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ABSTRACT

Visual tracking is a key task in applications such as intelligent surveillance, human-

computer interaction (HCI), human-robot interaction (HRI), augmented reality (AR),

driver assistance systems, and medical applications. In this thesis, we make three main

novel contributions for target tracking in video sequences.

First, we develop a long-term model-free single target tracking by learning discrimi-

native correlation filters and an online classifier that can track a target of interest in

both sparse and crowded scenes. In this case, we learn two different correlation filters,

translation and scale correlation filters, using different visual features. We also include

a re-detection module that can re-initialize the tracker in case of tracking failures due

to long-term occlusions.

Second, a multiple target, multiple type filtering algorithm is developed using Random

Finite Set (RFS) theory. In particular, we extend the standard Probability Hypothesis

Density (PHD) filter for multiple type of targets, each with distinct detection proper-

ties, to develop multiple target, multiple type filtering, N-type PHD filter, where N ≥ 2,

for handling confusions that can occur among target types at the measurements level.

This method takes into account not only background false positives (clutter), but also

confusions between target detections, which are in general different in character from

background clutter. Then, under the assumptions of Gaussianity and linearity, we

extend Gaussian mixture (GM) implementation of the standard PHD filter for the

proposed N-type PHD filter termed as N-type GM-PHD filter.

Third, we apply this N-type GM-PHD filter to real video sequences by integrating

object detectors’ information into this filter for two scenarios. In the first scenario, a

tri-GM-PHD filter is applied to real video sequences containing three types of multiple

targets in the same scene, two football teams and a referee, using separate but confused

detections. In the second scenario, we use a dual GM-PHD filter for tracking pedestri-

ans and vehicles in the same scene handling their detectors’ confusions. For both cases,

Munkres’s variant of the Hungarian assignment algorithm is used to associate tracked

target identities between frames.

We make extensive evaluations of these developed algorithms and find out that our

methods outperform their corresponding state-of-the-art approaches by a large margin.
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Chapter 1

Introduction

Visual tracking is an active research field in computer vision which has got many ap-

plications such as intelligent surveillance, human-computer interaction (HCI), human-

robot interaction (HRI), augmented reality (AR), medical applications, visual vehicle

navigation, visual servoing, motion-based recognition, video indexing, etc. Recently,

there has been a great deal of interest in robust visual tracking algorithms due to the

increased need for automated video analysis in the computer vision community. This

video analysis has three crucial steps: detection of interesting objects, tracking of these

objects in each video frame, and analysis of object tracks to recognize their behaviour.

The advantage of using video information is that it is cheap to acquire when compared

to radar and lidar, for example.

There are two important things to consider when developing a visual tracker: detection

of objects in each frame and associating the detections corresponding to the same object

over time. A tracker is not only expected to assign consistent labels to the tracked

targets in each video frame to generate a trajectory for each target but also, depending

on the tracking problem, it can give object specific information such as the area (size),

velocity, shape, or orientation of targets. However, there are many difficulties in visual

target1 tracking such as abrupt changes in target motion, changing appearance patterns

of both the target and the scene, target-to-target and target-to-scene occlusions, non-

rigid target structures, noise in the image and a cluttered background, and camera

motion. Moreover, the uncertain noise-corrupted nature of detections (observations or

measurements) are also a great challenge in estimating the number of targets and their

positions.

1Note that the terms target and object of interest are used interchangeably in this document
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In some tracking tasks, making some justifiable assumptions is important to simplify the

tracking problem as well as to improve the tracking performance. For example, prior

knowledge of object appearance, shape, or motion (e.g. constant velocity, constant

acceleration) can help to simplify the tracking problems.

There are many tracking approaches described in the literatures. The key differ-

ences [10] [11] between all of these tracking approaches lies in four important things:

1) a suitable object representation (motion, shape and appearance) and the way it is

modeled, 2) appropriate and robust image features (histogram of oriented gradients,

color, convolutional neural networks, etc), 3) detection or search strategy (off-line or

online classifier, matching, etc), and 4) complexity (linear, polynomial, exponential,

etc). These key things for visual tracking problems are determined depending on the

context or environment, and the the end use of that tracking algorithm.

There are some requirements [12] that are crucial when developing a visual tracking

algorithm: robustness, adaptivity to object appearance changes, and real-time pro-

cessing. Robustness measures the ability of the tracker to track the target of interest

even under complicated conditions such as clutter, occlusions, changing illuminations

or complex object motion. Adaptivity is mostly concerned with the changes that the

object itself undergoes. A system that engages in dealing with live video streams need

to have high processing speed which relies on the speed of the target under observation.

Generally, a frame-rate of at least 25 frames per second (fps) must be set up in order

to attain a smooth output video for human eyes’ feeling.

1.1 Thesis Objectives

The main purpose of visual tracking, either single or multiple target, is to determine

the positions and velocities (and possibly additional information such as identity and

size) in either the image plane or more commonly in a 3D world space. Accordingly,

this thesis has two main but related goals.

The first goal is to develop a long-term online visual tracking algorithm that can track

an unknown target in both sparse and crowded scenes where the unknown target is

initialized by a bounding box in the first frame and then is tracked in subsequent

frames. Previously, the tracking of a target of interest in sparse [13] and crowded [14]

scenes were treated separately since, in the latter case, it is very challenging due to

heavy occlusions, high target densities and cluttered scene, and significant appearance
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variations of targets. Therefore, we are interested, in this thesis, in developing a generic

long-term model-free tracking algorithm that can be applied to both scenarios. Thus,

without taking any constraint on the video scene, we want to develop a long-term

online tracking algorithm that can close the research gap between sparse and crowded

environment tracking problems.

The second goal is to develop a multiple target, multiple type filtering algorithm using

the recently popular Random Finite Set (RFS) theory that can handle the measure-

ment confusions that may occur among target types, and then apply that algorithm

to real video sequences. Practically, there are many situations where tracking and dis-

crimination of multiple target types is essential to handle confusions between target

types. For example, like many others, situational awareness for driver assistance and

vehicle autonomy has been studied [15], in which a vehicle equipped with a sensor suite

must detect and track other road users to select the best sensor focus and course of

action. In this example, the most numerous objects of interest in urban environments

are other road users such as cars, pedestrians and bicycles. In this particular and many

other examples, confusion between target types is common, for example a standard

pedestrian detection strategy [16] often provides confused detections between pedestri-

ans and cyclists, and even small cars. Moreover, for sports analysis we often want to

track and discriminate sub-groups of the same target type such as players in opposing

teams [17]. Thus, these types of problems motivate our work to develop a multiple tar-

get, multiple type filtering methodology handling target confusions in which a single

sensor (e.g. smart camera either static or moving such as camera mounted on a vehi-

cle, Kinect on a robot, or surveillance unmanned aerial vehicle (UAV) also known as a

drone) has N ≥ 2 different detection modes, each with its own probability of detection

and a measurement density for N different target types. One main difference between

tracking targets in videos from static and moving cameras is that some object detec-

tion algorithms which work for a static camera might not work for a moving camera,

background subtraction for example.

1.2 Contributions

The contributions of this thesis are 1) developing a long-term model-free single target

tracking algorithm, 2) modeling and implementation of a N-type PHD filter for filtering

multiple target of different types, and 3) integrating object detectors of different target

types in the same scene into the N-type GM-PHD filter to apply to visual tracking on

real video sequences.
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Long-term model-free Target Tracking

We propose a novel long-term visual tracking algorithm by learning discriminative cor-

relation filters and an online classifier for tracking a target of interest in both sparse and

crowded scenes. First, we learn a translation correlation filter using multi-layer hybrid

features i.e. features extracted from multiple layers of convolutional neural networks

(CNNs) trained on a large amount of object recognition data set (ImageNet) [18] and

traditional hand-crafted features, particularly histogram of oriented gradients (HOG)

and color-naming. We combine the advantages of both the lower convolutional layer

which retains more spatial details for precise localization and the higher convolutional

layer which encodes semantic information for handling appearance variations, and then

integrate these with HOG and color-naming features. Second, we include a re-detection

module for overcoming tracking failures due to long-term occlusions. In this case, we

train an incremental (online) support vector machine (SVM) on the most confident

frames using traditional features (HOG, LUV color and normalized gradient magni-

tude). This re-detection module is activated only when the correlation response of the

object is below some pre-defined threshold. This generates high score detection pro-

posals which are temporally filtered using a Gaussian mixture probability hypothesis

density (GM-PHD) filter for removing clutter. The Gaussian component (detection

proposal) with the maximum weight is selected as the state (position) estimate which

re-fines the object location when a re-detection module is activated removing the oth-

ers as clutter. Finally, we train a scale correlation filter for estimating the scale of a

target by constructing a target pyramid around the estimated or re-detected position

using HOG features. We call this a Long-term Correlation Multi-layer Hybrid Tracker

(LCMHT). We make extensive experiments both on a large-scale online object track-

ing benchmark (OOTB) and on tracking an interesting target in crowded scenes which

show our method performs favorably against existing state-of-the-art methods.

Modeling and Implementation of a N-type PHD Filter

A Multiple Target, Multiple Type Filtering (MTMTF) algorithm is developed using

RFS theory. First, we extend the standard Probability Hypothesis Density (PHD) fil-

ter for multiple types of targets, each with distinct detection properties, to develop a

multiple target, multiple type filtering, N-type PHD filter, where N ≥ 2, for handling

confusion. In this approach, we assume that there are confusions between detections,

i.e. clutter arises not just from background false positives, but also from target confu-

sion. Then, under the assumptions of Gaussianity and linearity, we extend the Gaussian

mixture (GM) implementation of the standard PHD filter to develop a N-type GM-

PHD filter. In addition, we analyze the results from simulations to track sixteen targets
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of four different types using four-type GM-PHD (quad GM-PHD) filter and compare it

with four independent GM-PHD filters using Optimal Subpattern Assignment (OSPA)

metric. This shows the improved performance of our strategy that accounts for target

confusions by efficiently discriminating them.

Multiple Target, Multiple Type Visual Tracking using a N-type GM-PHD

Filter

We integrate the object detectors’ information such as probabilities of detections for

each target type and confusion detection probabilities among target types at a specific

clutter rate into the N-type GM-PHD filter to apply to visual tracking on real video

sequences. We investigate two scenarios of real video sequences. In the first case

which we consider as implicit multiple type tracking, we apply a tri-GM-PHD filter to

real video sequences containing three types of multiple targets in the same scene, two

football teams and a referee, using separate but confused detections. In the second

case, we use a dual GM-PHD filter for tracking pedestrians and vehicles in the same

scene handling their detectors’ confusions which is considered as explicit multiple type

tracking. For both cases, Munkres’s variant of the Hungarian assignment algorithm

is used to associate tracked target identities between frames. The trackers on these

two scenarios are evaluated and compared to both raw detection and independent GM-

PHD filters using the OSPA metric and discrimination rate. This shows the improved

performance of our strategy on real video sequences.

1.3 Thesis Outlines

The remainder of this PhD thesis is organised as follows:

Chapter 2 presents the background theory for visual tracking algorithms in gen-

eral as well as the different kinds of important visual tracking algorithms available

in the literature.

Chapter 3 discusses long-term single target tracking which is developed by learn-

ing discriminative correlation filters, an online classifier, and using the GM-PHD

filter for both sparse and crowded scenes.
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Chapter 4 presents the modeling and derivation of our new N-type PHD filter to

filter and discriminate multiple target of different types handling their confusions

that may occur at the measurement stage. This is a development of the very

popular RFS approach. Its implementation scheme and simulation analysis are

also discussed in detail.

Chapter 5 demonstrates the application of the developed N-type GM-PHD filter

to real video sequences. Two scenarios are considered: tracking of football teams

and a referee using a tri-GM-PHD filter, and tracking of pedestrians and vehicles

using a dual GM-PHD filter.

Chapter 6 closes the thesis with conclusions of the proposed methods with an

outlook on future work.
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Chapter 2

Literature Review

In this chapter, we cover some of the important theoretical background used for de-

veloping visual tracking algorithms. These visual tracking algorithms can be designed

using different approaches such as model-free or model-based, single or multiple tar-

gets, static or moving cameras, overlapping or non-overlapping networks of cameras,

etc. We review some of the exemplar state-of-the-art tracking algorithms available in

the computer vision research community. Moreover, available evaluation metrics for

both single and multi-target visual tracking problems are highlighted. Accordingly, im-

portant steps for developing visual tracking algorithms are given in section 2.1, different

kinds of visual tracking algorithms are briefly described in section 2.2, the challenges

visual trackers face are presented in section 2.3, model-free and Bayesian tracking ap-

proaches are discussed in sections 2.4 and 2.5, respectively, and evaluation metrics for

visual tracking algorithms are given in section 2.6.

2.1 Important Steps for Visual Tracking

There are key steps that should be considered when developing a visual tracker [10]

[12]. The first step is to define appropriate object shape, appearance and motion

representations. The second step is to select robust image features that can be given

as input to the tracking algorithm. Obviously, almost all tracking algorithms require

object detection that might be developed using a specific image feature or a combination

of image features that can help to detect objects of interest either in the first frame or

in every frame of a video sequence. Therefore, depending on the object shapes, object

appearances, number of targets (single or multiple), object and camera motions (static
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or moving platforms), and camera network (overlapping or non-overlapping), a suitable

and robust visual tracking algorithm can be developed.

2.1.1 Object Representation

It is crucial to first represent targets using shape, appearance and motion models

before performing visual tracking [10] [2]. Each of these target representation models

are discussed below in detail, and in some cases a combination of them are described

jointly as appropriate.

Object Shape Representation: Small objects in an image are commonly represented

using a point (e.g. centroid) or set of points [19]. Primitive geometric shapes such as

a rectangle, ellipse, cuboid and ellipsoid are more appropriate for representing simple

rigid objects though they can also be used for non-rigid objects in visual tracking.

For example, a sample target is represented using a rectangle in Fig. 2.1a. However,

complex non-rigid objects such as the human body need to be represented using contour

(boundary of an object) and silhouette (region inside the contour). If targets are

composed of connected body parts e.g. human body (torso, legs, hands, head, and

feet), articulated shape models are used to represent those targets by modeling the

constituent parts using cylinders or ellipses. The kinematic motion models such as

joint angle can govern the relationship between these parts. Object skeletons which

can be extracted from an object silhouette using a medial axis transform are also

used as a shape representation mainly for object recognition as well as to model both

articulated and rigid objects.

Object Appearance Representation: There are common representations of object

appearances in the context of visual tracking: templates, probability density of object

appearance, active appearance models and multiview appearance models. Templates

are formed using simple geometric shapes or silhouettes and are used for both recog-

nition and tracking of objects whose poses do not change significantly during tracking

processes. For instance, a colour template is represented in Fig. 2.1b. One advantage of

a template is that it can capture both spatial and appearance information though it has

the drawback of handling only a single view of the object appearance. After defining

the object shape models, the probability densities of object appearance features such as

colour, texture and gradients can be computed from the interior region of these shape

models. Basically, the probability density estimates of object appearance can either

be parametric such as Gaussian and mixtures of Gaussians or nonparametric such as

Parzen windows and histograms (e.g. colour, orientation). A colour histogram where
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all the red, green and blue channels are plotted together and HOG feature are shown

in Fig. 2.1c and Fig. 2.1d respectively which correspond to the colour template shown

in Fig. 2.1b. Histograms lack spatial information that makes it difficult to distinguish

targets with similar colour or gradient distribution which can be alleviated by introduc-

ing spatial information associated with each bin of the histogram (spatiograms) [20].

Active appearance models are generated by simultaneously modelling the object shape

and appearance statistically [21]. In this case, the object shape is represented by a set

of landmarks which can reside on the object boundary or inside the object region where

an appearance feature vector is stored for each landmark, and then both shape and

its associated appearance are learned from a set of samples using, for example, Prin-

cipal Component Analysis (PCA). Obviously, shape and appearance representations

can be combined for improving visual tracking tasks [22] [23]. Multiview appearance

models encode different views of an object, and there are two main approaches to do

so. The first approach is to generate a subspace from the given views e.g. PCA and

Independent Component Analysis (ICA) have been used for both shape and appear-

ance representation in [24]. The second approach is to train a set of classifiers such as

SVM [25] or Bayesian networks to learn the different views of an object, however, it

has a limitation i.e. the appearances in all views are needed in advance.

Object Motion Representation: The motion of a target over time can be described

by a motion model which is used for predicting the likely state of the target between

consecutive frames reducing computational complexity [26]. The widely used motion

models are constant velocity, constant acceleration, coordinated turn [27] and random

walk [26] [28]. When the model properties match the motion characteristics of the tar-

get, the motion model can increase the performance of the tracker. For example, when

a target moves behind occlusions, motion models such as constant velocity, constant

acceleration and coordinated turn can increase the robustness of the tracking algo-

rithm. However, if targets have no predefined motion pattern, the random walk model

is the most widely used motion model. While an adaptive velocity motion model with

adaptive noise variance is introduced in [28], an observation data driven motion model

(exploitation of explicit visual motion measurements in the proposal distribution) is

used for overcoming abrupt motion changes of a target in [29]. Generally, the motion

models are designed depending on the motion characteristics of targets as well as the

adopted shape (state) representation of targets such as rectangle, affine etc taking into

account changes in the scale, rotation and deformation properties of the targets. The

motion of objects represented using shapes, primitive geometric shapes for instance,

need to be modeled by translation, affine, or projective (homography) transforma-

tion. Though trackers such as mean-shift [30] and the Kanade-Lucas-Tomasi (KLT)

9



(a) A sample target

(b) Colour template (c) Colour histogram (d) HOG

Figure 2.1: Examples of target representations: (a) a sample target (rectangular red bounding
box) and corresponding (b) colour template and (c) colour histogram (Y-axis is the number of
pixels in the image at each intensity value along X-axis) and (d) HOG feature visualization.

tracker [31] are designed free of a constrained motion model, they implicitly embed the

motion model in their search strategies. Thus, motion models are important ingredients

of visual tracking algorithms.

2.1.2 Visual Features Selection

Tracking algorithms use a single or a combination of visual features that can help to

uniquely distinguish objects in the feature space. Selecting appropriate features for

the tracking problem depends on the object representation. For example, while colour

is the appropriate feature for histogram-based appearance representations, edges are

a suitable feature for contour-based shape representations. Any visual descriptor can

be adapted for visual tracking. Some of the recent widely used visual descriptors for

visual detection and tracking are given in [12]. Generally, features to be extracted
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from images for target representation can be categorized into three types: low-level

(e.g. colour, gradient, motion), mid-level (e.g. edges, corners, regions) and high-level

(e.g. (detected) objects) features [2]. The most widely used visual features in the

visual detection and/or tracking problems are illustrated below by classification into

traditional and CNN features.

2.1.2.1 Traditional Visual Features

Here we present some of the traditional hand-engineered visual features which are

crucial in computer vision tasks, particularly in visual tracking problems.

Colour: There are many colour spaces in image processing: RGB (Red, Green, Blue),

HSV (Hue, Saturation, Value), Luv, Lab, etc [32], [33]. RGB colour space is not

perceptually uniform i.e. the differences in colors in RGB space do not correspond to

the color differences perceived by humans. In contrast, while Luv and Lab color spaces

are perceptually uniform, HSV color space is only approximately uniform. Color-

naming, the linguistic color label assigned by human to describe the color, is also

becoming popular [34]. However, there are some physical factors which can influence

the color of objects: the spectral distribution of the illuminance, the surface reflectance

properties of the object, self-shading, contribution from the colour of surrounding large

objects and surfaces, etc. Moreover, these color spaces themselves are sensitive to noise

though each of them can be used in visual tracking depending on the scenario. There

are two known color descriptors in computer vision: histogram-based color descriptors

and SIFT-based color descriptors. Performance evaluation of color descriptors is given

in [35].

Edges: Tracking algorithms that aim to track the boundary of objects use edge features

which are generated by capturing sudden intensity changes around object boundaries

(usually a binary map), and are less sensitive to illumination when compared to color

features. Evaluation and comparison of edge detection algorithms are given in [36]

where the popular Canny edge detector still has competitive performance due to its

accuracy and simplicity.

Texture: Texture is a measure of intensity change of an image which quantifies prop-

erties such as smoothness and regularity, and it requires a processing step to generate

the descriptors unlike color. These features are less sensitive to illumination changes

like edge features when compared to color. There are various texture descriptors:

Gray-Level Co-occurrence Matrices (GLCM) which are 2D histogram showing the co-
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occurrences of intensities in a specified direction and distance, Gabor wavelet [37] which

can be considered as orientation and scale-tunable edge and line detectors, Law’s tex-

ture measures which are twenty-five 2D filters generated from 1D filters corresponding

to level, edge, spot, wave and ripple, and Local Binary Patterns (LBP) [38] and its

variants which are very efficient texture descriptors due to their gray scale invariance,

tolerance against illumination changes and computational simplicity. These texture

features are also used for detection and recognition in addition to visual tracking.

Gradient: Gradient features capture directional change in intensity or color (usually

approximated by convolving an image with a kernel such as the Sobel operator or Pre-

witt operator), and there are many descriptors which are developed using the statistical

summarization of the gradients such as Scale-Invariant Feature Transform (SIFT) [39]

for object recognition, Speeded Up Robust Features (SURF) [40] which is a much faster

scale and rotation invariant interest point descriptor, Histogram of Oriented Gradients

(HOG) descriptor for pedestrian detection [41], etc. Canny edge detector also uses

image gradient for edge detection.

Spatio-temporal: The local space-time features capture characteristic salient as well

as motion patterns in video, and are a popular representation for action recognition

and visual detection [42]. They capture representation of events which are compara-

tively independent with respect to their spatio-temporal shifts and scales. For example,

optical flow defines the translation of each pixel in a region and is used as a feature

for developing motion-based segmentation and tracking algorithms. The Histogram of

Oriented gradients (HOG) and optical flow (HOF) i.e. HOG/HOF descriptor accu-

mulated in space-time neighbourhoods of detected interest points can characterise the

local motion and appearance for learning human actions in movies [43].

Multiple feature fusion: Feature fusion is becoming more important in image and

video retrieval, visual tracking, and object detection as it achieves better performance

than using only a single kind of feature. For example, the HOG-LBP descriptor for

pedestrian detection can handle partial occlusion [44]. HOG in combination with back-

ground subtraction is used in [45] for pedestrian detection which meets a real-time

demand with high accuracy. The aggregated Channel Features (ACF) detector devel-

oped in [16] uses 3 kinds of features in 10 channels: normalized gradient magnitude

(1 channel), histogram of oriented gradients (6 channels) and LUV color (3 channels)

for pedestrian detection. The PHD-filter-based visual tracker developed in [46] uses

colour histograms (CH), HOG and covariance matrices for better observation model.

Our work in Chapters 3 and 5 use multiple feature fusion in some parts.
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2.1.2.2 Convolutional Neural Networks (CNNs / ConvNets)

Though traditional hand-engineered features are still important, deep learning features

have recently demonstrated outstanding results on various recognition tasks. There are

various deep learning architectures [47] for feature learning of which the most successful

in computer vision is CNN [48]. There are many widely used CNN implementations

such as CAFFE [49], MatConvNet [50], Keras (with TensorFlow or Theano backends),

etc. CNN gives state-of-the-art results on visual recognition tasks [1] [4] [51], generic

object detection [52] and/or specific object detection [53] [54]. Two-dimensional CNN is

extended to 3D CNN to extract features from both the spatial and temporal dimensions

using 3D convolutions on a stack of frames for action recognition in [55].

The neurons in a ConvNet layer are connected to only a small local region of the layer

before it, instead of all of the neurons in a fully-connected manner as in a regular Neural

Nets, reducing the number of parameters (the weights and biases of the neurons) by

a large margin. The spatial extent of this connectivity is called the receptive field

of the neuron (equivalently this is the filter size). Moreover, unlike a regular Neural

Network, the layers of a ConvNet have neurons arranged in 3 dimensions (width, height,

depth), taking advantage of the fact that the input consists of images (or others such

as a speech signal). It is important to emphasize that the connections are local in

space (along width and height), but always full along the entire depth of the input

volume. Each ConvNet layer can have convolution, nonlinearity Rectified Linear Units

(ReLUs, f(x) = max(0, x)), pooling (sub-sampling), and normalization building blocks.

A typical ConvNet is composed of one or more locally-connected convolutional layers

(often with the other steps such as ReLU, sub-sampling and normalization), followed

by one or more fully-connected layers. In practice, it is common to zero pad the

border during convolution to preserve size spatially from shrinkage. Thus, the one-

stream AlexNet shown in Fig. 2.2 has 8 layers with weights (the first five convolutional

layers and the remaining three fully-connected layers). In this AlexNet example, the

ReLU non-linearity is applied to the output of every convolutional and fully-connected

layer. Max-pooling follows the first, second and fifth convolutional layers (after ReLU),

and response-normalization follows the first and second convolutional layers after max-

pooling (but normalization is not used any more due to its minimal contribution). The

output of the last fully-connected layer is fed to a 1000-way softmax loss function which

produces a distribution over the 1000 class labels.

All neurons in each depth column are connected to the same region of the input, but of

course with different weights i.e. all neurons in a single depth slice (column) are sharing

the same parameters, sets of weights referred as a filter (or a kernel), hence the name
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Figure 2.2: One-stream Alex Net [1]. The network’s input is 227× 227× 3 = 154, 587-
dimensional, and the number of neurons in the network’s remaining layers is given by
290,400 - 186,624 - 64,896 - 64,896 - 43,264 - 4096 - 4096 - 1000.

parameter sharing. The number of kernels or filters (number of feature maps needed)

is user-defined. It is crucial to notice that some layers contain parameters (CONV

and FC) and others do not (ReLU and POOL). Similarly, some Layers have one or

more additional hyperparameters such as the number of filters K, their spatial extent

F, the stride S, and the amount of zero padding P (for instance, CONV/FC/POOL

do, RELU does not). Given these hyperparameters, the spatial size of the output

volume can be computed as a function of the input volume size. Parameter sharing

and pooling operation contribute to the translation invariance of the ConvNet whereas

ReLU increases the nonlinear properties of the decision function and of the overall

ConvNet. Obviously, the earlier features of a ConvNet contain more generic low-level

features such as edge detectors and color blob detectors whereas later layers of the

ConvNet become progressively more specific to the details of the classes (high-level

features).

ConvNet trends are towards smaller filters (narrower) and deeper architectures as

deeper networks do better, and towards getting rid of POOL/FC layers (just CONV)

for not losing information (e.g. due to pooling, though pooling progressively reduces the

spatial size of the representation to reduce the amount of parameters and computation

in the network, and hence to also control overfitting) [4] [51].

Data augmentation and a regularizer method called dropout are the main techniques

to overcome overfitting [1]. Dropout, setting the output of each hidden neuron to zero

with probability 0.5, is used, for instance, in the first two fully-connected layers of

Fig. 2.2.

Supervised training of ConvNet is performed by back-propagating classification error.
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Generally, the training process of ConvNet can be summarized as follows:

1. Initialize all filters and parameters (weights) with normal random values.

2. Provide a centered (mean subtracted) training image as input to the network

which goes through the forward propagation step, and find the output probabil-

ities for each class.

3. Calculate the total error at the output layer (summation over all classes).

4. Use back-propagation to calculate the gradients of the error with respect to

all weights in the network and use gradient descent to update all filter values

(weights) to minimize the output error.

5. Repeat steps 2-4 with all images in the training set.

Due to lack of a sufficient size of dataset, very few people train an entire ConvNet from

scratch (with random initialization). Instead, it is common to pretrain a ConvNet on

a very large dataset such as ImageNet [18], and then use the ConvNet for transfer

learning: as a fixed feature extractor [56] or for fine-tuning (as an initialization) [52].

In the first case, the last fully-connected layer (whose outputs are the class scores) is

first removed, then the rest of the ConvNet is treated as a fixed feature extractor for the

new dataset. It is important for performance that these extracted features are ReLUd

(i.e. thresholded at zero) but before pooling. In the second case, the classifier on top

of the ConvNet is replaced and retrained on the new dataset as well as the weights of

the pre-trained network is fine-tuned by continuing the backpropagation. Though it

is possible to fine-tune all the layers of the ConvNet, it is sometimes crucial to keep

some of the earlier layers fixed (due to overfitting concerns) and only fine-tune some

higher-level portion of the network. Transfer learning is successfully used in our work

in Chapters 3 and 5.

2.1.3 Object detection

Directly or indirectly, every tracking algorithm needs an object detection algorithm

either in each frame or when the object first becomes visible in the video. While

some object detection methods use a single frame information, others use temporal

information which is computed by frame differencing to highlight changing regions

in consecutive frames which in turn reduces the number of false detections. Object

detection can be generic such as Pascal VOC [57] or specific such as pedestrian [16],

vehicles [58], or bicycles.
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2.1.3.1 Object Detection Approaches

Some of the object detection methods in the context of visual tracking are given below.

Point detectors: Point detectors are used to locate keypoints in images, and are used

for solving problems in tasks such as motion, stereo, and tracking. Invariance to changes

in illumination, camera viewpoint, rotation and scale are some of the desirable qualities

of interest points. Some of the widely used interest point detectors are the Moravec

point detector, Harris point detector, KLT (Kanade-Lucas-Tomasi) detector [31], SIFT

detector [39], and SURF detector [40]. Pedestrian detector was developed using (local)

interest points (keypoints) in [59]. A review of interest point detectors is given in [60].

Background subtraction: This algorithm builds a representation of a scene, the

background model, and any significant change in an incoming frame from this back-

ground model is considered as a moving object. A connected component algorithm is

applied to the pixels constituting the regions undergoing the change to get connected

regions corresponding to the moving objects. A review of background subtraction

techniques is given in [61].

Segmentation: Image segmentation algorithms split the image into perceptually ho-

mogeneous regions, which can be identified as objects and then are used in object

tracking. The criteria for a good partition and the approach for achieving efficient

partitioning are the two important problems that every segmentation algorithm needs

to address. Some of the recent segmentation algorithms which are used in object track-

ing are mean-shift clustering, graph-cuts (and normalized cut), Markov random field

(MRF), (geodesic) active contours, and level-sets. A review of image segmentation

algorithms is found in [62].

Learning: Object detection can be accomplished by learning different object views

automatically from a set of positive and negative instances using supervised learning

algorithms. Given a set of learning instances, supervised learning algorithms generate

a function or model that maps inputs to desired outputs. Some of these learning meth-

ods [63] are adaptive boosting (adaboost), support vector machines (SVM), decision

trees, random forests, and neural networks (NN). A classifier which combines advan-

tages of both kernel-based classifiers which handles high-dimensional feature spaces

such as SVM and graphical model-based classifiers which captures correlations in struc-

tured data such as Markov networks has been developed and termed as Maximum

Margin Markov Networks (M3N) [64]. However, a large amount of manually labeled

samples from every object class is required for using supervised learning algorithms.

16



To alleviate this problem, it is crucial to accompany co-training (semi-supervised learn-

ing technique) with supervised learning [65]. In co-training, two classifiers are trained

using a small set of labeled samples where the features utilized for every classifier are

statistically independent. Once trained, the most confident predictions of each classifier

on the unlabeled data are used to iteratively construct additional labeled training data

for the other classifier. Co-training has been successfully used with adaboost in [66]

providing better results.

2.1.3.2 Exemplars of Object Detection Algorithms

We focus on object detection algorithms based on learning approaches as these are more

promising than approaches using a keypoint, background subtraction and segmentation;

a survey of object (pedestrian) detectors is given in [67] [68].

Integral images for quick feature computation, a combination of increasingly more

complex classifiers in a cascade for efficient detection by discarding background regions

while spending more computation on promising object-like regions, and Adaboost for

automatic feature selection were introduced in [69] using Haar-like features and sliding

window approach. Though this algorithm is very fast, it generates high false positive

rates. A popular histogram of oriented gradient (HOG) features for object detection

was introduced in [41] inspired by the work in [39]. It computes histogram of oriented

gradients on a dense grid of uniformly spaced cells (not at sparse, scale-invariant key

image points like SIFT [39]). These cells are grouped into larger overlapping blocks

and are normalized within each block. The descriptor is the concatenation of these his-

tograms. It is found that four 8×8 pixels cells per block (16×16 pixels per block) with

9 histogram channels (bins) are the optimal parameters. This detector has better per-

formance by reducing false positive rates by a large margin over the Haar wavelet based

object detector in [69]. Though HOG is the best performing single hand-engineered

feature for object detection, it is possible to obtain a better performing detector by

combining with other features. For instance, the HOG was combined with a texture de-

scriptor based on local binary patterns (LBP) for pedestrian detection using an integral

image, sliding window and linear SVM classifier to handle partial occlusion in [44]. The

performance of the original HOG is improved in [70] which proposed a discriminatively

trained part based approach by modeling unknown part positions as latent variables

in an SVM framework (latent SVM) for a general object detection. This method dis-

criminatively trains partially labeled data i.e. objects of interest are labeled while part

locations are not labeled and are treated as latent (hidden) variables during training.

The trained object model is composed of a root model and optionally multiple mix-
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ture components. Though this method is quite popular with a very good performance,

it is computationally expensive. The detector developed in [16] reduces computation

time by approximating multi-resolution image features using extrapolation from nearby

scales (usually finely sampled pyramids from coarsely sampled ones) rather than com-

puting them explicitly. This detector, Aggregated Channel Features (ACF), uses three

different kinds of features in 10 channels: normalized gradient magnitude (1 channel),

histogram of oriented gradients (6 channels), and LUV color (3 channels) and has a

better performance than even the detector developed in [70] with a considerably faster

speed. This object detector is extended for detecting vehicles by sub-categorization

as a means of capturing appearance variations due to varying orientation, truncation

and occlusion levels [58]. It trains many models rather than just one as in [16] for

handling different aspect ratios of vehicles i.e. one model is trained for each category of

vehicles and the category of vehicles is determined by geometrical and visual features.

A CNN-based subcategory-aware object detection was proposed [54] in which a region

proposal network (RPN) and an object detection network were introduced by exploit-

ing subcategory information. In this approach, a subcategory convolutional layer was

introduced in the RPN where each filter in this layer is discriminatively trained for

subcategory detection at a specific location and scale. The object detection network

classifies region proposals generated by subcategory detection in RPN and refines their

locations. Moreover, this detector also handles large scale variation of objects using

image pyramids. This detection algorithm has a good performance, however, it is less

flexible to adapt to small quantity of data sets. Thus, due to its friendliness, flexibility

and reasonable performance, we have adapted the pedestrian detector in [16] and the

vehicles detector in [58] for our data sets in Chapter 5.

2.2 Types of Visual Tracking

As mentioned earlier, the goal of visual tracking is to generate the trajectory of a target

by finding its location in each video frame in which object detection and tracking can

be accomplished either separately or jointly. In the first approach, an object detection

algorithm is used to obtain possible object regions in each video frame and then a

tracking algorithm is applied to the result of the object detection algorithm to make

correspondences between targets across frames. However, in the latter approach, the

target region and correspondence is simultaneously estimated by iteratively updating

target position and region information obtained from previous frames. The model

used to represent the shape of a target has great influence on the type of motion it

can undergo when performing visual tracking. For example, while only translation is
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necessary for objects represented by points, affine or projective transformations are

the appropriate parameter motion models for objects represented using rectangles or

ellipses. Accordingly, there are three main tracking categories: point tracking, kernel

tracking and silhouette tracking. Each of these tracking categories can be used for

either single or multiple target tracking problems. A good survey and book of visual

tracking are found in [10], [12], [71], [2].

Point Tracking: This tracking approach can be formulated as the correspondence

(association) of detected targets using points representation across frames, and this

approach requires an external object detection technique in each frame. This point

correspondence is a challenging problem specially in the presence of miss-detections,

occlusions, appearance and disappearance of targets, and can be classified into two:

deterministic and statistical point correspondence methods.

The deterministic methods define a cost of associating every target in a previous

frame(s) to a single target in a current frame using a collection of motion constraints.

This correspondence cost is formulated as a combinatorial optimization problem and is

solved using optimal linear assignment methods such as the Hungarian algorithm [72]

and Munkres algorithm [73] for two frames, or greedy search [74], min-cost network

flow [75] [76] [77] and multidimensional assignment [78] for three or more frames.

However, the statistical methods solve the tracking problems by considering the obser-

vation and the motion model uncertainties during target state estimation. They use

state space approach to model the target properties such as position, velocity and ac-

celeration. For example, the Kalman filter [79] and particle filter or Sequential Monte

Carlo (SMC) [80] estimate single target states. To track multiple targets using Kalman

or particle filter, it is necessary to deterministically (nearest neighbour [81]) or prob-

abilistically (Joint Probabilistic Data Association Filter (JPDAF) [81] [82], Multiple

Hypothesis Tracking (MHT) [83]) associate the most likely observation for a particu-

lar target to that target’s state; more detail is given in section 2.5. RFS-based filters

(PHD, CPHD, CB-MeMBer) [84] do not need data association to filter multiple tar-

gets, however, post-processing the filtered results is necessary for labeling each target

from frame to frame as discussed in section 2.5.3. Note that these approaches can be

employed to estimate the state of any time varying system e.g. they have been used

for tracking contours in [85].

Kernel Tracking: In this context, a kernel refers to describing the target shape and

appearance e.g. rectangular template or elliptical shape with an associated histogram.

Tracking of targets are performed by computing the motion of the kernel which can
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be parametric transformation (translation, affine, etc) or the dense flow field in con-

secutive frames. There are two categories of kernel tracking algorithms based on the

utilized appearance representation: templates and density-based appearance models

such as mean-shift [30], CAMSHIFT (Continously Adaptive Mean Shift which adjusts

the window size) [86] and Kanade-Lucas Tomasi (KLT) tracker [31], and multiview

appearance models such as support vector tracking [25].

Silhouette Tracking: These methods give an accurate shape description for complex

shapes such as the human body (hands, head, shoulders, etc). The aim of this type

of tracker is to find the target region in every frame using the object model such as

color histogram, target edges or target contour generated from the previous frame,

and can be divided into two: shape matching and contour tracking. While shape

matching methods search for the target silhouette in the current frame [87], contour

tracking methods evolve an initial contour to its new position in the current frame by

either utilizing the state space models in which the target’s state is defined in terms

of the shape and the motion parameters of the contour [85] or direct minimization of

some energy functional (either variational such as level set [88], [89] or heuristics [90]).

Obviously, both of these methods, shape matching and contour tracking, use the priors

generated from the previous frames to segment objects in the temporal domain.

2.3 Challenges in Visual Tracking

The main challenges in visual tracking are the similarity of appearance between a tar-

get of interest and other targets (and the background) which produces clutter, and

appearance variations of the target itself due to changes in pose (translation, rotation,

deformation, etc), changing scene conditions (ambient illumination, weather), sensor

noise, or occlusions (partial or total). Although all the listed challenges are very im-

portant in solving visual tracking problems, we present how to cope with appearance

changes and handle occlusions briefly as follows.

2.3.1 Coping with appearance changes

Appearance variations can be coped with using model update strategies i.e. image

measurements and the output of the tracker can be used to adapt the appearance

representation of the target to the current scene conditions [2], [12]. The drawback of

updating the target model online using the output of the tracker is model drifting i.e.
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the gradual impoverishment of information in the model due to the amplification of the

tracking error caused by the update feedback loop which can be reduced by including

a contribution from the initial model into the update strategy [91].

Generally, there are two online learning methods for handling appearance changes

in model-free tracking: generative and discriminative methods [12] as discussed in

section 2.4. The model learned in the current frame using these methods should be

updated by including the contribution from the model of the previous frame (which in

turn takes contribution from the initial frame) to make the tracker more adaptive to

appearance variations of a target of interest [7]. However, for model-based approach

(the class of the objects to be detected is known beforehand), both single and multiple

target tracking, it is important to include a significant number of training samples with

appearance variations to be able to detect and track the target(s) under appearance

changes.

2.3.2 Handling occlusions

This challenge can be addressed using different approaches depending on the expected

level of occlusion:

Partial occlusion: This kind of occlusion which can affect only a small portion of

the target area can be handled by either the target appearance model or the target

detection algorithm itself. Some global feature representations such as a histogram

have invariant properties which can deal with this type of occlusion [30]. Moreover,

using multiple localized features which encode information for a small portion of the

target instead of a global representation may increase the robustness of the tracking

algorithm.

Total occlusion: With this kind of occlusion any information on the target appearance

is absent. Track continuity in this type of occlusion can be obtained via higher-level

reasoning or through multi-hypothesis methods such as the particle filter that keeps

propagating the tracking hypotheses over time. The trajectory of the target in the

absence of valid measurements can be propagated using information about pre-existing

occlusion patterns and typical motion behaviours i.e. carry on predicting the states of

the target until the target reappears. When the target reappears from occlusion, the

necessary cues which can be obtained by the propagation of multiple tracking hypothe-

ses and appearance modeling re-initialise the track [2]. Some tracking algorithms use

a separate re-detection module which can be trained in parallel and then re-initialize
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the tracker in case of tracking failure [13] [7]. Occlusion can also be indirectly resolved

while generating tracks of targets. The use of depth information such as from stereo

cameras or the use of camera network to cover wider space in multi-view can also solve

occlusion problems.

2.4 Model-free Tracking

Model-free tracking is a type of tracking in which a target of any class (arbitrary object)

is manually annotated in the first frame of a video sequence and then needs to be tracked

throughout the remainder of the video sequence. However, the class of targets to be

detected are required to be known in advance in model-based tracking [25] [92], and

these objects are first detected based on a pre-trained model and then are tracked.

Model-free tracking lifts the design efforts needed in model-based approaches to treat

each object class separately. Although it has been studied extensively during past

decades as recently surveyed in [93] [12], model-free object tracking is still a difficult

problem due to many challenges that cause significant appearance changes of targets

such as illumination changes, occlusion, pose variations, deformation, abrupt motion,

and background clutter (see section 2.3). Little prior information about the target to

be tracked is also another challenging factor. Particularly, tracking an interested target

in dense or crowded environments is an important task in some security applications,

however, it is very challenging due to heavy occlusion, high target densities, cluttered

scenes and significant appearance variations of targets. Robust representation of target

appearance is important to overcome these challenges.

Various visual tracking algorithms have been proposed over the past decades to cope

with the challenges in visual tracking, and they can be categorized into two types de-

pending on the learning strategies: generative and discriminative methods. Generative

methods describe the target appearances using generative models and search for target

regions that best-fit the models i.e. search for the best-matching windows (patches).

In other words, generative methods model only the appearance of the object without

considering the appearance of the background unlike discriminative methods which

make them fail when the background is cluttered. Various generative target appear-

ance modelling algorithms have been proposed such as online density estimation [94],

sparse representation [95,96], and incremental subspace learning [97].

On the other hand, discriminative methods build a model that distinguishes the tar-

get from the background. These algorithms typically learn classifiers based on online
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boosting [98], multiple instance learning [99], P-N learning [13], transfer learning [100],

structured output SVMs [101] and combining multiple classifiers with different learn-

ing rates [6]. Background information is important for effective tracking as explored

in [93] [102] which means that more competing approaches are discriminative meth-

ods [103]. Discriminative methods are sensitive to noise and generative methods fail

within cluttered backgrounds, therefore, these two methods can be combined to over-

come these problems as used in [104] [105] [106]. Model-free tracking is not only used

to track a single unknown target but also used for tracking multiple targets as in [107].

However, all of these mentioned algorithms use hand-crafted features which are less

robust to significant appearance variations of targets. Recently, CNN features have

demonstrated outstanding results on various recognition tasks [4, 52]. Motivated by

this, a few deep learning based trackers [108, 109] were developed which learn online

classifier by drawing positive and negative training examples around the estimated tar-

get location and then extracting deep learning features from them. However, sampling

ambiguity is one of the big problems in discriminative tracking methods which results

in drifting.

More recently, correlation filters [8, 110, 111] have been introduced for online visual

target tracking that can alleviate the sampling ambiguity in discriminative tracking

approaches. Previously, the large training data required to train correlation filters pre-

vented them from application to online visual tracking though correlation filters are

effective for localization tasks. However, recently all the circular-shifted versions of

input features have been considered with the help of a circulant matrix producing a

large number of training samples [8,110]. Hence, discriminative correlation filter-based

trackers have achieved state-of-the-art results as surveyed in [112] in terms of both ef-

ficiency and robustness due to three reasons. First, efficient correlation operations are

performed by replacing exhausted circular convolutions with element-wise multiplica-

tions in the frequency domain which can be computed using the fast Fourier transform

(FFT) with very high speed. Second, thousands of negative samples around the tar-

get’s environment can be efficiently incorporated through circular-shifting with the

help of circulant matrix [113] [8]. Third, training instances are regressed to soft labels

of a Gaussian function (Gaussian-weighted labels) instead of binary labels alleviating

sampling ambiguity. In fact, regression with class labels can be seen as classification.

However, correlation filter-based trackers are susceptible to long-term occlusions.

There are three tracking scenarios that are important to consider: short-term tracking,

long-term tracking, and tracking in a crowded scene. If an object is visible over the

whole course of the sequence, short-term model-free tracking algorithms are sufficient

to track a single object without applying a pre-trained model of target appearance.

23



There are many short-term tracking algorithms developed in the literature [11] [112]

such as online density estimation [94], context-learning [114], scale estimation [111], and

using features from multiple CNN layers [5, 115]. However, these short-term tracking

algorithms can not re-initialize the trackers once they fail due to long-term occlusions

and confusions from background clutter.

Long-term tracking algorithms are important for tracking an unknown object in a

video stream that runs for indefinitely long handling long-term occlusions and difficult

background clutter. Long-term trackers are usually developed either by introducing

a re-detection module [13] [7] or learning/maintaining conservative appearance of the

target [116] [117]. A Tracking-Learning-Detection (TLD) algorithm has been developed

in [13] which directly decomposes the long-term tracking problem into tracking, learn-

ing and detection. In this case, the tracker tracks the target from frame to frame and

provides training data for the detector which re-initializes the tracker when it fails. The

learning component estimates the detector’s errors and then updates it for correction

in the future. This algorithm works well in very sparse video but is sensitive to back-

ground clutter. Long-term correlation tracking (LCT), developed in [7], learns three

different discriminative correlation filters: translation, appearance and scale correla-

tion filters using hand-crafted features. Even though it includes a re-detection module

by learning the random ferns classifier online for re-initializing a tracker in the case

of tracking failures, it is not robust to long-term occlusions and background clutter.

Multi-domain network (MDNet) [118] pre-trains a CNN network composed of shared

layers and multiple domain-specific layers using a large set of videos to get generic tar-

get representations in the shared layers. This proposed network has separate branches

of domain-specific layers for binary classification to identify the target in each domain.

However, when applied to fundamentally different videos other than the related videos

on which it was trained, it gives poorer results.

Tracking of a target of interest in a crowded scene is very challenging due to heavy occlu-

sions, high target densities and cluttered scene, and significant appearance variations.

Person detection and tracking in crowds is formulated as a joint energy minimization

problem by combining crowd density estimation and localization of individual person

in [119]. This approach uses a pre-trained model on human heads to initialize targets,

thus it is not suitable for tracking a generic target of interest in model-free sense. The

method developed in [120] trained Hidden Markov Models (HMMs) on motion patterns

within a scene to capture spatial and temporal variations of motion in the crowd which

are used for tracking individuals. However, this approach is limited to a crowd with

structured pattern i.e. it needs some prior knowledge about the scene. The algorithm

developed in [14] uses visual information (prominence) and spatial context (influence
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from neighbours) to develop online tracking in crowded scene without using any prior

knowledge about the scene, unlike the method in [120] which also uses some train-

ing data from the past as well as the future. This algorithm performs well in highly

crowded scenes but has a low performance in a less crowded scenes as influence from

neighbours (spatial context) decreases. However, our work in chapter 3 tries to close

the gap between sparse and crowded scenes tracking problems by proposing an algo-

rithm which can be applied to both scenes, particularly robust to long-term occlusions

and challenging clutter from both background scene and other uninterested targets.

2.5 Bayesian Tracking

Target filtering is a state estimation problem which plays a key role in visual, radar and

sonar tracking, robot simultaneous localization and mapping (SLAM), and other sig-

nal processing applications. In fact, there are three different kinds of state estimation

methods: Maximum Likelihood (ML), Maximum a posterior (MAP), and Bayesian

estimation (filtering). ML estimates the set of values of the model parameters that

maximizes the likelihood function whereas MAP estimates a mode of the posterior

distribution. MAP is closely related to ML estimation but employs an augmented

optimization objective which incorporates a prior distribution over the quantity one

wants to estimate, thus, it can be seen as a regularization of ML estimation (ML lacks

prior) [63]. The Bayesian inference-based visual tracking approach has succeeded in

computer vision when compared to ML, MAP and exhaustive search-based methods

such as Mean-shift and KLT since it offers a systematic way of combining prior knowl-

edge of object positions, modeling assumptions, and measurement information to the

problem of tracking target(s) [81]. In Bayesian estimation, states are hidden variables

(modelled using Hidden Markov Models (HMM)) i.e. they are obtained indirectly from

measurements. This is because the target state space is treated as a hidden layer

whereas the observation space is visible. Though Bayesian networks (directed proba-

bilistic graphical models, e.g. HMM) are widely used for tracking applications, Markov

networks (undirected probabilistic graphical models or MRF) such as conditional ran-

dom fields (CRFs) are also used for solving tracking problems. Probabilistic graphical

model is a marriage between a probability theory and a graph theory [121].

The Bayesian approach is the main approach for estimating the trajectories of a target

in either the image or ground plane as it moves in the scene. The Bayes filter has

two steps: the prediction step which predicts the target state based on dynamical

model and the update step which updates the resulting density using a newly available
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measurement. Two known implementations of this filter are the Kalman filter and its

extended versions [79], and the particle filter (PF) [80], both for single-target tracking.

Obviously, Bayesian filtering algorithms can be used with model-free as well as model-

based tracking approaches.

2.5.1 Single Target Tracking

The single-target tracking task can be modeled using the state and the measurement

equations [79].

xk = yk(xk−1, uk−1, nk−1) (2.1)

and

zk = fk(xk, vk) (2.2)

where yk and fk are non-linear, time-varying functions, {uk−1, k ∈ N} is the known con-

trol input which is not necessarily available (usually used in robotics), and {nk−1, k ∈
N} and {vk, k ∈ N} are assumed to be independent and identically distributed (i.i.d)

stochastic processes. Usually, equation 2.1 is assumed to be a Markov process i.e. state

xk−1 contains all measurement information zk−1 up to time k − 1. Most of the time,

the function yk is obtained using a state-space model.

The goal of tracking is to estimate the states of targets which can be the positions and

velocities of targets. The state sequence is assumed to be stochastic and, therefore,

it is looking for the probability density function (pdf) of the target states. Thus,

tracking is to estimate pk|k(xk|z1:k), the pdf of the target being in state xk, given all

the measurements zk up to time k, based on Eq. (2.1) and Eq. (2.2). The estimation

is accomplished recursively in two steps: prediction and update.

The prediction step uses the dynamic model defined in Eq. (2.1) to obtain the prior pdf

using Chapman-Kolmogorov equation given by

pk|k−1(xk|z1:k−1) =

∫
yk|k−1(xk|x)pk−1|k−1(x|z1:k−1)dx (2.3)

with pk−1|k−1(xk−1|z1:k−1) known from the previous iteration and the transition density

yk|k−1(xk|xk−1) determined by Eq. (2.1).
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The update step uses Bayes’ rule once the measurement zk is available to get the pos-

terior pdf

pk|k(xk|z1:k) =
fk(zk|xk)pk|k−1(xk|z1:k−1)∫
fk(zk|x)pk|k−1(x|z1:k−1)dx

(2.4)

where the likelihood fk(zk|xk) is determined by equation (2.2).

2.5.1.1 Kalman Filter

Since equations 2.3 and 2.4 cannot be solved analytically, under the assumption of

linearity for equations (2.1) and (2.2) and Gaussianity of the prior pk−1|k−1(xk−1|z1:k−1)

and of the two noise sources, nk−1 and vk, an optimal solution can be obtained using a

Kalman filter [79]. If equations (2.1) and (2.2) are mildly non-linear, it can be solved

sub-optimally using the extended Kalman filter (EKF) [79] and unscented Kalman filter

(UKF) [122].

EKF: When equations 2.1 and 2.2 are non-linear, the Kalman filter cannot be used

directly. Instead, a local linear approximation around the current means mk−1 and

mk|k−1 at each time should be used to get a transition matrix Fk and an observation

matrix Hk using first-order Taylor expansion, respectively, and then the standard KF

is applied to obtain a sub-optimal overall solution. If the non-linearities become severe,

the performance of this filter can decrease drastically, and it is difficult to know this

ahead of time. Another drawback is that linear approximation (Jacobian matrix) should

exist to apply linearization which is not always the case due to discontinuities and

singularities [122].

UKF: This filter is another sub-optimal extension of Kalman filter which uses sigma-

points. Its basic idea is that instead of approximating an arbitrary non-linear function

or transformation, it is easier to approximate a probability (Gaussian or normal) dis-

tribution [122]. This algorithm can be summarized as follows:

1. Choose a minimum number of 2nx+ 1 sigma points from a Gaussian distribution

with a desired mean and covariance where nx is the dimension of the state.

2. Transform the chosen sigma points using the non-linear equation to obtain a set

of transformed points.
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3. Re-approximate the non-linearly transformed mean and covariance of the normal

distribution using the transformed points.

The UKF can handle severe non-linearities with more accuracy than the EKF with the

same computational complexity. However, a Gaussian assumption is still made. If the

true density is non-Gaussian, none of KF, EKF and UKF can handle this; only the

particle filter [80] can manage such scenarios.

All Kalman filters (KF, EKF and UKF) can only approximate state vectors of a fixed

length. Hence, they cannot track a varying number of targets; a separate filter for each

target should be applied using data association algorithms.

2.5.1.2 Particle filter

When the posterior is a uni-modal distribution, the Kalman filter can handle it, how-

ever, in some real scenarios, this is not the case i.e. the posterior is a multi-modal

pdf. In this case another generic method called Sequential Monte Carlo (SMC) is nec-

essary [80] that can approximate or sample the states of non-linear dynamical models

and non-Gaussian noise. This SMC approach is known by different names such as the

particle filter, bootstrap filter, Condensation algorithm, interacting particle approxi-

mations, and survival of the fittest [80]. It is a technique for implementing a recursive

Bayesian filter by Monte Carlo simulation in which the key idea is to approximate the

posterior pdf with the set of weighted random samples (Dirac δ functions or particles)

and to estimate states based on these samples and corresponding weights. As the num-

ber of samples becomes large, this filter can approach the optimal Bayesian estimate.

Thus, the Kalman filter is a single-hypothesis method i.e. only one track candidate es-

timate is evaluated at any time whereas particle filter is a multiple-hypothesis method

i.e. multiple track candidates are evaluated simultaneously. The performance of a

tracker can be improved by propagating multiple hypotheses.

Sequential Importance Sampling (SIS) is a Monte Carlo method that forms the basis for

SMC or particle filters. The main idea of importance sampling is to give more emphasis

to the high density areas rather than using the inefficient uniform sampling [123]. The

term sequential in the SIS algorithm implies that a series of measurements is received

sequentially i.e. only the current observation is considered without considering any

previous recorded observations though it is possible to parallelize as all particles are

generated at the same time. However, this SIS algorithm suffers from the degeneracy

problem where all but one particle will have negligible weight after a few iterations. The
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brute-force approach to reduce this problem is to use a very large number of particles

which is sometimes impractical. There are two widely used approaches to solve this

problem: good choice of importance density and use of resampling. The key idea of

resampling is to discard particles with negligible weights while focusing on the particles

with large weights. There are many resampling techniques that are used in particle

filtering, of which systematic resampling performs better as it minimizes Monte Carlo

variation [124]. However, resampling creates other practical problems though it can

reduce the effects of the degeneracy problem. These problems are:

1. All the particles have to be combined which restricts the chance of parallelization.

2. Large weighted particles are statistically chosen repeatedly resulting in loss of di-

versity called sample impoverishment which can be severe for small process noise.

This problem can be tackled using the resample-move algorithm and regulariza-

tion [80].

3. Any smoothed estimates based on the paths of the particles degenerate as their

diversity is reduced. This effect can be overcome by using Markov Chain Monte

Carlo (MCMC) sampling [125].

There are various particle filters proposed in the literature that are regarded as spe-

cial cases of this general SIS algorithm which are derived from the SIS algorithm by

a suitable choice of importance sampling density and/or modification of the resam-

pling step. These special particle filters are Sampling Importance Resampling (SIR),

Auxiliary Sampling Importance Resampling (ASIR) and the Regularised Particle Filter

(RPF) [80].

A popular process called Rao-Blackwellization can also be integrated into the particle

filter with the basic idea of decreasing the size of the state space by marginalizing out

some of the variables analytically. Kalman filter is used for analytical updates so that

the remaining space that has to be sampled is smaller which leads to a much lower

required number of samples [126]. An unknown number of targets are tracked using

the Rao-Blackwellized particle filter (RBPF) in [127]. RBPF is more accurate and

computationally efficient than the standard particle filter (PF).

MCMC is another sampling technique which applies a Markov chain model to Monte

Carlo integration to produce a series of samples called chain [125]. In the chain, the

next sample is dependent on the previous sample in the series which enables the MCMC

sampling method to explore high dimensional state space by making a chain of samples
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around high density regions. There are various closely related MCMC algorithms with

different names: Metropolis-Hastings algorithm, Gibbs sampling, Slice sampling, and

Multiple-try Metropolis [128]. The MCMC method which uses rejection sampling is

termed as Metropolis-Hastings Algorithm which may be trapped in a peak, unable to

jump to other peaks, as it rejects all low density regions. An extension of the standard

MCMC algorithm to sampling of posterior distributions of varying dimension is called

Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) [125], [129] and is used to

infer states in trans-dimensional MCMC approaches [130].

Generally, the SIS algorithm and its special particle filters (using importance sampling)

are preferred for low dimensional problems. MCMC particle filters (using MCMC sam-

pling) with marginal proposal strategy using the Metropolis Hastings rule are preferred

for high dimensional problems. RJ-MCMC particle filters (using RJ-MCMC sampling)

can be used to manage states with a varying dimension. When using particle filters

such as the joint particle filter, MCMC particle filter and RJ-MCMC particle filter,

the identity of targets can be included in state vectors in which case a separate data

association algorithm is not necessary for tracking multiple targets [131]. However, if a

particle filter is to be applied for each target to track multiple targets, an explicit data

association is necessary.

2.5.2 Data Association-based Multi-Target Tracking

While tracking targets, multiple measurements usually appear due to either actual

targets or measurement noise (clutter or false alarms). Data association deals with

the task of choosing the observation that most probable is generated from the target

to be tracked. Actually, the data association task is concerned with both associating

targets with correct measurements as well as associating targets temporally (labeling

identities of targets across time). The first step in solving data association problem (as-

sociating targets with correct measurements) is the choice of a validation region called

measurement validation or gating (shown in Fig. 2.3) which is a region in which the

next measurement is more likely to appear i.e. gating discards less probable associa-

tion hypotheses for reducing computational cost. The usual approach of measurement

validation is to first predict the current state from the previous states, and then to

assess the compatibility of each observation with this predicted state.

Note that the validation procedure has to be repeated for every object and for every

tracking hypothesis for the case of multiple targets and multiple tracking hypothesis.

30



Figure 2.3: Data association problem: two validated measurements (green boxes) are
located in the validation region (grey area) centred on the predicted measurement (red
triangle) [2].

Another problem is that the number of targets can be unknown and varying since new

targets can appear and disappear at any time and anywhere in which case invalidated

measurements might be important. Therefore, a data association algorithm should

determine whether an observation is correct or incorrect as well as if a new track has

to be initialized or an existing track has to be continued. All observations that are

not utilized for the continuation of existing tracks are either due to clutter or the

appearance of new targets. Therefore, a strategy that can deal with the appearance

and disappearance of tracks should be included in the data association algorithms based

on gating.

2.5.2.1 Data Association Algorithms

There are various statistical data association algorithms which are widely used for

multi-target visual tracking in the computer vision community [81], [132]. Some of

them are discussed below.

Nearest Neighbour Filter: This algorithm selects a measurement closest to the

predicted measurement ẑk by computing the Mahalanobis distance d for each received

measurement zk and is given by

d(zk, ẑk) =
√

(zk − ẑk)TS−1
k (zk − ẑk), (2.5)
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where ẑk = Hkmk|k−1 is the predicted observation projected from the predicted state

mk|k−1, and Sk = HkPk|k−1H
T
k + Rk is the innovation measurement covariance, Hk

is the observation matrix, Rk is the measurement noise covariance and Pk|k−1 is the

predicted covariance. Note that mk|k−1 is equivalent to xk−1 in Fig. 2.3.

There are various variants of this filter such as probabilistic nearest neighbour, dis-

tributed sequential nearest neighbour, suboptimal nearest neighbor, and Global Near-

est Neighbour (GNN) as detailed in [81]. Though this filter has low computational

complexity, its performance decreases rapidly when the number of false measurements

increases. Another problem of this filter is that one observation can be associated

with multiple tracks giving unrealistic results, however, the GNN approach solves this

problem by the constraint of one observation can only be associated with one track as

detailed in [133] where it is stated that it has still a poor performance. Moreover, this

filter cannot deal with the appearance and disappearance of targets, therefore, it can

only be used in combination with a birth and death model.

Probabilistic Data Association Filter (PDAF): This is a sub-optimal algorithm

in which a weighted average of all validated measurements is given as an input to the

tracking algorithm [134]. The state is assumed to be normally distributed according

to the latest state estimate and covariance matrix, and linear dynamic and measure-

ment models are considered i.e. Kalman filter plays a central role in this filter though

linearization can be used for a non-linear model. Moreover, only one target is mod-

eled whose track has been initialized. However, when gating regions overlap, the same

observations can contribute to updating of multiple predicted states. The extension

of this PDAF called Joint PDAF (JPDAF) enables tracking of multiple targets in

clutter in which measurements to targets probabilities (weights) are computed jointly

across targets with a quadratic complexity with the number of targets. However, it

only considers the last measurement (non-back-scan), and each target is assumed to

have its own linear dynamic and measurement models though linearization can also

be exploited in case of mildly non-linear models. Moreover, the number of targets is

assumed to be known and constant though it can deal with multiple sensors as detailed

in [81] [132]. A sample-based version of JPDAF (S-JPDAF) was introduced in [135]

in which Kalman filter is replaced by a particle filter, and a varying and unknown

number of targets can also be tracked. Another filter called the Monte Carlo JPDAF

(MC-JPDAF) was introduced in [136] generalizing it for multiple sensors and arbitrary

proposal distributions though a fixed and known number of targets is assumed. A fast

and efficient version of JPDAF has been recently proposed and applied to multi-target

tracking in [137].
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Multiple Hypothesis Tracking (MHT): This algorithm is the most widely used

and optimal data association algorithm as it postpones the data association decision

till more information becomes available (N-back-scan) [138] [139] [133] as opposed to

JPDAF which considers only two frames of a video, and its implementation library is

given in [140]. However, it has an exponential complexity with time and cubic with the

number of targets. The first step of MHT is the formulation of all feasible hypotheses.

Then, when a new measurement is available, each hypothesis is expanded into a set

of new feasible hypotheses so that a tree of hypotheses can be generated. The track

score is utilized to assess the validity of the track. Since the size of the hypotheses tree

grows exponentially as more measurements are available, there are several techniques

used to limit the size of the tree such as clustering of measurements, and track and

hypothesis pruning as discussed in [133] [139]. This filter handles the appearance and

disappearance of targets as well as a varying and unknown number of targets as opposed

to JPDAF. Moreover, MHT can tackle the problem of occlusions i.e. continuation

of a track in case some of the measurements from a target are missing. The MHT

algorithm which makes associations in a deterministic sense is extended to probabilistic

MHT (PMHT) to lower its computational complexity considerably from exponential

in time [141]. Rather than listing all feasible combinations of hypotheses, PMHT

tries to compute the maximum likelihood solutions using an expectation-maximization

(EM) algorithm. About ten different PMHT algorithm implementations are compared

pointing out their strong and weak sides in [142]. Data association of a similar method

to PMHT is used in [143] where a particle filter is used for tracking multiple targets.

MHT is recently revisited in [144] by training online appearance models for each track

hypothesis which has good performance.

There are also other data association approaches (deterministic) based on combinatorial

optimization for multi-target tracking. For example, optimal assignment methods such

as the Hungarian algorithm [72] and Munkres algorithm [73] are used in [145], and graph

matching [74] is used in [146]. The (2D) linear assignment problem can be interpreted as

a weighted bipartite graph. Generally, optimal linear assignment methods such as the

Hungarian algorithm [72] and Munkres algorithm [73] are used for two frames whereas

greedy algorithm (for graph matching) [74], (min-cost max-flow) network flow [75] [76]

[77] and multidimensional assignment [78] methods generalize to three or more frames.

The greedy algorithm and network flow have a polynomial-time complexity whereas the

multidimensional assignment has NP-hard (non-deterministic polynomial-time hard).

Moreover, Siamese CNN for robust data association within the context of pedestrian

tracking has been introduced in [147] which uses a two-stage learning scheme to match

pairs of detections.
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2.5.2.2 Exemplars of Traditional Multi-Target Trackers

There are a plenty of multi-target trackers in the literature as surveyed in [148]. We only

describe some of the typical traditional data-association based multi-target tracking

algorithms.

To start with, a method developed in [131] incorporated a Markov random field (MRF)

motion prior into a MCMC particle filter-based multi-target filter for modeling target

interactions which helps to maintain the identity of targets. However, it suffers from

computational cost with a number of tracked targets though it reduces the exponential

complexity of a joint particle filter and is limited to track only a fixed number of targets.

It is extended to handle a variable number of interacting targets from a static camera

by extending MCMC sampling to a RJ-MCMC sampling scheme. Similarly, a RJ-

MCMC sampling-based multi-target visual tracking algorithm was developed in [149] by

modeling the interaction of targets using a MRF motion prior to track pedestrians from

a mobile vision platform such as cameras mounted on a vehicle or a Kinect on a robot

in which both the camera’s ego motion and pedestrians’ trajectories are estimated in a

single coherent framework without using stereo information as in [150] [151]. However,

RJ-MCMC sampling based trackers are computationally intensive. In [150] and [151],

multiple detectors are combined to estimate the position of camera odometry and track

pedestrians using stereo camera for getting stereo depth information. Online multi-

target tracking-by-detection from a single, potentially moving, uncalibrated camera

was proposed in [92] in a particle filtering framework.

A stable multi-target visual tracker which estimates stable and precise object (head)

locations was developed in [152] by combining HOG detections with simultaneous KLT

tracking and Markov Chain Monte Carlo Data Association (MCMCDA) within a tem-

poral sliding window i.e. MCMC is used to sample from the huge combinatorial space

of hypotheses. The MCMC stochastically explores the search space by proposing a

set of ’moves’ from the current to a next state. Partial occlusion is handled using a

part-based model at both detection and tracking stages for tracking multiple persons

in [153]. Recently, a variational Bayesian model was introduced for tracking an un-

known and varying number of persons in [154] which has closed-form expressions for

the posterior distributions of the latent (hidden) variables and for the model parame-

ters, and is implemented via a variational EM (VEM) algorithm. It jointly infers both

the state variables and the assignment variables (labels) in the filtering equation and

handles both birth and death of targets. However, it is still computationally demanding

though better than the trans-dimensional MCMC approaches where the dimensionality

of the state space is treated as a state variable and the states are inferred by RJ-MCMC
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sampling.

Graph theory has been introduced for multi-target tracking problems [74] [75] [76] [77].

A greedy algorithm for graph matching that generalizes for a multi-frame correspon-

dence was proposed in [74] which is efficient for real-time tracking, however, it is purely

causal (does not look-ahead) i.e. if matches were once made, they cannot be corrected

if later information shows them to be suboptimal. A network flow based optimization

method for data association was proposed for multi-target tracking in [75] by mapping

a maximum-a-posteriori (MAP) into a cost-flow network with a non-overlap constraint

on trajectories (edge disjoint paths in a graph) and the global optimal solution is ob-

tained by a min-cost flow algorithm in the network. Efficient, greedy but globally

optimal algorithm for tracking multiple targets was introduced in [76] in which the

number of targets and their track births and deaths are estimated based on a min-cost

flow framework. However, both methods in [75] [76] optimize the association globally

using all the observations from the whole sequence which limits their applications for

online tracking problems. The multi-target tracker in [77] uses the min-cost flow al-

gorithm to solve the data association problem optimally in which the drawbacks such

as computational cost, whole video as a batch input assumption and computational

scale with the length of the video sequence are overcome making it suitable for online

data stream. For non-overlapping camera networks, an approach that jointly optimises

single camera object tracking and inter-camera object tracking in an equalised global

graphical model was proposed in [155]. This method is an extension of [75] where

tracklets are used as input to the network flow rather than object detections. Simulta-

neous multi-object tracking and classification was proposed in [156] using a graphical

probabilistic model and an inference procedure and then solving using a variational

approximation, however, it suffers from class switching.

Conditional Random Fields (CRFs) have also been introduced for multi-target track-

ing [157] [158] [159] [160] where tracking can be solved by an energy minimization or

sampling-based inference strategy. A learning-based CRF model for tracking multiple

targets was proposed in [157] by progressively associating detection responses into long

tracks in which a CRF model considers both tracklet affinities or similarities (node

of CRF) and dependencies among them (edge of CRF). In this approach, the best

global associations are learned rather than the best local affinities between tracklets

by transforming the task into an energy minimization problem, however, this method

is computationally intensive. While this method models association dependencies well

and works offline, the method in [158] models better discrimination of spatially close

targets with similar appearance by learning CRF model online which utilizes unary

energy cost (for node of CRF) and pairwise or binary energy cost (for edge of CRF)
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based on motion and appearance models i.e. the meanings of edges in CRF are dif-

ferent. Although the approach in [158] is faster than the method in [157], it has still

a polynomial complexity with the number of tracklets. Graphical models, particularly

factor graphs, were used to model as many tracker components as possible including the

observation model, the motion model, the interaction model and the termination pro-

cedure within a log-linear CRF to develop a robust multi-target visual tracker in [159],

however, it is computationally intensive. In this method, a sampling-based inference

strategy is used since the model cannot be globally optimized. The tracker developed

in [160] considers long-time connectivity between detections as well as similarity and

dissimilarity between them in a time-interval using position, color, motion and SURF

cues in a CRF framework.

Online multi-object tracking with moving cameras was proposed in [161] which uses

a data association method that exploits structural motion constraints (location and

velocity) and event aggregation (assignment ambiguities). A near-online multi-target

tracking algorithm was developed in [162] by introducing an affinity measure to asso-

ciate detections considering the relative motion pattern between a pair of temporally

distant detections using long term interest point trajectories and then taking the advan-

tages of both the pure online and global tracking algorithms. More recently, Siamese

CNN has also been introduced in multi-target tracking [147] [163]; hand-engineered

features are also used in [164]. These approaches use similarity between detections for

data association unlike others such as MHT, network flow and CRF which use tempo-

ral consistency for data association. A structure of recurrent neural networks (RNNs)

is used to jointly reason on multiple cues (motion, appearance and interaction) over

a temporal window to develop an online multi-target tracker in [165]. A deep CNN

is used in [166] for a reliable affinity measure between pairs of detections which is

used to specify a cost of a graph-based optimization problem for multi-person tracking.

However, it is computationally expensive.

In practice, though deterministic optimization approaches which require whole video as

a batch input outperforms the approaches based on probabilistic inference, for instance,

in the case of occlusion among targets, their applications are limited in online tracking

problems since they need all frames of the video beforehand. However, to the best of

our knowledge, no work was done which can solve the confusion among detectors of

different target types for online multi-target tracking as our work in Chapters 4 and 5.

The table given in 2.1 lists and compares a sample of traditional multi-target visual

tracking algorithms in terms of targets birth, death, interaction, clutter, missed detec-

tion (MD) due to (short term) occlusion, and type of used camera (static or moving).

36



Ref Algorithms Birth Death MD Clutter Interaction Camera

[131]
MCMC-PF no no no no yes static

[149]
RJ-MCMC-PF yes yes yes yes yes moving

[159]
CRF-FG yes yes no no yes static

[158]
online-CRF yes yes yes yes no moving

[152]
MCMCDA yes yes yes yes no static

[75] GlobalNF yes yes yes yes no static

[76] GlobalOptimal yes yes yes yes no static

[77] FollowMe yes yes yes yes no static

[78] Multi-D yes yes yes yes no static

[154]
VEM yes yes yes yes no static

[161]
MOT-EA yes yes yes yes no moving

[144]
MHT-R yes yes yes yes no static

[137]
JPDAF-R yes yes yes yes no static

[166]
MultiCutDM yes yes yes yes no moving

[165]
RNN-T yes yes yes yes yes moving

Table 2.1: Survey of sample tracking algorithms.

2.5.3 Multi-Target Tracking using Random Finite Sets

To extend the single target tracking algorithms for tracking multiple targets, they need

to handle the target birth and target death, clutter (false alarms), and missing detec-

tions. Traditionally, multi-target filters are based on the concept of finding associations

between targets and measurements called Bayesian data associations [81] discussed in

section 2.5.2 such as Global Nearest Neighbour (GNN) [167], Joint Probabilistic Data

Association Filter (JPDAF) [82], and Multiple Hypothesis Tracking (MHT) [83]. How-

ever, these approaches faced challenges not only in the uncertainty caused by the data

association but also the computational growth exponentially to the number of objects

and measurements. For example, the MHT has an exponential complexity with time

and cubic with the number of targets.
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Recently, single-target filtering has been extended to handle the varying number of

targets due to new targets appearing in the scene and old targets leaving the scene

in a Bayesian framework using FInite Set STatistics (FISST). In this approach, one

may think of stacking the states of every tracked object in a big vector to fit into

a Bayesian framework, however, as the number of targets in the scene are changing,

one has to deal with state sizes of non-fixed dimension. Nevertheless, it is impossible

to consistently calculate the estimation error between a frame with no target (empty

vector) and a consecutive frame with targets (non-empty vector). A suitable method

to handle this problem is to represent the state and observation vectors as finite sets

which have a defined estimation error computation method (the minimum Euclidean

distance over all permutations of the individual states). Therefore, the analogous of a

random vector for single-target tracking is a Random Finite Set (RFS) for multi-target

tracking which can naturally represent the varying number of non-ordered multi-target

state and observation dimensions as shown in Fig. 2.4. A RFS is a set where not

only the elements are random stochastic processes but also the set cardinality is a

stochastic process. More precisely, RFS is a finite-set-valued random variable, that is a

random variable which is random in both the number of elements and the values of the

elements themselves [84]. Accordingly, in order to fit into the Bayesian framework, the

multi-target states are considered as a single meta-target represented using RFS whose

Bayesian propagation is similar to that of single-target case. Similarly, the multi-

target observations are treated as a single set of measurements of the meta-sensor

represented using RFS. Hence, FISST, the study of statistical properties of RFS, is the

first systematic treatment of multi-sensor multi-target filtering as a unified Bayesian

framework using random set theory. Similar to single-target filtering, this multi-target

filtering approach propagates the multi-target posterior density recursively [168] [169]

[170] [171].

The FISST framework consists of two spaces: a state space and an observation space

as shown in Fig. 2.5. As can be observed from Fig. 2.5, the observation space contains

many observations produced by objects or targets without any knowledge of which

object generates which observation, and some of these observations are clutter which do

not correspond to real targets. In visual tracking, object detection algorithms extract

these measurements from image space which then can help to estimate the targets’

states and cardinality jointly.

However, as the number of targets increases, the dimensionality of the target states

still increases. Therefore, rather than propagating the full multi-target posterior, it is

less computationally intensive to propagate its first-order moment called an intensity

function or Probability Hypothesis Density (PHD) [168] [169] [170]. The area inside

38



Figure 2.4: Single target to multi-target extension using RFS theory. The black arrows
show the extension of single target tracking in which states and observations are represented
using random vectors to multi-target tracking though FISST framework in which states and
observations are represented using random finite sets.

Figure 2.5: FISST framework.

Figure 2.6: Probability hypothesis densities (PHDs) in two consecutive time steps [3].
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the circle in Fig. 2.6 shows the most probable region in which targets are located. The

PHD filter has linear complexity with the number of targets. However, the PHD re-

cursion involves multiple integrals which requires systematic implementation schemes.

Accordingly, there are two PHD implementation methods: by assuming the PHD to

be a mixture of Gaussians called a Gaussian Mixture PHD (GM-PHD) [172] for linear

(and by extension mildly non-linear) dynamic and observation models and Gaussian

stochastic process or by approximating it with the samples generated from a Sequential

Monte Carlo process called the Particle-PHD (SMC-PHD) [173] for highly non-linear

dynamic and observation models and non-Gaussian stochastic process. The cost for

the lower complexity of the PHD filter is the lack of information on the identity of

the targets i.e. data association which helps to recognize the same target, among other

targets, in consecutive frames, is not included in the PHD filter. While a clustering step

is necessary to associate the peaks of the PHD with target states in the Particle-PHD

filter [173] [174] though clustering step is avoided in [175] and [176], state extraction in

GM-PHD filter is easier as the target state can be associated directly with each Gaus-

sian whose weight is greater than a given threshold [172] [177]. Recently, labeled RFS

for multi-target tracking was introduced in [178] [179] [180], however, its computational

complexity is high.

A generalization of PHD recursion called Cardinalized PHD (CPHD) recursion jointly

propagates the posterior PHD and the posterior cardinality distribution i.e. the poste-

rior distribution of the number of targets [181]. Its Gaussian mixture implementation

is given in [182] and its adaptive SMC implementation is given in [176]. Both PHD

and CPHD filters and their implementation methods are well discussed with a brief

overview of random set theory in [84] [183].

The PHD filter is formulated based on Poisson distributions whereas CPHD filter is

formulated using independent and identically distributed (IID) cluster process, an ex-

tension of a Poisson (point) process involving the locations of clusters and the locations

of elements within a cluster. Another important kind of the RFS-based filters in the

FISST framework is represented by Bernoulli distribution called multi-target multi-

Bernoulli (MeMBer) filter. The cardinality bias of this filter is solved using cardinality

balanced multi-target multi-Bernoulli (CB-MeMBer) filter in [184] where its implemen-

tations using SMC and Gaussian mixture (GM) are given. These RFS-based filters are

formulated with the assumption of uncorrelated targets i.e. target interaction is as-

sumed to be negligible. There is an open research for the case of correlated targets

in which the interaction of targets can be modeled. A tutorial on Bernoulli filters is

given in [185] where its implementation as a SMC or particle filter and Gaussian sum

filter are given, and the joint estimation of clutter intensity and detection profile of this
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Figure 2.7: RFS-based multi-target filters in the FISST framework.

filter is given in [186]. While PHD and CPHD filters propagate first-order moments

(and cardinality distributions for only CPHD filter), the multi-Bernoulli filter propa-

gates the parameters of a multi-Bernoulli distribution which approximate the posterior

multi-target density. One advantage of this filter over the SMC-PHD filter is that it

avoids the additional clustering step for multi-target state estimation which is its main

problem. Multi-Bernoulli filter has the same complexity as the PHD filter i.e. linear in

both the number of targets and measurements, however, the complexity of the CPHD

filter is linear in the number of targets and cubic in the number of measurements. The

general sub-divisions of the RFS-based multi-target filters in the FISST framework is

diagrammatically shown in Fig. 2.7.

In a standard model of the above mentioned RFS-based filters, no target generates

more than one measurement. The case where one target can generate more than one

measurement called extended targets is considered in [187] and its Gaussian mixture

implementation is given in [188]. This has got to be relevant in visual tracking as one

target may generate more than one (overlapping) detections.

Recently, there have been some multi-target trackers using a PHD filter and its variants

in the literature. A SMC-PHD filter is used for visual tracking using graph matching

for data association in [146], and scene contextual information is learnt for both birth

and clutter intensities and is included in [189], however, a minimal user interaction

is required for collecting training data in the scene for learning clutter intensity. In

this approach, after the detector is applied to a training set of frames, the user selects

the detections that are not associated with objects of interest (clutter) in randomly

chosen frames interactively and then learns the clutter intensity using maximum a

posterior (MAP). Using a Kalman filter [79] in the prediction step of the particle PHD

filter to obtain a new proposal distribution using the latest observation, and using a

new observation model by considering both object dynamic states and appearances
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for deriving a more precise likelihood for the update step, a more robust multi-target

visual tracker was developed in [46].

A method for tracking the movement of multiple cells and their lineage as they spawn

was developed using a GM-PHD filter in [190]. The method in [191] uses a GM-PHD

filter in which the noise of new birth intensity which may produce short-lived tracks

is removed using entropy distribution and coverage-rate. Pedestrians group tracking

using a GM-PHD filter was designed in [192] where clustering is applied to the output of

the GM-PHD filter and then the level-curves separating the groups in both position and

velocity are obtained, however, it only focuses on the group without labeling individual

targets in the group. PHD recursion for color measurements was proposed in [193] for

tracking pedestrians in a video; a PHD filter is combined with optical flow in [194] to

get velocity information rather than estimating indirectly as in the normal PHD filter.

PHD filter is robust to clutter but vulnerable to missed detections; this vulnerability

is overcome using local observations from an online-trained local detector in addition

to observations from off-line trained global detector (HOG) in an RFS of observation

model in [195]. These local observations can also provide identity (label information)

to each target in the filtering procedure.

The GM-PHD filter is used in [196] for tracking pedestrians in video sequences but

there is only one type of target and the motion model is fixed. As an extension,

a GM-PHD filter was developed in [197] for maneuvering targets but this employed

a Jump Markov System (JMS) that switched between several motion models. The

miss-detection problem of the PHD filter is alleviated in the GM-PHD filter imple-

mentation [198] and applied to visual tracking in [199]. In contrast, a particle-PHD

filter was applied in [146] to allow for more complex motion models, and to cope with

variation of scale, which has significant effects not just on object motion but also on

the detection process. In addition, the particle PHD filter used in [200] has treated

high-confidence (strong) and low-confidence (weak) detections separately where strong

detections are used for label propagation and target initialization whereas weak detec-

tions only support label propagation (track existing targets). However, this approach

produces significant trajectory fragmentation. PHD recursion is reformulated in terms

of single-target track hypotheses and a min-cost flow network is solved for trajectory

estimation with the addition of computational cost in [201], and it is still susceptible

to long-term occlusions though global data association is used.

Multi-target visual tracking was developed by directly processing the whole image

data without using an explicit detection (track-before-detect approach) using MeM-

Ber filter in [202] [203], however, track-before-detect approaches generally have low
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performance when compared to tracking-by-detection approaches (detection + filter-

ing/tracking). Integration of audio and visual information for tracking multiple targets

was proposed using a SMC-CB-MeMBer filter [204] in which the audio and the visual

cues are integrated using multiple updates. The performance of RFS-based filters for

tracking pedestrians is compared in [205] where a CPHD filter-based visual tracker [145]

outperforms the others using Munkres assignment algorithm [73] for data association

though it has more computation time. Furthermore, tracking multiple targets from a

single camera is extended to multiple cameras to handle occlusion problems and recov-

ering the 3D information of targets using a GM-PHD filter in [206], and similarly a

GM-PHD filter is also used for multi-target tracking in a distributed camera network

in [207]. Multi-object stereo filtering in disparity space is introduced in FISST frame-

work in [208]. RFS-based filters are not only becoming popular in multi-target visual

tracking but also for visual odometry (VO) and simultaneous localization and mapping

(SLAM) in robotics as used in [209] and [210], respectively.

Considering extensions to different target types, Yan et al. [211] developed joint de-

tection, tracking and classification (JDTC) of multiple targets in clutter which jointly

estimates the number of targets, their kinematic states, and types of targets (classes)

from a sequence of noisy and cluttered measurement sets using a SMC-PHD filter. The

dynamics of each target type (class) was modeled as a class-dependent model set, and

the signal amplitude was included in the multi-target likelihood in the PHD-like filter to

enhance the discrimination between targets from different classes and false alarms. Sim-

ilarly, a joint target tracking and classification (JTC) algorithm was developed in [212]

using RFS which takes into account extraneous target-originated measurements (of the

same type), i.e. multiple measurements that originated from a target can be modeled

as a Poisson RFS using linear and Gaussian assumptions. In these approaches, the aug-

mented state vector of a target comprises the target kinematic state and class label, i.e.

the target type (class) is put into the target state vector. However, although multiple

target types were considered, no account was taken of the effect of target confusions

between target types at the detection stage, as is the case in our work in chapter 4

(modeling and implementation) and chapter 5 (applying to visual tracking).

2.6 Evaluation Metrics for Visual Tracking

In this section, we provide the evaluation metrics for both single and multiple target

tracking algorithms that are commonly used in the computer vision community.
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2.6.1 Evaluation Metrics for Single Target Tracking

The are two commonly used evaluation metrics for quantitatively evaluating the robust-

ness of single target tracking algorithms, precision and success plots, and are elaborated

below. One-pass evaluation (OPE), running the trackers throughout a test sequence

with initialization from the ground truth position in the first frame, is the usually used

setting for evaluating single target trackers using these metrics.

Precision Plots: Center location error is the widely used metric for tracking precision.

It computes the Euclidean distance between the center positions of the tracked targets

(xt) and the manually labeled ground truth positions (xg) of all the frames. The

precision plot, percentage of frames where the distance from estimated location to the

ground truth is within the given threshold, is a better approach to measure the overall

tracking performance [93] than taking the average center location error over all the

frames of one sequence as the output location can be random when the tracker loses

the target.

Euclidean distance can be computed as

Dk(xt,k,xg,k) =

√√√√ 2∑
j=1

(xt,k,j − xg,k,j)2, (2.6)

where k ∈ {1, ..., Nf}, Nf is the number of frames of the video sequence.

Then, precision for a series of distance thresholds, for instance from 0 to 50 pixels,

can be computed and then plotted to show the overall performance of the single target

tracker. Sometimes, it is crucial to show representative precision score for each tracker

at a specific threshold, for example, at threshold of 20 pixels, especially for ranking the

trackers.

Success Plots: Bounding box overlap is a commonly used metric for evaluation of

tracking success [93]. Given the tracked bounding box tbk and the ground truth bound-

ing box gbk in frame k, the bounding box overlap score or ratio computes the inter-

section (
⋂

) over union (
⋃

), also known as Jaccard index, of the tracked target and

ground truth bounding boxes as

Sk =
|gbk

⋂
tbk|

|gbk
⋃
tbk|

, (2.7)
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where |.| represents the number of pixels in the region. In this case, the number of

successful frames whose overlap S is larger than the given threshold To is counted

and plotted by varying the thresholds from 0 to 1 to measure the overall tracking

performance on frames of a sequence. The tracking algorithms are ranked using area

under curve (AUC) of each success plot rather than using one success rate value at a

specific threshold, for example To = 0.5.

2.6.2 Evaluation Metrics for Multi-target Tracking

Evaluating multi-target tracking algorithms is more challenging than single target

tracking algorithms. Generally, there are two fundamentally different performance

metric types for evaluating multi-target tracking performance: Multi-Object Tracking

Accuracy(MOTA), Multi-Object Tracking Precision (MOTP) and others [213]1 [214],

and Optimal SubPattern Assignment (OSPA) [215].

MOTA, MOTP and others: MOTA and MOTP are the two known metrics used

for measuring the performance of multi-object visual trackers [213] in the computer

vision community. MOTA is given by

MOTA = 1−
∑

k(mk + fpk +mmek)∑
k gk

, (2.8)

where mk, fpk, mmek and gk are the number of misses (false negatives), of false

positives, of mismatches (identity switches), and of ground truth targets, respectively,

for frame k, i.e. MOTA is derived using three error ratios: miss-rate, false positive

rate and mismatch rate. The total error is the summation of these error ratios, thus,

MOTA is 1 minus this total error.

MOTA considers all the object configuration errors such as misses, false positives and

mismatches made by the tracking algorithm, over all frames, and gives a measure of the

tracker’s performance at detecting objects as well as keeping track of their trajectories,

regardless of the precision of the estimated object locations.

The precision of object locations is given by MOTP which shows the ability of the

tracker to estimate precise object positions and can be obtained by computing the

1Souce code is given at https://github.com/glisanti/CLEAR-MOT
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distance (or bounding box overlap) dik between object (ground truth) oi and its corre-

sponding hypothesis (true positive) for each of the matched targets

MOTP =

∑
i,k d

i
k∑

k ck
, (2.9)

where MOTP is the total error in estimated location for object-hypothesis pairs over

all frames averaged by the total number of matches made, and ck is the number of

matched targets found for frame k.

It is crucial to first sum up all errors across frames before a final average or ratio can

be computed for both MOTA and MOTP since computing ratios rk for each frame k

independently before computing a global average (1/n)
∑

k rk for all n frames can lead

to nonintuitive results.

There are also other widely used multi-target evaluation metrics, particularly for eval-

uating the quality of multi-target tracking algorithms along with MOTA and MOTP.

These evaluation metrics are Mostly Tracked (MT), Mostly Lost (ML) [214], Frag-

mented trajectories (Frag), False Positives (FP), False Negatives (FN), False Alarms

per frame (FAF), Identity Switches (IDSw), tracker speed (Hz), and are well described

and used in [216] [9]. If a target is tracked for at least 80% of its life span regardless

of maintaining its ID, it is considered as mostly tracked. However, if it is tracked

for less than 20% of its life span, it becomes mostly lost. MT and ML are expressed

as a ratio of mostly tracked targets and mostly lost targets to the total number of

ground truth trajectories, respectively. Track fragmentation deals with how often a

ground truth trajectory is interrupted, and the relative number of fragmentations is

given as Frag/Recall. Similar to the fragmentation, the relative number of ID switches

is computed as IDSw/Recall.

OSPA: OSPA is a consistent performance evaluation metric for computing miss-

distance or error between true and estimated states of multi-object filtering taking

into account cardinality error, especially formulated for random finite set (RFS) based

filters (e.g. PHD filter) as they jointly estimate both the expected number of targets

in the state space and the states of the targets. The OSPA metric is mathematically

well-formulated taking both cardinality and distance errors between the true and esti-

mated values of both the number of targets (cardinality) and the states (positions) of

the targets. The great advantage of this metric is the ability to compute miss-distance

on the space of finite sets, and in turn allows a natural physical interpretation even if

the two sets have different cardinality without showing any elements of arbitrariness

inherent in ad hoc assignment methods.
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Given the distance metric (typically Euclidean metric d(x, y) = ‖x − y‖), denoted by

d(c)(x, y) := min(c, d(x, y)) the distance between x, y ∈ X (state space) cut-off at

c > 0, and by Πk the set of permutations on {1, 2, 3, ..., k} for any k ∈ N = {1, 2, 3, ...}.
For 1 ≤ p < ∞, c > 0, and arbitrary finite subsets X = {x1, x2, x3, ..., xm} and

Y = {y1, y2, y3, ..., yn} of X , where m,n ∈ N0 = {0, 1, 2, 3, ...}, OSPA metric of order p

with cut-off c is defined as

d(c)
p (X,Y ) :=

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n−m)

))p
, (2.10)

There are two adjustable parameters in the OSPA metric, order parameter p ∈ [1,∞)

for outlier sensitivity and cut-off parameter c > 0 for cardinality penalty. There are two

important choices of p: p = 1 and p = 2. For p = 1, the OSPA metric measures a first-

order per target error in which the sum of the localization and cardinality components

equals the total metric. However, p = 2 is usually a more practical choice since it

gives smooth distance curves. If it is important to estimate the number of targets

correctly, choose large values of c whereas if accurate position estimates are necessary

and cardinality errors are negligible, small values of c should be chosen. For its details

both in concepts and mathematical formulations, it is recommended to refer to [215]. A

modified version of this original OSPA metric called Optimal Subpattern Assignment

for Tracks (OSPA-T) includes labeling error α ∈ [0, c] in addition to both distance

and cardinality errors for evaluating the performance of multi-target visual tracking

algorithms [217] i.e. if α = 0, OSPA-T becomes the original OSPA metric. It has been

successfully used for evaluating pedestrian visual tracking algorithms in [205].
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Chapter 3

Long-term Correlation Tracking

using Multi-layer Hybrid

Features

In section 2.4, an overview of methods for tracking a target of interest in video sequences

was discussed using different visual features and approaches. However, tracking meth-

ods which work fine in sparse videos may not work well on dense environments and

vice versa as they are mostly designed taking the video scenes into account. In this

chapter, we mainly focus on long-term tracking of a target of interest in sparse as well

as crowded environments where an unknown target is initialized by a bounding box and

then is tracked in subsequent frames. Without allowing any constraint on the video

scene, we develop a novel long-term online tracking algorithm that can close the re-

search gap between sparse and crowded scenes tracking problems using the advantages

of correlation filters, a hybrid of multi-layer convolutional neural network (CNN) and

traditional hand-crafted features, an online support vector machine (SVM) classifier

and a Gaussian mixture probability hypothesis density (GM-PHD) filter that is robust

to long-term occlusion and challenging clutter from the background scene as well as

other targets of no interest. Accordingly, an overview of the proposed algorithm is

described in section 3.1, discussed in detail in section 3.2, implementation details with

parameter settings are described in section 3.3, and experimental results on both sparse

and crowded environment data sets are analyzed and compared in section 3.4. Finally,

a brief summary of the developed Long-term Correlation Multi-layer Hybrid Tracker

(LCMHT) is given in section 3.5.
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3.1 Overview of our Algorithm

CNN features have recently demonstrated outstanding results on various recognition

tasks though traditional hand-engineered features are still important. Similarly, corre-

lation filters are giving better results for online tracking problems in both efficiency and

accuracy [8]. Besides, the GM-PHD filter [172] has an in-built capability of removing

clutter that originates from both the background scene and other targets not of current

concern while filtering targets at high speed without the need for explicit data asso-

ciation. Though, this filter is designed for multi-target filtering, it is even preferable

for single target filtering. In this work, we develop a unique long-term online tracking

algorithm that can be applied to both sparse and dense environments by learning cor-

relation filters using a hybrid of multi-layer CNN and hand-crafted features as well as

including a re-detection module using an incremental SVM and GM-PHD filter.

Accordingly, to develop an online long-term tracking algorithm robust to appearance

variations in both sparse and crowded scenes, we learn two different correlation filters:

a translation correlation filter (wt) and a scale correlation filter (ws). A translation

correlation filter is learned using a hybrid of multi-layer CNN features from VGG-Net [4]

and traditional hand-crafted features.

For the CNN part, we combine features from both a lower convolutional layer which

retains more spatial details for precise localization and a higher convolutional layer

which encodes semantic information for handling appearance variations. This makes

layer 1, layer 2, and layer 3 in multi-layer features with multiple channels (512, 512

and 256 dimensions) in each layer, respectively. Since the spatial resolution of the

extracted features gradually reduces with the increase of the depth of CNN layers due

to pooling operators, it is crucial to resize each feature map to a fixed size using bilinear

interpolation.

For the traditional features part, we use a histogram of oriented gradients (HOG), in

particular Felzenszwalb’s variant [70] and color-naming [34] features for capturing image

gradients and color information, respectively. These integrated traditional features

have been used for object detection in [218] [219] giving promising results. Color-

naming is the linguistic color label assigned by human to describe the color, hence, the

mapping method in [34] is employed to convert the RGB space into the color name

space which is an 11 dimensional color representation providing the perception of a

target color. This associates RGB pixel values with color labels to transform RGB

values into a probabilistic 11 dimensional color representation i.e. the probability of

color names corresponding to image pixels is computed using the estimated/learned
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generative models (distributions representing the color names) from real-world images

(Google image search). These color names contain 11 basic color terms and are given

in order as black, blue, brown, grey, green, orange, pink, purple, red, white and yellow.

This color naming space is better than RGB space in expressing the color of real-world

objects though it is computationally more expensive to process than the RGB data.

However, in our case, since correlation operation is performed in frequency domain

with a very fast speed, its computational complexity is not a much concern. Thus,

we choose this color naming due to these two factors. By aligning the feature size

of the HOG variant with 31 dimensions and color-naming with 11 dimensions, they

are integrated to make 42 dimensional features which make a 4th layer in our hybrid

multi-layer features.

For scale estimation, we learn a scale correlation filter using only HOG features, in

particular Felzenszwalb’s variant [70]. Besides, we incorporate a re-detection module by

learning an incremental SVM from the most confident frames determined by maximal

value of correlation response map using HOG, LUV color and normalized gradient

magnitude features for generating high-score detection proposals which are filtered

using the GM-PHD filter to re-acquire the target in case of tracking failures. The

flowchart of our method is given in Fig. 3.1 and the outline of our proposed algorithm

is given in Algorithm 1.

3.2 Proposed Algorithm

This section describes our proposed tracking algorithm which has four distinct func-

tional parts: 1) correlation filters formulated for multi-layer features, 2) an online SVM

detector developed for generating high score detection proposals, 3) a GM-PHD filter

for finding the detection proposal with the maximum weight to re-initialize the tracker

in case of tracking failures by removing the other detection proposals as clutter, and

4) a scale estimation method for estimating the scale of a target by constructing image

pyramid at the estimated target position.

3.2.1 Correlation Filters for Multi-layer Features

To track a target using correlation filters, the appearance of the target should be

modeled using a correlation filter w which can be trained on feature vector x of size

M × N × D extracted from an image patch where M, N, and D indicates the width,
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Figure 3.1: The flowchart of the proposed algorithm. It consists of three main parts: trans-
lation estimation, re-detection and scale estimation. Given a search window, we extract multi-
layer hybrid features (in the frequency domain) and then estimate target position (xk) using a
translation correlation filter (wt). This estimated position (xk) is used as a measurement (zk)
for updating the GM-PHD filter without refining xk, just to update its weight for later use
during re-detection. Re-detection is activated if the maximum of the response map (Rm) be-
comes below the pre-defined threshold (Trd). Then, we generate high score detection proposals
(Zk) which are filtered by the GM-PHD filter to estimate the detection with maximum weight
as target position (xrk) removing the others as clutter. If the response map around xrk (Rmd)
is greater than Trd, the target position xk is updated by the re-detected position xrk. Finally,
we estimate the scale of the target by constructing a target pyramid at the estimated position
and use the scale correlation filter (ws) to find the scale at which the maximum response map
is obtained. Note that in frame 1, we only train correlation filters and the SVM classifier using
the initialized target; no detection is performed.

height and number of channels, respectively. This feature vector x can be extracted

from multiple layers, for example in the case of CNN features and/or traditional hand-

crafted features, therefore, we denote it as x(l) to designate which layer l it represents in

our multi-layer features. All the circular shifts of x(l) along the M and N dimensions

are considered as training examples where each circularly shifted sample x
(l)
m,n,m ∈

{0, 1, ...,M − 1}, n ∈ {0, 1, ..., N − 1} has a Gaussian function label y(l)(m,n) given by

y(l)(m,n) = e−
(m−M/2)2+(n−N/2)2

2σ2 , (3.1)
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where σ is the kernel width. Hence, y(l)(m,n) is a soft label rather than a binary label.

To learn the correlation filter w(l) for layer l with the same size as x(l), we extend a

ridge regression [220] [63], developed for a single-layer feature vector, to be used for

multi-layer hybrid features with layer l, x(l), as

min
w(l)

∑
m,n

|Φ(x(l)).w(l) − y(l)(m,n)|2 + λ|w(l)|2, (3.2)

where Φ represents the mapping to a kernel space and λ is a regularization parameter

(λ ≥ 0). The solution w(l) can be expressed as

w(l) =
∑
m,n

a(l)(m,n)Φ(x(l)
m,n). (3.3)

This alternative representation makes the dual space a(l) the variable under optimiza-

tion instead of the primal space w(l).

Training phase: The training phase is performed in the Fourier domain using the

fast Fourier transform (FFT) to compute the coefficient A(l) as

A(l) = F(a(l)) =
F(y(l))

F
(
Φ(x(l)).Φ(x(l))

)
+ λ

, (3.4)

where F denotes the FFT operator.

Detection phase: The detection phase is performed on the new frame given an image

patch (search window) which is used as a temporal context i.e. the search window is

larger than the target to provide some context. If feature vector z(l) of size M ×N ×D
is extracted from this image patch, the response map (r(l)) is computed as

r(l) = F−1
(
Ã(l) �F(Φ(z(l)).Φ(x̃(l)))

)
, (3.5)

where Ã(l) and x̃(l) = F−1(X̃(l)) denote the learned target appearance model for layer l,

operator � is the Hadamard (element-wise) product, and F−1 is the inverse FFT. Now,

the response maps of all layers are summed according to their weight γ(l) element-wise

as

r(m,n) =
∑
l

γ(l)r(l)(m,n). (3.6)
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The new target position is estimated by finding the maximum value of r(m,n) as

(m̂, n̂) = argmax
m,n

r(m,n). (3.7)

Model update: The model is updated by training a new model at the new target

position and then linearly interpolating the obtained values of the dual space coefficients

A
(l)
k and the base data template X

(l)
k = F(x

(l)
k ) with those from the previous frame to

make the tracker more adaptive to target appearance variations.

X̃
(l)
k = (1− η)X̃

(l)
k−1 + ηX

(l)
k , (3.8a)

Ã
(l)
k = (1− η)Ã

(l)
k−1 + ηA

(l)
k , (3.8b)

where k is the index of the current frame, and η is the learning rate.

The mappings to the kernel space (Φ) used in Eq. (3.4) and Eq. (3.5) can be ex-

pressed using a kernel function as k(x
(l)
i ,x

(l)
j ) = Φ(x

(l)
i ).Φ(x

(l)
j ) = Φ(x

(l)
i )TΦ(x

(l)
j ). If

the computation is performed in the frequency domain, the normal transpose should

be replaced by the Hermitian transpose i.e. Φ(X
(l)
i )H = (Φ(X

(l)
i )∗)T where the star (∗)

denotes the complex conjugate.

Thus, for a linear kernel,

k(x
(l)
i ,x

(l)
j ) = (x

(l)
i )Tx

(l)
j = F−1(

∑
d

(X
(l)
i,d)
∗ �X

(l)
j,d), (3.9)

where X
(l)
i = F(x

(l)
i ).

and for a Gaussian kernel,

k(x
(l)
i ,x

(l)
j ) = Φ(x

(l)
i )TΦ(x

(l)
j ) = exp

(
− 1

σ2 (‖x(l)
i − x

(l)
j ‖2)

)
= exp

(
− 1

σ2

(
‖x(l)

i ‖2 + ‖x(l)
j ‖2 −F−1(

∑
d(X

(l)
i,d)
∗ �X

(l)
j,d)
))
.

(3.10)

This formulation is generic for multiple channel features from multiple layers as in the

case of our multi-layer hybrid features, i.e. where X
(l)
i,d, d ∈ {1, ..., D}, l ∈ {1, ..., L}.

This is an extended version of the one given in [8] that takes into account features

from multiple layers. The linearity of the FFT allows us to simply sum the individual

dot-products for each channel d ∈ {1, ..., D} in each layer l ∈ {1, ..., L}.
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All operations in Eq. (3.4) are element-wise (O(n)) with the exception of the DFT

which bounds the cost at a nearly-linear O(n log n) for both linear and other kernel

functions, thus, it reduces storage and computation by a large margin when compared

to extracting patches explicitly and solving ridge regression, for example, at cost of

O(n3).

3.2.2 Online Detector

We include a re-detection module, Dr, to generate high score detection proposals in

case of tracking failures due to long-term occlusions. Instead of using a correlation filter

to scan across the entire frame which is computationally expensive and less efficient,

we learn an incremental (online) SVM [221] by generating a set of samples in the

search window around the estimated target position from the most confident frames,

and scan through the window when the re-detection is activated to generate high-score

detection proposals. These most confident frames are determined by the maximum

translation correlation response in the current frame i.e. if the maximum correlation

response of an image patch is above the train detector threshold (Ttd), we generate

samples around this image patch and train the detector. This detector is activated

to generate high score detection proposals if the maximum of the correlation response

becomes below the activate re-detection threshold (Trd). We use HOG (particularly

Felzenszwalb’s variant [70]), LUV color and normalized gradient magnitude features

to train this online SVM classifier. We use different visual features for computational

feasibility from the ones we use for learning the translation correlation filter since we

can select the feature representation for each module independently [7, 111].

We want to update a weight vector w of the SVM provided a set of samples with

associated labels, {(x́i, ýi)}, obtained from the current results. The label ýi of a new

example x́i is given by

ýi =

+1, if IOU(x́i, ẍt) ≥ δp
−1, if IOU(x́i, ẍt) < δn

(3.11)

where IOU(.) is the intersection over union (overlap ratio) of a new example x́i and the

estimated target bounding box in the current most confident frame ẍt. The samples

with the bounding box overlap ratios between the thresholds δn and δp are excluded

from the training set for avoiding drift problem.
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Before delving into incremental SVM, it is crucial to give a summary of the optimization

procedure for offline SVM learning algorithm. SVM classifiers of the form f(x) =

w.Φ(x) + b are learned from the data {(xi,yi) ∈ <m × {−1,+1}∀i ∈ {1, ..., N}} by

minimizing

min
w,b,ξ

1

2
||w||2 + C

N∑
i=1

ξpi (3.12)

for p ∈ {1, 2} subject to the constraints

yi(w.Φ(xi) + b) ≥ 1− ξi, ξi ≥ 0 ∀i ∈ {1, ..., N}. (3.13)

Hinge loss (p = 1) is preferred due to its improved robustness to outliers over the

quadratic loss (p = 2). Thus, the offline SVM learns a weight vector w = (w1, w2, ...., wN )T

by solving this quadratic convex optimization problem (QP) which can be expressed

in its dual form as

min
0≤ai≤C

W =
1

2

N∑
i,j=1

aiQijaj −
N∑
i=1

ai + b
N∑
i=1

yiai, (3.14)

where {ai} are Lagrange multipliers, b is bias, C is a regularization parameter, and

Qij = yiyjk(xi,xj). The kernel function k(xi,xj) = Φ(xi).Φ(xj) is used to implicitly

map into a higher dimensional feature space and compute the dot product. It is not

straightforward for conventional QP solvers to handle the optimization problem in

Eq. (3.14) for online tracking tasks as the training data are provided sequentially, not

at once. Incremental SVM [221] is tailored for such cases which retains Karush-Kuhn-

Tucker (KKT) conditions on all the existing examples while updating the model with a

new example so that the exact solution at each increment of dataset can be guaranteed.

KKT conditions are the first-order necessary conditions for the optimal unique solution

of dual parameters {a, b} which minimizes Eq. (3.14) and are given by

∂W

∂ai
=

N∑
j=1

Qijaj + yib− 1


> 0, if ai = 0

= 0, if 0 < ai < C

< 0, if ai = C,

(3.15)

∂W

∂b
=

N∑
j=1

yjaj = 0. (3.16)

Based on the partial derivative mi = ∂W
∂ai

which is related to the margin of the i-th
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example, each training example can be categorized into three: S1 support vectors lying

on the margin (mi = 0), S2 support vectors lying inside the margin (mi < 0), and the

remaining R reserve vectors (non-support vectors). During incremental learning, new

examples with mi ≤ 0 eventually become margin (S1) or error (S2) support vectors.

However, the remaining new training examples become reserve vectors as they do not

enter the solution so that the Lagrangian multipliers (ai) are estimated while retaining

the KKT conditions. Given the updated Lagrangian multipliers, the weight vector w

is given by

w =
∑

i∈S1∪S2

aiyiΦ(xi). (3.17)

It is important to keep only a fixed number of support vectors with the smallest margins

for efficiency during online tracking.

Thus, using the trained incremental SVM, we generate high score detections as detec-

tion proposals during the re-detection stage. These are filtered using the GM-PHD

filter to find the best possible detection that can re-initialize the tracker.

3.2.3 Temporal Filtering using the GM-PHD Filter

Once we generate high score detection proposals using the learned online SVM classifier

during the re-detection stage, we need to find the most probable detection proposal for

the target state (position) estimate by finding the detection proposal with the maximum

weight using the GM-PHD filter [172]. Though the GM-PHD filter is designed for

multi-target filtering with the assumptions of a linear Gaussian system, in our problem

(re-detecting a target in cluttered scene), it is used for removing clutter that comes

from background scene and other targets not of interest as it is equipped with such a

capability. Besides, it provides motion information for the tracking algorithm. More

importantly, using the GM-PHD filter to find the detection with the maximum weight

from the generated high-score detection proposals is more robust than relying only on

the maximum score of the classifier.

The detected position of the target in each frame is filtered using the GM-PHD filter,

but without re-fining the position states until the re-detection module is activated.

This updates the weight of the GM-PHD filter corresponding to a target of interest

giving sufficient prior information to be picked up during the re-detection stage among

candidate high score detection proposals. If the re-detection module is activated (cor-
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relation response of the target becomes below a pre-defined threshold), we generate a

high score detection proposals (in this case 5) from the trained SVM classifier which are

then filtered using the GM-PHD filter. The Gaussian component with the maximum

weight is selected as position estimate, and if the correlation response of this estimated

position is greater than the pre-defined threshold, the estimated position of the target

is re-fined.

The GM-PHD filter has two steps: prediction and update. Before stating these two

steps, certain assumptions are needed: 1) each target follows a linear Gaussian model:

yk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1) (3.18)

fk(z|x) = N (z;Hkx,Rk) (3.19)

where N (.;m,P ) denotes a Gaussian density with mean m and covariance P ; Fk−1 and

Hk are the state transition and measurement matrices, respectively. Qk−1 and Rk are

the covariance matrices of the process and the measurement noises, respectively. 2)

A current measurement driven birth intensity inspired by but not identical to [176] is

introduced at each time step, removing the need for the prior knowledge (specification

of birth intensities) or a random model, with a non-informative zero initial velocity.

The intensity of the spontaneous birth RFS is a Gaussian mixture of the form

γk(x) =

Vγ,k∑
v=1

w
(v)
γ,kN (x;m

(v)
γ,k, P

(v)
γ,k ) (3.20)

where Vγ,k is the number of birth Gaussian components, w
(v)
γ,k is the weight accom-

panying the Gaussian component v, m
(v)
γ,k is the current measurement and zero initial

velocity used as mean, and P
(v)
γ,k is birth covariance for Gaussian component v. In our

case, Vγ,k equals to 1 unless in re-detection stage at which it becomes 5 as we generate

5 high score detection proposals to be filtered.

3) The survival and detection probabilities are independent of the target state: pS,k(xk) =

pS,k and pD,k(xk) = pD,k.

Prediction: It is assumed that the posterior intensity at time k − 1 is a Gaussian
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mixture of the form

Dk−1(x) = Dk−1|k−1(x) =

Vk−1∑
v=1

w
(v)
k−1N (x;m

(v)
k−1, P

(v)
k−1), (3.21)

where Vk−1 is the number of Gaussian components of Dk−1(x) and it equals to the

number of Gaussian components after pruning and merging at the previous iteration.

Under these assumptions, the predicted intensity at time k is given by

Dk|k−1(x) = DS,k|k−1(x) + γk(x), (3.22)

where

DS,k|k−1(x) = pS,k
∑Vk−1

v=1 w
(v)
k−1N (x;m

(v)
S,k|k−1, P

(v)
S,k|k−1),

m
(v)
S,k|k−1 = Fk−1m

(v)
k−1,

P
(v)
S,k|k−1 = Qk−1 + Fk−1P

(v)
k−1F

T
k−1,

where γk(x) is given by Eq. (3.20).

Since DS,k|k−1(x) and γk(x) are Gaussian mixtures, Dk|k−1(x) can be expressed as a

Gaussian mixture of the form

Dk|k−1(x) =

Vk|k−1∑
v=1

w
(v)
k|k−1N (x;m

(v)
k|k−1, P

(v)
k|k−1), (3.23)

where w
(v)
k|k−1 is the weight accompanying the predicted Gaussian component v, and

Vk|k−1 is the number of predicted Gaussian components and it equals to the number

of born targets (1 unless in case of re-detection at which it is 5) and the number of

persistent components which are actually the number of Gaussian components after

pruning and merging at the previous iteration.
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Update: The posterior intensity (updated PHD) at time k is also a Gaussian mixture

and is given by

Dk|k(x) = (1− pD,k)Dk|k−1(x) +
∑
z∈Zk

DD,k(x; z), (3.24)

where

DD,k(x; z) =

Vk|k−1∑
v=1

w
(v)
k (z)N (x;m

(v)
k|k(z), P

(v)
k|k ),

w
(v)
k (z) =

pD,kw
(v)
k|k−1q

(v)
k (z)

csk(z) + pD,k
∑Vk|k−1

l=1 w
(l)
k|k−1q

(l)
k (z)

,

q
(v)
k (z) = N (z;Hkm

(v)
k|k−1, Rk +HkP

(v)
k|k−1H

T
k ),

m
(v)
k|k(z) = m

(v)
k|k−1 +K

(v)
k (z −Hkm

(v)
k|k−1),

P
(v)
k|k = [I −K(v)

k Hk]P
(v)
k|k−1,

K
(v)
k = P

(v)
k|k−1H

T
k [HkP

(v)
k|k−1H

T
k +Rk]

−1

The clutter intensity due to the scene, csk(z), in Eq. (3.24) is given by

csk(z) = λtc(z) = λcAc(z), (3.25)

where c(.) is the uniform density over the surveillance region A, and λc is the average

number of clutter returns per unit volume i.e. λt = λcA. We set the clutter rate or

false positive per image (fppi) λt = 4 in our experiment.

After update, weak Gaussian components with weight w
(v)
k < T = 10−5 are pruned,

and Gaussian components with Mahalanobis distance less than U = 4 pixels from each

other are merged. These pruned and merged Gaussian components are predicted as
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existing targets in the next iteration. Finally, the Gaussian component of the posterior

intensity with mean corresponding to the maximum weight is selected as a target state

(position) estimate when the re-detection module is activated.

The chosen values of T and U work reasonably in this experiment. The weights corre-

sponding to the real targets are significantly higher than the value used for T usually

approaching unity. Only the duplicated and weak Gaussian components that merely

add computationally complexity as time progresses have lower value than that of T .

We generate only 5 detection proposals when re-detection module is activated. More

importantly, we only pick one target with the maximum weight from the posterior in-

tensity, not from the pruned and merged intensity; the merged and pruned Gaussian

components are used for prediction as existing targets in the next iteration. Moreover,

in case two Gaussian components corresponding to two different targets are merged

(less than U), the measurements obtained in the current time-step can influence them

to recover in the next time-step as their separation increases (in general case).

3.2.4 Scale Estimation

At the new estimated target position (or re-fined target position after re-detection in

case of tracking failure), we construct an image pyramid for estimating its scale. Given

a target size of P ×Q in a test frame, we generate S number of scale levels at the new

estimated position i.e. for each n ∈ {b−S−1
2 c, b−

S−3
2 c, ..., b

S−1
2 c}, we extract an image

patch Is of size sP × sQ centered at the new estimated target position, where scale

s = an and a is the scale factor between the generated image pyramids. We uniformly

resize all the generated image pyramids to P×Q again unlike [111], and extracted HOG

features particularly Felzenszwalb’s variant [70] to construct the scale feature pyramid.

Then, the optimal scale ŝ of a target at the estimated new position can be obtained by

computing the correlation response maps r̂s of the scale correlation filter ws to Is and

find the scale at which the maximum response map can be obtained as

ŝ = argmax
s

(
r̂s
)
. (3.26)

The scale correlation filter is updated using the new training sample at the estimated

scale Iŝ by Eq. (3.8).
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Algorithm 1 Proposed tracking algorithm

1: Input : Image Ik, previous target position xk−1 and scale sk−1, previous correlation filters w
(l)
t,k−1

and ws,k−1, previous SVM detector Dr

2: Output : Estimated target position xk = (xk, yk) and scale sk, updated correlation filters w
(l)
t,k

and ws,k, updated SVM detector Dr
3: repeat
4: Crop out the searching window in frame k according to (xk−1, yk−1) and sk−1, and then extract

multi-layer hybrid features and resize them to a fixed size;

// Translation estimation
5: for each layer l do
6: compute response map r(l) using w

(l)
t,k−1 and Eq. (3.5);

7: end for
8: Sum up the response maps of all layers element-wise according to their weight γ(l) to get

r(m,n) using Eq. (3.6);
9: Estimate the new target position (xk, yk) by finding the maximum response of r(m,n)

using Eq. (3.7);

// Apply GM-PHD filter
10: Update GM-PHD filter using the estimated target position (xk, yk) as measurement but

without re-fining it, just to update weight of GM-PHD filter for later use;

// Target re-detection
11: if max

(
r(m,n)

)
< Trd then

12: Use the detector Dr to generate detection proposals Zk from high scores of incremental
SVM;

// Filtering using GM-PHD filter
13: Filter the generated candidate detections Zk using GM-PHD filter and select the detection

with maximum weight as a re-detected target position (xrk, yrk). Then crop out the
searching window at this re-detected position and compute its response map using Eq. (3.5)
and Eq. (3.6), and call it rrd(m,n);

14: if max
(
rrd(m,n)

)
> Trd then

15: (xk, yk) = (xrk, yrk) i.e. re-fine by the re-detected position;
16: end if
17: end if

// Scale estimation
18: Construct target image pyramid around (xk, yk) and extract HOG features (resized to same

size), and then compute the response maps r̂s using ws,k−1 and Eq. (3.5), and then estimate
its scale sk using Eq. (3.26);

// Translation correlation model update
19: Crop out new patch centered at (xk, yk) and extract multi-layer hybrid features and resize

them to a fixed size;
20: for each layer l do
21: Update translation correlation filter w

(l)
t,k using Eq. (3.8);

22: end for

// Scale correlation model update
23: Crop out new patch centered at (xk, yk) with estimated scale sk and extract HOG features

and then update correlation filter ws,k using Eq. (3.8);

// Detector update
24: if max

(
r(m,n)

)
≥ Ttd then

25: Generate positive and negative samples around (xk, yk) and then extract HOG, LUV color
and normalized gradient magnitude features to train incremental SVM for updating its
weight vector using Eq. (3.17);

26: end if
27: until End of video sequences;
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3.3 Implementation Details

The main steps of our proposed algorithm are presented in Algorithm 1. More im-

plementation details with parameter settings are given as follows. For learning the

translation correlation filter, we extract features from VGG-Net [4], shown in Fig. 3.2,

trained on a large amount of object recognition data set (ImageNet) [18] by first re-

moving fully-connected layers. Particularly, we use outputs of conv3-4, conv4-4 and

conv5-4 convolutional layers as features (l ∈ {1, 2, 3} and d ∈ {1, ..., D}), i.e. the

outputs of rectilinear units (inputs of pooling) layers must be used to keep more spa-

tial resolution. Hence, the CNN features we use has 3 layers (L = 3) and multiple

channels (D = 512) for conv5-4 and conv4-4 layers and (D = 256) for conv3-4 layer.

For hand-crafted features, HOG variant with 31 dimensions and color-naming with 11

dimensions are integrated to make 42 dimensional features which make a 4th layer in

our hybrid multi-layer features. The components of HOG variant with 31 dimensions

are given as 3∗Norientations+4. We used number of orientations Norientations = 9

where 2∗Norientations are contrast sensitive orientation channels, Norientations are

contrast insensitive orientation channels, and 4 texture channels. Given an image frame

with a search window size of M̃ × Ñ which is about 2.8 times the target size to provide

some context, we resize the multi-layer hybrid features to a fixed spatial size of M ×N
where M = M̃

4 and N = Ñ
4 . These hybrid features from each layer are weighted by a

cosine window [8] to remove the boundary discontinuities, and then combined later on

in Eq. (3.6) for which we set γ as 1, 0.4, 0.02 and 0.1 for the conv5-4 as layer 1, conv4-4

as layer 2, conv3-4 as layer 3 and hand-crafted features as layer 4 in our hybrid features,

respectively. We set the regularization parameter of the ridge regression in Eq. (3.2)

to λ = 10−4, and a kernel bandwidth of the Gaussian function label in Eq. (3.1) to

σ = 0.1. The learning rate for model update in Eq. (3.8) is set to η = 0.01.

For learning the scale correlation filter, we use the same parameter settings as above

with some exceptions as follows. In this case we use HOG features [70] with 31 bins

i.e. it is treated as a single layer (L = 1) but with multiple channels (D = 31). The

number of scale spaces is set to S = 31 and the scale factor is set to a = 1.04. We use

a linear kernel Eq. (3.9) for learning both translation and scale correlation filters.

HOG, LUV color and normalized gradient magnitude features are used to train an incre-

mental (online) SVM classifier for the re-detection module. For the objective function

given in Eq. (3.14), we use a Gaussian kernel, particularly for Qij = yiyjk(xi,xj), and

the regularization parameter C is set to 2. Empirically, we set the activate re-detection

threshold to Trd = 0.15 and the train detector threshold to Ttd = 0.40. The parameters

in Eq. (3.11) are set as δp = 0.9 and δn = 0.3. For negative samples, we randomly
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sampled 3 times the number of positive samples satisfying δn = 0.3 within the max-

imum search area of 4 times the target size. In the re-detection phase, we generated

5 high-score detection proposals from the trained online SVM around the estimated

position within the maximum search area of 6 times the target size which are filtered

using the GM-PHD filter to find the detection with the maximum weight removing the

others as clutter. The implementation parameters are summarized in Table 3.1.

Ps λ σ η C Trd Ttd δp δn S a λt U T

Vs 10−4 0.1 0.01 2 0.15 0.40 0.9 0.3 31 1.04 4 4 pixels 10−5

Table 3.1: Implementation parameters, Ps for parameters and Vs for values.

Figure 3.2: VGG-Net 19 [4].

3.4 Experimental Results

We evaluate our proposed tracking algorithm on both a large-scale online object track-

ing benchmark (OOTB) [93] and crowded scenes (medium and dense PETS 2009 data

sets1), and compare its performance with state-of-the-art trackers using the same pa-

rameter values for all the sequences. We quantitatively evaluate the robustness of the

trackers using two metrics, precision and success rate based on center location error

and bounding box overlap ratio, respectively, using one-pass evaluation (OPE) setting,

running the trackers throughout a test sequence with initialization from the ground

truth position in the first frame. The center location error computes the average Eu-

clidean distance between the center locations of the tracked targets and the manually

labeled ground truth positions of all the frames whereas bounding box overlap ratio

computes the intersection over union of the tracked target and ground truth bounding

boxes.

1http://www.cvg.reading.ac.uk/PETS2009/a.html
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Our proposed tracking algorithm is implemented in MATLAB on a 3.0 GHz Intel

Xeon CPU E5-1607 with 16 GB RAM. We also use the MatConvNet toolbox [50] for

CNN feature extraction where its forward propagation computation is transferred to a

NVIDIA Quadro K5000, and our tracker runs at 5 fps on this setting. The re-detection

step and forward propagation for feature extraction step are the main computational

load steps of our tracking algorithm. We analyze our algorithm and then compare it

with the state-of-the-art trackers both quantitatively and qualitatively on OOTB and

PETS 2009 data sets separately as follows.

3.4.1 Evaluation on OOTB

OOTB [93] contains 50 fully annotated videos with substantial variations such as scale,

occlusion, illumination, etc and is currently a popular tracking benchmark available in

the computer vision community. In this experiment, we compare our proposed track-

ing algorithm with 6 state-of-the-art trackers including CF2 [5], LCT [7], MEEM [6],

DLT [108], KCF [8] and SAMF [219], as well as 4 more top trackers included in the

Benchmark [93], particularly SCM [106], ASLA [96], TLD [13] and Struck [101] both

quantitatively and qualitatively.

Quantitative Evaluation: We evaluate our proposed tracking algorithm quantita-

tively and compare with other algorithms as summarized in Fig. 3.3 using precision

plots (left) and success plots (right) based on center location error and bounding box

overlap ratio, respectively. Our proposed tracking algorithm, denoted by LCMHT,

outperforms the state-of-the-art trackers in both precision and success measures by

rankings given in the legends using a distance precision of threshold scores at 20 pix-

els and overlap success of area-under-curve (AUC) score for each tracker, respectively.

This is because a hybrid of multi-layer CNN, HOG and color-naming features is more

effective to represent the target than their individual features separately i.e. our pro-

posed tracking algorithm integrates a hybrid of multi-layer CNN and traditional (HOG

and color-naming) features for learning a translation correlation filter, and uses the

GM-PHD filter for temporally filtering generated high score detection proposals during

a re-detection phase for removing clutter so that it can re-detect the target even in a

cluttered environment.

We also evaluate quantitatively the performance of our algorithm without a re-detection

module (LCMHT WtR) in Fig. 3.4 and show with the top 3 ranked algorithms shown in

Fig. 3.3. As can be observed from this figure, the re-detection module has a significant

contribution for the performance of our algorithm on OOTB.
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Figure 3.3: Distance precision (left) and overlap success (right) plots on OOTB using one-pass
evaluation (OPE). The legend for distance precision contains threshold scores at 20 pixels while
the legend for overlap success contains the AUC score of each tracker; the larger, the better.

Figure 3.4: Distance precision (left) and overlap success (right) plots on OOTB using one-pass
evaluation (OPE). The legend for distance precision contains threshold scores at 20 pixels while
the legend for overlap success contains the AUC score of each tracker; the larger, the better.
The performances of our algorithm (LCMHT) and its version without a re-detection module
(LCMHT WtR) are shown.

Attribute-based Evaluation: For the detailed performance analysis of each of the

trackers, we also report the results on various challenge attributes in OOTB [93] such

as occlusion, scale variation, illumination variation, etc. As shown in Fig. 3.5, our

proposed tracker outperforms the state-of-the-art trackers in almost all challenge at-

tributes. In particular, our proposed tracker (LCMHT) performs significantly better

than all trackers on the occlusion attribute since it includes a re-detection module

which can re-acquire the target in case the tracker fails even in cluttered environments
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by removing clutter using GM-PHD filter. Similarly, our tracker also outperforms other

trackers on the scale variation attribute since our tracker elegantly estimates the scale

of the tracker at the newly estimated target positions. The LCT algorithm includes

both re-detection and scale estimation modules, however, our proposed tracker still out-

performs the LCT algorithm by a large margin as shown in Fig. 3.5 since our tracker

uses better visual features for translation estimation and re-detection. Furthermore,

our proposed algorithm applies scale estimation after translation and re-detection steps

(if activated) rather than only after the translation estimation step as in the LCT al-

gorithm, though both methods use similar visual features (HOG) to learn the scale

correlation filter.

Qualitative Evaluation: We compare our proposed tracking algorithm (LCMHT)

with four other state-of-the-art trackers namely CF2 [5], MEEM [6], LCT [7] and

KCF [8] on some challenging sequences of OOTB qualitatively as shown in Fig. 3.6.

CF2 uses hierarchical CNN features but is not as effective as our tracker which combines

hierarchical CNN features with HOG and color-naming traditional features as can be

observed on the sequence Fleetface (first column on Fig. 3.6). LCT and KCF also

use correlation filters using traditional features but still they are not as accurate as

our tracker. MEEM uses many classifiers together to re-initialize the tracker in case

of tracking failures but it can not re-detect the target on this sequence. Similarly, it

can not re-detect the target on sequences Singer1 (second column), Freeman4 (third

column) and Walking2 (forth column) as well. LCT includes re-detection and scale

estimation components, however, it can not handle large scale changes as in sequence

Singer1 (second column), and it can not re-initialize the tracker as in sequence Walking2

(forth column). More importantly, the sequence Freeman4 undergoes not only heavy

occlusion in a cluttered environment but also scale variation, in-plane and out-of-plane

rotations. The LCT algorithm which is equipped with both re-detection and scale

estimation modules is not effective on this sequence like the other algorithms. However,

only our proposed tracker tracks the target till the end of the sequence not only handling

the scale change but also re-detecting the target when it fails. This sequence is a typical

example which is related to our next evaluation on PETS 2009 data sets on which our

proposed algorithm outperforms the other trackers by a large margin.

3.4.2 Evaluation on PETS 2009 Data Sets

We label the upper part (head + neck) of representative targets in both medium and

dense PETS 2009 data sets to analyze our proposed tracking algorithm. In this ex-
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Figure 3.5: Success plots on OOTB using one-pass evaluation (OPE) for 8 challenge attributes:
occlusion, scale variation, background clutter, illumination variation, in-plane rotation, out-of-
plane rotation, deformation, and fast motion. The legend contains the AUC score of each
tracker; the larger, the better.
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Figure 3.6: Qualitative results of our proposed LCMHT algorithm, CF2 [5], MEEM [6],
LCT [7] and KCF [8] on some challenging sequences of OOTB (Fleetface, Singer1, Freeman4,
and Walking2 from left column to right column, respectively).

periment, our goal is to analyze our proposed tracking algorithm and other available

state-of-the-art tracking algorithms to see whether they can successfully be applied

for tracking a target of interest in occluded and cluttered environments. Accordingly,

we compare our proposed tracking algorithm with 6 state-of-the-art trackers includ-

ing CF2 [5], LCT [7], MEEM [6], DSST [111], KCF [8] and SAMF [219], as well as 4

more top trackers included in the Benchmark [93], particularly SCM [106], ASLA [96],

CSK [110] and IVT [97] both quantitatively and qualitatively.

Quantitative Evaluation: The evaluation results of precision plots (left) and success

68



plots (right) based on center location error and bounding box overlap ratio, respec-

tively, are shown in Fig. 3.7. Our proposed tracking algorithm, denoted by LCMHT,

outperforms the state-of-the-art trackers by a large margin on PETS 2009 data sets in

both precision and success rate measures. The rankings are given in distance precision

of threshold scores at 20 pixels and overlap success of AUC score for each tracker as

given in the legends.

Similar to OOTB case, we also evaluate the performance of our algorithm without a

re-detection module (LCMHT WtR) on PETS data sets quantitatively in Fig. 3.8 and

show with the top 3 ranked algorithms shown in Fig. 3.7. As can be observed from this

figure, the re-detection module has much more contribution for the performance of our

algorithm than the traditional features and scale estimation combined when compared

to CF2, for instance.

Figure 3.7: Distance precision (left) and overlap success (right) plots on PETS data sets using
one-pass evaluation (OPE). The legend for distance precision contains threshold scores at 20
pixels while the legend for overlap success contains the AUC score of each tracker; the larger,
the better.

The second and third ranked trackers are CF2 [5] and MEEM [6] for precision plots,

respectively, and viceversa for success plots on PETS 2009 data sets. However, on

OOTB, CF2 outperforms MEEM significantly being second to our proposed track-

ing algorithm. The most important thing to give attention is on the performance of

LCT [7]. This algorithm is ranked third on the OOTB as shown in Fig. 3.3, however, it

performs least well on the precision plots and second from last on success plots on PETS

2009 data sets. Surprisingly, this algorithm was developed by learning three different

discriminative correlation filters and even included a re-detection module for long-term
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Figure 3.8: Distance precision (left) and overlap success (right) plots on PETS data sets using
one-pass evaluation (OPE). The legend for distance precision contains threshold scores at 20
pixels while the legend for overlap success contains the AUC score of each tracker; the larger,
the better. The performances of our algorithm (LCMHT) and its version without a re-detection
module (LCMHT WtR) are shown.

tracking problems. Though it performs reasonably on the OOTB, its performance on

occluded and cluttered environments such as PETS 2009 data sets is poor due to using

less robust visual features in such environments. Even CF2 which uses CNN features

has low performance compared to our proposed algorithm on the PETS 2009 data sets.

Since our proposed tracking algorithm integrates a hybrid of multi-layer CNN and

traditional features for learning the translation correlation filter and GM-PHD filter

for temporally filtering generated high score detection proposals during a re-detection

phase for removing clutter, it outperforms all the available trackers significantly. This

closes the model-free tracking research gap between sparse and crowded environments.

Qualitative Evaluation: Fig. 3.9 presents the performance of our proposed tracker

qualitatively compared to the state-of-the-art trackers. In this case, we show the com-

parison of four representative trackers to our proposed algorithm: CF2 [5], MEEM [6],

LCT [7], and KCF [8] as shown in Fig 3.9. On the medium density PETS 2009 data set

(left column), LCT and KCF lose the target even on the first 16 frames. Though the

CF2 and MEEM trackers track the target well, they could not re-detect the target after

the occlusion i.e. only our proposed tracking algorithm tracks the target till the end

of the sequence by re-initializing the tracker after the occlusion. We show the cropped

and enlarged re-detection just after occlusion in Fig. 3.10. On the dense PETS data set

(right column), all trackers track the target on the first 20 frames but LCT and KCF

lose the target before 73 frames. Similar to the medium density PETS data set, the

CF2 and MEEM trackers track the target before they lose it due to occlusion. Only our

proposed tracking algorithm, LCMHT, re-detects the target and tracks it till the end

70



of the sequence in such dense environments due to two reasons. First, it incorporates

both lower and higher CNN layers in combination with traditional features (HOG and

color-naming) in a multi-layer to learn the translation correlation filter that is robust to

appearance variations of targets. Second, it includes a re-detection module which gen-

erates high score detection proposals during a re-detection phase and then filter them

using GM-PHD filter to remove clutter due to background and other uninterested tar-

gets so that it can re-detect the target in such cluttered and dense environment. These

make our proposed tracking algorithm outperform the other state-of-the-art trackers.

3.5 Summary

In this chapter, we propose a novel long-term online model-free tracking algorithm

that can be applied to track a target of interest in both sparse and crowded environ-

ments. The advantages of the correlation filters, a hybrid of multi-layer CNN and

hand-engineered (HOG and color-naming) features, an incremental (online) SVM and

a GM-PHD filter are exploited to make the developed algorithm robust to not only

long-term occlusions but also challenging clutter from the background scene and other

uninterested targets. A ridge regression is extended for multi-layer hybrid CNN and

hand-crafted features for learning a translation correlation filter for estimating a target

location. These CNN and hand-crafted features are appropriately combined for better

performance. Both lower and higher convolutional layers are combined to capture more

spatial details and semantic information for localizing a target precisely and handling

its appearance variations respectively. When confidence of the translation correlation

filter is not large enough, we activate a re-detection module, an online trained SVM on

the most confident frames using traditional features (HOG, LUV color and normalized

gradient magnitude), to re-initialize the tracker in case of tracking failure due to long-

term occlusion. When this re-detection module is activated, it generates high score

detection proposals which are then temporally filtered using the GM-PHD filter to find

the detection proposal with the maximum weight as the target position estimate by

removing the others as clutter. We also learn a scale correlation filter by constructing

a target pyramid around the estimated or re-detected position using HOG features for

estimating the scale of a target. The integration of each of them for the different parts

of the algorithm is relevant for robustness and accuracy i.e. learning correlation filters

using an appropriate combination of CNN and traditional features as well as including

a re-detection module using incremental SVM and GM-PHD filter can give better re-

sults. Extensive experiments both on a large-scale online object tracking benchmark
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Figure 3.9: Qualitative results of our proposed algorithm LCMHT, CF2 [5], MEEM [6], LCT [7]
and KCF [8] on PETS 2009 medium density (left column) and dense (right column) data sets.
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Figure 3.10: Qualitative results of our proposed LCMHT algorithm, CF2 [5], MEEM [6],
LCT [7] and KCF [8] on PETS 2009 medium density (left, frame 78) and dense (right, frame
85) data sets, just after occlusion by cropping and enlarging.

(OOTB) and on tracking an interesting target in crowded scenes (PETS 2009) show

our proposed method performs favorably against existing state-of-the-art methods.
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Chapter 4

Development of a N-type

GM-PHD Filter for Multiple

Target, Multiple Type Filtering

A unified framework which directly extends single target tracking to multi-target track-

ing by representing multi-target states and observations as random finite sets (RFS) is

developed as discussed in chapter 2 (section 2.5.3) which estimates both the states and

cardinality of an unknown and time varying number of targets in a scene. This includes

target birth, death, clutter (false alarms), and missing detections with a much lower

computational complexity in a single state space rather than in a joint-state space as in

most traditional methods. However, all existing RFS-based multiple target filters were

developed for either a single or multiple target types but without taking any account

of target confusion between target types at the measurement stage i.e. measurements

originate not only from the same target type but are also confused with other target

types. In this chapter, we model a new filter which can solve these problems.

First, we present recursive Bayes filtering with RFS for multiple targets of different

types in section 4.1. Second, we derive our new N-type PHD where N ≥ 2 using a

probability generating functional (PGFL) in section 4.2. Then we present the N-type

PHD filtering recursion and its Gaussian mixture implementation scheme in sections 4.3

and 4.4, respectively. We demonstrate by simulation the performance of this proposed

N-type GM-PHD filter, specifically for quad GM-PHD filter (N = 4) as an example in

section 4.5. Finally, we summarize the key concepts behind the N-type GM-PHD filter

in section 4.6.
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4.1 Multiple Target, Multiple Type Recursive Bayes Fil-

tering with RFS

When different detectors are run on the same scene to detect different target types,

there is no guarantee that these detectors detect only their own type. It is possible

to run an independent PHD filter for each target type, but this is not correct in most

cases, as the likelihood of a positive response to a target of the wrong type is in general

different from, usually higher than, the likelihood of a positive response to the scene

background. Hence, we want to account for this difference between background clutter

and target type confusion. This is equivalent to a single sensor (e.g. a smart camera)

that has N different detection modes, each with its own probability of detection and a

measurement density for N different target types. The sensor setting for this approach

is given in Figure 4.1 in a generic form for N different target types.

Figure 4.1: A sensor setting for our approach. The sensor is equipped with many detectors for
each type of multiple targets in which case one detector can also detect other than its own target
type resulting in separate but confused measurements which are filtered and discriminated by
our approach.

So we model a N-type PHD filter to filter N-types of multiple targets in such a way

that the first PHD update filters the first target type treating the others as potential,

additional clutter in addition to background clutter, and vice versa. In the joint tracking

and classification approaches such as in [211], [212], the target type (class) is put

into the target state vector, however, here we follow a different approach which is

convenient for handling target confusions from different target types. Accordingly, to

derive the N-type PHD filter, it is necessary to first give its RFS representation extended

from a single type single-target Bayes framework to a multiple type multi-target Bayes

framework.
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Let the multi-target state space F(X ) and the multi-target observation space F(Z) be

the respective collections of all the finite subsets of the state space X and observation

space Z, respectively. If Li(k) is the number of targets of target type i in the scene at

time k, then the set of multiple states for target type i, Xi,k, is

Xi,k = {xi,k,1, ...xi,k,Li(k)} ∈ F(X ) (4.1)

where i ∈ {1, ..., N}. Similarly, if Mi(k) is the number of received observations for

target type i, then the corresponding multiple target measurements for that target

type is the set

Zi,k = {zi,k,1, ...zi,k,Mi(k)} ∈ F(Z) (4.2)

where i ∈ {1, ..., N}. As stated above, some of these observations may be false, i.e. due

to clutter (background) or confusion (response due to another target type).

The uncertainty in the state and measurement spaces is introduced by modeling the

multi-target state and the multi-target measurement using RFS. Let Ξi,k be the RFS

associated with the multi-target state of target type i, then

Ξi,k = Si,k(Xi,k−1) ∪ Γi,k, (4.3)

where Si,k(Xi,k−1) denotes the RFS of surviving targets of target type i, and Γi,k is the

RFS of the new-born targets of target type i. We do not consider target spawning in

this formulation as this has no meaning in our context.

Further, the RFS Ωi,k associated with the multi-target measurements of target type i

is

Ωi,k = Θi,k(Xi,k) ∪ Csi,k ∪ CtiJ,k , (4.4)

where J = {1, ..., N}\i and Θi,k(Xi,k) is the RFS modeling the measurements generated

by the targets Xi,k, and Csi,k models the RFS associated with the clutter (false alarms)

for target type i which comes from the scene background. However, we now must also

include CtiJ,k which is the RFS associated with all target types J = {1, ..., N} \ i being

treated as clutter while filtering target type i i.e. all target types are included into

clutter except target type i while filtering target type i. We term this detection of the

wrong type of target as confusion, just to distinguish from background clutter.
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Analogous to the single-target case, the dynamics of Ξi,k are described by the multi-

target transition density yi,k|k−1(Xi,k|Xi,k−1), while Ωi,k is described by the multi-

target likelihood fji,k(Zj,k|Xi,k) for multiple target type i ∈ {1, ..., N} from detector

j ∈ {1, ..., N}. The recursive equations are

pi,k|k−1(Xi,k|Zi,1:k−1) =
∫
yi,k|k−1(Xi,k|X)pi,k−1|k−1(X|Zi,1:k−1)µ(dX) (4.5)

pi,k|k(Xi,k|Zi,1:k) =
fji,k(Zj,k|Xi,k)pi,k|k−1(Xi,k|Zi,1:k−1)∫
fji,k(Zj,k|X)pi,k|k−1(X|Zi,1:k−1)µ(dX)

(4.6)

where µ is an appropriate dominating measure on F(X ) [170]. Though a Monte Carlo

approximation of this optimal multi-target type Bayes recursion is possible accord-

ing to multi-target for single type [173], the number of particles required is expo-

nentially related to the number of targets and their types in the scene. To make it

computationally tractable, we extend Mahler’s method of propagating the first-order

moment of the multi-target posterior instead of the full multi-target posterior. This

approximation is called the N-type Probability Hypothesis Density (N-type PHD),

Di,k|k(x|Zi:k) = Di,k|k(x) =
∫
δx(x)pi,k|k(X|Zi,1:k)δX where δx(x) =

∑
w∈x δw(x), for

N ≥ 2 types of multiple targets by deriving the updated PHDs from Probability Gener-

ating FunctionaLs (PGFLs) starting from the standard predicted PHDs of each target

type for our new filter which is termed as N-type PHD filter.

4.2 Probability Generating Functional (PGFL)

A probability generating functional is a convenient representation for stochastic mod-

elling with a point process [170], a type of random process for which any one realisation

consists of a set of isolated points either in time or space. Now, we model joint (prob-

ability generating) functionals which take into account the clutter due to the other

target types (confusion) in addition to the background clutter for deriving the updated

PHDs. Starting from the standard proved predicted PHDs [170], we derive novel ex-

tensions for the updated PHDs of a N-type PHD filter from PGFLs of each target type,

handling confusions among target types.

The joint functional for target type i treating all other target types as clutter is given
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by

Fi[g, h] = GTi(hGLi,i(g|.))Gci(g)
N∏

j=1\i

GTj (GLj,i(g|.)), (4.7)

where i ∈ {1, ..., N} denotes target type, g is related to the target measurement process

and h is related to the target state process.

Gci(g) = exp(λi(ci[g]− 1)), (4.8)

where Gci(g) is the Poisson PGFL for background false alarms where λi is the average

number of false alarms for target type i and the functional ci[g] =
∫
g(z)ci(z)dz where

ci(.) is the uniform density over the surveillance region;

GTi(h) = exp(µi(si[h]− 1)), (4.9)

where GTi(h) is the prior PGFL (also Poisson-distributed) and µi is the average number

of targets, each of which is distributed according to si(x) for target type i; and

GLj,i(g|x) = 1− pji,D(x) + pji,D(x)

∫
g(z)fji(z|x)dz, (4.10)

where GLj,i(g|x) is the Bernoulli detection process for each target of target type i using

detector j with probability of detection for target type i by detector j, pji,D, and

fji(z|x) is a likelihood defining the probability that z is generated by the target type

i conditioned on state x from detector j. Expanding si[hGLi,i(g|x)] and sj [GLj,i(g|x)]

as

si[hGLi,i(g|x)] =
∫
si(x)h(x)

(
1− pii,D(x) + pii,D(x)

∫
g(z)fii(z|x)dz

)
dx, (4.11)

and

sj [GLj,i(g|x)] =
∫
sj(x)

(
1− pji,D(x) + pji,D(x)

∫
g(z)fji(z|x)dz

)
dx. (4.12)

Accordingly, Fi[g, h] is expanded as

Fi[g, h] = exp
(
λi(
∫
g(z)ci(z)dz − 1)+∑N

j=1\i µj [
∫
sj(x)(1− pji,D(x) + pji,D(x)

∫
g(z)fji(z|x)dz)dx− 1]

+ µi[
∫
si(x)h(x)(1− pii,D(x) + pii,D(x)

∫
g(z)fii(z|x)dz)dx− 1]

)
.

(4.13)
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Now, the extended derivation is based on Fi[g, h] for target type i. Accordingly, the

M th
i functional derivative of Fi[g, h] with respect to g in the directions of ϕz1 , ..., ϕzMi

is given by

δMi
δϕz1 ...δϕzMi

Fi[g, h] = Fi[g, h]
∏Mi
m=1

[
λici(zm) +

∑N
j=1\i µj

∫
sj(x)pji,D(x)fji(zm|x)dx+

µi
∫
si(x)h(x)pii,D(x)fii(zm|x)dx

]
,

(4.14)

where ϕzi = δzi for all zi.

The PGFL Baye’s update Gi(h|z1, ...zMi) for target type i is obtained by finding the

M th
i functional derivative of Fi[g, h] and then setting g = 0 in the numerator and

setting g = 0, h = 1 in the denominator as

Gi(h|z1, ..., zMi) =

δMi
δϕz1

...δϕzMi

Fi[g,h]
∣∣
g=0

δMi
δϕz1

...δϕzMi

Fi[g,1]
∣∣
g=0

,

= exp
(
µi
∫
si(x)h(x)(1− pii,D(x))dx− µi

∫
si(x)(1− pii,D(x))dx

)
∗∏Mi

m=1

[
λici(zm)+

∑N
j=1\i µj

∫
sj(x)pji,D(x)fji(zm|x)dx+µi

∫
si(x)h(x)pii,D(x)fii(zm|x)dx

λici(zm)+
∑N
j=1\i µj

∫
sj(x)pji,D(x)fji(zm|x)dx+µi

∫
si(x)pii,D(x)fii(zm|x)dx

]
.

(4.15)

Now, for simplification, Eq. 4.15 can be represented as

Gi(h|z1, ..., zMi) = r(x)

Mi∏
m=1

qm(x), (4.16)

where r(x) and qm(x) are given by

r(x) = exp
(
µi

∫
si(x)h(x)(1− pii,D(x))dx− µi

∫
si(x)(1− pii,D(x))dx

)
, (4.17)

qm(x) =
λici(zm) +

∑N
j=1\i µj

∫
sj(x)pji,D(x)fji(zm|x)dx+ µi

∫
si(x)h(x)pii,D(x)fii(zm|x)dx

λici(zm) +
∑N

j=1\i µj
∫
sj(x)pji,D(x)fji(zm|x)dx+ µi

∫
si(x)pii,D(x)fii(zm|x)dx

.

(4.18)
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Now, take the first-order moment (mean) of Eq. 4.16 using the product rule,

δ

δϕx
Gi(h|z1, ...zMi) =

δ

δϕx
r(x)

Mi∏
m=1

qm(x) + r(x)
δ

δϕx

[
ΠMi
m=1qm(x)

]
, (4.19)

Using ϕx = δx,
δ

δϕx
r(x) = r(x)µi[si(x)− pii,D(x)si(x)], (4.20)

Using the product rule for more than two factors,

δ

δϕx

[ Mi∏
m=1

qm(x)
]

=
( Mi∏
m=1

qm(x)
)( Mi∑

m=1

q
′
m(x)

qm(x)

)
, (4.21)

where the derivative of qm(x) in Eq. 4.18 is obtained using the quotient rule and is

given in a simplified form using ϕx = δx as

q
′
m(x) = δ

δϕx
qm(x)

=
µisi(x)pii,D(x)fii(zm|x)

λici(zm)+
∑N
j=1\i µj

∫
sj(x)pji,D(x)fji(zm|x)dx+µi

∫
si(x)pii,D(x)fii(zm|x)dx

,
(4.22)

where the following equational facts are important for this simplification:

δ
δϕx

λici(zm) = 0, (No process variable h(x))
δ
δϕx

µj
∫
sj(x)pji,D(x)fji(zm|x)dx = 0, (No process variable h(x))

δ
δϕx

µi
∫
si(x)h(x)pii,D(x)fii(zm|x)dx = µisi(x)pii,D(x)fii(zm|x).

(4.23)

Now combining Eqs. 4.17,4.18,4.20,4.21,4.22, i.e. taking the first-order moment (mean)

and setting h = 1, the updated PHD for target type i treating all other target types as

clutter can be obtained and is given by

Di(x|z1, ..., zMi) = δ
δϕx

Gi(h|z1, ...zMi)
∣∣
h=1

,

= µisi(x)(1− pii,D(x))+∑Mi
m=1

µisi(x)pii,D(x)fii(zm|x)

λici(zm)+
∑N
j=1\i µj

∫
sj(x)pji,D(x)fji(zm|x)dx+µi

∫
si(x)pii,D(x)fii(zm|x)dx

.

(4.24)

This, Di(x|z1, ..., zMi) in Eq. (4.24), is the updated PHD for target type i treating all

other target types as clutter in the case of the N-type PHD filter.. The term µisi(x)

in Eq. (4.24) is the predicted PHD for target type i.
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4.3 N-type PHD Filtering Strategy

Here we state PHD recursions in a generic form for multiple target, multiple type

filtering with Z1,k, ..., ZN,k separate but confused multi-target measurements between

different target types, a N-type PHD filter, where N ≥ 2. For N types of multiple

targets, the PHDs, DΞ1(x), DΞ2(x), ..., DΞN (x), are the first-order moments of RFSs,

Ξ1, Ξ2, ... ΞN , and they are intensity functions on a single state space X whose peaks

identify the likely positions of the targets. For any region R ⊆ X

E[|(Ξ1 ∪ Ξ2... ∪ ΞN ) ∩R|] =
N∑
i=1

∫
R
DΞi(x)dx (4.25)

where |.| is used to denote the cardinality of a set. Practically, Eq. (4.25) means that by

integrating the PHDs on any region R of the state space, we get the expected number

of targets (cardinality) in R.

The recursion of the N-type PHD filter is based on 3 assumptions:

• The targets evolve and generate measurements independently of one another.

• The clutter RFS, Csi,k , is Poisson-distributed and is independent of target-originated

measurements, and

• The predicted multi-target RFS governed by pi,k|k−1 is Poisson-distributed.

The third assumption is specific to the derivation of the PHD update where interactions

amongst targets are negligible, however, the first two assumptions are common to most

Bayesian multi-target trackers [81] [143] [222] [136] [127].

Accordingly, the Bayesian iterative prediction and update of the N-type PHD filtering

strategy is given as follows.

The PHD prediction for target type i is defined as

Di,k|k−1(x) =
∫
pi,S,k|k−1(ζ)yi,k|k−1(x|ζ)Di,k−1|k−1(ζ)dζ + γi,k(x), (4.26)

where γi,k(.) is the intensity function of a new target birth RFS Γi,k, pi,S,k|k−1(ζ) is

the probability that the target still exists at time k given that its previous state is ζ,
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yi,k|k−1(.|ζ) is the single target state transition density at time k given the previous

state ζ for target type i.

Thus, following Eq. (4.24), the final updated PHD for target type i is obtained by

setting µisi(x) = Di,k|k−1(x) as

Di,k|k(x) =

[
1− pii,D(x) +

∑
z∈Zi,k

pii,D(x)fii,k(z|x)

csi,k (z)+cti,k (z)+
∫
pii,D(ξ)fii,k(z|ξ)Di,k|k−1(ξ)dξ

]
Di,k|k−1(x).

(4.27)

The confused clutter intensity cti,k(z) due to all types of targets j = {1, ..., N} except

target type i in Eq. (4.27) is given by

cti,k(z) =
∑

j={1,...,N}\i
∫
pji,D(y)Dj,k|k−1(y)fji,k(z|y)dy. (4.28)

This means that when we are filtering target type i, all the other target types are

included into clutter (confusion). Eq. (4.28) converts state space to observation space

by integrating the PHD estimator Dj,k|k−1(y) and likelihood fji,k(z|y) which defines

the probability that z is generated by detector j conditioned on state x of the target

type i taking into account the confusion probability pji,D(y), the detection probability

for target type i by detector j.

The clutter intensity due to the background for target type i, csi,k(z), in Eq. (4.27) is

given by

csi,k(z) = λici(z) = λciAci(z), (4.29)

where ci(.) is the uniform density over the surveillance region A, and λci is the average

number of clutter returns per unit volume for target type i i.e. λi = λciA. While PHD

filter has linear complexity with the current number of measurements (m) and with the

current number of targets (n) i.e. computational order of O(mn), N-type PHD filter

has linear complexity with the current number of measurements (m), with the current

number of targets (n) and with the total number of target types (N) i.e. computational

order (run-time) of O(mnN) as can be seen from Eq. (4.27).

In general, the clutter intensity due to the background for target type i, csi,k(z), can

be different for each target type as they depend on the receiver operating characteris-

tic (ROC) curves of the detection processes. Moreover, the probabilities of detection
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pii,D(x) and pji,D(x) may all be different although assumed constant across both the

time and space continua.

4.4 Gaussian Mixture-Based N-type PHD Filter Imple-

mentation

The Gaussian mixture implementation of the standard PHD (GM-PHD) filter [172] is a

closed-form solution of the PHD filter with the assumption of a linear Gaussian system.

In this section, this standard implementation is extended for the N-type PHD filter,

more importantly solving Eq. (4.28). We assume each target follows a linear Gaussian

model.

yi,k|k−1(x|ζ) = N (x;Fi,k−1ζ,Qi,k−1) (4.30)

fji,k(z|x) = N (z;Hji,kx,Rji,k) (4.31)

whereN (.;m,P ) denotes a Gaussian density with mean m and covariance P ; Fi,k−1 and

Hji,k are the state transition and measurement matrices, respectively. Qi,k−1 and Rji,k

are the covariance matrices of the process and the measurement noises, respectively,

where i ∈ {1, ..., N} and j ∈ {1, ..., N}. The intensity of the spontaneous birth RFS is

γi,k(x) for target type i

γi,k(x) =

Vγi,k∑
v=1

w
(v)
i,γ,kN (x;m

(v)
i,γ,k, P

(v)
i,γ,k) (4.32)

where Vγi,k is the number of birth Gaussian components for target type i where i ∈
{1, ..., N}, m(v)

i,γ,k is the current measurement (noisy version of position) and zero initial

velocity used as mean (peak of the spontaneous birth intensity), P
(v)
i,γ,k is birth covariance

for Gaussian component v of target type i and determines the spread of the birth

intensity in the vicinity of the peak m
(v)
i,γ,k, and the weight w

(v)
i,γ,k gives the expected

number of new targets originating from m
(v)
i,γ,k.

It is assumed that the posterior intensity for target type i at time k − 1 is a Gaussian
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mixture of the form

Di,k−1(x) = Di,k−1|k−1(x) =

Vi,k−1∑
v=1

w
(v)
i,k−1N (x;m

(v)
i,k−1, P

(v)
i,k−1), (4.33)

where i ∈ {1, ..., N} and Vi,k−1 is the number of Gaussian components of Di,k−1(x).

Under these assumptions, the predicted intensity at time k for target type i is given

following Eq. (4.26) by

Di,k|k−1(x) = Di,S,k|k(x) + γi,k(x), (4.34)

where

Di,S,k|k−1(x) = pi,S,k
∑Vi,k−1

v=1 w
(v)
i,k−1N (x;m

(v)
i,S,k|k−1, P

(v)
i,S,k|k−1),

m
(v)
i,S,k|k−1 = Fi,k−1m

(v)
i,k−1,

P
(v)
i,S,k|k−1 = Qi,k−1 + Fi,k−1P

(v)
i,k−1F

T
i,k−1,

where γi,k(x) is given by Eq. (4.32).

Since Di,S,k|k−1(x) and γi,k(x) are Gaussian mixtures, Di,k|k−1(x) can be expressed as

a Gaussian mixture of the form

Di,k|k−1(x) =

Vi,k|k−1∑
v=1

w
(v)
i,k|k−1N (x;m

(v)
i,k|k−1, P

(v)
i,k|k−1), (4.35)

where w
(v)
i,k|k−1 is the weight accompanying the predicted Gaussian component v for

target type i and Vi,k|k−1 is the number of predicted Gaussian components for target

type i where i ∈ {1, ..., N}.

Now, assuming the probabilities of detection to be constant i.e. pji,D(x) = pji,D, the

final updated PHD for target type i is given as follows. Accordingly, the posterior
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intensity for target type i at time k (updated PHD), considering incorrect detection of

target types as confusion, is also a Gaussian mixture which corresponds to Eq. (4.27)

and is given by

Di,k|k(x) = (1− pii,D,k)Di,k|k−1(x) +
∑
z∈Zi,k

Di,D,k(x; z), (4.36)

where

Di,D,k(x; z) =

Ji,k|k−1∑
v=1

w
(v)
i,k (z)N (x;m

(v)
i,k|k(z), P

(v)
i,k|k),

w
(v)
i,k (z) =

pii,D,kw
(v)
i,k|k−1q

(v)
i,k (z)

csi,k(z) + cti,k(z) + pii,D,k
∑Vi,k|k−1

l=1 w
(l)
i,k|k−1q

(l)
i,k(z)

,

q
(v)
i,k (z) = N (z;Hii,km

(v)
i,k|k−1, Rii,k +Hii,kP

(v)
i,k|k−1H

T
ii,k),

m
(v)
i,k|k(z) = m

(v)
i,k|k−1 +K

(v)
i,k (z −Hii,km

(v)
i,k|k−1),

P
(v)
i,k|k = [I −K(v)

i,kHii,k]P
(v)
i,k|k−1,

K
(v)
i,k = P

(v)
i,k|k−1H

T
ii,k[Hii,kP

(v)
i,k|k−1H

T
ii,k +Rii,k]

−1.

csi,k(z) is given in Eq. (4.29). Therefore, all that is left is to formulate the implemen-

tation scheme for cti,k(z) which is given in Eq. (4.28) and is given again as

cti,k(z) =
∑

j={1,...,N}\i
∫
pji,D(y)Dj,k|k−1(y)fji,k(z|y)dy, (4.37)

where Dj,k|k−1(y) is given in Eq. (4.35), fji,k(z|y) is given in Eq. (4.31) and pji,D(y) is

assumed constant. Since w
(v)
j,k|k−1 is independent of the integrable variable y, Eq. (4.37)
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becomes

cti,k(z) =
∑

j={1,...,N}\i
∑Vj,k|k−1

v=1 pji,Dw
(v)
j,k|k−1

∫
N (y;m

(v)
j,k|k−1, P

(v)
j,k|k−1)N (z;Hji,ky,Rji,k)dy.

(4.38)

This can be simplified using the following equality given that P1 and P2 are positive

definite

∫
N (y;m1ζ, P1)N (ζ;m2, P2)dζ = N (y;m1m2, P1 +m1P2m

T
2 ). (4.39)

Therefore, Eq. (4.38) becomes,

cti,k(z) =
∑

j={1,...,N}\i
∑Vj,k|k−1

v=1 pji,Dw
(v)
j,k|k−1N (z;Hji,km

(v)
j,k|k−1, Rji,k +Hji,kP

(v)
j,k|k−1H

T
ji,k),

(4.40)

where i ∈ {1, ..., N}.

The key steps of the N-type GM-PHD filter are summarised in Algorithms 2, 3 and 4.

The number of Gaussian components in the posterior intensities may increase without

bound as time progresses. Therefore, it is necessary to prune weak and duplicated

components in Algorithm 3. First, weak components with weight w
(v)
i,k < T = 10−5 are

pruned. Further, Gaussian components with Mahalanobis distance less than U = 4m

from each other are merged. These pruned and merged Gaussian components, output

of Algorithm 3, are predicted as existing targets in the next iteration. Finally, Gaussian

components of the posterior intensity, output of Algorithm 2, with means corresponding

to weights greater than 0.5 as a threshold are selected as multi-target state estimates

as given in Algorithm 4.

4.5 Experimental Results

Simulation filtering example using a quad GM-PHD filter for four different types of

multiple targets is analyzed in this section. We also apply a dual GM-PHD filter and

a tri-GM-PHD filter for visual tracking applications in Chapter 5 for two types and

three types of targets, respectively, after making their experimental simulation analyses.

In this experiment, we demonstrate the quad GM-PHD filter (N = 4) with detailed
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Algorithm 2 Pseudocode for the N-type GM-PHD filter

1: given {w(v)
i,k−1,m

(v)
i,k−1, P

(v)
i,k−1}

Vi,k−1

v=1 , and the measurement set Zi,k for target type
i ∈ {1, ..., N}

2: step 1. (prediction for birth targets)
3: for i = 1, ..., N do . for all target type i
4: ei = 0
5: for u = 1, ..., Vγi,k do
6: ei := ei + 1
7: w

(ei)
i,k|k−1 = w

(u)
i,γ,k

8: m
(ei)
i,k|k−1 = m

(u)
i,γ,k

9: P
(ei)
i,k|k−1 = P

(u)
i,γ,k

10: end for
11: end for
12: step 2. (prediction for existing targets)
13: for i = 1, ..., N do . for all target type i
14: for u = 1, ..., Vi,k−1 do
15: ei := ei + 1
16: w

(ei)
i,k|k−1 = pi,S,kw

(u)
i,k−1

17: m
(ei)
i,k|k−1 = Fi,k−1m

(u)
i,k−1

18: P
(ei)
i,k|k−1 = Qi,k−1 + Fi,k−1P

(u)
i,k−1F

T
i,k−1

19: end for
20: end for
21: Vi,k|k−1 = ei
22: step 3. (Construction of PHD update components)
23: for i = 1, ..., N do . for all target type i
24: for u = 1, ..., Vi,k|k−1 do

25: η
(u)
i,k|k−1 = Hii,km

(u)
i,k|k−1

26: S
(u)
i,k = Rii,k +Hii,kP

(u)
i,k|k−1H

T
ii,k

27: K
(u)
i,k = P

(u)
i,k|k−1H

T
ii,k[S

(u)
i,k ]−1

28: P
(u)
i,k|k = [I −K(u)

i,k Hii,k]P
(u)
i,k|k−1

29: end for
30: end for
31: step 4. (Update)
32: for i = 1, ..., N do . for all target type i
33: for u = 1, ..., Vi,k|k−1 do

34: w
(u)
i,k = (1− pii,D,k)w

(u)
i,k|k−1

35: m
(u)
i,k = m

(u)
i,k|k−1

36: P
(u)
i,k = P

(u)
i,k|k−1

37: end for
38: li := 0
39: for each z ∈ Zi,k do
40: li := li + 1
41: for u = 1, ..., Vi,k|k−1 do
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42: w
(liVi,k|k−1+u)

i,k = pii,D,kw
(u)
i,k|k−1N (z; η

(u)
i,k|k−1, S

(u)
i,k )

43: m
(liVi,k|k−1+u)

i,k = m
(u)
i,k|k−1 +K

(u)
i,k (z − η(u)

i,k|k−1)

44: P
(liVi,k|k−1+u)

i,k = P
(u)
i,k|k

45: end for
46: for u = 1, ...., Vi,k|k−1 do
47: csi,k(z) = λciAci(z)

48: cti,k(z) =
∑

j={1,...,N}\i
∑Vj,k|k−1

e=1 pji,Dw
(e)
j,k|k−1N (z;Hji,km

(e)
j,k|k−1, Rji,k +

Hji,kP
(e)
j,k|k−1H

T
ji,k)

49: ci,k(z) = csi,k(z) + cti,k(z)

50: wi,k,N =
∑Vi,k|k−1

e=1 w
(liVi,k|k−1+e)

i,k

51: w
(liVi,k|k−1+u)

i,k =
w

(liVi,k|k−1+u)

i,k

ci,k(z)+wi,k,N
52: end for
53: end for
54: Vi,k = liVi,k|k−1 + Vi,k|k−1

55: end for
56: output {w(v)

i,k ,m
(v)
i,k , P

(v)
i,k }

Vi,k
v=1

Algorithm 3 Pruning and merging for the N-type GM-PHD filter

1: given {w(v)
i,k ,m

(v)
i,k , P

(v)
i,k }

Vi,k
v=1 for target type i ∈ {1, ..., N}, a pruning weight

threshold T, and a merging distance threshold U.
2: for i = 1, ..., N do . for all target type i

3: Set `i = 0, and Ii = {v = 1, ..., Vi,k|w
(v)
i,k > T }

4: repeat
5: `i := `i + 1
6: u := arg maxv∈Ii w

(v)
i,k

7: Li :=
{
v ∈ Ii

∣∣∣(m(v)
i,k −m

(u)
i,k )T (P

(v)
i,k )−1(m

(v)
i,k −m

(u)
i,k ) ≤ U

}
8: w̃

(`i)
i,k =

∑
v∈Li w

(v)
i,k

9: m̃
(`i)
i,k = 1

w̃
(`i)

i,k

∑
v∈Li w

(v)
i,km

(v)
i,k

10: P̃
(`i)
i,k = 1

w̃
(`i)

i,k

∑
v∈Li w

(v)
i,k (P

(v)
i,k + (m̃

(`i)
i,k −m

(v)
i,k )(m̃

(`i)
i,k −m

(v)
i,k )T )

11: Ii := Ii \ Li
12: until Ii = ∅
13: end for
14: output {w̃(v)

i,k , m̃
(v)
i,k , P̃

(v)
i,k }

`i
v=1 as pruned and merged Gaussian components

for target type i.
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Algorithm 4 Multi-target state extraction for the N-type GM-PHD filter

1: given {w(v)
i,k ,m

(v)
i,k , P

(v)
i,k }

Vi,k
v=1 for target type i ∈ {1, ..., N}.

2: for i = 1, ..., N do . for all target type i
3: Set X̂i,k = ∅
4: for v = 1, ..., Vi,k do

5: if w
(v)
i,k > 0.5 then

6: for j = 1, ..., round(w
(v)
i,k ) do

7: update X̂i,k :=
[
X̂i,k,m

(v)
i,k

]
8: end for
9: end if

10: end for
11: end for
12: output X̂i,k as the multi-target state estimate for target type i.

analysis as a typical simulation example. Accordingly, we define a sequence of 120

frames with sixteen trajectories that emanate from four types of targets that appear in

the scene at different positions of the first frame, as shown in Fig. 4.3. This is a typical

example of not only a higher number of target types (four) but also an example of a

dense scene i.e. it consists of trajectories of 16 targets in the same scene with many

crossings. Obviously, the goal of a N-type PHD filter is to handle confusions among

N ≥ 2 different target types; not to deal with sparse or dense targets in the scene.

With regards to sparse or dense targets in the scene, it has the same characteristics as

the standard PHD filter.

The initial locations and covariances for all target types are given by Eq. 4.41 and

Eq. 4.42 as follows.

m
(1)
1,k = [−100, 700, 0, 0]T ,

m
(2)
1,k = [−750,−100, 0, 0]T ,

m
(3)
1,k = [−200, 400, 0, 0]T ,

m
(4)
1,k = [−700,−400, 0, 0]T ,

m
(5)
2,k = [−400, 600, 0, 0]T ,

m
(6)
2,k = [−800,−600, 0, 0]T ,

m
(7)
2,k = [−500,−200, 0, 0]T ,

m
(8)
2,k = [700, 600, 0, 0]T ,

P1,k = P2,k = diag([100, 100, 25, 25]).

(4.41)
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m
(9)
3,k = [−900, 100, 0, 0]T ,

m
(10)
3,k = [−800, 500, 0, 0]T ,

m
(11)
3,k = [−900,−200, 0, 0]T ,

m
(12)
3,k = [400,−600, 0, 0]T ,

m
(13)
4,k = [800,−600, 0, 0]T ,

m
(14)
4,k = [500,−700, 0, 0]T ,

m
(15)
4,k = [−700,−600, 0, 0]T ,

m
(16)
4,k = [900,−100, 0, 0]T ,

P3,k = P4,k = diag([100, 100, 25, 25]).

(4.42)

The state vector xk = [px,xk, py,xk, ṗx,xk, ṗy,xk]
T consists of position (px,xk, py,xk) and

velocity (ṗx,xk, ṗy,xk), and the measurement is a noisy version of the position, zk =

[px,zk, py,zk]
T . Each of the target trajectories follows a linear Gaussian dynamic model

of Eq. (4.30) with matrices

Fi,k−1 =

[
I2 ∆I2

02 I2

]
,

Qi,k−1 = σ2
vi

[
∆4

4 I2
∆3

2 I2

∆3

2 I2 ∆2I2

]
, (4.43)

where In and 0n denote the n x n identity and zero matrices, respectively. ∆ = 1s is

the sampling period. σvi = 5m/s2 where i ∈ {1, 2, 3, 4} is the standard deviation of

the process noise for target type i.

For the algorithm, we assume each target has a survival probability p1,S = p2,S = p3,S =

p4,S = 0.99. The probabilities of detection are p11,D = 0.90 , p22,D = p33,D = 0.92,

p44,D = 0.91, and different values of confusion detection probabilities (0.0, 0.3, 0.6 and

0.9) are analyzed for p12,D, p13,D, p14,D, p21,D, p23,D, p24,D, p31,D, p32,D, p34,D, p41,D,

p42,D and p43,D.

90



The measurement follows the observation model of Eq. (4.31) with matrices

Hii,k = Hji,k = [I2 02],

Rii,k = σ2
riiI2,

Rji,k = σ2
rjiI2,

(4.44)

where σrii = σrji = 6m (i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3, 4}) is the standard deviation of

the measurement noise.

Since there are many targets in the scene, we use about 16 clutter returns (4 for each

target type) over the surveillance region. A current measurement driven birth intensity

inspired by but not identical to [176] is introduced at each time step, removing the need

for the prior knowledge (specification of birth intensities) or a random model, with a

non-informative zero initial velocity. At birth, Gaussian components of each target

type has a corresponding initial weight w
(i)
1,γ,k = w

(i)
2,γ,k = w

(i)
3,γ,k = w

(i)
4,γ,k = 3 × 10−6.

This very small initial weight is assigned to the Gaussian components for new births

as this is effective for high clutter rates. This is basically equivalent to the average

number of appearing (birth) targets per time step (nb) divided uniformly across the

surveillance region (A).

The configuration of the detectors is shown Fig. 4.2. As shown in this figure, detector 1

detects target type 1 (targets 1, 2, 3 and 4) with probability of detection p11,D, target 5

which is of target type 2 with probability of detection p21,D, target 9 which is of target

type 3 with probability of detection p31,D and target 13 which is of target type 4 with

probability of detection p41,D. Detector 2 detects target type 2 (targets 5, 6, 7 and 8)

with probability of detection p22,D, target 1 which is of target type 1 with probability

of detection p12,D, target 10 which is of target type 3 with probability of detection p32,D

and target 14 which is of target type 4 with probability of detection p42,D. Similarly,

detector 3 detects target type 3 (targets 9, 10, 11 and 12) with probability of detection

p33,D, target 2 which is of target type 1 with probability of detection p13,D, target

6 which is of target type 2 with probability of detection p23,D and target 15 which

is of target type 4 with probability of detection p43,D. Moreover, detector 4 detects

target type 4 (targets 13, 14, 15 and 16) with probability of detection p44,D, target 3

which is of target type 1 with probability of detection p14,D, target 7 which is of target

type 2 with probability of detection p24,D and target 11 which is of target type 3 with

probability of detection p34,D. This means that targets 1, 2 and 3 from target type

1, targets 5, 6 and 7 from target type 2, targets 8, 9 and 10 from target type 3, and

targets 13, 14 and 15 from target type 4 are detected two times. Our main goal is
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to filter out confused measurements which correspond to a specific target i.e. doubly

detected targets are estimated once, not twice. Therefore, the number of targets in the

scene is 16, not 28.

Figure 4.2: Confusions between four target types (T1, T2, T3 and T4) at the detection stage
from detectors 1, 2, 3 and 4.

The figures shown in Fig. 4.3, Fig. 4.4, Fig. 4.5 and Fig. 4.6 show the comparisons of the

outputs of both the quad GM-PHD filter (Fig. 4.4 for detection probability of confusion

of 0.3 and Fig. 4.6 for detection probability of confusion of 0.6) and four independent

GM-PHD filters (Fig. 4.3 for detection probability of confusion of 0.3 and Fig. 4.5 for

detection probability of confusion of 0.6). For both approaches, the simulated ground

truths are shown in red for target type 1, black for target type 2, yellow for target type

3 and magenta for target type 4 while the estimates are shown in blue circles for target

type 1, green triangles for target type 2, cyan asterisks for target type 3 and black

circles for target type 4. Accordingly, for simulated measurements, the quad GM-PHD

filter outputs estimates of target type 1 (targets 1, 2, 3 and 4), target type 2 (targets

5, 6, 7 and 8), target type 3 (targets 9, 10, 11 and 12) and target type 4 (targets 13,

14, 15 and 16) being well differentiated which can not be handled even by intelligent

track management as shown in Fig. 4.4 and Fig. 4.6. However, using four independent

GM-PHD filters, estimates of targets 1, 2, 3, 4, 5, 9 and 13 are obtained from GM-PHD

filter 1, estimates of targets 1, 5, 6, 7, 8, 10 and 14 from GM-PHD filter 2, estimates

of targets 2, 9, 10, 11, 12 and 15 from GM-PHD filter 3, and estimates of targets 3, 7,

11, 13, 14, 15 and 16 from GM-PHD filter 4 i.e. targets 1, 2, 3, 5, 6, 7, 9, 10, 11, 13,

14 and 15 are estimated twice though intermittently, as shown in Fig. 4.3 and Fig. 4.5

overlayed. Even if the confusion rates increase to 0.6, the proposed method filters
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out the target confusions effectively discriminating the target types. This confusion

problem is solved by using our proposed approach with computation time of 264.41

seconds for 120 iterations when compared to 158.82 seconds for using four independent

GM-PHD filters experimented on a Core i7 2.30 GHz processor and 8 GB RAM laptop

using MATLAB when setting detection probabilities of confusion to 0.6, for example,

as given in Table 4.1. In Fig. 4.3, Fig. 4.4, Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8,

E stands for end point whereas the other side of each target is starting point of the

simulation.

When we set the probabilities of confusion to 0.0 i.e. no target confusions, the quad

GM-PHD filter performs similar to four GM-PHD filters i.e. it degrades to four GM-

PHD filters. However, if the values of confusion detection probabilities approach the

values of the true detection probabilities as shown in Fig. 4.7 and Fig. 4.8, the quad

GM-PHD filter still effectively filters the confusion in the detection of targets though

it sometimes fails to discriminate the target types. This is illustrated in Fig. 4.8 which

shows targets 2 and 3 (target type 1) are estimated as target type 3 (cyan asterisks)

and target type 4 (black circles) respectively when setting the probabilities of confusion

to 0.9 which is very close to the values of p11,D = 0.9, p22,D = p33,D = 0.92 and p44,D

= 0.91. Similarly, targets 6 and 7 (target type 2) are estimated as target type 3 (cyan

asterisks) and target type 4 (black circles), respectively. Target 11 (target type 3) is also

filtered as target type 4 (black circles). If the probability of confusion is the same as of

true detection, then the result is random on first guess (sometimes fails to discriminate

the target types) though it still filters out the confusions effectively. Therefore, the

values of the confusion probabilities (p12,D, p13,D, p14,D, p21,D, p23,D, p24,D, p31,D,

p32,D, p34,D, p41,D, p42,D and p43,D) should be less than the values of the true detection

probabilities (p11,D, p22,D, p33,D and p44,D) to discriminate the target types. However,

in real applications (visual tracking), this does not happen i.e. the confusion detection

probabilities can never become equal in values to the true detection probabilities as

object detectors are at least becoming more accurate than random guessing i.e. nobody

would employ a random detector.

On the other hand, if each target is regarded as a type (e.g. each of the four target

types in this example has only one target), the N-type GM-PHD filter is used as a

labeler of each target i.e. it discriminates those targets from frame to frame whether

or not confusions between targets exist rather than simply degrading to the standard

GM-PHD filter(s).
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Figure 4.3: Simulated ground truth (red, black, yellow and magenta for target type 1, 2, 3 and
4, respectively) and position estimates from four independent GM-PHD filters (blue circles,
green triangles, cyan asterisks and black circles for target type 1, 2, 3 and 4, respectively) using
p12,D = p13,D = p14,D = p21,D = p23,D = p24,D = p31,D = p32,D = p34,D = p41,D = p42,D =
p43,D = 0.3.

Furthermore, we assess tracking accuracy using the cardinality (number of targets)

and Optimal Subpattern Assignment (OSPA) metric [215]. From Fig. 4.9a (when

setting the probabilities of confusion to 0.6), we observe that the cardinality of targets

estimated using four independent GM-PHD filters (blue) has much more deviation from

the ground truth (16 in red) when compared to the one obtained using our proposed

quad GM-PHD filter (green). Similarly, the OSPA error of using four independent GM-

PHD filters (blue) is much greater than that of using the quad GM-PHD filter (green)

as shown in Fig. 4.9b. The overall average value of the OSPA error for four independent

GM-PHD filters is 48.38m compared to 33.32m when using our proposed quad GM-
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Figure 4.4: Simulated ground truth (red, black, yellow and magenta for target type 1, 2, 3 and
4, respectively) and position estimates from quad GM-PHD filter (blue circles, green triangles,
cyan asterisks and black circles for target type 1, 2, 3 and 4, respectively) using p12,D = p13,D =
p14,D = p21,D = p23,D = p24,D = p31,D = p32,D = p34,D = p41,D = p42,D = p43,D = 0.3.

PHD filter as given in Table 4.1. The OSPA error and time taken (in brackets) when

using probabilities of confusion of 0.3 and 0.9 are also given in Table 4.1. As can be

observed from Fig. 4.10 and Table 4.1, as we increase the probabilities of confusions from

0.0 to 0.9, the OSPA error for quad GM-PHD filter is almost constant which shows how

efficient the quad GM-PHD filter is in handling target confusions. However, for the case

of using four independent GM-PHD filters, the OSPA error increases significantly as we

increase the probabilities of confusions from 0.0 to 0.9 which is due to the increment of

target confusions. The time taken (given in Table 4.1) also increases slightly for both

methods with the increment of target confusions.
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Figure 4.5: Simulated ground truth (red, black, yellow and magenta for target type 1, 2, 3 and
4, respectively) and position estimates from four independent GM-PHD filters (blue circles,
green triangles, cyan asterisks and black circles for target type 1, 2, 3 and 4, respectively) using
p12,D = p13,D = p14,D = p21,D = p23,D = p24,D = p31,D = p32,D = p34,D = p41,D = p42,D =
p43,D = 0.6.

Method 0.3 0.6 0.9

Quad GM-PHD filter 33.15m (253.97sec) 33.32m (264.41sec) 34.22m (291.27sec)
4 GM-PHD filters 35.57m (154.86sec) 48.38m (158.82sec) 56.53m (167.28sec)

Table 4.1: OSPA error at different values of probabilities of confusion p12,D, p13,D, p14,D, p21,D,
p23,D, p24,D, p31,D, p32,D, p34,D, p41,D, p42,D and p43,D (0.3, 0.6 and 0.9) for quad GM-PHD
filter and 4 independent GM-PHD filters. Time taken is given in brackets.
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Figure 4.6: Simulated ground truth (red, black, yellow and magenta for target type 1, 2, 3 and
4, respectively) and position estimates from quad GM-PHD filter (blue circles, green triangles,
cyan asterisks and black circles for target type 1, 2, 3 and 4, respectively) using p12,D = p13,D =
p14,D = p21,D = p23,D = p24,D = p31,D = p32,D = p34,D = p41,D = p42,D = p43,D = 0.6.

4.6 Summary

In this chapter, we propose a novel filter, N-type PHD filter where N ≥ 2, in the RFS

framework. In this approach, we assume that there are confusions between detections,

i.e. clutter arises not just from background false positives, but also from target con-

fusion. Under the Gaussianity and linearity assumptions, the Gaussian mixture (GM)

implementation is proposed for N-type PHD filter, N-type GM-PHD filter. We evaluate

the quad GM-PHD filter and compare to four independent GM-PHD filters, indicating

that our approach shows better performance determined using cardinality, OSPA met-
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Figure 4.7: Simulated ground truth (red, black, yellow and magenta for target type 1, 2, 3 and
4, respectively) and position estimates from four independent GM-PHD filters (blue circles,
green triangles, cyan asterisks and black circles for target type 1, 2, 3 and 4, respectively) using
p12,D = p13,D = p14,D = p21,D = p23,D = p24,D = p31,D = p32,D = p34,D = p41,D = p42,D =
p43,D = 0.9.

ric and discrimination rate among the different target types. Even though, we show the

simulation analysis for N = 4, in principle the methodology can be applied to N types

of targets where N is a variable in which the number of possible confusions may rise

as N(N − 1). For instance, after experimenting the dual GM-PHD filter (N = 2) and

the tri-GM-PHD filter (N = 3) by simulation and making sure that they show similar

behaviour as for N = 4, they are applied for visual tracking applications in Chapter 5.

In case there is no target confusion, the N-type GM-PHD filter performs similar to N

independent GM-PHD filters. On the other hand, if each target is regarded as a type,

the N-type GM-PHD filter is used as a labeler of each target i.e. it discriminates those
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Figure 4.8: Simulated ground truth (red, black, yellow and magenta for target type 1, 2, 3 and
4, respectively) and position estimates from quad GM-PHD filter (blue circles, green triangles,
cyan asterisks and black circles for target type 1, 2, 3 and 4, respectively) using p12,D = p13,D =
p14,D = p21,D = p23,D = p24,D = p31,D = p32,D = p34,D = p41,D = p42,D = p43,D = 0.9.

targets from frame to frame rather than simply degrading to the standard GM-PHD

filter(s).
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(a) Cardinality (b) OSPA error

Figure 4.9: Cardinality and OSPA error: Ground truth (red for cardinality only), quad GM-
PHD filter (green), four independent GM-PHD filters (blue) for p12,D = p13,D = p14,D =
p21,D = p23,D = p24,D = p31,D = p32,D = p34,D = p41,D = p42,D = p43,D = 0.6.

Figure 4.10: OSPA error comparison for quad GM-PHD filter and four independent GM-PHD
filters at different probabilities of confusion.
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Chapter 5

Multiple Target, Multiple Type

Visual Tracking using a N-type

GM-PHD Filter

In the previous chapter, a new N-type GM-PHD filter was developed which takes into

account the effect of target confusion among different target types at the detection

stage. In this chapter, we integrate the object detectors’ information such as the

probabilities of detections for each target type and the confusion detection probabilities

among target types at a specific background clutter rate into the N-type GM-PHD

filter to apply to visual tracking on real video sequences. Accordingly, we consider

two scenarios. In the first scenario, we consider a sports analysis application where we

want to track and discriminate sub-groups of the same target type, football players in

opposing teams (and a referee), as discussed in section 5.1. In the second scenario, we

want to distinguish between different target types, vehicles and more vulnerable road

users such as pedestrians and bicycles, which is crucial for situational awareness, driver

assistance and vehicle autonomy. In this case we focus on pedestrians and vehicles as

two different target types and this is presented in section 5.2. Important components

in visual tracking such as object detection and data association for each case are also

discussed. We also evaluate the performance of our tracker and compare to both raw

detection and independent GM-PHD trackers for each scenario. The building block of

the N-type GM-PHD tracker (the N-type GM-PHD tracker for N = 1) is evaluated

using Multi-Object Tracking (MOT) benchmarking tool and compared to the state-of-

the-art algorithms in the MOT challenge in section 5.3. Finally, a brief summary of the

application of the N-type GM-PHD filter to real video sequences is given in section 5.4.
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5.1 Multiple Target, Implicit Multiple Type Tracking us-

ing a Tri-GM-PHD Filter

In this part, we consider tracking of football teams and a referee in the same scene

handling their confusions using a tri-GM-PHD filter. We call it implicit multiple type

since the multiple types we are dealing with are fundamentally the same target type

but grouped into sub-groups which we try to track and discriminate by handling their

confusions. Accordingly, we discuss the football teams and referee detectors in sub-

section 5.1.1, apply a tri-GM-PHD filter in subsection 5.1.2, apply data association

algorithm in subsection 5.1.3, and analyze experimental results in subsection 5.1.4.

5.1.1 Object Detection, Training and Evaluation

The RFS methodology post-processes a set of detections with parameters defining the

probabilities of detection and clutter (false alarms). For the tri-PHD filter, we also

need parameters for confusion. We employ the existing, state-of-the-art, Aggregated

Channel Features (ACF) pedestrian detection algorithm [16] adapted to our data set

due to its computational efficiency and ease of use. This uses three different kinds

of features in 10 channels: normalized gradient magnitude (1 channel), histograms of

oriented gradients (6 channels), and LUV color (3 channels). It is applied to detect the

actors (football teams and a referee) using a sliding window at multiple scales. The

Adaboost classifier [223] is used to learn and classify the feature vectors acquired by

the ACF detector.

For training, evaluation and parameter setting we use the VS-PETS’2003 football video

data1. This data set consists of 2500 frames which have players from the red and white

teams and the referee. We trained three separate detectors for each target type (red,

white, referee). We used every 10’th frame, i.e. 240 frames taken from the last 2400

frames. From these 240 frames, we collected 2000 positive samples for each footballer

type, 240 samples for the referee, and 5000 randomly selected negative samples. This

captures the appearance variation of players due to articulated motion. The correct

player type or referee positions and windows were labeled manually for training as

positive samples. The first 100 frames (video) are used to evaluate and test the tri-

GM-PHD filtering process in comparison with repeated detection and three separate

GM-PHD filters in subsection 5.1.4.

1http://www.cvg.reading.ac.uk/slides/pets.html
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The RFS methodology assumes point detections and a Gaussian error distribution on

locations accuracy. However, humans in a video sequence are extended targets and the

ACF detector has a bounding box that encloses the target. Therefore, overlapping de-

tections are merged using a greedy non-maximum suppression (NMS) overlap threshold

(intersection over union of two detections) of 0.05 (we made the overlap threshold very

tight to ignore multiple bounding boxes on the same object). However, when evaluating

the detectors, an overlap threshold (intersection over union of detection and ground

truth bounding boxes) of 0.5 is used to identify true positives vs false positives. The

receiver operating characteristic (ROC) curves for each of the detectors evaluated on

the test video are given in Fig. 5.1.

(a) ROC for red team detector on red
football instances

(b) ROC for white team detector on
white football instances

(c) ROC for referee detector on ref-
eree instances

Figure 5.1: Extracting detection probabilities for three target types (red, white and referee)
from ROCs of 3 detectors: red team detector, white team detector and referee detector when
tested on red team, white team and referee instances, respectively.

For the tri-GM-PHD strategy, we must set the thresholds on detection from the ROC

curves in Fig. 5.1, taking into account the probabilities of confusion that arise from the

corresponding ROC curves (not shown) of each detector applied to targets of a confusing

type. From our own simulations and the published literature, e.g. [172, 176], we know

that the RFS methodology is most effective when applied with a high probability of

detection, albeit with a higher clutter rate, and in our case a higher confusion rate.

Obviously, for a target detection to be useful, the probability of true detection must

be higher than the probability of confusion. Therefore, from Fig. 5.1, we standardise a

clutter rate of 10 false positive per image (fppi), which gives probabilities of detection of

0.93 (p11), 0.99 (p22) and 0.99 (p33) for red, white and referee, respectively. With these

values, the corresponding confusion parameters are 0.24 (white footballer detected as

red, p21), 0.5 (referee as red, p31), 0.24 (red as white, p12), 0.18 (referee as white, p32),

0.19 (red as referee, p13) and 0.17 (white as referee, p23).
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5.1.2 Tracking Football Teams and Referee

The key steps of the tri-GM-PHD filter are summarised in Algorithms 2, 3 and 4 where

N = 3. These are expressed in terms of frames k and k − 1; for the first frame, k = 1,

of a sequence there is only detection and target birth, but no prediction and update

for existing targets. For subsequent frames, we have chosen measurement driven target

birth, rather than a random or a-priori birth model, inspired by but not identical to

[176] in this visual tracking context. Maggio et al. [146] also assume that targets are

born in a limited volume around measurements. The advantage of random birth is in

the potential detection of weak target signatures, but in these examples the presence

of a human should, in general, generate a strong probability of detection provided the

target is in view. This is borne out by experiments and parameter setting in subsection

5.1.4. A further disadvantage of random birth is the increased complexity of processing

a large number of incorrect targets. For targets moving in video sequences there is no

spawn process, but occlusions do result anywhere in the field of view, and may be

caused either by other targets or other obstacles. Re-emerging targets are detected

and constitute births, are not spawned because they may be occluded by obstacles

other than targets, and have no a-priori location.

The prediction and update, steps 2 to 4 (of Algorithm 2), follow the standard procedures

for the GM-PHD filter [172] but are extended to take into account the three detection

processes and the subsequent confusion between detections. In the proposed algorithm,

birth and prediction both precede the construction and update of the PHD components,

so the total number at the conclusion of step 4 is the sum of the persistent and birthed

components. When applying to visual tracking, the weights update in the update

step (step 4 of Algorithm 2) need to be carefully tuned unlike in the simulation case.

Thus, we updated the weights using only the position component of the measurement

since updating the weights over all components (position and bounding box) produces

unacceptably low weights which in turn provides unexpected results. The number of

Gaussian components in the posterior intensities may increase without bound as time

progresses, particularly as a birth at this stage may be due to an existing target that has

moved from the previous frame and then is re-detected in the current frame. Therefore,

it is necessary to prune weak and duplicated components in Algorithm 3. First, weak

components with weight w
(v)
i,k < T = 10−5 are pruned. Further, Gaussian components

with Mahalanobis distance less than U = 4 pixels from each other are merged. These

pruned and merged Gaussian components, output of Algorithm 3, are predicted as

existing targets in the next iteration. Finally, Gaussian components of the posterior

intensity, output of Algorithm 2, with means corresponding to weights greater than 0.5

as a threshold are selected as multi-target state estimates as shown in Algorithm 4.
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5.1.3 Data Association

The tri-GM-PHD filter distinguishes between true and false targets of each type. How-

ever, this does not distinguish between two different targets of the same type, so an

additional step can be applied if we wish to identify different targets of the same type

between consecutive frames. Although not part of the tri-GM-PHD strategy, this is

commonly required so we include results from this post-labeling process for complete-

ness in subsection 5.1.4. It does not affect our error metrics but is a post-process to

label individuals from frame to frame. For data association (labeling), the Euclidean

distance between each previous filtered centroid (track) and the current filtered cen-

troids is computed and we compute an assignment which minimizes the total cost

returning assigned tracks to current filtered outputs (min-cost matchings). This as-

signment problem represented by the cost matrix is solved using Munkres’s variant of

the Hungarian algorithm [73] which has time complexity of O(n3) i.e. cubic with the

number of targets, and it is used for associating only two frames.

This also returns the unassigned tracks and unassigned current filtered results. The

unassigned tracks are deleted and the unassigned current filtered outputs create new

tracks if the targets are not created earlier. If some targets are miss-detected and

incorrectly labeled, labels are uniquely re-assigned by re-identifying them using the

approach in [224].

It is important to notice here that other combinatorial optimization based data associa-

tion algorithms which generalize for three or more frames such as the Greedy algorithm

(for graph matching) [74], min-cost network flow [75] [76] [77], and multi-dimensional

assignment [78] can also be used.

5.1.4 Experimental Results

Referring to Eq.(4.1), our state vector includes the centroid positions, velocities, and the

width and height of the bounding boxes, i.e. xk = [pcx,xk, pcy,xk, ṗx,xk, ṗy,xk, wxk, hxk]
T .

Similarly, the measurement is the noisy version of the target area in the image plane ap-

proximated with a w x h rectangle centered at (pcx,zk, pcy,zk) i.e. zk = [pcx,zk, pcy,zk, wzk, hzk]
T .

As stated above, the detection and confusion probabilities are set by experimental

evaluation of the ACF detection processes. Additional parameters are set from sim-

ulation and previous experience. For each target type, we set survival probabilities

p1,S = p2,S = p3,S = 0.99, and we assume the linear Gaussian dynamic model of
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Eq. (4.30) with matrices taking into account the box width and height at the given

scale.

Fi,k−1 =

 I2 ∆I2 02

02 I2 02

02 02 I2

 ,

Qi,k−1 = σ2
vi


∆4

4 I2
∆3

2 I2 02

∆3

2 I2 ∆2I2 02

02 02 ∆2I2

 , (5.1)

where In and 0n denote the n x n identity and zero matrices, respectively and ∆ is

the sampling period defined by the time between frames (we use 1 second). σvi = 5

pixels/s2 is the standard deviation of the process noise for target type i where i ∈
{1, 2, 3} i.e. type 1 (red football team), target type 2 (white football team) and target

type 3 (a referee).

Similarly, the measurement follows the observation model of Eq. (4.31) with matrices

taking into account the box width and height,

Hii,k = Hji,k =

[
I2 02 02

02 02 I2

]
,

Rii,k = σ2
rii

[
I2 02

02 I2

]
,

Rji,k = σ2
rji

[
I2 02

02 I2

]
, (5.2)

where i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, and σrii and σrji are the measurement standard

deviations taken from the distribution of distance errors of the centroids from ground

truth in the evaluation of the detection process though truncated due to true detection

overlap criterion, effectively 6 pixels.

Accordingly, in our approach, positive detections specify the possible birth locations

with the initial covariance given in Eq.(5.3). The current measurement and zero initial

velocity are used as a mean of the Gaussian distribution using a pre-determined initial
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covariance for birthing of targets, i.e. new targets are born in the region of the state

space for which the likelihood will have high values. Precisely, the birthing of targets is

completely automatic using the very recent measurements obtained from object detec-

tors. Very small initial weight (e.g. 10−4) is assigned to the Gaussian components for

new births as this is effective for high clutter rates. This is basically equivalent to the

average number of appearing (birth) targets per frame (nb) divided uniformly across

the frame resolution (A).

Pi,γ,k = diag([100, 100, 25, 25, 20, 20]). (5.3)

where i ∈ {1, 2, 3}.

We evaluate the tracking methodology of the tri-GM-PHD tracker in comparison with

first, repeated independent detection on each frame, and second, with three independent

GM-PHD trackers. Using the football video sequence, the examples shown in Fig. 5.2,

Fig. 5.3 and Fig. 5.4 are for repeated detection (no tracking), three independent GM-

PHD trackers, and the tri-GM-PHD tracker for frames 25, 57 and 73, respectively.

Hence, Fig. 5.3a designates detections in which the red footballers, white footballers

and the referee are detected both correctly and incorrectly, i.e. one object may be

detected by many detectors. In this example the referee is detected 3 times: by the

red team detector (red), by the white team detector (yellow) and the referee detector

(black). Moreover, there are many background false positives (clutter) in the scene

that arise from our choice to set the detection probability high at the expense of higher

clutter as this is the detection scenario that is favored by the PHD process. Using the

three independent GM-PHD trackers to effectively eliminate false positives, confused

detections are not resolved as shown in Fig. 5.3b. However, our proposed tri-GM-PHD

tracker effectively eliminates the false positives as well as confused detections as shown

in Fig. 5.3c.

The tri-GM-PHD filter is evaluated quantitatively for the whole test sequence and com-

pared with three independent GM-PHD filters and repeated raw detections using cardi-

nality, OSPA metric [215], discrimination rate and time taken. We use the OSPA metric

which is designed for evaluating RFS-based filters rather than multi-object tracking ac-

curacy (MOTA) [213] which is widely used for evaluating other traditional multi-target

tracking algorithms [161,162]. Our algorithm is developed not only for tracking but also

for discriminating different target types overcoming their confusions unlike algorithms

such as [161, 162]. Therefore, the OSPA is the right evaluation metric to compare our

approach with repeated raw detection and three independent GM-PHD trackers. The

computational figures arise from experiments on a i5 2.50 GHz core processor with 6
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GB RAM laptop using MATLAB and we acknowledge that these are not definitive

and give a rough guide only to implementation costs. Though labeling of the targets

using Munkres’s variant of the Hungarian assignment algorithm works well as shown

in Figs. 5.2c, 5.3c and 5.4c, we did not include this in our evaluation as it is not part

of the quantitative comparison of the filtering and type labeling of either the detec-

tions or distinct GM-PHD filters. We present the cardinality and OSPA error plots

in Fig. 5.5a and Fig. 5.5b respectively, in red for ground truth (cardinality), green for

the tri-GM-PHD filter, blue for the three independent GM-PHD filters and magenta

for repeated detections. As summarised in Table 5.1 the average absolute cardinality

error using raw detections is 10.22, reduced to 5.76 using the standard GM-PHD filters

and to 0.11 (below 1 target) using the tri-GM-PHD filter. The overall frame-averaged

value of OSPA error for the tri-GM-PHD filter is 10.59 pixels, compared to three inde-

pendent GM-PHD filters of 30.86 pixels, and repeated detections of 37.61 pixels. The

proposed approach reduces the cardinality and OSPA errors by a large margin over

three independent GM-PHD filters and repeated detections, although this has more

computational cost as also shown in Table 5.1.

Independent GM-PHD trackers do not take confusion into account, so treat such con-

fusion as ’background’ clutter; the problem is that such confused detections are not

likely to be accurately modeled by random detections distributed uniformly in space

as is commonly the case. Our approach can effectively discriminate true positives from

clutter, while eliminating confused detections with a discrimination rate of 99.20%.

The mis-discrimination rate of 0.80% occurs primarily during the initial frames (e.g.

the first 7 frames) until the prediction-update process stabilises and the true detections

are confirmed by the motion between adjacent frames.

Method cardinality error OSPA error time taken discrimination rate

Detections 10.22 37.61 pixels 0.59 sec/frame 0%
3 GM-PHDs 5.76 30.86 pixels 0.80 sec/frame 0%
Tri-GM-PHD 0.11 10.59 pixels 3.00 sec/frame 99.20%

Table 5.1: Frame-averaged cardinality and OSPA errors, time taken and discrimination rate at
the extracted detection probabilities for tri-GM-PHD filter, three independent GM-PHD filters
and Detections.
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(a) Detections, frame 25

(b) Three independent GM-PHD trackers, frame 25

(c) Tri-GM-PHD Tracker, frame 25

Figure 5.2: Results of detections, three independent GM-PHD trackers and tri-GM-PHD
tracker, respectively, for frame 25.
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(a) Detections, frame 57

(b) Three independent GM-PHD trackers, frame 57

(c) Tri-GM-PHD Tracker, frame 57

Figure 5.3: Results of detections, three independent GM-PHD trackers and tri-GM-PHD
tracker, respectively, for frame 57.
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(a) Detections, frame 73

(b) Three independent GM-PHD trackers, frame 73

(c) Tri-GM-PHD Tracker, frame 73

Figure 5.4: Results of detections, three independent GM-PHD trackers and tri-GM-PHD
tracker, respectively, for frame 73.
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(a) Cardinality (b) OSPA error

Figure 5.5: Cardinality and OSPA error: Ground truth (red for cardinality only), tri-GM-PHD
filter (green), three independent GM-PHD filters (blue), detections (magenta).

(a) Frame 193

(b) Tracking both teams and referee, frame 293

Figure 5.6: Tracking the red and white teams, and referee from frame 193 to frame 293
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Fig. 5.6 shows another example in which the individual footballers are detected, filtered,

tracked and labeled for 100 frames. The image has been cropped as the action is

confined to the top half of the image, and immediately follows a throw-in as the players

move away left from the touchline. The examples also show the individual tracks

and labels of the footballers and referee as small numbers over the targets. From

this sequence, we see for example that the red player number 6 and the white player

number 10, and several others, are consistently tracked through the sequence. However

the labeling does occasionally make mistakes, for example red player 3 who starts near

the touchline is finally labeled as red player number 49 in frame 293. In this instance

the mislabeling is due to occlusion and lack of persistence in the detection and tracking

as it uses successive frames only, so that if a player disappears then re-appears after

several frames, he is treated as a new target. Nevertheless, although this evaluation is

not part of the tri-GM-PHD filter, the labeling that we apply has good performance

with a mean label switch error of only 0.43%.

We also give a sensitivity analysis of the proposed method to variations of the param-

eters: low, medium and high confusion parameters. For the low confusion parameters,

we standardise a clutter rate of 6 fppi from Fig. 5.1, which gives probabilities of de-

tection of 0.93 (p11), 0.98 (p22) and 0.99 (p33) for red, white and referee, respectively.

With these values, the corresponding confusion parameters are 0.12 (white footballer

detected as red, p21), 0.2 (referee as red, p31), 0.12 (red as white, p12), 0.09 (referee as

white, p32), 0.1 (red as referee, p13) and 0.08 (white as referee, p23). Using these pa-

rameters, the output of the tri-GM-PHD tracker is given in Fig. 5.7a which corresponds

to the detections of Fig. 5.3a (frame 57). As can be seen from this figure, these low

confusion probabilities are not enough for fully handling the confusions of the detectors

though the confusions of a significant number of targets are handled while discriminat-

ing them. The standardized parameters corresponding to fppi of 10 in Fig. 5.3c handle

the confusions as well as discriminate the target types efficiently.

For medium confusion parameters, we standardise a clutter rate of 15 fppi, which gives

almost the same probabilities of true detection as the one for fppi of 10 (given above)

for all red, white and referee, however, with higher confusion parameters: 0.38 (white

footballer detected as red, p21), 0.53 (referee as red, p31), 0.37 (red as white, p12), 0.32

(referee as white, p32), 0.33 (red as referee, p13) and 0.31 (white as referee, p23). This

parameter setting efficiently handles the confusions caused by the detectors as shown

in Fig. 5.7b. These values of confusion parameters are higher than the ones we used

for Fig. 5.3c and performs similarly in handling confusions as well as discriminating

the target types. However, as we increase these confusion probabilities to almost equal

to the true detection probabilities (0.93 (p11), 0.99 (p22) and 0.99 (p33) for red, white
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and referee, respectively), the tri-GM-PHD tracker handles the confusions efficiently

but fails to discriminate some of the target types as shown in Fig. 5.7c, for instance,

targets labelled by 35 and 38 are tracked as a red type. For this, we set the confusion

parameters as 0.93 (white footballer detected as red, p21), 0.99 (referee as red, p31),

0.93 (red as white, p12), 0.93 (referee as white, p32), 0.93 (red as referee, p13) and 0.93

(white as referee, p23). We did not standardize fppi for this case (we simply set 16) as

practically the confusion parameters cannot be as high as these values as the object

detectors are much better than such random guessing i.e. our object detectors cannot

give such high values of confusion parameters. We set these values only for analysis

though not practical. From this experiment, we can observe that very high values

of confusion parameters can sometimes cause the discrimination of target types to fail

even in visual tracking application as it is observed in the simulation case in section 4.5.

This is because the result is random on first guess for some targets as the true and

confusion detection probabilities are almost equal in values which results in failure

of discrimination of some targets (occurs only sometimes), however, the confusions of

targets are still handled effectively. Therefore, we need to standardise a clutter rate in

such a way that a reasonable true and confusion detection probabilities can be extracted

from the ROC curves of their respective detectors for efficiently handling confusions of

target types as well as discriminating them.

5.2 Multiple Target, Explicit Multiple Type Tracking us-

ing a Dual GM-PHD Filter

In this part, we consider tracking of pedestrians and vehicles in the same scene handling

their confusions using a dual GM-PHD filter. We call it explicit multiple type since the

multiple types we are dealing with are fundamentally different target types which we

try to track and discriminate handling their confusions. The main difference between

implicit and explicit target types is that in the latter case they can have different

aspect ratios which can affect the means to differentiate the true and false positives

in evaluating probabilities of confusion. Accordingly, we discuss the pedestrian and

vehicles detectors in subsection 5.2.1, apply a dual GM-PHD filter and data association

algorithm in subsection 5.2.2, and analyze experimental results in subsection 5.2.3.
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(a) For low confusion parameters, frame 57

(b) For medium confusion parameters, frame 57

(c) For high confusion parameters, frame 57

Figure 5.7: Results of tri-GM-PHD tracker for different values of the confusion parameters,
for frame 57, corresponding to detections of Fig. 5.3a.
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5.2.1 Object Detection

Measurements for the dual GM-PHD filter are obtained using object detectors. Ac-

cordingly, we adapted the state-of-the-art pedestrian detection algorithm, ACF [16],

which uses three different kinds of features in 10 channels: normalized gradient mag-

nitude (1 channel), histogram of oriented gradients (6 channels), and LUV color (3

channels) by considering appearance variations. Similarly, we adapted the vehicle de-

tection algorithm in [58] which uses the same type of features as the ACF pedestrian

detector considering additional geometrical features such as truncation level, occlusion

level and occlusion type features in addition to 3D orientation which depends on the

ground truth information. However, we only consider 3D geometric orientation from

the ground truth information available in the KITTI dataset [225]. Similar to [58], we

also consider visual features to capture appearance variations due to varying orienta-

tion, truncation and occlusion degree for detecting both pedestrians and vehicles.

5.2.1.1 3D orientation

Appearance variation due to observation angle is common when detecting vehicles in

different driving settings. Accordingly, the observation angle i.e. relative orientation

of the object with respect to the camera is used by considering the angle of the vector

joining the camera center in 3D and an object which takes into account the ego-vehicle.

This 3D geometric orientation is available in KITTI dataset ranging from -π (-3.14) to

π (3.14) and is quantized into L labels ( L = 5 for pedestrians and L = 20 for vehicles)

as shown in Fig. 5.8. The mean of the aspect ratios of the image instances (samples)

with the specific quantized label is used as an aspect ratio for which a specific detector

model is trained on that specific image instances.

Figure 5.8: Quantizing 3D geometric orientation into L labels for obtaining required aspect
ratios; for each of the aspect ratio, a specific detector is developed.
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Figure 5.9: Clustering of CNN features.

5.2.1.2 Visual features

We use visual features by clustering them as a means of capturing appearance variations

of objects to detect them under challenging appearance changes. This approach is very

generic as it does not depend on the availability of ground truth orientation though it

gives slightly less accuracy when compared to 3D geometrical orientation.

Though color and gradient features (HOG, LUV color and normalized gradient mag-

nitude) can also be used [58], in our case, high quality convolutional neural network

(CNN) features which give state-of-the art classification results on ImageNet [18] as

in [1] implemented efficiently in Caffe [49] are used to learn appearance variations of

objects. First, ImageNet trained Caffemodel is fine-tuned to Pascal VOC data set [57]

which is then used for extracting CNN features from each region of Pascal VOC data

set to build a R-CNN object detector [52] in which category-specific SVMs are used.

This is used as a transfer learning [56]. The R-CNN object detector model is then used

to extract 4096-dimensional CNN features from cropped KITTI image samples which

is then reduced dimensionally using PCA as shown in Fig. 5.9. This dimensionally

reduced features are then clustered using k-means clustering giving cluster labels. The

mean of the aspect ratios of the image instances assigned the same label is used to

learn a specific detector on the image instances with that specific label.
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5.2.1.3 Pedestrian Detection

The ACF pedestrian detector [16] uses 3 feature types in 10 channels to detect pedes-

trians at multiple scales using the Adaboost classifier. However, unlike the original

ACF [16], we consider the appearance variations of pedestrians due to varying orien-

tation, truncation and occlusion levels. The KITTI benchmark [225] consists of 7481

training frames from which around 3583 pedestrian instances are extracted in moderate

setting. From these 7481 training frames, 6501 frames are used as the training set and

the rest (980 frames) as the testing or validation set. To capture the appearance varia-

tions, we trained 5 geometrical orientations-based detection models and 5 visual CNN

features clustering-based detection models which perform better than using only one

model as in [16]. This is necessary as using only one model, it is not possible to get the

required detection performance for extracting detection probabilities on this data set.

Overlapping detections are merged using a greedy NMS overlap threshold (intersection

over union of two detections) of 0.1. However, when evaluating the detector, an overlap

threshold (intersection over union of detection and ground truth bounding boxes) of

0.5 is used to identify true positives vs false positives.

5.2.1.4 Vehicle Detection

Capturing appearance variations of vehicles due to changing observation angle, illu-

mination variability, vehicle shape and type, truncation, out of camera view, different

occlusion levels, etc is very important for developing a vehicle detector [58]. Unlike

the approach considered in [58], we consider only 3D orientation rather than other ge-

ometrical features such as truncation level, occlusion level and occlusion type features

from the ground truth available in KITTI dataset. Moreover, we used visual features

which can also capture appearance variations due to varying orientation, truncation

and occlusion. The KITTI benchmark [225] consists of 7481 training frames from

which around 16105 car instances are extracted in moderate setting. From these 7481

training frames, 6501 frames are used as the training set and the rest (980 frames) as

the testing or validation set. Accordingly, we trained 20 geometrical orientations-based

detection models and 20 visual CNN features clustering-based detection models which

perform better than using only one model. We use a greedy NMS overlap threshold

(intersection over union of two detections) of 0.2 to merge overlapping detections, and

an overlap threshold (intersection over union of detection and ground truth bounding

boxes) of 0.5 is used to identify true positives vs false positives when evaluating the

detector.
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5.2.1.5 Detection Parameters Extraction

The detection parameters, detection probabilities (p11,D, p22,D) and confusion detection

probabilities (p12,D, p21,D), are extracted as follows. The detection probability for

pedestrians by a pedestrian detector, p11,D, can be extracted from the ROC curve of the

pedestrian detector when it is tested on pedestrian instances. Similarly, the detection

probability for vehicles by a vehicle detector, p22,D, is obtained from the ROC curve

of the vehicle detector when it is tested on vehicle instances. The confusion detection

probabilities, detection probability for pedestrians by a vehicle detector, p12,D, and

detection probability for vehicles by a pedestrian detector, p21,D, can also be obtained

when the vehicle detector is evaluated on pedestrian instances and when the pedestrian

detector is evaluated on vehicle instances, respectively (refer to Fig. ??).

Accordingly, when we want to track on video sequences, we first run both pedestrian

and vehicle detectors on that specific video sequence to obtain their ROC curves. We

used a combination of CNN-based and 3D orientation-based detectors. Thus, the ROC

curve of the pedestrian detector when applied to pedestrian instances in the KITTI

video tracking sequence 16 [225] is shown in Fig. 5.10a from which p11,D of 0.83 is

obtained at clutter rate (false positive per image - fppi) of 10. Similarly, p22,D of

0.86 is obtained at fppi of 10 from the ROC curve of the vehicle detector when it is

applied to vehicle instances in KITTI video tracking sequence 16 as shown in Fig. 5.10b.

However, the values of p12,D and p21,D are very low, around 0.03 for p12,D and 0.01 for

p21,D, this happens because even if the vehicle detector detects pedestrian instances,

for example, the intersection of the detected bounding boxes by vehicle detector on

pedestrian instances and the ground truth of the pedestrian instances is very low as

the two bounding boxes have very much different aspect ratios, therefore, it can be

classified as false positive though it is detected. Hence, we try to fine-tune values of

p12,D and p21,D to some higher values e.g. p12,D = 0.3 and p21,D = 0.1 in this case.

5.2.2 Tracking Pedestrians and Vehicles, and Data Association

In this case, we use a dual GM-PHD filter by setting N = 2 in the Algorithms 2, 3 and 4

derived for the N-type GM-PHD filter. This dual GM-PHD tracker follows the same

fashion discussed in subsection 5.1.2 including automated birthing of targets with the

exception that we consider here two types of targets (pedestrians and vehicles) by using

N = 2. The dual GM-PHD filter handles sensor noise, clutter and confusion between

target types, therefore, labeling of targets can be applied at the end of the filter i.e. on
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(a) ROC for pedestrian detector on pedestrian in-
stances

(b) ROC for vehicle detector on vehicle instances

Figure 5.10: ROCs using 3D orientation and CNN visual features detector models tested on
KITTI sequence 16.

the filtered outputs. Hence, Munkres’s variant of the Hungarian assignment algorithm

is used to associate tracked target identities between two consecutive frames [73] in the

same fashion discussed in subsection 5.1.3. In this case, if a target disappears and then

reappears, a new label is given without using any re-identification algorithm.

5.2.3 Experimental Results

The state vector includes the centroid positions, velocities, and the width and height

of the bounding boxes; the measurement is the noisy version of the target area, in

the same fashion as in section 5.1.4. A dynamic model, an observation model and

a birth covariance follow Eqs. (5.1), (5.2) and (5.3) respectively with the exception

of setting i ∈ {1, 2}. We set σv1 = 5 pixels/s2 and σv2 = 6 pixels/s2 for target

type 1 (pedestrians) and target type 2 (vehicles), respectively. We also set survival

probabilities p1,S = p2,S = 0.99 for each target of both types, and the measurement

standard deviations σrii and σrij (i ∈ {1, 2} and j ∈ {1, 2}) are evaluated to 7 pixels.

This proposed visual tracking approach is analyzed using the KITTI tracking video

sequence 16 [225]. A multi-target measurement Z1,k for pedestrians is obtained using a

pedestrian detector. Similarly, a multi-target measurement Z2,k for vehicles is obtained

using a vehicle detector. The sample frames of results of detections, two independent

GM-PHD trackers and dual GM-PHD tracker are shown in Fig. 5.11 and Fig. 5.12. For

instance, for the sample frame 23 in Fig. 5.12, many clutter responses from detections

in Fig. 5.12a are removed by 2 independent GM-PHD trackers as shown in Fig. 5.12b.
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However, the pedestrian targets with labels 10, 30, 34 and 31 are confused by the vehicle

detector and then tracked by standard GM-PHD trackers as shown in Fig. 5.12b. These

are removed by our dual GM-PHD tracker as shown in Fig. 5.12c. Hence, our approach

eliminates the wrong tracking of vehicles or pedestrians which are confused at detection.

The dual GM-PHD filter is evaluated quantitatively and compared with two indepen-

dent GM-PHD filters and raw detection using the cardinality error, OSPA metric [215],

time taken and discrimination rate in Table 5.2. We also show the cardinality and OSPA

error plots as shown in Fig. 5.13a and Fig. 5.13b, respectively, in red for ground truth

(cardinality), green for dual GM-PHD filter, blue for two independent GM-PHD filters

and magenta for detections. As shown in Table 5.2, the overall average value of the

OSPA error for the dual GM-PHD filter is 20.74 pixels compared to using two indepen-

dent GM-PHD filters of 35.29 pixels and raw detection of 49.81 pixels. Our proposed

approach reduces the OSPA error by a large margin over both using two independent

GM-PHD filters and raw detection.

The time taken for the 209 video frames of the KITTI tracking sequence 16 is shown

in Table 5.2 where the dual GM-PHD tracker takes 4.03 seconds per frame (both de-

tection and tracking), two independent GM-PHD trackers take 1.61 seconds per frame

and raw detection takes 1.25 seconds per frame on a i5 2.50 GHz core processor with 6

GB RAM laptop using MATLAB. Since we use many detection models for each actor

(10 for pedestrians, 40 for vehicles), it takes more computational time than the sce-

nario considered in section 5.1.4. As shown in Table 5.2, the dual GM-PHD tracker has

only 0.32 (below 1 target) cardinality error and 1.81% discrimination rate error when

compared to 3.82 cardinality error and 100% discrimination rate error using 2 inde-

pendent GM-PHD trackers as well as 9.86 cardinality error and 100% discrimination

rate error using raw detection. As can be seen from Fig. 5.11c and Fig. 5.12c, labels

of some of the actors (cars - labels 6 and 9; pedestrians - labels 1, 2, 16, 17, etc) are

consistent from frame to frame. Since we are using two frames to associate the targets,

a new label is given to a target which disappears and then reappears as well as for a

newly appearing target. For example, pedestrians labeled 12 and 13 in frame 13 are

re-detected as one target in frame 23 and is given a label 26. The car labeled 7 in

frame 13 is miss-detected, and then is re-detected in frame 23 and is given a new label,

25. Still, the labeling approach we use has a reasonable performance with a mean label

switch error of only 1.07%, and it is obviously not part of the dual GM-PHD filter.
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(a) Detections, frame 13

(b) Two independent GM-PHD trackers, frame 13

(c) Dual GM-PHD Tracker, frame 13

Figure 5.11: Results of detections, two independent GM-PHD trackers and dual GM-PHD
tracker, respectively, for frame 13.

5.3 Evaluation and Comparison using the MOT Bench-

marking Tool

N-type GM-PHD tracker is developed for handling confusions among detectors of dif-

ferent target types. However, all of the state-of-the-art multi-tracking algorithms in

MOT challenge have been developed for tracking a single type of multiple targets
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(a) Detections, frame 23

(b) Two independent GM-PHD trackers, frame 23

(c) Dual GM-PHD Tracker, frame 23

Figure 5.12: Results of detections, two independent GM-PHD trackers and dual GM-PHD
tracker, respectively, for frame 23.

(N = 1). Thus, the N-type GM-PHD tracker cannot be directly evaluated using the

MOT benchmarking tool to be compared to the state-of-the-art algorithms listed on

the MOT challenge. To make a good understanding of the performance of our de-

veloped algorithm, we use the building block of the N-type GM-PHD tracker (the

N-type GM-PHD tracker for N = 1, denoted by GM-PHD-N1T) to evaluate using the

MOT benchmarking tool and compare to the state-of-the-art algorithms in the MOT

challenge.
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(a) Cardinality (b) OSPA error

Figure 5.13: Cardinality and OSPA error: Ground truth (red for cardinality only), dual GM-
PHD filter (green), two independent GM-PHD filters (blue), detections (magenta).

Method cardinality error OSPA error time taken discrimination rate

Detections 9.86 49.81 pixels 1.25 sec/frame 0%
2 GM-PHDs 3.82 35.29 pixels 1.61 sec/frame 0%
Dual GM-PHD 0.32 20.74 pixels 4.03 sec/frame 98.19%

Table 5.2: Frame-averaged cardinality and OSPA errors, time taken and discrimination rate
at the extracted detection probabilities for dual GM-PHD filter, two independent GM-PHD
filters and Detections.

Thus, we validate our proposed tracker (for N = 1 version) and compare it against

state-of-the-art online and offline tracking methods (GM-PHD-MA [226], DP-NMS [227],

SMOT [228], CEM [229] and JPDA-m [137]) on the MOT16 benchmark datasets [9].

We use the public detections provided by the MOT benchmark. We use the following

evaluation measures: Multiple Object Tracking Accuracy (MOTA), Multiple Object

Tracking Precision (MOTP) [213], Mostly Tracked targets (MT), Mostly Lost targets

(ML) [214], Fragmented trajectories (Frag), False Positives (FP), False negatives (FN),

Identity Switches (IDSw) and speed of the tracker (Hz). For detailed description of

each metric, please refer to [9] and section 2.6.

Quantitative evaluation of our proposed method with other trackers is compared in

Table 5.3. The Table shows that our algorithm outperforms both online and offline

trackers listed in the table in terms of MOTP. In terms of MOTA, our tracker outper-

forms the online tracker(s) and the offline trackers such as GM-PHD-MA, SMOT and

JPDA-m. The number of MT percentage is overall higher than many of the online and

offline trackers except one offline tracker (i.e. second to CEM). The number of ML, FP

and FN percentage are also lower than many of the online and offline trackers. The
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higher number of IDSw and Frag compared to the other online tracker and some of the

offline trackers is due to the fact that our tracker relies only on the position and size of

the bounding box of the detections; we are not using any appearance models to discrim-

inate nearby targets. Spawning targets are also not modelled in our tracker, therefore,

identity switches are more likely to occur in such crowded scenes. Our tracker runs

about 9.9 frames per second (fps). The computational costs arise from experiments on

a i7 2.30 GHz core processor with 8 GB RAM using Matlab (not well optimized).

The most important to note here is that the comparison of our algorithm to the GM-

PHD-MA [226]. These both trackers use a GM-PHD filter but with different approaches

for labelling of targets from frame to frame. While our tracker uses the Hungarian

algorithm for labelling of targets by postprocessing the output of the filter, the GM-

PHD-MA uses the approach in [177] by also including appearance features for the

labelling of targets. Our tracker outperforms the GM-PHD-MA tracker in many of the

evaluation metrics except IDSw and Frag. The GM-PHD-MA performs better in terms

of IDSw and Frag since it includes appearance features in addition to the position and

size of the bounding box of the detections; appearance models are not used in our

tracker. Thus, the building block of the N-type GM-PHD tracker performs reasonably

when evaluated and compared to the MOT challenge.

Examples of tracking results of all MOT16 test sequences except MOT16-07 are shown

in Figure 5.14; from left to right: MOT16-01, MOT16-03 (top row), MOT16-06,

MOT16-08 (middle row), and MOT16-12, MOT16-14 (bottom row). Three frames

from MOT16-07 are shown in Figure 5.15. In all figures, the bounding boxes represent

the tracking results with their color-coded identities except MOT16-07 for which we

use labels of the targets as small numbers over their bounding boxes. The MOT16-07

shown in Figure 5.15 contains 54 tracks recorded by a moving camera in a sequence of

500 frames. Tracking in this sequence is a very challenging task, not only because the

density of pedestrians is quite high, but also because significant camera motion makes

the person trajectories to be both rough and discontinuous. Our tracker reasonably

performs even on this sequence though some identity switches occur due to significant

camera motion, detection failures and lack of appearance model in our approach.
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Figure 5.14: Sample results on several sequences of MOT16 datasets, bounding boxes rep-
resents the tracking results with their color-coded identities. From left to right: MOT16-01,
MOT16-03 (top row), MOT16-06, MOT16-08 (middle row),and MOT16-12, MOT16-14 (bot-
tom row).

5.4 Summary

In this chapter, our proposed N-type GM-PHD filter is applied to real video sequences

considering two scenarios: tracking different football teams and a referee by treating

them as three different types of targets, and tracking pedestrians and vehicles by treat-

ing them as two different types of targets. When applying to real video sequences,

there are many control parameters that exist in this proposed algorithm which are

very important to select carefully. Many of these parameters are related to the experi-

mental evaluation of the detection processes, particularly, true and confusion detection

probabilities, clutter rate, and measurement standard deviation. True and confusion

detection probabilities for each target type are extracted from ROC curves of each

detector at a specific background clutter rate (false positive per image). These param-
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eters can be fine-tuned depending on the aspect ratios of the the target types under

consideration. Similarly, the measurement standard deviations can be estimated from

the distribution of distance errors of the centroids from ground truth in the evaluation

of the detection process. However, the other parameters such as survival probabilities

and standard deviations of the process noise for each target type are set from simulation

and previous experience. Thus, using these parameters, we apply the N-type GM-PHD

filter for visual tracking on real video sequences achieving improved performance over

raw detection and independent standard GM-PHD filters. We also evaluate the build-

ing block of the N-type GM-PHD tracker (for N = 1) using the MOT benchmarking

tool to compare to the state-of-the-art algorithms in the MOT challenge and find out

that our algorithm performs against other state-of-the-art trackers.
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Figure 5.15: Sample results on the sequence MOT16-07, bounding boxes represents the track-
ing results with their label for their identities, for frames 368, 380 and 396 from top to bottom.
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Chapter 6

Conclusions and Future Work

In this chapter, the thesis is summarized with conclusions of the proposed methods

with an outlook on future work.

6.1 Conclusions

In this thesis, novel tracking algorithms are proposed, both for model-free single target

tracking and multi-target tracking with different target types. Accordingly, the central

contributions of this thesis can be briefly stated by categorizing into three as follows.

First, we developed a novel long-term visual tracking algorithm by learning discrim-

inative correlation filters and an incremental SVM classifier that can be applied for

tracking of a target in sparse as well as in crowded environments. We learn two dif-

ferent discriminative correlation filters: translation and scale correlation filters. For

the translation correlation filter, we combined multi-layer CNN features trained on

a large amount of object recognition data set (ImageNet) and traditional (HOG and

color-naming) features in proper proportion. For the CNN part, we combined the

advantages of both lower and higher convolutional layers to capture spatial details

for precise localization and semantic information for handling appearance variations,

respectively. We also include a re-detection module using HOG, LUV color and nor-

malized gradient magnitude features for re-initializing the tracker in case of tracking

failures due to long-term occlusions by training an incremental SVM from the most

confident frames. The re-detection module, when activated (the correlation response

of the object is below some pre-defined threshold), generates high score detection pro-
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posals which are temporally filtered using a GM-PHD filter for removing clutter. The

Gaussian component with the maximum weight is selected as a state estimate which

re-fines the object location when a re-detection module is activated. For the scale cor-

relation filter, we use HOG features to construct a target pyramid around the estimated

or re-detected position for estimating the scale of the target. Extensive experiments

on both OOTB and PETS 2009 data sets show that our proposed algorithm signifi-

cantly outperforms state-of-the-art trackers by 3.48% in distance precision and 7.77%

in overlap success on sparse (OOTB) data sets, and by 36.87% in distance precision

and 34.92% in overlap success on dense (PETS 2009) data sets. We conclude learning

correlation filters using an appropriate combination of CNN and traditional features

as well as including a re-detection module using incremental SVM and GM-PHD filter

can give better results on both sparse and dense environments.

Second, we developed an extension of the PHD filter in the RFS framework to account

for many different types of targets with separate observations of the same scene, allow-

ing for different probabilities of detection, scene clutter and possible confusions between

targets of different types at the detection stage. This extends the standard PHD filter

to a N-type PHD filter i.e. in principle the methodology can be applied to N types

of targets where N is a variable, with the caveat that the number of possible confu-

sions rises as N(N − 1). Then, under the Gaussianity and linearity assumptions, we

extend the Gaussian mixture (GM) implementation of the standard PHD filter for the

proposed N-type PHD filter, N-type GM-PHD filter. We evaluate the quad GM-PHD

filter and compare to four independent GM-PHD filters, indicating that our approach

shows better performance determined using cardinality and OSPA metric by efficiently

discriminating the target types.

Third, our proposed N-type GM-PHD filter is tested and evaluated using real video

sequences by integrating object detectors’ information such as the probabilities of de-

tections for each target type and confusion detection probabilities among target types

at a specific clutter rate into this filter by considering two scenarios. In the first case, a

tri-GM-PHD filter is applied to sport analysis applications, particularly, tracking dif-

ferent football teams and a referee by treating them as three different types of targets.

In the second case, we use a dual GM-PHD filter for tracking pedestrians and vehicles

by treating them as two different types of targets which is important for building intel-

ligent static/mobile vehicles for detecting, tracking and discriminating different target

types in the same scene handling their detectors’ confusions. For each scenario, we also

apply Munkres’s variant of the Hungarian assignment algorithm as data association

on the filtered results of the filter as a post-process to label each target from frame to

frame. The key finding of this work is that by considering and modeling confusions
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between the different types of targets we can improve the target discrimination rate,

demonstrated by quantitative measurement of cardinality and OSPA error. Applica-

tion of the Hungarian labeling method shows reasonable data association so that we

are able to track individual targets over the sequence. Although the process is applied

here to 3 and 2 types of targets on real video sequences, in principle the methodology

can be applied to visually track N types of targets where N is any variable integer in

which the number of possible confusions may rise as N(N − 1). We also observe that

other assumptions about background clutter, target location and birth follow the same

random models as the standard PHD filter. Hence we assume that our background

clutter, and the detection and confusion probabilities are uniform across the image

field, which is not unreasonable in the football data, but is less likely to be true when

identifying pedestrians in an urban environment, where particular street furniture may

generate repeated false alarms. As the detections are represented as points (centroids

of bounding detection boxes), the filtering process does not explicitly consider scale,

and as the boxes and humans/vehicles within the boxes have finite extent, this makes

occlusions possible such that targets may disappear for several frames. Notwithstand-

ing these imperfections, the work we have done has shown that the N-type GM-PHD

filter has the potential both to track targets in video data, and to better address mul-

tiple target confusions than the standard method. The evaluations and comparisons

of these trackers on these two scenarios to both raw detections and independent GM-

PHD filters using cardinality, OSPA metric and discrimination rate show the improved

performance of our strategy on real video sequences.

6.2 Future Work

In this thesis, three aspects of future work are identified as the possible extensions of

the proposed methods, and are presented as follows.

1. Extending model-free single unknown target tracking to model-free multi-target

tracking using discriminative correlation filters and a hybrid of multi-layer CNN

and traditional hand-crafted (e.g. HOG + color naming) features. Model-free

multi-target tracking is presented in [107], however, the potential of correlation

filters and CNN features are not explored so far in the model-free multi-target

tracking problems.

2. Parallelizing of a N-type PHD filter (either Gaussian Mixture or SMC implemen-

tation) using multi-core CPU, GPU, and/or FPGA platforms. This is important
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since the N-type PHD filter is slightly more computationally expensive than the

standard PHD filter to apply for real-time applications.

3. Integrating a parallelized N-type PHD filter implementation into either static or

moving (automotive) embedded platforms (e.g. cars or robots) for tracking mul-

tiple actors (pedestrian, vehicles, bicycles, etc) by fusing information from mul-

tiple sensors (video camera, radar (RAdio Detection And Ranging), lidar (LIght

Detection And Ranging), etc). Similarly, it might also be crucial to integrate

the parallelized N-type PHD filter for real-time sports analysis such as real-time

tracking and performance (e.g. using trajectory) analysis of football teams and

a referee, or basketball or hockey teams while discriminating the target types.
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Chapter 7

APPENDIX A

PHD filter for multi-target tracking of a single target type was proposed by Mahler

in [170] where its derivation is given. We have derived novel extensions for the updated

PHDs of a N-type PHD filter from PGFLs of each target type handling confusions

among target types starting from the standard proved predicted PHDs in Chapter 4.

In this case we assume the standard predicted PHD can be applied to each target type

as influence of the measurement confusions among the target types we are solving occurs

at the update stage of the PHD recursion. To make this thesis self-sufficient, we derive

the predicted PHDs for each target type i ∈ {1, ..., N} starting from the PGFLs of the

predicted processes. We use the product rule and chain rule for functional derivatives

to find PHD prediction equation for target type i ∈ {1, ..., N} (differentiate and set

h = 1) as follows:

Gi,k|k−1(h) = Gi,γ(h)Gi,k−1(Gi,S(h|.)), (7.1)

where (taking ϕx = δx)
δ

δϕx
Gi,γ(h)

∣∣∣∣
h=1

= γi,k(x). (7.2)

δ

δϕx
Gi,k−1(h)

∣∣∣∣
h=1

= Di,k−1(x). (7.3)

and

Gi,S(h|x) = 1− pi,S,k(x) + pi,S,k(x)

∫
h(y)yi,k|k−1(y|x)dy. (7.4)

the aim is to compute the PHD of the predicted process Di,k|k−1(x) for target type

i ∈ {1, ..., N}.
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Deriving Eq. 7.1 in ϕx = δx and using the product rules yields:

δ

δϕx
Gi,k|k−1(h)

∣∣∣∣
h=1

=
δ

δϕx
Gi,γ(h)

∣∣∣∣
h=1︸ ︷︷ ︸

=γi,k(x)

Gi,k−1(Gi,S(h|.))
∣∣
h=1︸ ︷︷ ︸

=1

+Gi,γ(h)
∣∣
h=1︸ ︷︷ ︸

=1

δ

δϕx
Gi,k−1(Gi,S(h|.))

∣∣∣∣
h=1︸ ︷︷ ︸

=A

(7.5)

Now, using the chain rule A reads:

A =
δGi,k−1

δ
( δGi,S(h|.)

δϕx

)(Gi,S(h|.))
∣∣∣∣
h=1

(7.6)

where
δGi,S(h|.)

δϕx
is found by deriving Eq. 7.4 and using the linearity of h→

∫
h(y)yi,k|k−1(y|.)dy

as follows:

δGi,S(h|.)
δϕx

=
δ

δϕx
(1− pi,S,k(.))︸ ︷︷ ︸

=0

+pi,S,k(.)
δ

δϕx

∫
h(y)yi,k|k−1(y|.)dy︸ ︷︷ ︸
=yi,k|k−1(x|.)

. (7.7)

Let us write g(.) = pi,S,k(.)yi,k|k−1(x|.) for simplicity’s sake. Now all we need to do is

to compute
δGi,k−1

δg(.) (Gi,S(h|.))
∣∣∣∣
h=1

. Using the Janossy densities we can write:

Gi,k−1(h) =

∞∑
n=0

1

n !

∫
Xn

( n∏
l=1

h(xl)

)
j

(n)
i,k−1(x1, ..., xn)dx1...dxn. (7.8)

Deriving Gi,k−1 in g(.) gives:

δGi,k−1

δg(.) (h)

∣∣∣∣
h=1

=
∑∞

n=1
1
n !

∫
Xn

δ
δg(.)

(∏n
l=1 h(xl)

)∣∣∣∣
h=1

j
(n)
i,k−1(x1, ..., xn)dx1...dxn,

=
∑∞

n=1
1
n !

∫
Xn
∑n

l=1

(
δ

δg(.)h(xl)
∏
j 6=l h(xj)

)∣∣∣∣
h=1

j
(n)
i,k−1(x1, ..., xn)dx1...dxn.

(7.9)
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Using the definition of functional derivatives with F [h] = h(xl) gives:

δGi,k−1

δg(.) (h)

∣∣∣∣
h=1

=
∑∞

n=1
1
n !

∫
Xn

(∑n
l=1 g(xl)

)
j

(n)
i,k−1(x1, ..., xn)dx1...dxn,

=
∑∞

n=1
1
n !

∑n
l=1

∫
Xn g(xl)j

(n)
i,k−1(x1, ..., xn)dx1...dxn.

(7.10)

That is, since the Janossy densities are symmetric functions:

δGi,k−1

δg(.) (h)

∣∣∣∣
h=1

=
∑∞

n=1
1

(n−1) !

∫
Xn g(x1)j

(n)
i,k−1(x1, ..., xn)dx1...dxn,

=
∫
X g(x1)

(∑∞
n=1

1
(n−1) !

∫
Xn−1 j

(n)
i,k−1(x1, ..., xn)dx2...dxn

)
dx1,

=
∫
X g(x)

(∑∞
n=0

1
n !

∫
Xn j

(n+1)
i,k−1 (x, x1, ..., xn)dx1...dxn

)
dx.

(7.11)

Or, using the characterization of the PHD Di,k−1(x) as the first-moment density of the

process:

δGi,k−1

δg(.)
(h)

∣∣∣∣
h=1

=

∫
X
g(x)Di,k−1(x)dx. (7.12)

Combining Eq. 7.5, Eq. 7.6, Eq. 7.7 and Eq. 7.12 yields the result:

Di,k|k−1(x) =
δGi,k|k−1

δϕx
(h)

∣∣∣∣
h=1

= γi,k(x) +

∫
X
pi,S,k(ζ)yi,k|k−1(x|ζ)Di,k−1(ζ)dζ. (7.13)
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