and (c) S.E.M. of monoclinic carbamazepine [3.9]. 
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   3.13(a)       3.13(b) 3.13(c) 

Figure 3.13 (a): Image of monoclinic carbamazepine; Figure 3.13 (b): Crystal habit of 

monoclinic carbamazepine predicted using Cerius2; Figure 3.13 (c): S.E.M. image of the 

prismatic crystal in monoclinic carbamazepine. 

 

3.3.2 Trigonal Carbamazepine 

The unit cell dimensions of trigonal carbamazepine are already listed in table 1.  The 

carbamazepine molecule in the trigonal structure has the following properties; 

• The central ring adopts the boat conformation relative to the C(1), C(6), C(9), 

C(14) plane.  

 

 

 

 

 

 

 

 

• The two benzene moieties are planar and form a dihedral angle of 124.7°. 

• The torsion angle made by the amide group with the central ring is 176.1º. 

• Centrosymmetric dimers are formed, which are held together by hydrogen bonds 

in a similar way to the monoclinic form.  The hydrogen bonds are longer in the 

N(2) 
C(15) 

N(1) 

Figure 3.15; showing the torsion angle 

between the central ring and the amide 

group involving atoms C(14), N(1), 

C(15), N(2).  Numbering taken from 

Figure 14. 

Figure 3.14; numbering the 

atoms within the plane in the 

central ring and in the torsion 

angle described in Figure 15. 
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trigonal form of carbamazepine and this creates voids in molecular packing 

(figure 17), resulting in a lower density value. 

 

 

 

 

 

 

 

 

Figure 3.16; showing the hydrogen bonded dimers in trigonal carbamazepine 

• The two nitrogen-hydrogen bonds on the amine group are different lengths.  The 

length of the N-H bond involved in hydrogen bonding is 0.75Å.  The remaining 

free N-H bond measures 0.96Å [3.9]. 

• The distance between N(2)···O(1) was measured in Cerius2 as 2.98Å.  In literature 

this distance is reported as 2.89Å.  The distance measured in Cerius2 between 

N(2)-H(29)···O(1) was 2.16Å, whereas in literature it is reported as 1.97Å.  These 

difference will most likely arise from the different force fields being used which 

are paramaterised differently.  In the literature [3.61] the Momanay-Carruthers 

force field was utilized whereas in this study, the Dreiding force field was used. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17; showing the voids within the molecular packing in trigonal carbamazepine 

resulting in the lower density. 
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Figure 18 shows (a) Kofler hot stage microscopy – a polarised light image at room 

temperature of needle-like crystals of trigonal carbamazepine [3.25]; (b) the crystal habit, 

the description of the visible external shape of a crystal, for trigonal carbamazepine.  This 

was calculated using the BFDH method in the Morphology menu of Quantum Mechanics 

in Cerius2, and (c) S.E.M. of trigonal carbamazepine [3.9]. 

 

 

 

 

3.18(a) 3.18(b) 3.18(c) 

Figure 3.18 (a); image of trigonal carbamazepine; Figure 3.18 (b); crystal habit of 

trigonal carbamazepine predicted using Cerius2; Figure 3.18 (c); S.E.M. image of the 

needle-like crystals in trigonal carbamazepine. 
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3.4 Crystal Structures of Primidone 

Table 2 lists published unit cell dimensions, space groups and Z numbers [3.31, 3.34] 

alongside measurements of torsion angles and H-bond lengths calculated using Cerius2.  

Figure 19 shows the crystal structures of polymorph (a) A (monoclinic) (b) B 

(orthorhombic) available from the Cambridge Structural Database. 

 

 Structure 

Parameter Primidone A Primidone B 

 MOPAC MOPAC 

Unit Cell Vol [Å3] 1284.96 2237.42 

a[Å] 12.25 10.27 

b[Å] 7.09 7.92 

c[Å] 14.81 27.54 

[º] 90.00 90.00 

[º] 117.82 90.00 

[º] 90.00 90.00 

H-Bond Length [Å] 2.04, 1.94 1.96, 2.00 

Torsion Angle [º]  (ethyl, phenyl) -61.5, -40.1 -59.5, 10.6 

Z 4 8 

Space Group P 21/c P b c a 

 

Table 3.2; published and calculated crystal structure data for Primidone A and B. 

 

 

 

 

 

 

 

 

 

Figure 3.19 (b); crystal structure of 

Primidone, Orthorhombic Form B 

Figure 3.19 (a); crystal structure of 

Primidone, Monoclinic Form A 
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Previous studies on both forms of primidone include XRPD, IR, NMR, GCMS and TLC 

[3.32].  Research shows that the monoclinic polymorph is formed by slow evaporation of 

a solution of commercial primidone in ethanol.  The monoclinic polymorph has a 

measured density of 1.26gcm-3 the orthorhombic form of 1.29gcm-3. 

 

Primdione has good hydrogen bonding capabilities and comprises two degrees of 

conformational flexibility.  The introduction of a second flexible group would test the 

ability of the search methods further.  Figure 20 shows the two degrees of conformational 

flexibility in primidone. 

 

 

 

 

 

 

 

Figure 3.20; flexibility defined in the molecule for the unit cell searches of both 

primidone A and B. 

 

In this study, it was found that the starting molecular configurations of primidone A and 

B differed quite significantly and this is described in more detail later. 
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3.4.1 Primidone A (Monoclinic) 

The following structural details were noted for primidone A: 

• The pyrimidine ring adopts the boat conformation where C(5) and C(2) are 

elevated from the plane N(1), N(3), C(4), C(6). 

 

 

 

 

 

• Bond lengths and angles on either side of the median line C(2)-C(5), whilst not 

always identical, are very similar and only slight differences in bond lengths and 

angles are seen.  This gives the appearance of a symmetrical structure.  Atomic 

numbering is shown in figure 23 which corresponds to the tabulated bond lengths 

and angles in table 3.  The bond lengths and angles are taken from [3.31]. 

 

 

 

 

 

 

 

Figure 3.23; Atomic numbering of the pyrimidine ring. 
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Figure 3.21: Numbering the 

atoms within the plane in the 

central ring 

 

Figure 3.22: Showing the torsion 

angles between the pyrimidine ring 

and the phenyl and ethyl groups. 

OO
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Atoms Bond Lengths (Å) Atoms Bond Angles () 

C(2)-N(3) 1.441 C(2)-N(3)-C(4) 122.1 

C(2)-N(1) 1.441 C(2)-N(1)-C(6) 121.8 

N(3)-C(4) 1.329 N(3)-C(4)-O(4) 122.2 

N(1)-C(6) 1.329 N(1)-C(6)-O(6) 122.9 

C(4)-C(5) 1.540 N(3)-C(4)-C(5) 115.8 

C(6)-C(5) 1.543 N(1)-C(6)-C(5) 116.0 

C(4)-O(4) 1.223 O(4)-C(4)-C(5) 122.0 

C(6)-O(6) 1.230 O(6)-C(6)-C(5) 121.0 

Table 3.3; Bond lengths and angles of the pyrimidine ring from [3.31]. 

 

• The phenyl ring is planar and the torsion angle between the pyrimidine ring and 

the phenyl ring is –40.1º shown in figure 3.22. 

• The torsion angle between the pyrimidine ring and the ethyl group is 61.5° also 

shown in figure 3.22. 

• The molecules within the unit cell are connected by two types of hydrogen bonds 

although both types are very similar in length.  Type one (slightly longer) creates 

a dimer, type two (slightly shorter) links the dimers into sheets of molecules 

shown in figure 24. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24; hydrogen bonding motif in the monoclinic form of primidone. 
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Figure 3.24; molecular packing in the monoclinic form of primidone. 

 

The crystal habit shown in figure 25 was calculated using the BFDH method in the 

quantum mechanics package of Cerius2. 

 

 

 

Figure 3.25; crystal habit of monoclinic primidone. 
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3.4.2 Primidone B (Orthorhombic) 

The following structural details were noted for primidone B: 

• The pyrimidine ring adopts the boat conformation where C(5) and C(2) are 

elevated from the plane N(1), N(3), C(4), C(6). 

• Bond lengths and angles on either side of the median line C(2)-C(5) in the 

orthorhombic form are very similar to those measured in the monoclinic form 

which again gives the pyrimidine ring the appearance of a symmetrical structure. 

• The phenyl ring is planar and the torsion angle between the pyrimidine ring and 

the phenyl ring is 10.6º shown in figure 3.27. 

• The torsion angle between the pyrimidine ring and the ethyl group is 59.5° also 

shown in figure 3.27. 

• Each molecule in the unit cell is attached to four others via hydrogen bonds which 

are very similar in length, shown in figure 3.28. 

 

 

 

 

 

 

 

 

 

 

Figure 3.28: Hydrogen bonding in the orthorhombic form of primidone. 

Figure 3.26: Numbering the 

atoms within the plane in the 

central ring 

 

Figure 3.27: Showing the torsion 

angles between the pyrimidine ring 

and the phenyl and ethyl groups. 
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Figure 3.29: Molecular packing in the orthorhombic form of primidone. 

 

• The hydrogen bond network created sheets of molecules in the orthorhombic 

polymorph.  This is shown in figure 3.29. 

• The crystal habit, figure 3.30, was again calculated using the BFDH method in 

Cerius2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.30; crystal habit of orthorhombic primidone. 
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3.5 Validating the Search methods 

3.5.1 Systematic Searches 

The systematic search uses a pre-defined step size to search the entire unit cell.  The 

search is carried out using translational and rotational steps.  For unit cells of a small 

volume and for rigid body systems, this appears a thorough and useful tool.  Problems 

arise in optimizing the computational time against the step sizes when the unit cell volume 

increases significantly or when the molecule under investigation contains flexible groups.  

A further limitation of the systematic method is that it can only search a unit cell using 

one molecule in the asymmetric unit. 

 

For the purposes of this study, the search and acceptance criteria for all the searches are 

shown in table 3.  In the searches using primidone B the fraction translated along the x 

axis was reduced.  This was to compensate for the difference in length of this third axis 

and ensure a reasonably even step size for all three directions. 

 

Step Sizes 
Cut-off 

Parameters 

 

Translations 

(fractional 

co-ordinates) 

x, y, z 

Rotations 

[º] a, b, c 

Torsions [º] 

1*, 2** 

Energy 

[kcal/mol] 
Rwp 

Primidone A 0.05 for all 10 for all 10.00, 10.00 -10.00 0.95 

Primidone B 
0.05 for y+z, 

0.03 for x 
10 for all 10.00, 10.00 -10.00 0.95 

Monoclinic 

Carbamazepine 
0.05 for all 10 for all 10.00 -10.00 0.95 

Trigonal 

Carbamazepine 
0.05 for all 10 for all 10.00 -20.00 0.95 

 

Table 3.4; acceptance criteria used in all the searches.  For the rigid body searches, 

torsions = 0. 

*for primidone, phenyl torsion, **for primidone ethyl torsion 

*for carbamazepine, amide group, **for carbamazepine, not applicable 
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3.5.2 Simulated Annealing Searches 

Due to the random nature of the simulated annealing method, each search was repeated a 

number of times to ensure confidence that a sufficient area of the unit cell had been 

covered.  Also, the best result from the previous search was used as the starting point for 

the following search.  If consecutive searches produced results that were very similar to 

previous searches, it could be assumed that the method did not need to be repeated and 

was capable of quickly finding a useful energy minimum.  A second view is that the 

search had become trapped in a local minima and so a new, random starting point was 

created for the following search. 

 

Maximum Step Sizes Allowed Cut-off Parameters 

 

Translations 

(fractional 

co-ordinates) 

x, y, z 

Rotations 

[º] a, b, c 

Torsions 

[º] 1*, 2** 

Energy 

[kcal/mol] 
Rwp 

Primidone A 0.5 for all 10 for all 10, 10 -10.00 0.90 

Primidone B 0.5 for all 10 for all 10, 10 -10.00 0.90 

Monoclinic 

Carbamazepine 
0.5 for all 10 for all 10 -10.00 0.75 

Trigonal 

Carbamazepine 
0.5 for all 10 for all 10 -10.00 0.75 

Table 3.5: acceptance criteria used in all the searches.  For rigid body searches, torsions 

= 0. 

*for primidone, phenyl torsion, **for primidone ethyl torsion 

*for carbamazepine, amide group, **for carbamazepine, not applicable 

 

3.6 Post Analysis Optimization and Refinement Methods 

Once a trial structure had been generated, the symmetry was reduced to P1.  The molecule 

was treated as a rigid body while it was moved to seek out ‘better’ positions in the near 

surrounding area.  Sometimes this move was quite large and good results were generated 

from unlikely starting points.  When the optimized structure was calculated, the 

immediate area around this energy minimum was searched, giving a small indication as 

to the energy surface at that point.  The gradients calculated were plotted against the 

distance actually moved by the unit. 
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Finally, a refinement of the calculated data was briefly attempted on the simulated powder 

data to further optimize the position of the molecules in the unit cell. 

 

3.7 Results 

3.7.1  Carbamazepine 

Lattice energies for the published monoclinic and trigonal forms of carbamazepine are 

listed in table 5.  This lattice energy was calculated in Cerius2 using the molecular 

geometry taken from the Cambridge Structural Database, with hydrogen atoms being 

added to the molecule in Cerius2, and a MOPAC charge set applied also using Cerius2.   

 

In summary, the aim of these searches was to assess how successfully systematic and 

simulated annealing searches would be in finding the correct structure with the 

corresponding lattice energy. 

 

Carbamazepine Polymorph Lattice Energy [kcal/mol] 

Monoclinic -130.92 

Trigonal -553.55 

Table 3.6; Lattice energy in kcal/mol for two polymorphs of carbamazepine. 

 

Systematic Searching and Simulated Annealing with Rigid Bodies 

The results generated from these searches were very promising for future investigations.  

Even though it was quite a straightforward example where the starting configuration was 

known, it was encouraging that the Dreiding force field provided the process with 

information accurate enough to determine the global minimum.  The results are shown in 

table 6 for both lattice energies and then x-ray powder diffraction pattern fits. 

Carbamazepine 

Polymorph 

Lattice Energy [kcal/mol] Rwp 

Un-optimized Optimized  

Systematic Searches    

Monoclinic -78.26 -130.94 0.91 

Trigonal -125.55 -567.53 0.98 

Simulated Annealing    

Monoclinic -119.38 -130.93 0.74 

Trigonal -431.49 -553.18 0.98 

Table 3.7; results for the rigid body searches of carbamazepine 
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Monoclinic carbamazepine: The following two figures show an overlay of the crystal 

structure and the top optimized structures found by the two different search methods. 

 

    

3.31(a) 3.31(b) 

Figure 3.31; rigid body searches of monoclinic carbamazepine. The crystal structure 

(red) compared with the top optimized lattice energy result (yellow) from (a) the 

systematic search (b) simulated annealing search. 

 

Trigonal carbamazepine: The following two figures show an overlay of the crystal 

structure and the top optimized structures found by the two different search methods. 

 

  

3.32 (a)  3.32 (b) 

Figure 3.32; rigid body searches of trigonal carbamazepine. The crystal structure (red) 

compared with the top optimized lattice energy result (yellow) from (a) the systematic 

search (b) simulated annealing search. 
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3.33 (a)          3.33 (b) 

Figure 3.33: rigid body searches of monoclinic carbamazepine. The crystal structure (red) compared with the top xrd result (yellow) from (A) the 

systematic search (B) simulated annealing.  The difference plots for both sets are in blue. 

  

3.34 (a) 3.34 (b)  

Figure 3.34; rigid body searches of trigonal carbamazepine. The crystal structure (red) compared with the top xrd result (yellow) from (A) the systematic 

search (B) simulated annealing.  The difference plots for both sets are in blue. 
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Systematic Searching and Simulated Annealing with Conformational Flexibility 

The degree of freedom was introduced in these searches and again, reasonable results 

were obtained prior to using the Rietveld refinement program.  The results are shown in 

table 3.7. 

 

 Lattice Energy [kcal/mol] Rwp 

Polymorph Un-optimized Optimized  

Systematic Searching    

Monoclinic 

Carbamazepine 
-128.59 -130.92 0.95 

Trigonal 

Carbamazepine 
-476.78 -552.09 0.98 

Simulated Annealing    

Monoclinic 

Carbamazepine 
-122.82 -130.66 0.73 

Trigonal 

Carbamazepine 
-547.18 -557.75 0.98 

Table 3.8; results for the conformationally flexible searches of carbamazepine 

 

Monoclinic carbamazepine: The following two figures show an overlay of the crystal 

structure and the top optimized structures found by the two different search methods. 

 

  

3.35 (a) 3.35 (b) 

Figure 3.35; conformationally flexible searches of monoclinic carbamazepine. The 

crystal structure (red) compared with the top lattice energy result (yellow) from (a) the 

systematic search (b) simulated annealing search. 
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Trigonal carbamazepine: The following two figures show an overlay of the crystal 

structure and the top optimized structures found by the two different search methods. 

 

 

 

 

 

 

 

 

 

3.36 (a); the systematic search 

 

 

 

 

 

 

 

 

 

3.36 (b); simulated annealing 

 

Figure 3.36; conformationally flexible searches of trigonal carbamazepine. The crystal 

structure (red) compared with the top lattice energy result (yellow) from; 
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3.37 (a) 3.37 (b) 

Figure 3.37: Conformationally flexible searches of monoclinic carbamazepine. The crystal structure (red) compared with the top xrd result (yellow) 

from (a) the systematic search (b) simulated annealing, the difference plots for both sets are in blue. 

  

3.38 (a) 3.38 (b)  

Figure 3.38; conformationally flexible searches of trigonal carbamazepine. The crystal structure (red) compared with the top xrd result (yellow) from 

(a) the systematic search (b) simulated annealing, the difference plots for both sets are in blue 
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3.7.2 Primidone 

Systematic Searching and Simulated Annealing with Rigid Bodies 

 

Carbamazepine Polymorph Lattice Energy [kcal/mol] 

Monoclinic (A) -130.06 

Orthorhombic (B) -260.80 

Table 3.9; published lattice energy in kcal/mol for two polymorphs of primidone. 

 

 Lattice Energy [kcal/mol] Rwp 

Polymorph Un-optimized Optimized  

Systematic Searching    

Primidone A -109.99 -128.64 0.84 

Primidone B -204.64 -234.12 0.94 

Simulated Annealing    

Primidone A -115.36 -130.06 0.69 

Primidone B -257.60 -260.80 0.54 

Table 3.10; showing the results for the rigid body searches of primidone. 

 

Primidone A: The following two figures show an overlay of the crystal structure and the 

top optimized structures found by the two different search methods. 

 

  

3.39 (a) 3.39 (b) 

Figure 3.39; rigid body searches of primidone A. The crystal structure (red) compared 

with the top lattice energy result (yellow) from (a) the systematic search (b) simulated 

annealing. 
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Primidone B: The following two figures show an overlay of the crystal structure and the 

top optimized structures found by the two different search methods. 

 

 

 

 

 

 

 

 

3.40 (a) the systematic search  

 

 

 

 

 

 

 

 

 

3.40 (b) simulated annealing 

 

Figure 3.40; rigid body searches of primidone b. The crystal structure (red) compared 

with the top lattice energy result (yellow). 
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3.41 (a) 3.41 (b) 

Figure 3.41; rigid body searches of primidone a. The crystal structure (red) compared with the top xrd result (yellow) from (a) the systematic search (b) 

simulated annealing, the difference plots for both sets are in blue. 

  

3.42 (a) 3.42 (b) 

Figure 3.42; rigid body searches of primidone b. The crystal structure (red) compared with the top xrd result (yellow) from (a) the systematic search (b) 

simulated annealing, the difference plots for both sets are in blue. 
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Systematic Searching and Simulated Annealing with Conformational Flexibility 

The two degrees of freedom were introduced in these searches and again, even with this 

added degree of difficulty, reasonable results were obtained.  The results are tabulated in 

table 10 and figures 43 - 46 show the overlay of the crystal structure with the top 

optimized structures generated. 

 

 Lattice Energy [kcal/mol] Rwp 

Polymorph Un-optimized Optimized  

Systematic Searching    

Primidone A -125.41 -127.94 0.64 

Primidone B -199.33 -268.90 0.92 

Simulated Annealing    

Primidone A -114.33 -128.64 0.48 

Primidone B -242.46 -262.54 0.43 

 

Table 3.11; the results for the primidone B conformationally flexible searches. 

 

Primidone A: The following two figures show an overlay of the crystal structure and the 

top optimized structures found by the two different search methods. 

 

 

 

 

 

 

 

 

   

3.43 (a) 3.43 (b) 

Figure 3.43: conformationally flexible searches of primidone A. The crystal structure 

(red) compared with the top lattice energy result (yellow) from (a) the systematic search 

(b) simulated annealing. 
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Primidone B: The following two figures show an overlay of the crystal structure and the 

top optimized structures found by the two different search methods. 

 

 

 

 

 

 

 

 

 

 

3.44 (a) the systematic search 

 

 

 

 

 

 

 

 

 

3.44 (b) simulated annealing 

 

Figure 3.44; conformationally flexible searches of primidone b. The crystal structure 

(red) compared with the top lattice energy result (yellow). 
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3.45 (a) 3.45 (b) 

Figure 3.45; conformationally flexible searches of primidone A.  The crystal structure (red) compared with the top xrd result (yellow) from (a) the 

systematic search (b) simulated annealing, the difference plots for both sets are in blue 

  

3.46 (a) 3.46 (b)  

Figure 3.46; conformationally flexible searches of primidone B. The crystal structure (red) compared with the top xrd result (yellow) from (a) the 

systematic search (b) simulated annealing, the difference plots for both sets are in blue. 
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3.8 Discussion of Results 

The work included in this chapter aimed to validate the new simulated annealing code 

and test it against the systematic searching method.  The systematic search had already 

produced excellent results for structures with - stacking interactions and hydrogen 

bonding features such as indigo, 6,13-dichlorodiphendioxazine, phenanthrene, 

paracetamol and benzophenone [3.61]. 

 

At the time of this work, the key steps of search methods for crystal structure 

determination [3.1] were; 

• Generation of the molecular structure and unit cell parameters. 

• Selection of a theoretical set to describe the intramolecular energy and 

intermolecular forces. 

• Global search of an experimentally calculated unit cell. 

• Optimization of generated structures. 

 

For the purposes of validating the simulated annealing search method and comparing 

results between this and the grid based search, the first step was carried out using as much 

published information as possible.  The starting molecular conformations were 

downloaded from the CSD.  Cerius2 was used to ‘add-in’ or build the hydrogen atoms 

necessary and to implement charges on each atom.  The unit cell was built in Cerius2 from 

the published data and for both systematic and random search methods the molecule was 

placed in a random orientation at the origin of the unit cell. 

 

In the rigid body searches, the aim was to show whether the step sizes for translations and 

orientations were set to cover a suitable amount of space without taking too much time.  

If smaller step sizes were required, how would this affect the time taken to reach the 

global minimum?  Initially, molecular rotation steps were set at 5 degrees but this was 

soon changed to 10 degrees when the same results were found in a shorter amount of 

search time. 

 

For both search methods, in the case of flexible searches, the molecule was again placed 

at the origin of the unit cell in a random orientation.  In this instance however, any flexible 

groups identified were also placed in a random starting orientation.  The flexible searches 

carried out following the rigid body searches used the assumption that the translational 

and molecular rotational step sizes were optimized for this example.  In the flexible 
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searches, the aim was to show whether the step sizes for torsional rotations were set to 

cover a suitable amount of geometries without taking too much additional time.  The 

torsional step sizes were set to 5 degrees initially which was increased to 10 degrees for 

the same reasons as the molecular rotational step sizes. 

 

Understandably, if some knowledge of the molecular configuration of the sample is 

already available then these searches are very useful tools.  When no such information is 

available however, the rigid searches would require multiple iterations of the global 

search using different, reasonable starting conformations, such as in the examples 

investigated within the first blind test set by the CSD [3.63].  Increasing the number of 

rigid body grid based searches required to cover all reasonable starting structures within 

the unit cell would seem to be too time-consuming a problem for anything other than very 

small molecules.  Even in this study, with the benefit of prior knowledge of molecular 

configuration, the systematic method required days of processor time to carry out fine 

grid searches especially with unit cells of the proportions seen in the trigonal 

carbamazepine example. 

 

The force field Dreiding [3.62] was used throughout this study as an example of a good 

quality generic force field.  It has already been used in many other such cases of predicting 

the structure of hydrogen bonding systems and has been shown both in those cases and 

in this study to be able to model intra and inter molecular interactions to a sufficiently 

high standard for the optimization steps. 

 

Lattice Energy calculations were the most popular method of ranking generated structures 

from crystal structure searches [3.63].  The calculations included terms for bonded and 

non-bonded interactions and effectively calculated the energy of a motionless system.  

The lowest energy results would be considered as the most thermodynamically stable 

structure and therefore the most likely structure to be observed or the most stable 

polymorph at all temperatures.  The treatment of vibrational effects was ignored.  

However, more modern methods have started to take these effects into account and this 

has shown to have an impact on the ranking of generated structures in the later CSD blind 

tests [3.64, 3.65]. 
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This validation investigation also considered x-ray powder diffraction pattern 

comparisons as a ranking method and so highlighted the need for good quality powder 

data.  Samples of carbamazepine were prepared in the lab and analysed using capillary x-

ray powder diffraction.  Simulated data was used for the primidone examples.  Although 

peak positions were generally good for carbamazepine, the intensities of the peaks did 

seem to differ significantly and this was reflected in the values for the powder pattern fits. 

 

Optimization of generated structures in Cerius2 was carried out in two steps [3.66].  The 

first being an energy evaluation step and the second being a conformational adjustment 

step.  The sensitivity of the energy evaluation has been mentioned above and the same 

issues hold for this evaluation.  This stage of the structure determination process relies on 

the fact that the structures generated from the searches will be of high quality for 

refinement.  As tables 11 and 12 show, the differences between the observed molecular 

structures of primidone and carbamazepine with calculated geometry optimized 

structures generated in Cerius2 in the quantum mechanics module can be significant. 

 

 Carbamazepine Monoclinic Carbamazepine Trigonal 

Geometry 

Optimized 

Crystal 

Structure 

Geometry 

Optimized 

Crystal 

Structure 

Torsion Angle of the 

Amide Group [º] 
-3.40 -9.60 -3.40 -3.90 

Angle made between 

central ring and 

Amide Group [º] 

42.80 60.10 70.66 42.80 

Bond Length of 

N-CONH2 [Å] 
1.42 1.38 1.42 1.38 

Table 3.12; molecular geometry measurements for carbamazepine. 
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 Primidone A Primidone B 

Geometry 

Optimized 

Crystal 

Structure 

Geometry 

Optimized 

Crystal 

Structure 

Angle made between 

pyrimidine ring and 

phenyl group [º] 

100.80 90.70 101.00 107.00 

Torsion angle of 

pyrimidine ring with 

ethyl group [º] 

-60.60 -61.50 -60.70 -62.50 

Torsion angle of 

pyrimidine ring with 

phenyl group [º] 

-38.40 -40.10 -41.70 -68.40 

Table 3.13; molecular geometry measurements for primidone. 

 

Although it was possible to introduce a degree of flexibility in the molecular structure, 

thus diminishing the need for these groups to be positioned accurately at the start, it was 

features such as the pyrimidine ring formation and the angle it made with the phenyl ring 

in the case of primidone that were surprisingly different.   

 

 

3.47 (a) 3.47 (b) 

Figure 3.47; comparison of the crystal structures of (a) monoclinic and (b) trigonal 

carbamazepine (green) against the structure built and optimized in Cerius2 (default) using 

MOPAC and AM1. 
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3.48 (a) 3.48 (b) 

Figure 3.48; comparison of the crystal structures of (a) monoclinic and (b) orthorhombic 

primidone (green) against the structure built and optimized in Cerius2 (default) using 

MOPAC and AM1.   

 

Given the differences in molecular conformation between the polymorphs it was clearly 

important that the appropriate torsions were treated explicitly in the search space during 

trial structure determination. 

 

As the results show, there is a significant change in the structure for primidone B 

highlighting the fact that it is the less stable structure.  The reason for the difference in 

molecular conformation lies with the effect that the lattice has on the molecule.  

Therefore, in primidone B, the lattice must exert more of an effect on molecular 

conformation than in primidone A [3.57]. 

 

Considering grid step size in the systematic search methods; if the grid size is not small 

enough, the generated structure may be too far away from a minimum for the optimization 

method to find.  This was often the case for the initial systematic rigid searches of trigonal 

carbamazepine.  It was observed that large displacements of the molecule were made 

during the optimization step.  However, making the grid search any finer would result in 

unreasonable calculation times even before taking any optimization steps into account.  

Here, the simulated annealing search did appear to be more appropriate although due to 

the random nature of the method, the compromise of more than one global search of the 

unit cell space was required. 
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CHAPTER 4 – CRYSTAL STRUCTURE DETERMINATION OF 

THE COCRYSTAL CATECHOL UREA 

 
4.1 Introduction 

In the stable crystalline state, molecules will tend to arrange themselves in a way to 

minimize the overall potential energy of the system.  The atoms in the molecules move 

towards each other to maximize the attractive forces, yet remain far enough away to 

minimize the repulsive forces.  The actual value lies at around the minimum of the atom-

atom potential energy curve for the respective atoms involved.  This was the close packing 

theory proposed by Kitaigorodsky [4.1]. 

 

When molecular crystals do undergo reactions they start from an extremely ordered state, 

therefore the resulting structure is generally predictable as there are only a set number of 

ways molecules can approach each other.  In other words the reactions occur under 

topochemical control, where the nature of packing is more important than molecular 

reactivity [4.2].  Here, orientation and molecular separation are the key factors which 

define how molecules may approach and therefore react. 

 

However, this is not always the case and deviations to expected results do occur [4.3].  

There are two main reasons why this should happen; 

1. Polymorphism – molecules and crystals can adopt different spatial arrangements 

[4.4] 

2. Crystal defects – such as dislocations where there are pockets of space for new routes 

of approach. 

 

The type of external energy applied to a system will classify the field of chemistry a 

reaction belongs to.  Mechanochemistry [4.5] is the term applied when a reaction is 

caused by mechanical energy.  A subclass of mechanochemistry is tribochemistry, which 

has been defined as ‘a reaction generated by friction during the milling of solid reagents’ 

[4.6].   

 

When selecting the starting materials for solid state reactions such as milling, two key 

points were noted from the research published by Etter et al. [4.8], also referenced as 

[3.54(a)].  These are; 
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“at least one of the components should have some volatility at the temperature of the 

grinding experiments, and the product dimers should have a stronger intermolecular 

hydrogen bond than any of the hydrogen bonds in the structures of the two starting 

materials”. 

 

Solid state reactions have a number of characteristics making them a preferable synthesis 

route over solvent crystallization [4.7]. 

These advantages include; 

• The starting materials are safer and easier to keep in their un-solvated forms. 

• The starting materials have poor solubility, therefore designing solid phase 

experiments would be easier. 

• The possibility of solvent inclusion in the final product is eliminated. 

• In general, smaller quantities of starting materials are required for solid phase 

reactions.  Consequently, solid state reactions can be environmentally favourable as 

well as economically preferable. 

• Single crystals are not always required for structure determination and having a 

reliable, repeatable alternative eliminates the need for this step. 

 

In the interests of balance however, solvent crystallization does allow for a purification 

step and there is a chance of increased crystalline disorder from grinding.  Also, solvent 

crystallization can produce high quality large single crystals, which are better to evaluate 

surface features and crystal habits [4.6]. 

 

4.2 Crystal Engineering 

By combining two different starting materials, without breaking any covalent bonds, the 

overall properties of the resulting material may be altered.  Interest in this kind of ‘crystal 

engineering’ [4.9] has developed rapidly over the last couple of decades especially for 

effect chemicals such as pharmaceuticals.  Properties of active ingredients such as 

dissolution rates, mechanical properties and stability have been investigated and 

‘designed’ for many products [4.10].  Recently the area of computer-assisted drug design 

has also been a great boon in developing de novo design approaches [4.11]. 

 

The goal of Structure-based De Novo Design (SBDND) is to develop new molecules by 

stitching molecular fragments together [4.12].  The fragments will be selected based on 

rules set by the practitioner so that the final molecule will fit into the receptor-binding 
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site.  There are many methods to choose from in order to build a molecule and there is 

also the consideration of whether to use atom or fragment based methods.  As the name 

implies, atom based methods start building with an atom or a very small fragment and are 

also known as ‘growing’ methods.  Fragment methods start with larger fragments and are 

also known as linking methods.  Linking methods tend to reduce the search space 

available due to their larger starting sizes.  Evolutionary Algorithm methods, such as the 

Genetic Algorithm, are used when fragments have been selected.  The linking of the 

fragments is carried out with these stochastic searches within the binding site search 

space.  Initially, de novo programs used one objective as an acceptance criteria such as 

binding strength within the binding site.  The more modern de novo approaches work with 

a combination of objectives such as good synthetic feasibility, higher potency and lower 

toxicity.  These constraints are important to define since they effectively guide the design 

of the molecule.  Possible results are assessed using scoring methods.  These include; 

force-field based scoring functions, Empirical scoring functions, Knowledge-based 

scoring functions and Consensus scoring. 

 

The terminology for combined or engineered crystal structures has come under some 

debate in the past.  The three main terms which have been used are; 

1. Inclusion compounds, which can be broken down into two groups [4.13]: 

• The host molecule contains voids into which suitable guest species can fit. 

• The crystalline structure of the host creates cavities into which suitable guest 

molecules can fit. 

2. Complexes.  In a chemical sense, the term complex describes a central structure 

connected to surrounding atoms or molecules.  Dissatisfaction with this term has 

arisen from it not defining the physical state of the constituents adequately. 

3. The term pharmaceutical cocrystals is a more modern description which has been 

used to describe any crystalline structure comprising two or more components with 

at least one component being an active pharmaceutical ingredient [4.15].  Although 

some are dissatisfied with this definition, it has been widely accepted for use. 

 

Extensive studies of the crystalline host inclusion compounds have been carried out for 

example by Palin et al with their work on β-quinol [4.14]. 
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Examples of some topologies of 

inclusion compound cavities are 

shown in figure 1 when the host 

is a crystalline solid. However, 

the ambiguity of whether the 

compound is in the crystalline 

form has caused some unease in 

using this term for crystalline 

structures. 

 

Figure 4.1; topologies of some inclusion cavities [4.13]. 

 

In many instances of inclusion compounds, the host molecule forms extended hydrogen 

bonds which depending on the backbone, leaves large ‘holes’ in the structure.  This means 

that the most efficient packing arrangement has not been reached, but the hydrogen bonds, 

which can sometimes be only a weak interaction, do seem to compensate for this feature.  

The guest molecule can then position itself inside the holes formed by the host, this 

structure is called a clathrate.  In other cases the host-guest relationship produces a much 

larger network of links with the possibility of proton transfer along linear chains. 

 

It is well known that the physical properties of polymorphic compounds vary and are 

difficult to control, however pharmaceutical cocrystals provide an opportunity to engineer 

new solid forms with desired physical properties [4.16 - 4.20].  For example, a 

pharmaceutical cocrystal which is an ‘easy to handle’, stable crystalline solid may result 

from combining an amorphous API, which is difficult to crystallize, with a cocrystal 

former (CCF).  Cocrystals can be designed to provide desired properties, such as 

solubility [4.21] and therefore bioavailability, to a much greater extent and with much 

more control [4.22].  The desired use of the cocrystal will also influence the choice of 

CCF and with pharmaceutical cocrystals, the selection of CCF will be restricted to the 

GRAS list (Generally Regarded As Safe) [4.23]. 

 

Understanding how a crystal structure affects mechanical properties enhances the quality 

of product formulation [4.24].  For example, the inclusion of a coformer with an API 

which creates slip planes in the cocrystal structure can increase the plasticity and therefore 

tableting ability [4.25].  Or increasing the shelf life of a drug by creating a cocrystal with 
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increased stability to humidity [4.26a and 4.26d].  Poor water solubility of various 

pharmaceuticals has led to them being used in case studies to either improve solubility as 

a cocrystal and/or to improve their performance as an API [4.26b].  At the other end of 

the scale, slow release formulations have also been investigated using cocrystal formation 

in order to reduce the solubility of an API [4.26c].  In summary, by exploiting concepts 

in manufacturing sciences to reduce production costs whilst streamlining drug 

development, the pharmaceutical manufacturing industry has embraced the philosophy of 

“Quality by Design” [4.9(b)]. 

 

4.3 Polymorphism in Cocrystals 

With that said regarding the ease of controlling the design and production of cocrystals, 

polymorphism in cocrystals has been also reported [4.27 – 4.34].  Therefore, due to the 

increasing interest in cocrystals as pharmaceuticals, it becomes as important to investigate 

the polymorphic behaviour of cocrystals as it is for the component parts [4.27, 4.35].  

Using the CSD as a data source, information on the structural stability of known 

hydrogen-bonded systems can be used to predict the stability of newly constructed 

systems [4.36, 4.37].  It is reasonable to assume that confidence in a proposed structure 

will be higher if the prevalence of similar examples of intramolecular geometry and 

intermolecular interactions is high.  Applying a statistical assessment to hydrogen bond 

behaviour to complement experimental protocols could assist in identifying potential 

structural modifications and the likelihood of ‘hidden’ polymorphs being formed.  

Therefore, combining computational assessments with experimental processes could 

highlight whether sufficient screening has been carried out.   

 

There are different types of polymorphism in cocrystals some of which are described 

here; 
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4.3.1 Synthon Polymorphism 

When the hydrogen bond motifs of cocrystals differ, they are considered to be synthon 

polymorphs.  An example of this feature is shown for the co-crystals of 4-hydroxybenzoic 

acid/4,4’-bipyridine 

 

 

 

 

 

 

 

 

Figure 4.2; an example of synthon polymorphism, from [4.30b] 

 

4.3.2 Conformational Polymorphism 

If the conformation of one or more of the molecules within the cocrystals differ, this is 

classed as conformational polymorphism.  This feature is commonly exhibited with 

molecules having multiple degrees of conformational flexibility. 

 

This has been rationalised due to the fact that energies required to rotate bonds are similar 

in magnitude to the lattice energy differences between polymorphs.  Conformational 

polymorphism appears more frequently than synthon polymorphism [4.27]. 

 

4.3.3 Packing Polymorphism 

As the name suggests and as is the case with single component crystals, polymorphs are 

identified as packing polymorphs when their packing arrangements differ.  This is most 

commonly seen with when the molecule is a rigid structure.  

 

4.4 Cocrystal Polymorph Screening 

Design methods for co-crystals are multistage processes.  In order to select a suitable 

API/CCF system, there are many hurdles to overcome.  Some strategies for design include 

trial and error approaches, supramolecular synthon searches (using the CSD), Solubility 

Predictions [4.43, 4.45], computational prediction [4.46] and intermolecular interaction 

characterization [4.44]. 
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Figure 4.3; cocrystal design strategies.  From [4.20b]. 

 

4.4.1 Knowledge-based Screening Methods  

This technique involves assessing the predictability of interactions between proton 

acceptors and donors in neutral organic compounds [4.39, 4.40, 4.53 and 4.54].  This 

methodology is based on the empirical hydrogen-bonding rules laid out by Etter et al. 

[4.41]. 

 

 

 

 

Figure 4.4; identification of possible synthons is the first step.  Here is shown a homo-

synthon (left) and a hetero-synthon (right) [4.18]. 

 

In a similar approach [4.42] a two tier screening method was employed.  In tier 1, CCFs 

with the highest potential for hydrogen-bonding with the API were selected.  To add a 

level of diversity to this selection process, molecules with a range of molecular volumes 

were considered.  Successful combinations (cocrystal ‘hits’) provided the knowledge for 

the second tier of coformer selection.  In tier 2, further diversity is introduced by choosing 

new sets of coformers which have similar molecular structures to those which had proved 

successful in tier 1. 
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4.4.2 Hydrogen Bond Motif Searches 

H-bond motif searches, which are very similar to the idea expressed in 4.4.1, however, 

this approach uses Motif search technology within Mercury CSD [4.47] to search for 

competitive hydrogen-bonding groups. 

 

4.4.3 Multi Component Hydrogen-Bond Propensity  

In effect, this is also a knowledge based methodology which assesses and predicts the 

likelihood of hydrogen bond formation [4.40, 4.48].  The Hydrogen Bond Propensity 

(HBP) method is automated to calculate a quantitative interaction likelihood term, the 

“Multi-Component Score” whilst also considering other variables such as donor/acceptor 

competition, steric-hindrance and the extent of aromaticity.  The quantitative result is 

expressed as a probability (between 0 and 1) and the search can be tailored to the specific 

set of functional groups [4.22, 4.49]. 

 

 𝑀𝐶 𝑆𝑐𝑜𝑟𝑒 = (
𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑠𝑡

ℎ𝑒𝑡𝑒𝑟𝑜 − 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
) − (

𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑠𝑡
ℎ𝑜𝑚𝑜 − 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

)        (4.1) 

 

4.4.4 Molecular complementarity [4.50] 

The likelihood of cocrystals forming based on correlations between molecular properties 

of the molecules is evaluated.  Molecular properties such as shape and polarity are 

considered to be strong factors and co-crystal formation is thought to be likely if there is 

a high correlation.  Molecular complementarity appears to be a helpful tool when dealing 

with compounds which have weak hydrogen bonds or where hydrogen bonding is in 

competition with other intermolecular interactions such as strong stacking forces.  During 

the tests, molecular complementarity appeared to reduce the number of proposed co-

formers by over 40% implying it would be useful to insert as a filtering step before 

experimental screening. 

 

4.4.5 Cohesive Energy Density (CED) Measurements [4.51] 

Cohesive energy is simply described as the sum of forces holding a material intact or as 

the amount of energy required to break all of these interactions.  Therefore, the cohesive 

energy density (CED) is the cohesive energy per unit volume and in non-polar systems, 

the CED is used to calculate the solubility parameter (Equation 4.2). 

 

δ = (CED)0.5     (4.2) 
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In polar systems, it is necessary to include descriptions of the interatomic/intermolecular 

forces.  In this instance, the total solubility parameter is broken down into the following 

partial solubility parameters (Equation 4.3), also termed Hansen Solubility Parameters 

(HSPs); hydrogen bonds (δh), dispersion forces (δd) and polar interactions (δp). 

 

𝛿𝑡 =  (𝛿𝑑
2 + 𝛿ℎ

2  + 𝛿𝑝
2 )

0.5
    (4.3) 

 

The total solubility parameter is also known as the three-dimensional solubility 

parameter, and various methods have been developed to calculate this value [4.51, 4.52].  

A commonly used method to calculate the partial solubility parameters only requires 

knowledge of the materials chemical structure, the ‘Group Contribution Method’. 

 

HSPs are used to predict the miscibility of two components based on the principle that 

‘like dissolves like’ – compounds with similar δ values will likely be miscible.  As well 

as being a useful tool to select coformers in cocrystal screening processes, other 

applications of this method include predicting intestinal drug absorption properties and 

calculating permeation rates through human skin. 

 

4.5 Cocrystal Formation 

Numerous methods have been reported for generating cocrystals [4.42, 4.43b, 4.17, 4.37, 

4.55, 4.56, 4.26, 4.57, 4.58 and 4.68- 4.74], and a few of the main processes are listed 

here; 

• Dry grinding [4.59]/kneading [4.60, 4.38, 4.63] 

• Liquid-assisted or solvent drop grinding [4.59, 4.61 and 4.66] 

• Melt assisted grinding [4.62] 

• Solution methods including anti-solvents [4.64, 4.65, 4.67, 4.71] 

Cocrystallization from solution may be difficult if the solubility of one component differs 

significantly from the other.  Solvent/solute interactions may also hinder the 

cocrystallization process.  In these instances, it may prove advantageous to employ 

mechanochemical methods such as kneading or grinding.  In cases where catalytic 

amounts of liquid are added to the grinding mixture, improvements in yields and in 

crystallinity have been noted [4.75].  Polymorphism of the reactants and the cocrystal 

may be controlled by careful selection of this liquid.  Grinding experiments have been 

carried out to speculate on mechanochemical mechanisms of cocrystallization and the 

relative stabilities of different stoichiometric variations, i.e. when stoichiometric 
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variations interconvert, the relative stabilities are similar.  Therefore, when the difference 

in relative stabilities is large, the conversion should proceed in one direction only [4.59]. 

 

4.11 Definition of Cocrystals 

 

 

 

 

 

 

 

 

 

Figure 4.5; simple depiction of multicomponent systems, from [4.20b]. 

 

There have been numerous discussions regarding the term cocrystal and what that term 

means [4.16, 4.17, 4.22, 4.42 and 4.76].  In 2011 the FDA proposed guidance for industry 

on how to define a cocrystal.  Following this guidance, a paper was published from the 

discussions arising at the Indo-U.S. Bilateral Meeting on the Evolving Role of Solid State 

Chemistry in Pharmaceutical Science in 2012.  This discussion concluded that the FDA 

guidance to the definition of a co-crystal was too restrictive.  While it would be 

convenient for guidance to have three mutually exclusive classification systems for 

Polymorphs, Salts and Co-crystals, in reality, such distinctions do not exist.  In practical 

terms, the three classifications are found to overlap as shown in figure 6. 

 

An example used to illustrate this issue was the cocrystallization of Prozac (fluoxetine 

hydrochloride – a salt) and carboxylic acid cocrystal formers.  Multicomponent forms of 

the antifungal drug fluconazole with dibasic acids were also quoted in this text [4.77].  

The authors argued that although it would be possible to describe these compounds 

scientifically, complications would arise with the regulatory classifications.   
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In 2013, the FDA then published 

a non-binding recommendation 

which states a cocrystal to be 

“Crystalline materials composed 

of two or more molecules within 

the same crystal lattice” [4.78].  

In this document, co-crystals are 

treated as a “drug product 

intermediate” (DPI).  Applicants 

for regulation would need to 

provide two sets of data for API-

excipient molecular complexes 

to show that no ionic transfer is 

taking place. 

Figure 4.6; combinations of multicomponent systems from [4.20b]. 

 

The applicant is also required to show that the API is dissociated from the coformer prior 

to it being pharmacologically active [4.16].  The pharmaceutical industry would 

obviously prefer cocrystals be classified as APIs as opposed to DPIs, which has led to 

discussion as to the risks involved with the practical development of cocrystals [4.79]. 

 

The European Medicines Agency published similar guidance in 2014 which similarly 

states; 

 

“Although the detailed definition of cocrystals is still debated in the scientific literature, 

they are in general defined as homogenous crystalline structures made up of two or more 

components in a definite stoichiometric ratio where the arrangement in the crystal lattice 

is not based on ion pairing (as with salts).” [4.80] 
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Figure 4.7; the EMA defining a cocrystal, from [4.80] 

 

Despite the increased interest in designing pharmaceutical cocrystals [4.81], currently 

there are still very few approved pharmaceuticals as cocrystals being produced for 

commercial use.  The first example approved by the US-FDA is Entresto, launched by 

Novartis, prescribed for the treatment of chronic heart failure [4.82] and Ipragliflozin L-

proline, approved in Japan, has recently been approved worldwide [4.83]. 

 

‘Drug-drug cocrystals’ and ‘ternary cocrystals’ are sub-sets of cocrystals.  As the name 

suggest in drug-drug cocrystals, the coformer is also a bioactive molecule rather than a 

benign compound.  This arrangement may be desirable in combination therapies, or in 

order to counteract drug side effects [4.84 and 4.85].  Ternary cocrystals are formed when 

three neutral, solid state compounds in a fixed stoichiometry are ordered by hydrogen 

bonds.  While hydrogen bonding is most common, halogen bonds have been used and 

charge transfer interactions may also play a part in the ternary system [4.25]. 
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4.7 Urea and Hydroxybenzenes – a Review 

4.7.1 Urea 

Since its discovery in 1773, urea has become not only an extremely versatile but a most 

important chemical in all areas of industry, from agriculture to medicine.  It forms 

interactions with many different ‘guests’ and in the case of organic substances it develops 

strong hydrogen bonded networks.  Urea will readily form tunnels for suitable guest 

molecules to fit into but will recrystallize into its ‘pure crystalline structure’ if the guest 

is removed [4.86]. 

 

Urea crystallizes in a highly symmetrical model - Figure 8.  The unit cell parameters are 

a = 5.58 Å, c = 4.68 Å, the space group is P421m [4.100].  The urea molecules are seen 

to form columns along the c axis of the unit cell which are connected by hydrogen bonds.  

The connection uses one hydrogen atom from each NH2 group of the neighbouring 

molecule donating to the O atom - Figure 4.6 (bond type A = 2.06Å).  The structure 

becomes further connected by the columns being hydrogen bonded together to form a 

sheet in the ac plane - Figure 4.7 (bond type B = 1.99Å).  In this structure, all possible 

hydrogen bonds are formed and an unusual feature is that the oxygen atom accepts four 

hydrogen bonds. 

 

 

 

 

 

 

 

 

 

Figure 4.8; urea crystal structure.  Figure 4.9; columns parallel to the c axis 

of urea connected by hydrogen bonds. 
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Figure 4.10; sheets of urea in the ac plane formed from the columns along the c axis 

being connected by hydrogen bonds. 

 

Prior to this study, the family of hydroxybenzene:urea cocrystals had already been 

investigated well and these results have been used for comparative purposes.  The only 

unsolved dihydroxybenzene:urea co-crystal structure was that of catechol urea, the focus 

of this study.  Resorcinol and the gamma form of quinol both compared well with the 

properties found for catechol.  The structures of the solved dihydroxybenzene:urea 

cocrystals appeared to have similar unit cell volumes and ratios of starting materials so it 

seemed a reasonable assumption that catechol urea would also behave in a similar nature.  

In order to attain the lowest possible potential energy it seems reasonable to also assume 

that the fullest complement of hydrogen bonds would be achieved.  However, when the 

main body of the molecule under investigation is bulky or a rigid structure, this might not 

be possible [4.98].  This was shown to be the case for some of the hydroxybenzene 

molecules.  In this instance, the phenyl ring would not distort easily in order to aid the 

formation of the hydrogen bonding system.  Unusual or unexpected features may be 

observed as a result.  A summary of physical properties is compiled in Table 1 

 

4.7.2 Phenol 

There have been two monoclinic crystal structures of phenol reported in the Cambridge 

Structural Database [4.87].  The unit cell parameters of the first monoclinic form are a = 

6.020 Å, b = 9.040 Å, c = 15.180 Å, γ = 90.36°, space group P21.  There are seven phenol 

molecules within the unit cell.  There appears to be three different types of phenol 

molecules and these are shown in Figure 12, type A has a C1-O1 bond length of 1.374Å 

and there are three of these within the unit cell.  Type B has a C7-O2 bond length of 
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1.376Å, type C has a C13-O3 bond length of 1.365Å, and there are two of each type of 

molecule within the unit cell.  Hydrogen bonds form chains of molecules along the a axis.  

There are three lengths of hydrogen bond, repeating along the chain in the order 1.806Å, 

1.976Å, 1.887Å. 

 

  

Figure 4.11; crystal structure of phenol  Figure 4.12; type A in red, type B in  

CSD reference PHENOL03. blue, type C in yellow. 

     

Figure 4.13; hydrogen bonds forming chains of phenol molecules along the a axis. 

 

The second monoclinic structure has unit cell parameters of a = 11.61Å, b = 5.442 Å, c = 

12.217Å, β = 101.47°, space group P21.  There are six phenol molecules within the unit 

cell.  Again there appear to be three different types of phenol molecules, type A has a C1-

O1 bond length of 1.351Å, there are two of these within the unit cell.  Type B has a C7-

O2 bond length of 1.353Å, type C has a C13-O3 bond length of 1.338Å, also two of each 

type of molecule within the unit cell.  Hydrogen bonds form chains of molecules along 

the b axis.  There are two lengths of hydrogen bond, alternating along the chain in the 

order 2.232 Å, 2.2.44Å. 
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Figure 4.14; crystal structure of phenol CSD reference PHENOL11. 

 

  

Figure 4.15; hydrogen bonded chains  Figure 4.16; type A in red, type B 

of phenol molecules along the a axis. in blue, type C in yellow. 

 

4.7.3 Diphenol:Urea 

The crystal structure of this co-crystal was reported in 1987, the unit cell parameters are 

a = 26.93 Å, b = 6.65Å, c = 7.43 and β = 92º, space group Cc [4.88].  There are three 

molecules in the asymmetric unit (one urea two phenol) and two asymmetric units in the 

unit cell - Figure 4.14.  As Figure 4.14 shows there is no possible bonding between the 

urea molecules and there are two columns of phenol molecules in between each column 

of urea molecules. 

 

 

Figure 4.17; crystal structure of diphenol.urea. 
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A urea molecule uses its oxygen lone pairs to hydrogen bond to two phenol molecules 

forming a Ou···Hp-O interactions (1.822Å, 1.849 Å) and secondly by donating one 

hydrogen atom from both NH2 groups to an oxygen on two more phenol molecules to 

form NHu···Op (2.108 Å, 2.251 Å).  Ou and Hu are the urea oxygen and urea hydrogen 

respectively, Hp is the phenol donating hydrogen and Op is the phenol oxygen.  This 

interaction of one urea molecule to four phenol molecules forms chains along the b axis 

Figure 4.15.  The structure is further expanded when the urea molecule creates its fifth 

hydrogen bond with another sheet forming NHu···Op bond (2.292 Å). 

 

  

Figure 4.18; hydrogen bonding chain network in diphenol urea. 

 

  

Figure 4.19; hydrogen bonding sheets in diphenol urea. 

 

4.7.4 Resorcinol 

Two orthorhombic forms of resorcinol have been reported in the Cambridge Structural 

Database [4.89] 

 

The first, α-form was reported in 1936 with the co-ordinates published in 1973.  The unit 

cell dimensions are a = 10.53Å, b = 9.53Å, c = 5.66Å, space group Pna.  There are four 

molecules within the unit cell with the hydroxyl groups on each molecule directed away 

from each other.  The Oxygen atoms in the hydrogen bonding hydroxyl groups are 



147 

approximately 2.70Å apart and each resorcinol molecule is attached to four other 

molecules.  The four molecules do not create a closed unit. The molecules create 

hydrogen bonds with other molecules in adjoining unit cells to create a ‘spiral’ effect 

along the c-axis.  These spirals are then connected through further hydrogen bonding.  

 

  

Figure 4.20; crystal structure of  Figure 4.21; spirals of resorcinol molecules 

resorcinol (α-form). along the c axis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.22; spirals along c connected by hydrogen bonds along the a-axis. 

 

The second, β-form was reported in 1938.  The unit cell dimensions are a = 7.81Å, b = 

12.61Å, c = 5.42Å, space group Pna.  There are four molecules within the unit cell with 

the hydroxyl groups on each molecule pointing in the same direction, deviating slightly 

from the plane of the ring structure.  The resorcinol molecules form hydrogen boneded 

chains along the b-axis (1.702Å) with each molecule being attached to two other 

resorcinol molecules.  These chains are further hydrogen bonded to other resorcinol 

chains along the a axis (1.78Å). 

 



148 

  

Figure 4.23; crystal structure of  Figure 4.24; hydrogen bonded chains along the b-

axis. resorcinol (β-form). 

 

Figure 4.25; hydrogen bonded chains connect along the a-axis. 

 

4.7.5 Resorcinol.Urea 

The crystal structure of resorcinol:urea is shown in figure 26, the cell is orthorhombic 

belonging to the space group P212121 with parameters of a = 7.142Å, b= 7.798Å and c 

= 15.428Å [4.90].  There are two molecules in the asymmetric unit (1 resorcinol 1 urea) 

and there are four asymmetric units in the unit cell.  The structure is built up from columns 

of resorcinol and columns of urea running along the b axis with two columns of resorcinol 

between each urea column.  The hydrogen bonding network is constructed by a urea 

molecule using its oxygen atom to accept the hydrogens from two resorcinol molecules 

forming an Ou···Hr-O bond (1.84 Å), which makes the isolated columns form chains 

along the b axis Figure 4.18.  These chains are interconnected along the c axis by more 

hydrogen bonds forming between a resorcinol oxygen atom and a urea hydrogen 

Or···HuN, (2.33Å). 
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Figure 4.26; crystal structure of  Figure 4.27; chains of resorcinol and urea 

resorcinol:urea. molecules along the b axis 

 

 

Figure 4.28; sheets forming along the c axis. 

 

4.7.6 Quinol 

There are three published forms of hydroquinone (quinol) [4.91], these are the trigonal 

alpha, the trigonal beta and the monoclinic gamma forms. 

 

The alpha form of quinol has unit cell parameters a = b = 38.46Å, c = 5.65Å, γ = 120.00°, 

space group R-3 with three molecules in the asymmetric unit.  Two of the molecules are 

involved in making ‘cages’ resulting in a rather open structure, while the third forms a 

double helix.  The cages (1.73Å) and helices (1.83Å) are hydrogen bonded together 

(1.77Å) along the c-axis resulting in the stable polymorph which is found at room 

temperature. 
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Figure 4.29; crystal structure of alpha quinol. 

 

 

Figure 4.30; hydrogen bonding within alpha quinol. 

 

 

 

 

 

 

 

 

 

 

Figure 4.31; hydrogen bonded ‘cage’ and helix within alpha quinol. 
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The beta modification of quinol has unit cell 

parameters a = b = 16.61Å, c = 5.47Å, γ = 

120.00°, space group R-3, with three molecules 

in the asymmetric unit.  Cyclic ‘cage’ structures 

each comprising six molecules form within the 

unit cell via hydrogen bonds (1.90 Å) creating 

tunnels running along the c axis, similar to those 

seen in the alpha modification. 

Figure 4.32; crystal structure of beta quinol showing the hydrogen bond network. 

 

The gamma form of quinol has unit cell parameters a =8.07Å, b = 5.20Å, c = 13.20Å, β 

= 107.00°, space group P21/c.  There are sheets of molecules formed through hydrogen 

bonding along the b axis (1.83Å) but these sheets are not further connected. 

 

 

Figure 4.33; Crystal structure of gamma quinol. 

 

 

 

 

 

 

 

 

 

Figure 4.34; Hydrogen bonded sheets within gamma quinol. 
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4.7.7 Quinol Urea 

Quinol:urea forms a 1:1 complex with urea in a monoclinic unit cell of dimensions a = 

17.18Å, b = 6.601Å, c = 7.341Å and β = 94.4º [4.92].  The space group is P21/c with two 

molecules in the asymmetric unit and four asymmetric units in the unit cell.  The crystal 

structure is shown in figure 32. 

 

 

Figure 4.35; crystal structure of quinol:urea and Figure 4.36; hydrogen bonded chains 

in quinol:urea. 

 

The network of hydrogen bonds is built up from 

the O-Hq···Ou interaction (1.76Å and 1.80Å) 

along the a axis where two quinol molecules 

donate a hydrogen atom to the urea oxygen atom.  

Sheets in the ab plane are then formed from the 

hydrogen bond between N-Hu···Oq (2.08Å and 

2.20Å) where two quinol molecules are bonded 

by one hydrogen atom from both NH2 groups in 

a urea molecule. 

Figure 4.37; hydrogen bonded sheets in quinol.urea. 

 

4.7.8 Catechol 

Catechol has been used extensively in numerous industrial applications, including 

photography, pesticides, perfumes and medicines [4.93], as an intermediate or a 

precursor.  Catechol occurs naturally in small amounts and is often synthesized for 

industrial purposes. 

 

The structure of catechol (o-dihydroxybenzene) was published in 1971 [4.94] with unit 

cell dimensions of a = 10.082Å, b = 5.518Å, c = 10.943Å, β = 119.00° with space group 

P 21/c.  The molecules form hydrogen bonded chains along the c axis (2.306Å between 
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HC1—OC1’, and 1.991Å between HC2—OC1).  Two chains are then hydrogen bonded 

via OC2—HC3 and OC3’—HC2’(2.124Å). 

 

 

Figure 4.38; crystal structure of catechol. 

 

 

Figure 4.39; hydrogen bonding along the c-axis in catechol. 

 

   

Figure 4.40; hydrogen bonding along the bc plane in catechol.
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Table 4.1; physical properties of published data for urea, phenol, dihydroxybenzenes and their co-crystals. 

Parameter

Phenol Diphenol Urea Resorcinol Resorcinol Urea Quinol Quinol Urea Catechol Urea

Cell Edges a, b, c [Å]

6.02, 9.04, 15.18 26.93, 6.64, 7.42

 form                      

10.53, 9.53, 5.66     

  form                  

7.91, 12.57, 5.50

7.14, 7.79, 15.42

 form                      

38.46, 38.46, 5.65      

  form                  

16.61, 16.61, 5.47       

 form                          

8.07, 5.20, 13.20

17.18, 6.60, 7.34 10.94, 5.51, 10.07 5.66, 5.66, 4.71

Cell Angles, ,  ,  

90.0, 90.0, 90.0 90.0, 92.3, 90.0
both forms                   

90.0, 90.0, 90.0
90.0, 90.0, 90.0

 form                     

90.0, 90.0, 120.0          

  form                    

90.0, 90.0, 120.0             

 form                          

90.0, 107.0, 90.0

90.0, 94.4, 90.0 90.0, 119.0, 90.0 90.0, 90.0, 90.0

Cell Volume [Å^3] 826 1328

  form                      

568                             

  form                  

547

859

 form                    

7238                                      

  form                   

1308.5                            

 form                   

529.7             

830 530.81 151.01

Space Group P 2221 Cc
both forms                   

Pna
P 212121

 form                         

R-3                              

  form                             

R-3                                

 form                           

P 21/c

P 21/c P 21/a P -421m

Melting Point [°C] 43 60.8

  form                      

116                             

  form                  

109110

110

 form                      

172-175                              

  form                          

166                               

 form                          

169

120130 105 133-135

Hydrogen Bond Length [Å] 2.20
2.61, 2.70, 2.95, 

3.05

  form                      

2.70                             

  form                 

1.70, 1.78

2.696, 2.679, 

2.944, 3.128

 form                   

1.73, 1.83, 1.77                              

  form                          

1.90                               

 form                          

1.83

1.76, 1.80, 2.08, 2.20 2.12, 2.31, 1.20 2.14, 2.33

Compound
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4.7.9 Examination of hydroxybenzene molecular geometry 

Since the backbone of a hydroxybenzene is a rigid structure, the distortion of the flexible 

O-H bond away from the plane of the benzene ring was assessed.  This flexibility would 

be the best way to optimize the position of the molecule in order to achieve the most 

hydrogen bonds which would stabilize the overall structure. 

 

 

 

 

 

 

 

Figure 4.41; Comparison of the molecular structure of phenol in the crystal structure 

(red) and in the cocrystal with urea (green).  Figure 4.42; Comparison of the molecular 

structures of phenol in the crystal structures (red, yellow) and in the cocrystal with urea 

(green). 

 

 

 

 

 

Figure 4.43; comparison of the molecular structures of quinol in the crystal structures 

(red, yellow, blue) and in the cocrystal with urea (green). 

 

Table 4.2; Bond lengths in Å, bond angles in ° and torsions in °. 

Hydroxyl group id Model C-O Bond Length O-H Bond Length C-O-H Bond 

Angle 

C-C-O-H Torsion 

phen03 red 1.365 0.737 102.5 -179.9 

fesraw green  1.378 0.795 128.3 -175.6 

resora09 red  1.341, 1.372 1.003, 1.000 111.1, 110.2 161.7, 13.0 

resora13 yellow 1.347, 1.363 0.984, 0.981 113.3, 112.3 173.5, -177.0 

bodsao green 1.372, 1.375 0.899, 0.887 109.1, 106.0 -167.7, -0.2 

hyquin yellow 1.394, 1.394 1.072, 1.072 116.5, 116.5 169.9, 10.0 

hyquin02 red 1.377, 1.377 0.783, 0.783 111.6, 111.6 167.9, 12.9 

hyquin05 blue 1.375, 1.303 0.791, 0.909 114.4, 108.5 -168.3, -21.2 

quolur green 1.379, 1.379 0.912, 0.912 106.6, 106.6 -180.0, 1.0 

catcol12 red 1.369, 1.373 0.796, 0.814 111.1, 106.4 176.9, -170.9 
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Torsion energies of phenol, resorcinol, quinol and catechol were calculated when the 

hydrogen atom(s) were rotated in steps of 10° and these results are shown in Graphs 1A 

to 1D.  Combinations of methods AM1, PM3 and EF, BFGS were used in all examples.  

AM1 (Austin Model 1) and PM3 (Modified Neglect of Diatomic Overlap Parametric 

Model Number 3) are methods used to determine the electrostatic distribution of a model.  

While both methods have their own limitations, they are both improvements on the 

MINDO and NDDO methods.  EF (Eigenvector Following) and BFGS (Broyden-

Fletcher-Goldfarb-Shanno) are optimization techniques based on variations of the 

Newton-Raphson Gradient methods. 

 

Graph 4.1A; calculating the torsion energy of phenol using various combinations of 

optimization and electrostatic distribution descriptors. 

 

 

Graph 4.1B; calculating the torsion energy of resorcinol using various combinations of 

optimization and electrostatic distribution descriptors. 
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4.1C; calculating the torsion energy of quinol using various combinations of optimization 

and electrostatic distribution descriptors. 

 

 

4.1D; calculating the torsion energy of catechol using various combinations of 

optimization and electrostatic distribution descriptors 

 

 

-66.5

-66

-65.5

-65

-64.5

-64

-63.5

-63

-62.5

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

T
o

rs
io

n
 E

n
er

g
y

 [
K

ca
l/

m
o

l]

Torsion Angles [degrees]

Quinol Quinol, (BFGS),

AM1, 7c14v

Quinol, (BFGS),

AM1, 7v14c

Quinol, (BFGS),

PM3, 7c14v

Quinol, (BFGS),

PM3, 7v14c

Quinol, (EF),

AM1, 7c14v

Quinol, (EF),

AM1, 7v14c

Quinol, (EF),

PM3, 7c14v

Quinol, (EF),

PM3, 7v14c

O

H7

O

14H

-68

-66

-64

-62

-60

-58

-56

-54

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

T
o

rs
io

n
 E

n
er

g
y

 [
K

ca
l/

m
o
l]

Torsion Angle [degrees]

Catechol Catechol, (BFGS),

AM1, 5c14c

Catechol, (BFGS),

AM1, 5v14c

Catechol, (BFGS),

PM3, 5c14v

Catechol, (BFGS),

PM3, 5v14c

Catechol, (EF), AM1,

5c14v

Catechol, (EF), AM1,

5v14c

Catechol, (EF), PM3,

5c14v

Catechol, (EF), PM3,

5v14c

O

H5

O

H14



158 

A simple piece of FORTRAN code was compiled to calculate the lattice energy of phenol, 

resorcinol, catechol, diphenol urea and resorcinol urea when the rigid molecules were 

rotated around the published co-ordinates.  This was also carried out for the generated 

structure for catechol urea to assess the located energy minima.  These results are shown 

in Graphs 2A to 2F. 

 

 

4.2A; calculating the energy gradients of phenol when the asymmetric unit is rotated 

around the x, y and z axes. 

 

 

4.2B; calculating the energy gradients of diphenol urea when the asymmetric unit is 

rotated around the x, y and z axes. 

C
a
lc

u
la

te
d

 G
ra

d
ie

n
t 

(
E

n
er

g
y

 

[k
ca

l/
m

o
l]

 /
  
 

R
o

ta
ti

o
n

  
[º

])

Degrees Rotated Around Each Axis

Phenol - Calculated Gradients

x axis

y axis

z axis

C
a

lc
u

la
te

d
 G

ra
d

ie
n

t 
(

E
n

er
g
y
 

[k
ca

l/
m

o
l]

  
/ 

 
R

o
ta

ti
o
n

 [
º]

) 

Degrees Rotated Around Each Axis 

Diphenol Urea Calculated Gradients

x axis

y axis

z axis



159 

 

4.2C; calculating the energy gradients of resorcinol when the asymmetric unit is rotated 

around the x, y and z axes. 

 

 

4.2D; calculating the energy gradients of resorcinol urea when the asymmetric unit is 

rotated around the x, y and z axes. 
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4.2E; calculating the energy gradients of catechol when the asymmetric unit is rotated 

around the x, y and z axes. 

 

 

4.2F; calculating the energy gradients of catechol urea when the asymmetric unit is 

rotated around the x, y and z axes. 
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4.8 Experimental Considerations – Catechol Urea 

4.8.1 Solvent Crystal Growth 

In the first instance, catechol:urea was crystallized from a solution of distilled water.  

Equal ratios of the starting materials were mixed together in water and left to slowly 

evaporate.  Since oxidation during crystallization may arise, oxygen free nitrogen was 

bubbled through the solvent before use and during the experiment.  The sample was also 

warmed gently to promote evapouration.  The resulting crystals were purple in colour and 

were analysed using differential scanning calorimetry and x-ray powder diffraction. 

 

4.8.2 Solid State Reactions 

Following the set of solvent experiments, a solid state reaction was carried out where 

samples of the starting materials catechol and urea were accurately weighed and ground 

together in a mortar and pestle from one minute for up to forty minutes.  Samples were 

collected at 5 minute intervals and analysed using differential scanning calorimetry and 

x-ray powder diffraction. 

 

4.9 Theoretical Considerations – Generating a Structure of Catechol/urea 

4.9.1 Trial Structure Generation 

The experimental data collected for the catechol:urea complex was indexed using 

TREOR and DICVOL to define the unit cell parameters and a suitable space group.  The 

published data for resorcinol:urea was also indexed using these programs for comparison 

of a known structure.  Since there were two independent molecules in the asymmetric 

unit, trial structures were generated using the ‘in-house’ simulated annealing program 

previously validated with primidone and carbamazepine. 

 

At this time, the systematic search method could only cope with one independent 

molecule in the asymmetric unit.  If this method was to be used for trial structure 

generation, the arrangement of the catechol molecule with respect to the urea molecule 

would have needed to be determined.  The search could then proceed with the two 

molecules being considered as a single rigid unit.  Since the arrangement of the catechol 

and urea molecules wasn’t previously known, it was preferable to search the unit cell 

keeping the molecules independent from each other.  The published data for 

resorcinol/urea and quinol/urea were also searched for comparative purposes. 
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4.9.2 Post Search analysis 

Once a structure for catechol/urea had been generated using the simulated annealing 

search, it was optimized using the crystal packer module in Cerius2.  Any significant 

changes were noted, starting and final atomic positions were compared to see how far the 

optimization had moved the molecules which would indicate how well the search was 

performing. 

 

4.9.3 Refinements 

The refinement package GSAS was used throughout this study and is discussed in Chapter 

2.  It allowed for the molecular positions, unit cell parameters and peak profile fits to be 

optimized.  The diffraction pattern using these new parameters was simulated and 

compared with the experimental pattern.  It is hoped that the refinement does not produce 

significant changes and that the trial structure generated is close to the optimized 

structure. 

 

4.10 Results 

4.10.1 Differential Scanning Calorimetry 

A series of experiments using the differential scanning calorimeter were carried out 

alongside the x-ray powder diffraction analysis.  Ground samples of catechol urea were 

extracted at the beginning of grinding (after 1minute) and thereafter at 5 minute intervals.  

These samples were compared with the crystals grown from crystallizing catechol and 

urea using water as a solvent (shown in the series of Figure 45).  A gradual change in the 

content of the samples was seen through a shift in the melting point of the samples. 

  

Figure 4.44A; sample of urea powder. Figure 4.44B; sample of catechol powder. 
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Figure 4.45A; sample of ground catechol:urea after 1 minute.   Figure 4.45B; sample of ground catechol urea after 5 minutes. 

    

Figure 4.45C; sample of ground catechol urea after 10 minutes. Figure 4.45D; sample of ground catechol urea after 15 minutes. 
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Figure 4.45E; sample of ground catechol urea after 20 minutes. Figure 4.45F; sample of ground catechol urea after 25 minutes. 

 

    

Figure 4.45G; sample of ground catechol urea after 30 minutes. Figure 4.45H; sample of ground catechol urea after 35 minutes.
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4.10.2 Indexing Results 

The x-ray powder diffraction pattern was calculated in Cerius2 from the crystal structure 

of resorcinol urea obtained from the crystal structure database.  The results are compared 

in table 3. 

 

Resorcinol Urea 

Parameter Published Data DICVOL TREOR 

a (Å) 7.14 15.39 15.39 

b (Å) 7.80 7.79 7.79 

c (Å) 15.25 7.14 7.14 

 (°) 90.00 90.00 90.00 

ß (°) 90.00 90.00 90.00 

 (°) 90.00 90.00 90.00 

Space Group P212121 P212121 P212121 

Figure of Merit N/a 50.90 47.00 

V (Å3) 849.21 855.46 855.64 

 

Table 4.3; Indexed data for simulated powder diffraction pattern of resorcinol:urea. 

 

 

Figure 4.46; simulated x-ray powder diffraction pattern for resorcinol urea. 
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The powder diffraction data collected from both the solvent and ground forms of catechol 

urea were indexed and the results shown in table 4.  Compared to the data set calculated 

for resorcinol urea, catechol urea seems to have similar bond lengths and cell volume. 

 

Catechol Urea 

Parameter DICVOL TREOR 

a (Å) 19.21 19.22 

b (Å) 6.26 6.25 

c (Å) 7.18 7.18 

 (°) 90.00 90.00 

ß (°) 97.96 97.90 

 (°) 90.00 90.00 

Space Group P21/a P21/a 

Figure of Merit 16.40 33.00 

V (Å3) 854.82 854.26 

 

Table 4.4; unit cell parameters generated from experimental data for catechol urea. 

 

 

Figure 4.47A; X-ray powder diffraction pattern of a sample of catechol urea 1:1, ground 

together for 40minutes. 
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Figure 4.47B; X-ray powder diffraction pattern of a sample of catechol urea 1:1 

crystallized using water as a solvent. 

 

4.10.3 Trial Structure Generation 

Cocrystal 

Maximum step sizes 
Cut-off 

Parameter 

Translations 

[fractional co-

ordinates] 

Rotations [º] Torsions [º] Rwp 

Catechol/urea 0.5 3 0.25 0.97 

Table 4.5; search parameters used in the simulated annealing searches for catechol/urea. 

 

Top Trial Structure Rwp 

Catechol/urea (solvent) 0.995 

Catechol/urea (ground) 0.990 

Table 4.6; top structures generated from simulated annealing searches for catechol urea. 

 

Examining the geometry of the molecular structures of dihydroxybenzenes revealed that 

the individual molecular geometry did not vary significantly from the cocrystal geometry.  

Based on this, the hydrogen atoms in the simulated structure of catechol urea were 

positioned in the same conformation as found in catechol. 
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Figure 4.48A; the top simulated structure based on powder pattern fit for catechol urea 

from solvent crystallization.  

 

Two catechol molecules connect via hydrogen bonds with two urea molecules in the basic 

building unit within the unit cell.  OC•••HU = 2.099Å, O-HC•••OU = 2.005Å, O-HC•••OC 

= 2.271Å.  This unit is further hydrogen bonded (O-HC’•••OU = 2.010Å, OU•••HU’ and 

HU•••OU’ = 2.081Å) to similar units along the c-axis.  In this structure only one hydrogen 

atom on each urea molecule cannot form a hydrogen bond. 

 

 

Figure 4.48B; basic hydrogen bonded unit of catechol urea from solvent crystallization. 
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Figure 4.48C; comparison (blue) of experimental (red) and simulated (yellow) powder 

diffraction patterns for catechol urea (via solvent crystallization). 

 

 

Figure 4.49A; the top simulated structure based on powder pattern fit for catechol urea 

from grinding. 
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Figure 4.49B; Basic hydrogen bonded unit of catechol urea from grinding. 

 

Two catechol molecules hydrogen bond with two urea molecules in the basic building 

unit within the unit cell.  OC•••HU = 2.205 and 2.121Å, O-HC•••OU = 1.904Å, O-HC•••OC 

= 2.271Å.  This unit is further hydrogen bonded (O-HC’•••OU = 2.007Å, OU•••HU’ and 

HU•••OU’ = 2.079Å) to similar units along the c-axis.  Again, there is only one hydrogen 

atom on the urea molecule unable to form a hydrogen bond in this structure. 

 

 

Figure 4.49C; comparison (blue) of experimental (red) and simulated (yellow) powder 

diffraction patterns for catechol urea ground sample. 
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There was a good correlation between the experimental and simulated x-ray powder 

diffraction patterns.  The structure generated from the simulated annealing searches was 

put forward for GSAS refinement. 

 

 

Figure 4.50; comparison of the crystal structures generated for catechol urea from 

experimental powder pattern data.  Crushed sample (yellow), crystallized sample 

(default). 

 

For comparison the MOPAC charges were calculated for crystallized catechol urea.  The 

lattice energy was calculated using the Dreiding potential.  The initial energy was 

calculated at -91kcal/mol (22.6kcal/mol/cell) and the resulting ‘optimized’ structure was 

-128kcal/mol (32kcal/mol/cell).  However, when the structure determined from powder 

pattern data was compared to the optimized structure based on lattice energy, the 

differences were significant.  The urea molecule is translated across the c axis and there 

is a rotation in the catechol position.  This difference was also shown in the simulated 

powder diffraction data for the optimized structure when compared to the experimental 

data. 
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Figure 4.51A; Comparison of the structure generated for catechol urea based on powder 

pattern fit (default) and the optimized structure calculated based on lattice energy 

(magenta) 

 

 

Figure 4.51B; Comparison of the x-ray powder data for catechol urea based on powder 

pattern fit (experimental) and the optimized structure calculated based on lattice energy 

(simulated). 

 

Hydrogen positions for the generated cocrystal structure from powder diffraction data 

were kept the same as for the catechol crystal structure.  However, a brief study was 

completed into how the structure would differ if the hydroxyl groups were facing in 

opposite directions instead.  Limited information would be available from the powder 

diffraction patterns in this instance since only a hydrogen atom was being moved. 
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Figure 4.52; structure of catechol urea with a rotated hydroxyl group. 

 

Two catechol molecules form hydrogen bonds with two urea molecules in the basic 

building unit within the unit cell.  OC•••HU = 2.214 and 2.118Å, NU•••HC-OC = 2.343Å 

and 2.435Å OU•••HU = 2.086Å.  This unit is further hydrogen bonded (O-HC’•••OU = 

2.002Å) to similar units along the c-axis.  The interactions are generally over slightly 

longer distances in this structure and the interaction between O-HC•••OU and O-HC•••OC 

have disappeared.  The urea molecule has one hydrogen atom unable to participate in any 

hydrogen bonding.  The hydroxyl group on catechol involved in linking the chains of the 

basic unit together only utilizes the hydrogen atom, the oxygen atom remains unused.  In 

the structure originally proposed, this oxygen atom is hydrogen bonded to the catechol 

hydrogen in the adjacent hydroxyl group.  The calculated lattice energy of this structure 

is -53kcal/mol reducing to -97kcal/mol after optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 



174 

4.10.4 GSAS Refinements of Generated Trial Structures 

Finally, the refined profile simulation resulted in an Rwp(–back) value of 4.74%.  The 

profile difference plot is illustrated in figure 53, and the reduced 2 value is 5.327. 

 

 

Figure 4.53; profile difference plot of catechol.urea. 

 

 

Figure 4.54; screen results from GENLES.  
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4.11 Discussion of Results 

The aim of this chapter was to determine the structure of the cocrystal catechol urea using 

x-ray powder diffraction coupled with molecular modelling.  The steps involved were; 

• Generation of material for x-ray powder diffraction. 

• Collection of good quality powder diffraction data for indexing and comparison 

with simulated results. 

• Generating a molecular model, selection of a force field and assignment of atomic 

charges for this model. 

• Random searching of the unit cell determined from the indexing step. 

• Optimization and refinement of results. 

• Comparison of simulated data with experimental data. 

 

Two methods were used to generate cocrystals and these were dry grinding and 

crystallization from solution.  These methods are well established and are both widely 

used in industry [4.7]. 

 

There are advantages and disadvantages to both methods [4.7, 4.37].  Cocrystallization in 

solvents may become problematic if the solutes differ significantly in solubility.  

However, since urea and catechol are both readily soluble in water, this factor did not 

seem to be a concern in this instance.  For future experiments, it may be of interest to 

generate cocrystals from a variety of solvents at different temperatures.  Fast-cooling and 

slow-cooling crystallization from hot saturated solutions might reveal different 

polymorphs of this cocrystal.  All solvent experiments in this study were carried out at 

just above room temperature, gently warming the solution to promote dissolution, without 

any attempt to regulate temperature stability.  Sample grinding was carried out without 

any addition of solvent and it has been noted that there are many examples where liquid 

assisted grinding methods have shown more success than dry grinding [4.59, 4.61 and 

4.66]. 

 

The series of spectra in figure 45 show a transition of the mixture from sampling after 

short grinding times.  Gradually, this transition develops over a period of 35 minutes so 

that the results from DSC experiments eventually compare better with the crystals grown 

from evaporation.  Grinding over more time and sampling the mixture for x-ray powder 

diffraction experiments could also be of interest in any further work.  There is a risk in 

mechanochemical crystallization that friction can generate enough heat to allow form 
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transformations but the sample taken after 35 minutes seemed to be in good comparison 

with the cocrystal from solvent evaporation. 

 

The generation of the unit cell parameters from indexing multiple samples showed 

consistent results for both crystallization methods. 

 

The molecular model for catechol urea was developed using the individual crystal 

structures stored in the CSD for the backbone of catechol and the urea molecule.  The 

reasoning behind this was that there are two sets of forces under consideration during 

crystal structure determination; the intramolecular forces and the intermolecular forces.  

The intramolecular forces are usually on a much greater scale than the weaker 

intermolecular forces.  Covalent bond lengths and angles will rarely move significantly 

between polymorphic forms as too much energy is required than can be gained by a 

change of intermolecular bonding.  In this study the flexible search would adjust any 

torsion angles and so the starting geometry for the OH groups was initially set to be in 

the same plane as the phenyl ring.  For larger, more complex molecules where there are 

more degrees of freedom than in this study, it is common to optimize the covalent bonds 

and keep the flexible groups in a ‘neutral’ position as a starting point. 

 

The MOPAC charge set and Dreiding force field [4.96] were used in energy calculations 

as these have been used throughout the previous validation of the simulated annealing 

work.  Also, Dreiding had shown to be parameterized well for hydrogen bonded systems.  

For smaller molecules, these methods work well however, currently there are more 

sophisticated quantum mechanical methods available to evaluate the three-dimensional 

molecular structure.  DFT has also reduced the time taken to carry out such evaluations, 

pushing the boundaries of the size of molecules for which quantum mechanics can be 

used [4.97 – 4.102]. 

 

During crystal structure searches, the computer program is moving the molecules around 

the unit cell and evaluating whether the structure could be plausible based on predefined 

selection criteria.  In this study the unit cell parameters were maintained throughout all 

searches but these are also parameters which may be altered throughout certain searches.  

The degrees of freedom added to the searches in this study were translations along the 

three axes, rotations around three directions and rotations of the hydrogens around the O-

H bonds.  Only the space group defined by indexing was used in the searches although it 
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is agreed that this is a restrictive approach.  Often multiple searches are carried out using 

the same molecular structure but for the most commonly encountered space groups.  This 

is information which is gathered from the CSD.  The drawbacks to this approach too is 

that less common space groups will be missed and there are now methods which are 

capable of searching all 230 space groups for one molecular starting structure [4.100].  A 

further approach is to search only in P1 and apply any symmetry considerations post 

search.  These two methods still require multiple searches if the number of molecules in 

the asymmetric unit is unknown however. 

 

There are drawbacks to using random search methods.  While they are capable of covering 

large areas there is the danger that the same area is searched multiple times while other 

areas are overlooked.  There is no way of knowing when a complete search of the unit 

cell has been achieved and so multiple searches are usually employed to increase this 

likelihood.  Multiple random searches were still found to be faster than a fine grid search 

in this study however with the advent of parallel computing and more powerful 

processors, this may well have changed.  The mid ground between these two searching 

methods is the ‘quasi-random’ or ‘sobol’ searches [4.103].  These give a better 

distribution than a truly random search but are still more random than the grid search. 

 

The most common selection criterion for crystal structure generation is usually the 

calculated lattice energy [4.97 – 4.102].  In this study the lattice energy was calculated 

assuming that the system was static and all atoms were spherical.  This is a very simplistic 

approach and over time, more elaborate and elegant methods of modelling these 

interactions have been developed and are now routine [4.104].  For each system under 

investigation the ease of implementation and use of a parameter set should be optimized 

along with the computational expense in order to balance the needs of accuracy and 

simplicity.  The success of a force field usually lies with choosing the best empirical data 

(parameter set) to represent the molecule under investigation.  The drawback to using 

empirical data sets is that they have usually been collected at room temperature.  Crystal 

structure searches are assumed to be at absolute zero and so inaccuracies due to poor data 

parameterization will inevitably occur.  Newer methods use quantum mechanical 

approaches to create model potentials.  The advantage to this approach is that a model 

can be derived for each specific system.  Therefore, many more molecular orientations 

may also be considered accurately as the model does not rely only on known empirical 
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data.  It can also be added that if the stationary model is described accurately, there is also 

a better starting point from which to investigate lattice dynamics [4.105]. 

 

Atomic point charges were used throughout this study and these create a spherical cloud 

of charge around each atom.  This is a useful tool to assign separations of charges but it 

is known that such clear cut examples are not the norm.  An alternative approach has been 

to assign off-nuclear charges usually at the center of a bond or at likely lone pair positions.  

A more advanced technique is to calculate electrostatic multipoles which are centered at 

each atomic site and are derived from the calculated molecular wavefunction.  Methods 

of modelling anistropic interatomic forces have shown great improvements in energy 

calculations for small organic molecules.  It would be an interesting piece of work to use 

such methods used for this study.  While multipoles don’t lend themselves to large 

flexible molecules as they are dependent on molecular conformation, the example of 

catechol could be simple enough to attempt.  A more recent development has been to use 

periodic DFT to evaluate the lattice energy [4.104].  With this method, the electron 

density and nuclear positions are optimized together.  The benefits of this is that the 

molecular conformation adjusts naturally to the crystalline environment which means the 

electron distribution does not need to be fixed.  This is particularly beneficial when 

assessing hydrogen bonded systems as the hydrogen bond motif in one example may be 

stabilized in preference over another example.  There are still problems with periodic 

DFT however, and these are the time taken for the processes to complete as well as the 

inaccuracies in the long range contributions [4.105].  This has been examined further and 

by combining periodic DFT with an empirically derived term there was significant 

successes in the fourth blind tests of the CSD.  This approach was used successfully for 

a large flexible molecule and for the example of a cocrystal.  It would again be of interest 

to see how this method could improve or change the suggested structure for catechol urea. 

 

Optimization and refinement stages in this study were briefly attempted using minimizer 

in Cerius2 and a Rietveld refinement.  The powder diffraction pattern for the resulting 

structure was compared with the experimental powder diffraction pattern and a promising 

match was seen.  This comparison may well be improved upon by using the alternative 

methods mentioned above.  Since this study, a very similar structure has been proposed 

using a systematic grid search method [4.95].  This approach also used point charges and 

a force field with empirical data.  Following any future work with improved charge 

models, a comparison with this structure would also be of interest. 
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CHAPTER 5 – CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions and Future Work 

Since carrying out this study there have been many advances made in the area of 

modelling potentials and these have been discussed throughout the previous chapters.  

From reading about the blind tests set by the CSD it is apparent that such developments 

have increased the capabilities of solving crystal structures as well as expanding the types 

of molecules these methods may be applied to [5.1]. 

 

The study carried out here appears to show a very simple and focused approach when 

compared to the methodologies used today.  With increased complexities of potentials 

and increased computational power available it is clear that vast arrays of parallel searches 

may be carried out for larger and more complex systems [5.2].  Searches have progressed 

from seeking the single most thermodynamically stable structure at one set temperature.  

Modern methods tend more towards searching ranges of temperatures for all possible 

stable forms.  The assessment of the results through clustering and comparing against 

other physical properties has developed a method of ranking structures using the crystal 

energy landscape [5.3].  This process has highlighted how close in energy two different 

structures can be and how accurate and reliable the models need to be when calculating 

relative energies. 

 

The validation chapter in this study could be developed by recalculating the energy values 

using the newer more accurate potential models.  It would be interesting to see a 

comparison between the atomistic approach and quantum mechanical calculations.  A lot 

of work has been carried out on carbamazepine already and some work was carried out 

in this study at growing the triclinic form of carbamazepine crystals.  Unfortunately the 

structure of the triclinic form was solved using single crystal data [5.4] before completion 

of the powder investigation but it might be interesting to complete this work as the initial 

results, such as the unit cell parameters correlated well with the published single crystal 

data. 

 

The cocrystal work could again benefit from reassessment using methodologies which 

proved successful in the CSD blind tests [5.5].  It would be good to try expanding the 

series of tests carried out on the grinding method of producing the cocrystals to begin 

with.  Is an intermediate form produced and what is its structure?  Is the transition process 
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improved using drop assisted grinding?  Does the nature of the solvent used change 

anything about the structure of the cocrystal?  The grinding method was carried out using 

a simple pestle and mortar, can experimental conditions be improved or standardized 

using mechanized methods?  For crystallization of the cocrystal from solvation only water 

was investigated.  What happens when other solvents are used and are solvates formed in 

preference at any point?  The solution was warmed gently during this experiment and 

standardization of the experimental process should be attempted.  Using different solvents 

at varying temperatures would be an interesting study into whether different ratios of the 

cocrystal are made.  This is effectively following a polymorph screening approach which 

is a routine first step in industries where polymorphs can make a big difference to the 

product performance [5.6 - 5.9]. 

 

Work also began on the trihydroxybenzene series of compounds and whether they would 

form cocrystals with urea.  Most work was carried out using pyrogallol but completion of 

this study using the methods outlines above for catechol urea would be of interest. 

 

Overall, for such simple systems, the approach in this study worked well.  The validation 

of the simulated annealing method was successful for two forms of both primidone and 

carbamazepine.  The cocrystal of catechol urea has been published elsewhere using 

different methodology but appears to compare well with the results reported here [5.10]. 
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