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Abstract

In this work a Reynolds-Averaged two-fluid fully coupled model (RA-TFM) for mod-
elling of turbulent fluid-particle flow is implemented in OpenFOAM and applied to a
vertically orientated backward-facing step. Three particle classes with varying mass
loadings (10-40%) and different Stokes number are investigated. Details of the im-
plementation and solution procedure are provided with special attention given to
challenging terms. The prediction of mean flow statistics are in good agreement
with the data from literature and show a distinct improvement over current model
predictions. This improvement was due to the separation of the particle turbulent ki-
netic energy kp, and the granular temperature Θp, in which the large scale correlated
motion and small scale uncorrelated motion are governed by separate transport equa-
tions. For each case simulated in this work, turbulence attenuation was accurately
predicted, a finding that is attributed to separate coupling terms in both transport
equations of kp and εp.
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1. Introduction1

Modulation of turbulence is a complex two-way coupled phenomenon [14] and2

can be caused by fluid-particle interaction and/or particle-wall interaction. Modu-3

lation can result in an increase in the fluid-phase fluctuating velocities [24] due to4

particle vortex shedding [40], which is caused by a large particle Reynolds number,5

Rep. Conversely, modulation of turbulence can result in the reduction of fluid-phase6

fluctuating velocities, i.e. attenuation. This behaviour is prevalent in fluid-particle7

flows due to high density ratios (ρp � ρf ). This leads to the mean-feedback ef-8

fect through drag - their primary coupling mechanism. Turbulence attenuation as9

a result of small heavy particles in the carrier flow is well established in the litera-10

ture [15, 24, 26, 33, 50, 54, 57] and has been shown to be further influenced by the11

inhomogeneity of wall-bounded flow [53].12

To date there have been numerous experimental studies investigating small heavy13

particles in wall-bounded, high Reynolds number flow [4, 9, 33, 50]. One valuable14

study is that of Fessler and Eaton [19] in which mean and turbulence statistics15

of dilute [14] fluid-particle flow were recorded in a vertically orientated backward-16

facing step. They report turbulence attenuation across three particle classifications17

(different Stokes number and mass loadings) and provide valuable insights into the18

particle behaviour in the free shear layer. Traditionally, the backward-facing step19

has been used as a benchmark for validation of single-phase turbulence models, as20

flow separation, reattachment and redevelopment are rife in engineering applications.21

Due to the complex nature of turbulence attenuation and the challenging physics in22

a backward-facing step configuration, its successful prediction has proven difficult23

[10, 36, 38, 51, 58].24

There are two main approaches for predicting macroscale fluid-particle systems:25

the Eulerian-Lagrangian (E-L) method in which the fluid-phase is solved in an Eu-26

lerian frame and the particle-phase is solved with Lagrangian equations. Typically,27

all scales of motion are resolved except the boundary layers on the particle surfaces28

resulting in a high resolution of the flow field. It follows that E-L simulations are29

used for understanding fundamental phenomenon e.g. clustering [6, 49], and verify-30

ing experimental observations [25, 34]. Due to their expensive cost as each particle31

requires its own momentum equation, large particulate systems with high Reynolds32

number become inviable. This leads to the second approach: the Eulerian-Eulerian33

(E-E) methodology models both the fluid- and particle-phase as interpenetrating34

continua resulting in both phases acting as “fluids”. This reduces the computational35

cost considerably with the fully resolved scales of E-L being modelled. This approach36

then relies on constitutive relations to close the governing equations.37

Numerous two-fluid (E-E) models have been derived using a one-step averaging38
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process [1, 13, 28, 47] e.g. volume- or time-averaging. Within this methodology,39

kinetic theory is used to close the particle-phase stress that appears in its momen-40

tum equation. This approach has been applied by many authors [2, 11, 12, 16, 27,41

40, 52, 60] with varying degrees of success. Recently, Fox [21] has shown that a42

two-step process is required in order to derive a Reynolds-Averaged multiphase tur-43

bulence model. In the aforementioned models, the multiphase models are derived44

analogously to a single-phase model using time- or volume-averaging techniques that45

can lead to ill-formed equations e.g. time averaging results in a diffusive term in the46

continuity equation.47

In addition to this, a conceptual error has been highlighted. The statement48

kp = 3〈Θ〉p is often found in these models which is inaccurate. This is due to the49

particle turbulent kinetic energy kp, and the phase averaged (PA) granular tem-50

perature 〈Θ〉p, belonging to two different realisations of the flow. This distinction51

was first highlighted by Février et al. [20] in which particle velocities are decomposed52

into correlated kp large-scale motion and uncorrelated 〈Θ〉p small-scale motion. Both53

quantities are a result of separate models. It was shown that the correlated motion54

kp arises due to the hydrodynamic (macroscale) model and the uncorrelated motion55

〈Θ〉p arises due to the kinetic (mesoscale) model.56

The two-step derivation of Fox [21] has been shown to circumvent these issues.57

Beginning at the kinetic (mesoscale) equation [22], phase-space integration is applied58

to find the hydrodynamic (macroscale) moment equation which is then Reynolds-59

Averaged to form the Reynolds-Averaged Two-Fluid model (RA-TFM) after the ap-60

propriate closure modelling has been applied. This approach results in separate61

transport equations for the particle turbulence kinetic energy kp and the PA gran-62

ular temperature 〈Θ〉p. Through the derivation of kp the particle turbulent kinetic63

energy dissipation εp, is defined which appears as a source term in the transport64

equation of the PA granular temperature, 〈Θ〉p. This cascade of energy from corre-65

lated motion to uncorrelated motion is a crucial distinction. This leads to the particle66

fluctuation energy being written as κp = kp + 1.5〈Θ〉p. Février et al. [20] found that67

even for non-collisional flow, separate transport equations for kp and 〈Θ〉p were es-68

sential, a direct result of the energy cascade outlined previously. Given these recent69

advances in the field, the modelling of previously challenging turbulent fluid-particle70

interactions in the Eulerian-Eulerian framework become clearer and their successful71

prediction more likely.72

The overarching motivation of the present work is to increase the current under-73

standing of the modelling of turbulent fluid-particle interaction in a complex flow74

field. We confine ourselves to turbulence attenuation of small heavy particles in75

a vertically orientated backward-facing step. The particles have material densities76
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much larger than the fluid (ρp � ρf ) and diameters smaller than the Kolmogorov77

length scale over the moderately dilute range O(10−4).78

The RA-TFM of Fox [21] is implemented in OpenFOAM and applied to the79

aforementioned flow configuration. The model predictions are compared against80

benchmark experimental data of Fessler and Eaton [18, 19]. In addition, predictions81

are also compared against the model of Peirano and Leckner [40] to highlight the82

importance of separating correlated and uncorrelated motion. Analysis is carried83

out on the mean particle stream-wise velocities and the fluctuation intensity of both84

the particle and fluid phases. Applying the RA-TFM to wall-bounded flow requires85

physical wall boundary conditions for the particle turbulent quantities, kp, εp and86

〈Θ〉p. To this end the Johnson and Jackson [31] boundary conditions were recently87

extended for the RA-TFM by Capecelatro et al. [8] and are implemented and applied88

here to describe the particle-wall interaction.89

The paper is organised as follows; in the following section the numerical model90

is presented. This contains the RA-TFM in which the governing equations for each91

phase are presented along with the fully coupled turbulence models. Next, the wall92

boundary conditions used in this work are presented in their implemented form. Fol-93

lowing this the numerical implementation of the RA-TFM into OpenFOAM is pro-94

vided along with a description of the turbulence modelling implementation. Section95

3 presents the results and discussion with the final section providing the conclusions.96
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2. Numerical Model97

Here we begin by presenting the Reynolds-averaged transport equations from98

Fox [21]. The RA transport equations are presented in their conservative form with99

closures found in Table 5. For clarity the PA notation has been dropped and the PA100

variables along with their definitions can be found in Table 6. The particle phase101

continuity equation reads:102

∂αpρp
∂t

+∇ · αpρpup = 0 (1)

Where αp is the volume fraction of particles, ρp is the density of the particles and103

up is the particle phase velocity.104

The momentum balance equation for the RA particulate phase is given as:105

∂αpρpup
∂t

+∇ · αpρpupup = ∇ · 2(µp + µpt)Sp + β
[
(uf − up)−

νft
Scfsαpαf

∇αp
]

−∇
(
pp +

2

3
αpρpkp

)
− αp∇pf + αpρp

[
1− Cpαf

(
1− ρf

ρp

)]
g

(2)

Where the first term on the right hand side (RHS) contains the diffusive viscos-106

ity associated with the material viscosity and the particle turbulent viscosity. The107

forms for these are analogous to those of a fluid and can be found in Table 5. The108

second term is the momentum transfer term and contains both the slip velocity109

and a turbulent dispersion term. Through the denominator of the dispersion term110

Scfp = (kf/kp)
1/2 a Stokes number (St) dependency is introduced which accounts for111

dispersion for moderate to large St. The form of this equation enforces the correct112

behaviour, when there is a small St the particle turbulent kinetic energy kp → kf113

thus returning 1; for a large St where kp is small this represents a large value reducing114

the amount of dispersion i.e. the particles remain correlated with the fluid.115

The third term is the pressure gradient along with the so-called turbulent pres-116

sure, with the fourth term being the covariance of the volume fraction and the fluid-117

pressure gradient. This term appears in both momentum equations and is typically118

assumed to be negligible. The last term contains the body forces (i.e. gravity)119

and the velocity-fluid-pressure-gradient covariance term. This term represents the120

correlations between the velocity and pressure gradients which arise from buoyancy.121

The fluid phase continuity equation reads:122

∂αfρf
∂t

+∇ · αfρfuf = 0 (3)
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The momentum balance equation for the RA fluid phase is given as:123

∂αfρfuf
∂t

+∇ · αfρfufuf = ∇ · 2(µf + µft)Sf + β
[
(up − uf ) +

νft
Scfsαpαf

∇αp
]

−∇
(
αfpf +

2

3
αfρfkf

)
+ αp∇pf + αfρf

[
1 + Cpαp

(ρp
ρf
− 1
)]

g

(4)
The momentum equations are symmetric with opposite pressure gradients, hence the124

corresponding term in the particle momentum equation (2) are defined in the same125

manner but with respect the fluid phase.126

The RA turbulent kinetic energy transport equation for the fluid-phase takes the127

form:128

∂αfρfkf
∂t

+∇ · αfρfkfuf = ∇ ·
(
µt +

µft
σfk

)
∇kf + αfρfΠf − αfρfεf

+2β(kfp − kf ) + αpρpΠfp + αpρpΠρf

(5)

The first term on the RHS is the fluid-phase turbulent kinetic energy flux. The129

second term Πf represents kinetic energy production due to mean shear with the130

third term being the turbulent kinetic energy dissipation. The remaining three terms131

are the coupling terms: velocity correlations, mean slip and volume-fraction-velocity132

correlations, respectively.133

The RA turbulent kinetic energy dissipation transport equation for the fluid-134

phase reads as:135

∂αfρfεf
∂t

+∇ · αfρfεfuf = ∇ ·
(
µt +

µft
σfk

)
∇εf +

εf
kf

[
C1αfΠf − C2αfρfεf

]

+2C3β(εfp − εf ) + C4
εp
kp
αpρpΠfp + C5

εp
kp
αpρpΠρf

(6)

The first term on the RHS is the fluid-phase turbulent kinetic dissipation energy136

flux. The second term Πf is kinetic energy production due to mean shear with the137

third term is dissipation. The remaining three terms are the coupling terms: velocity138

correlations, mean slip and volume-fraction-velocity correlations, respectively. The139

forms of these are as follows:140

Πf = 2νftSf : Sf +
2

3
kf∇ · uf (7)

Πfp =
[
Cg(up − uf )−

νft
Scfpαpαf

∇αp
]
·
[
β(up − uf ) +

1

ρp
∇pf

]
(8)
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Πρf = Cρ

(
1− ρf

ρp

)[
Cgαpαf (up − uf )−

νft
Scfp
∇αp

]
· g (9)

Where Πf is the production of the turbulent kinetic energy, Πfp is due to mean141

slip and Πρf is due to volume-fraction-velocity correlations. The coupling terms take142

the form of kfp = βk
√
kfkp and εfp = βε

√
εfεp. Where correlation coefficients are143

0 < βk, βε ≤ 1. These terms represent the fluid-velocity covariance and their exact144

closure is still uncertain, a detailed discussion on this point can be found in [21].145

This form is adopted as it shows correct limiting behaviour for large St as well as146

diminishing correctly in the absence of the particulate phase.147

The RA particle-phase turbulent kinetic energy reads as:148

∂αpρpkp
∂t

+∇ · αpρpkpup = ∇ ·
(
µp +

µpt
σpk

)
∇kp + αpρpΠp − αpρpεp

+2β(kfp − kp) + αpρpΠρp

(10)

The first term on the RHS is the particle-phase turbulent kinetic energy flux. The149

second term Πp is kinetic energy production due to mean shear with the third term150

being the particle turbulent kinetic energy dissipation. The remaining two terms151

are the coupling terms: velocity correlations, and the combination of the buoyancy152

induced and mean slip terms.153

The RA particle-phase turbulent kinetic energy dissipation transport equation reads:154

∂αpρpεp
∂t

+∇ · αpρpεpup = ∇ ·
(
µp +

µpt
σpk

)
∇εp +

εp
kp

(C1αpρpΠp − C2αpρpεp)

+2C3β(εfp − εp) + C5
εp
kp
αpρpΠρp

(11)

The first term on the RHS is the particle phase turbulent kinetic dissipation155

energy flux. The second term Πp is kinetic energy production due to mean shear156

with the third term being its dissipation. The remaining two terms are the coupling157

terms: velocity correlations, and the combination of the buoyancy induced and mean158

slip terms. The second term contains, Πp which is the production of the turbulent159

kinetic energy and is expressed as:160

Πp = 2νptSp : Sp +
2

3
kp∇ · up (12)

It should be noted here that the final term on the RHS is a compressive term161

that appears in compressible turbulence modelling and plays a similar role of the bulk162

viscosity found in the typical granular temperature formulations in the literature [40],163
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[51]. Finally, the buoyancy-induced source term Πρf is added to the mean slip Πfp164

to be reformulated as Πρp which is read as:165

Πρp = CρCpαf

(
1− ρf

ρp

)
(up − uf ) · g (13)

The granular temperature equation reads as:166

3

2

[∂αpρpΘp

∂t
+∇ · αpρpΘpup

]
= ∇ ·

(
κΘ +

3µpt
2Prpt

)
∇Θp + 2µpSp : Sp

−pp∇ · up + αpρpεp − 3βΘp − γ
(14)

The first term on the RHS is the PA granular temperature flux which is made up167

of two contributions, the granular temperature flux and the turbulent granular flux.168

The former is the granular conductivity of which there are various formulations in the169

literature. Here the formulation of Syamlal and O’Brien [48] is used as it correctly170

tends to zero in the dilute limit [51]. The latter term is the turbulent flux and171

includes the particle turbulent viscosity. The second term is a laminar source term172

due to viscous stresses. The third term is a pressure dilation term which accounts173

for compressibility. The fourth term is of particular interest as it represents the174

turbulent particle kinetic energy dissipation which appears here as a positive source175

term. The physical interpretation of this means that as large scale particle turbulent176

kinetic energy is dissipated, small scale granular temperature is produced. The two177

remaining terms represent decrease of granular temperature due to drag and decrease178

of granular temperature due to inelastic collisions.179

Table 1: Turbulence model parameters.

Cp Cg Cρ C1 C2 C3 C4 C5 βk βε Cfµ Cpµ
1 0 1 1.44 1.92 1 1 1 1 1 0.09 0.09

The full form of the equations have been presented here with no mention of their180

relevance to the flow regime being simulated in this work. As the density ratio is181

high the buoyancy induced terms are negligible. The coefficient Cg → 0 due to182

the small mass loading used in this work, a more thorough discussion on this topic183

can be found in [6, 7, 21]. The buoyancy terms were indeed found to be negligible184

but are retained here to show their solution treatment. Similarly, the compressible185

turbulence correction terms depend on the particle-phase Mach number, which is186

expected to be large for large St. Given the St values used in this study this is not187
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expected to be the case but have been retained. A thorough discussion on this topic188

is provided in Section 3.4.1.189

Figure 1: Schematic showing the energy cascade between each variable within the multiphase
model [21]. The interaction between each quantity is shown along with their respective energy
transfer mechanisms. The dashed line represents the energy flow in the (mesoscale) laminar model.

Fig. 1 shows an overall picture of the RA-TFM. As can be seen the energy cascade190

is almost identical in both phases. Starting with the mean particle kinetic energy191

1
2
up · up, the energy transfer to the turbulent particle kinetic energy is given by the192

production term which is Πp i.e. the shear. This then generates kp and is dissipated193

by the turbulent kinetic energy dissipation equation. Finally, this dissipation term194

εp appears in the granular temperature Θp as a positive source term, meaning that195

as the particle turbulent kinetic energy dissipates, granular energy is produced. As196

can be seen both turbulent quantities interact via drag and buoyancy terms in the197

same way the governing equations do. If there is dissipation due to collisions then198

the granular temperature is reduced due to particle heating.199
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2.1. Particle wall boundary conditions200

The wall boundary conditions for the particle phase require additional modelling.201

Recently, Capecelatro et al. [8] started from the Johnson and Jackson [31] wall bound-202

ary conditions and derived wall boundary conditions for the particle turbulence quan-203

tities kp, εp and Θp. Here we present the boundary conditions in their implemented204

form applicable for Finite-Volume-Method codes and begin with the wall boundary205

condition for the particle velocity up.206

n · σp∇up,w = −π
6

αp
αp,max

φρpg0

√
3Θpup,w (15)

Here we define up,w as the particle slip velocity parallel to the wall, up,w = up−uw207

with uw defined as the wall velocity. Where σp is the particle viscous stress tensor208

and we denote n as the unit vector normal to the wall. Then equation 15 is recast209

into a more compact form210

n · σp∇up,w = −Dwup,w (16)

where the term Dw = φVw representing φ, the specularity coefficient and the term211

Vw = π
6

αp

αp,max
ρp
√

3Θpg0 which contains the tangential momentum π
6

αp

αp,max
ρp (omit-212

ting the particle slip velocity parallel to the wall up,w) and the collisional frequency213 √
3Θpg0. This boundary condition prescribes a particle partial-slip velocity at the214

wall. From this condition it follows that the components of the Reynolds stress tensor215

〈u′′pu′′p〉p need not be zero at the wall unlike in the fluid phase. As we are interested216

in modelling the particle-wall interaction of the particle turbulent kinetic energy kp217

we assume isotropy in the fluctuating components.218

kp =
1

2
(u′′2p,x + u′′2p,y + u′′2p,z) (17)

Equating the principal Reynolds stress components (u′′2p,x ≡ u′′2p,y ≡ u′′2p,z) one219

arrives at kp = 1.5 u′′2p and substituting into Equation 16 by employing the PA220

decomposition (see Table 6) the wall boundary condition for kp reads221

n · σp∇kp = −2Dwkp (18)

Following on from this a condition for the particle turbulent kinetic energy dissi-222

pation rate εp can be prescribed:223

n · σp∇εp = −2Dwεp (19)
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Finally, the wall boundary condition for the granular temperature can be found224

by Reynolds averaging the Johnson and Jackson [31] which reads as225

n · qΘ

3

2
= φDw|up,w|2 −

3

2
DκΘp (20)

where qΘ is the granular temperature flux and with Dκ = (1 − ew)2Dw and ew226

is the restitution of coefficient with the wall. It follows from this that this term227

represents the energy loss through particle collisions with the wall. The first term228

on the RHS represents the increase of the granular temperature due to the relative229

velocity with the wall. This means that the slip condition at the wall is capable of230

increasing the granular temperature. The particle-wall coefficient, ew was set equal231

to 0.9. The specularity coefficient used throughout was, φ = 0.001 and the influence232

of this parameter is discussed in Section 3.3.4.233
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2.2. Numerical implementation234

Here we follow the phase intensive formulation of Rusche [43], Weller [55]. We235

rewrite the equations in their non-conservative form by expanding both the convec-236

tive term and dividing by density and volume fraction.237

Additionally, the phase respective Reynolds stress tensor is formulated by group-238

ing the kinematic and turbulent viscosity into an effective viscosity, νeff,i = νi + νit239

and employing the Boussinesq hypothesis. Now, we can write the Reynolds stress240

tensor in the form:241

Reff,p = −2νeff,pSp +
2

3
νeff,pI∇ · up +

2

3
Ikp (21)

Reff,f = −2νeff,fSf +
2

3
νeff,fI∇ · uf +

2

3
Ikf (22)

For simplicity the turbulent dispersion term is now denoted as D , separating the242

drag contributions into explicit and implicit terms and dividing by both the phase243

fraction and density we are left with:244

∂up
∂t

+∇ · (upup)− up∇ · up +
∇αp
αp + δ

·Rc

eff,p +∇ ·Rc

eff,p −∇ · (νeff,p∇up) +
βup
αpρp

−∇ ·
(
νeff,p

∇αp
αp + δ

up
)

+ up∇ ·
(
νeff,p

∇αp
αp + δ

)

=
βuf
αpρp

− βD∇αp
αpρp

− ∇pp
αpρp

− ∇pf
ρp

+ g− αf
(

1− ρf
ρp

)
g

(23)

∂uf
∂t

+∇ · (ufuf )− uf∇ · uf +
∇αf
αf + δ

·Rc

eff,f +∇ ·Rc

eff,f −∇ · (νeff,f∇uf ) +
βuf
αfρf

−∇ ·
(
νeff,f

∇αf
αf + δ

uf
)

+ up∇ ·
(
νeff,f

∇αf
αf + δ

)

=
βup
αfρf

+
βD∇αp
αfρf

− ∇pf
ρf
− αp∇pf

αfρf
+ g + αp

(ρp
ρf
− 1
)
g

(24)
where δ is introduced to avoid a division by zero. As it can be seen from the system245

of equations in Eqs. 2 & 4 no diffusive flux exists that can be treated implicitly. This246

can have advantages when solving the equations i.e enhanced matrix positively and247

diagonal dominance. Therefore, following Weller [55], Rusche [43] the Reynolds stress248

term can be rewritten into a diffusive and corrective component:249
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Reff,i = Reff,i + νeff,i∇ui − νeff,i∇ui

= −νeff,i(∇ui +∇Tui) +
2

3
νeff,iI∇ · ui

+
2

3
Iki + νeff,i∇ui − νeff,i∇ui

= (−νeff,i∇Tui +
2

3
νeff,iI∇ · ui +

2

3
kiI)− νeff,i∇ui

= R
c

eff,i − νeff,i∇ui

(25)

It is important to clarify the behaviour of terms with the volume fraction in their250

denominator. For the first contribution due to drag i.e. the third term on the RHS251

the coefficient β contains αpαf which ensures the correct behavior of the function252

as αp → 0. The second term containing turbulent dispersion contains the gradient253

of volume fraction which in the limit αp → 0 means that the ratio approaches zero.254

Finally, the fluid velocity-pressure-covariance term contains the volume fraction in255

its denominator, however due to the particle packing limit ensured by the particle’s256

structural properties the volume fraction of the fluid phase does not approach 0.257

2.3. Discretisation of the intensive momentum equations258

First, we discretise the left hand side of the equation which contains the convective259

and diffusive transport terms.260

Tp :=
[∂up
∂t

]
+
[
∇ · (up[up])

]
−
[
(∇ · up)[up]

]
+
∇αp
αp + δ

·Rc

eff,p +∇ ·Rc

eff,p

−
[
∇ · (νeff,p∇[up])

]
−
[
∇ · (νeff,p

∇αp
αp + δ

[up])
]

−
[
∇ · (νeff,p

∇αp
αp + δ

)[up])
]

+
[ βup
αpρp

]
(26)

Tf :=
[∂uf
∂t

]
+
[
∇ · (uf [uf ])

]
−
[
(∇ · uf )[uf ]

]
+
∇αf
αf + δ

·Rc

eff,f +∇ ·Rc

eff,f

−
[
∇ · (νeff,f∇[uf ])

]
−
[
∇ · (νeff,f

∇αf
αf + δ

[uf ])
]

−
[
∇ · (νeff,f

∇αf
αf + δ

)[uf ])
]

+
[ βuf
αfρf

]
(27)

where [·] is the implicit dicretisation of the term, Tp & Tf represents the numer-261

ical coefficients of each respective algebraic system given by the discretisation. The262
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second and third terms on the RHS represent convection and have been split up263

into a convection term minus a divergence terms as it enhances boundedness of the264

solution.265

Tp & Tf represents the system of algebraic equations from the discretisated Eqs.266

26 & 27 which appear in the form,267

(Tp)coeffsup = (Tp)s (28a)
(Tf )coeffsuf = (Tf )s (28b)

This discretised form of the momentum equations will be revisited once the source268

terms on the RHS are addressed.269

Now addressing the RHS of Eq. 23 & 24 which reads as270

... =
βuf
αpρp

− βD∇αp
αpρp

− ∇pp
αpρp

− ∇pf
ρp

+ g− αf
(

1− ρf
ρp

)
g (29a)

... =
βup
αfρf

+
βD∇αp
αfρf

− ∇pf
ρf
− αp∇pf

αfρf
+ g + αp

(ρp
ρf
− 1
)
g (29b)

denoting the buoyancy terms to be g∗p = g(1− αp(1− ρf
ρp

)) & g∗f = g(1 + αp(
ρp
ρf
− 1)271

we can write272

... =
βuf
αpρp

− βD∇αp
αpρp

− ∇pf
ρp
− ∇pp
αpρp

+ g∗p (30a)

... =
βup
αfρf

+
βD∇αp
αfρf

− ∇pf
ρf
− αp∇pf

αfρf
+ g∗f (30b)

Following the solution procedure of Weller [55] all terms on the RHS are evaluated273

at cell faces. In order to avoid checker-boarding in the solution, which is a prevalent274

problem on collocated grids due to the storage of values at cell centres and interpo-275

lating onto the face, the group of terms on the RHS are treated in a Rhie-Chow like276

manner Rhie and Chow [42].277

2.4. Phase momentum flux correction equations278

Now a semi-discretised formulation of both the particle- and fluid-phase can be279

written. Invoking Eqs. 28 and splitting up the total coefficients appearing in each280

system into diagonal and explicit H [30] coefficients. The latter consisting of two281

parts, the neighbouring coefficients (multiplied by its respective phase velocity) and282

the source terms, Hi = −(Ai)Nui + (Ai)S. The equations can then be written as:283
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Apup = Hp +
βuf
αpρp

− βD∇αp
αpρp

− ∇pf
ρp
− φp,p + g∗p (31a)

Afuf = Hf +
βup
αfρf

+
βD∇αp
αfρf

− ∇pf
ρf
− φf,g + g∗f (31b)

Rearranging Eqs. 31 gives the phase momentum correction equations, note these284

equations are not used in the solution algorithm, but are required to derive a flux285

predictor and corrector:286

up =
Hp

Ap

+
βuf

αpρpAp

− βD∇αp
αpρpAp

− ∇pf
ρpAp

− φp,p
Ap

+
g∗p
Ap

(32a)

uf =
Hf

Af

+
βup

αfρfAf

+
βD∇αp
αfρfAf

− ∇pf
ρfAf

− φf,g
Af

+
g∗f
Af

(32b)

2.5. Construction of the pressure equation287

In order to derive a pressure equation the continuity equation is enforced globally.288

The global continuity equation thus reads:289

∇ · [(αp)fφp + (αf )fφf ] = 0 (33)

where the subscript ()f denotes the face value and φi = (ui)f · Sf is the volumetric290

face flux i.e. the sum of all the fluxes over a control volume. From here the phase291

fluxes for each phase are found by interpolating the momentum correction equation292

(Eqs. 32) onto face centres. Using central differencing, we can write293

φp = φ∗p −
( 1

ρpAp

)
f
∇⊥f pf · Sf (34a)

φf = φ∗f −
( 1

ρfAf

)
f
∇⊥f pf · Sf (34b)

where the flux predictions φ∗p & φ∗f are given by294

φ∗p =

(
Hp

Ap

)

f

· Sf +

(
β

αpρpAp

)

f

φf −
(

βD

αpρpAp

)

f

∇⊥f αp · Sf

−
(

1

Ap

)

f

∇⊥f pp · Sf +

(
1

Ap

)

f

g∗p · Sf
(35)
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φ∗f =

(
Hf

Af

)

f

· Sf +

(
β

αfρfAf

)

f

φp −
(

βD

αfρfAf

)

f

∇⊥f αp · Sf

−
(

αp
αfρfAf

)

f

∇⊥f pf · Sf +
( 1

Af

)
f
g∗f · Sf

(36)

Now the pressure equation can be constructed by substituting Eq. 34 into Eq.295

33 which reads:296

[
∇ ·
(
Dp∇⊥f [pf ] · Sf

)]
= ∇ ·

(
(αp)fφ

∗
p + (αf )fφ

∗
f )
)

(37)

where297

Dp =
( αp
ρpAp

+
αf
ρfAf

)
f
, (38)

and the pressure gradient has been discretised implicitly on the LHS as a diffusion298

term i.e. Laplacian. Essentially a shared or mixture pressure field is solved for, this299

ensures that continuity is obeyed throughout as the coupling is provided through the300

pressure equation. Once this equation has been solved the phase fluxes need to be301

updated to satisfy continuity, as in the predictor step the influence of the pressure302

gradient is removed, this can be achieved by invoking Eq. 34. From this stage the303

solution does not completely satisfy continuity as the velocities, which are stored at304

the cell centres, need to be updated with the influence of the pressure gradient.305

This is achieved by invoking:

up =
Hp

Ap

+

[
φ∗p −

( 1

ρpAp

)
f
∇⊥f pf · Sf

]

f→c

(39a)

uf =
Hf

Af

+

[
φ∗f −

( 1

ρfAf

)
f
∇⊥f pf · Sf

]

f→c

(39b)

where the subscript f → c denotes a vector field reconstruction from face flux306

values to cell centre values. The influence of the gradient of pressure is incorporated307

into the reconstruction of the phase velocity - this ensures the phase velocity obeys308

continuity. Once this is completed the PISO loop is complete.309

2.6. Solution of the phase-mixed continuity equation310

In practice the phase-mixed continuity equation is solved first based on the initial311

conditions but for the sake of logical progression is presented now. Following Weller312
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[55] the particle phase continuity equation ?? can be reformulated as:313

∂αp
∂t

+∇ · (uTαp) +∇ · (urαpαf ) = 0 (40)

where uT = αpup +αfuf is the mixture velocity and ur = up−uf is the relative314

velocity. This equation can then be discretised as315

[∂[αp]

∂t

]
+
[
∇ ·
(
φ[αp]f

)]
+
[
∇ ·
(
φr,p[αp]f

)]
= 0 (41)

where φr,p = (αf )fφr and φr = φp − φf .316

The second term on the LHS is ensured to be bounded between 0 and 1 due to the317

mixture flux, φ = (up)f · Sf + (uf )f · Sf satisfying the mixture continuity equation.318

The third term is bounded by employing φr in the convective scheme by interpolating319

αp to the face and −φr in the face interpolation of αf . This system is solved using320

the the Multi-dimensional Universal Limiter with Explicit Solution (MULES) [59]321

which is a flux-corrected transport algorithm which enhances robustness, stability322

and convergence.323

The numerical procedure adopted in the segregated algorithm:

1. Solve the volume fraction (Eq. 41).
2. Construct Ai in each phase (Eqs. 28).
3. Enter PISO-Loop:

(a) Predict fluxes using Eqs. 35 & 36.
(b) Construct and solve the pressure equation (Eq. 37).
(c) Correct the phase fluxes using Eqs. 34.
(d) Reconstruct the phase velocities using Eqs. 39.

4. Solve the system of phase energy equations

324
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The kp− εp transport equation is implemented in a similar manner to the kf − εf325

transport equation. A thorough discussion of its implementation in OpenFOAM can326

be found in [37, 30, 43]. The coupling terms found in each equation are handled in a327

segregated manner due to the velocity-pressure solution treatment. From the solution328

of the aforementioned transport equations the granular temperature is then solved329

as the particle turbulence dissipation εp appears as a source term in the transport330

equation of granular temperature Θp.331

2.7. Numerical solution332

The open-source toolbox OpenFOAM [56] is used to solve the RA-TFM equa-333

tions. To handle the pressure-velocity coupling the Pressure Implicit with Splitting334

Operators (PISO) algorithm [17, 29] is used. The volume fraction is solved using a335

Multi-dimensional Universal Limiter with Explicit Solution (MULES) [59] which is336

a flux-corrected transport algorithm which ensures robustness, stability and conver-337

gence.338
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2.8. Simulation cases339

The computational domain is a two-dimensional channel section as seen in Fig.340

2 which starts at 60h upstream of the step to allow the flow to fully develop and341

extends 30H downstream. The material constants for each respective case can be342

found in Table 2. As reported in the experiments the centreline velocity, U0 is 10.5343

ms−1 at the step (x/H =0) and this corresponded to an inlet value of 9.3 ms−1. Mass344

loading is given by a uniform particle volume fraction across the inlet, this is achieved345

by assuming a constant particle-to-fluid velocity ratio. Wall functions for the fluid346

phase are used throughout and the effect of the particles on the boundary layer is347

not considered here. For the particle phase the boundary conditions described in348

Section 2.1 are used for the turbulent quantities. At the inlet a first estimate of the349

two turbulent quantities is determined as follows; kp = 1/3kf and εp = 1/3εf (for350

a more elaborate approach see [21]). For the granular temperature a small value is351

specified; Θp = 1.0x10−8m2s−2 [51]. Calculations are carried out on a fully structured352

hexahedral mesh consisting of 11,253 cells with y+ > 30 along both walls. Refinement353

was introduced around the step resulting in the mesh cells sizes of 0.5 mm in the x354

and y direction, respectively.355

Table 2: Table of simulated cases.

Case Material dp [µm] ρp [kg m−3] Mass loading St Rep
1 glass 150 2500 20% and 40% 7.9 10.1
2 glass 90 2500 20% 3.8 2.9
3 copper 70 8800 10% and 40% 7.4 4.4

H

h

60h 30H

Uf
gy

x

Figure 2: Schematic detailing the geometry used throughout, with h = 0.02m and H = 0.0267m.
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3. Results and Discussion356

The simulated results from the RA-TFM and the modified Peirano model (MPM)357

are compared against two sets of experimental data given by Fessler and Eaton [19]358

& Fessler and Eaton [18]. The MPM equations can be found in the Appendix. Mean359

quantities of particle velocity, fluid turbulence intensity and particle turbulence in-360

tensity are presented across three cases focusing on three particle classes (see Table361

1). The measured velocity profiles start at the recirculation region (x/H = 2), con-362

tinue through to the reattachment zone (x/H = 5), and finally the redevelopment363

region (x/H = 14) with measurements being taken in between.364
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Figure 3: Stream-wise particle mean velocity for case 1. Solid line showing the RA-TFM and the
dashed line showing the MPM. Data from Fessler and Eaton [18] with a mass-loading of 40%.
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Figure 4: Stream-wise particle mean velocity for case 2. Solid line showing the RA-TFM and the
dashed line showing the MPM. Data from Fessler and Eaton [18] with a mass-loading of 20%.
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Figure 5: Stream-wise particle mean velocity for case 3. Solid line showing the RA-TFM and the
dashed line showing the MPM. Data from Fessler and Eaton [19] with a mass-loading of 10%.

3.1. Mean particle stream-wise velocity365

It is evident that across all three Figs. 3, 4 and 5 the prediction of the RA-TFM366

mean particle velocity profiles are in good agreement with the measured results. The367

21



model captures the affects of varying St and mass loading on the mean velocity pro-368

file, especially in the recirculation region corresponding to locations (x/H = 2) and369

(x/H = 5). The MPM shows a marked difference around the step (0.5 < y/H ≤ 1)370

as it does not include the correlated particle turbulent kinetic fluctuations. These371

stresses are responsible for forming the shear layer and leading to the production of372

turbulent viscosity.373

All three Figs. 3, 4 and 5 show particle velocities with a flatter gradient across374

the depth of the pipe when compared to the fluid velocities, a feature that is not375

predicted by the MPM. This is attributed to the calculation of the particle phase376

viscosity. In the RA-TFM the calculation of the turbulent viscosity µpt appearing in377

the momentum equation is given by the kp − εp turbulence model, which accounts378

for the correlated turbulent kinetic particle fluctuations that are dominant due to379

the shear layer. In the MPM the viscosity is calculated directly from the granular380

temperature equation which relies on constitutive closures of thermal conductivity,381

shear viscosity and bulk viscosity [40]. As a result, a small value of both is predicted382

due to the dilute nature of the flow and this leads to a gross under-prediction of the383

particle viscosity. This then allows the momentum coupling term β to dominate in384

this region, which is why the mean velocity profiles tend to closely follow the fluid385

phase mean velocity profile.386

Figs. 3 & 5 reveal the largest variation between the predicted mean particle ve-387

locity profiles in the shear layer. This is attributed to the particles St, which varies388

considerably over the shear layer as shown in both Figs (y/H < 1). When the par-389

ticles St � 1 the particles tend to escape from the eddy they are in and ignore the390

influence of external eddies. This can either unite small eddies to create larger more391

energetic eddies or it can destroy large eddies which dissipate to smaller eddies. As392

a consequence of this for St � 1 we can expect the particle to take longer to react393

to the fluid. Therefore, when considering the shear layer the fluid response time, τf394

will be small in comparison with the channel flow resulting in a much higher local395

St. As a result the particle mean velocity profile does not show the sharp gradient396

across the (y/H > 1) and becomes much flatter.397

Fig. 3 shows the case denoting both a high St (7.9) and a large mass loading398

(40%). It also corresponds to the largest over-prediction in the mean particle ve-399

locities at locations (x/H = 9 & 14) for the RA-TFM. These locations correspond400

to the redevelopment region which indicate that the energy in the particle phase is401

recovering too quickly in comparison to the measured data. This overestimation is402

difficult to explain as the predictions for case 3 with a large St are in good agree-403

ment. One potential source of error could be due to the distribution of the particles404

across the width of the pipe. As the particles pass the step they are redistributed405
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inhomogeneously (clustered) which reduces the slip velocity and as a result the drag.406

As the particles reach the redevelopment region they begin to redistribute homoge-407

neously which increases the drag in this region. However neither model considers the408

effects of clustering in their drag model and are only representative of one particle.409

This can cause the observed over-estimation of the mean stream-wise velocities in410

the redevelopment region.411
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Figure 6: Fluid turbulent intensity for case 1. Solid line showing the RA-TFM and the dashed
line showing the MPM. Data from Fessler and Eaton [19] with a mass-loading of 40%.
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Figure 7: Fluid turbulent intensity for case 2. Solid line showing the RA-TFM and the dashed
line showing the MPM. Data from Fessler and Eaton [19] with a mass-loading of 20%.
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Figure 8: Fluid turbulent intensity for case 3. Solid line showing the RA-TFM and the dashed
line showing the MPM. Data from Fessler and Eaton [19] with a mass-loading of 40%.

3.2. Fluid phase turbulence412

As shown in the experiment of Fessler and Eaton [19], distinct turbulence atten-413

uation was found for the two larger St cases (1 & 3). Over the region of (y/H > 1)414
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extensive turbulence attenuation is shown across all five plots (corresponds to Fig.415

9 in Fessler and Eaton [19]). Across locations (x/H = 2 & 5) there is attenuation416

across the range (y/H > 1) which shows that as mass loading is increased the tur-417

bulence is suppressed and below this range (y/H < 1) the turbulence is unaffected.418

This behaviour of turbulence attenuation was accurately predicted by the RA-TFM419

and the corresponding plots to those in [19] are Figs 6 & 8. The predictions are in420

good agreement with the experimental measurements. The turbulence attenuation421

for case 1 is as much as 35% showing a large reduction over the region of (y/H > 1)422

at (x/H = 2) on Fig. 8.423

Below (y/H < 1) very little turbulence attenuation was observed, this corresponds424

to the shear layer and recirculation zone. From the simulations carried out, the par-425

ticle turbulent quantities kp & εp are produced and dissipated primarily near and at426

the wall and step (shear layer), with the contribution in the recirculation zone (y/H427

< 1) being several orders of magnitudes smaller. When considering the form of the428

coupling terms (see Section 2) it is evident why the turbulence attenuation is small429

in this region. This also follows from the lack of particles within the recirculation430

region due to the large St of all cases (St > 1) as the particles are not dragged into431

the eddy in the same way a particle of (St < 1) would.432

The turbulence attenuation was accurately captured across all three particle433

classes for the RA-TFM. For the MPM an over-prediction of the fluid turbulent434

kinetic energy was observed. It was found that the form of the velocity corre-435

lation coupling term posed two major problems, the first being that as the term436

kfp =
√
kfΘp contains Θp directly the evolution of the term is adversely affected as437

the granular temperature equation evolves too quickly. This behaviour is recognised438

in two fluid model codes, and typically an upper limit is employed to constrain the439

initial stages of the solution to increase robustness.440

Secondly, the source term of this form exists in both the k & ε transport equa-441

tions, this leads to the formulation of the turbulent kinetic energy dissipation equa-442

tion given by Elghobashi and Abou-Arab [16], which has been shown to yield in-443

correct behaviour [21], mainly as a consequence of failing to differentiate between444

the correlated and uncorrelated turbulent kinetic energy. Conversely, two coupling445

source terms are used in this work kfp and εfp respectively. This allows the coupling446

of the turbulent kinetic energy ki and dissipation εi equations of both phases to447

contain source terms that are of the same physical attribute i.e. particle turbulent448

kinetic energy and particle turbulence kinetic energy dissipation both contain sepa-449

rate coupling terms, which ensures conservation of energy between the two phases.450

In addition to this no numerical limiting was needed as the evolution of the granular451

temperature was controlled by the production of turbulent kinetic energy dissipation.452
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Figure 9: Particle turbulent intensity for case 1. Solid line showing the RA-TFM and the dashed
line showing the MPM. Data from Fessler and Eaton [18] with a mass-loading of 40%.
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Figure 10: Particle turbulent intensity for case 3. Solid line showing the RA-TFM and the dashed
line showing the MPM. Data from Fessler and Eaton [19] with a mass-loading of 10%.

3.3. Particle phase turbulence453

From the experimental measurements it can be seen that the particles are being454

heavily influenced by the fluid phase’s shear layer. This is true for both cases in-455

volving large St as shown in Fig 9 & 10. Looking at the results from the MPM the456
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prediction of the shear layer can not be seen across each location. Conversely, the457

RA-TFM is able to predict the presence of the shear layer and crucially convect it458

downstream. This feature is difficult to predict as the particles disperse and their459

fluctuating energy becomes more uniform across the profile. This result was almost460

exclusively attributed to the solution of the kp − εp transport equation.461

As shown in Février et al. [20] the decomposition of the particle fluctuation en-462

ergy into two components which reads, κp = kp + 3/2Θp (following the notation463

of [21]) was needed when accounting for the particle’s overall motion. Due to the464

step, turbulent scales at the integral scale are dominating the flow and as a result465

the large scale motions are the most relevant. This is reflected in the predictions466

of this model and highlighted when contrasted with the predictions of the MPM.467

Without the kp − εp transport model, the influence of the step is not captured and468

an under-prediction of the turbulent particle kinetic energy is seen. Table 3 shows469

the integral time scales associated with both flow regimes. This characteristic time470

scale associated with the particle turbulent kinetic energy enables the prediction of471

the shear layer and allows for the successful prediction of the predominant turbulent472

behaviour found in experiment across both Figs. 9 & 10.473

Table 3: Table of integral time scales for each phase.

Flow regime Tp Tf
Channel flow centre line 0.04s 0.04s
Shear layer 4.09ms 5.12ms

In the MPM this definition of the particle-phase time scale is not present. The474

calculation of turbulent kinetic energy (granular temperature Θp) is heavily reliant on475

the constitutive relation of thermal conductivity, shear viscosity and bulk viscosity.476

As shown in both Figs. 9 & 10 the absence of the shear layer is demonstrated. The477

profiles are within the correct order of magnitude but the profile remains flat and478

largely unaffected by the step.479

The kp− εp transport equation is modelled in an analogous manner to the single-480

phase k − ε turbulence model using similar closure relations [41]. As a result some481

of the models well-known limitations are directly inherited. The Boussinesq approx-482

imation is one such limitation of RANS models of this form and introduces isotropy483

into the model; specifically the Reynolds stresses are assumed to be a scalar function484

of the mean velocity gradients. This introduction of isotropy has quite clear impli-485

cations for the prediction of turbulent structures. The shear layer simulated in this486

studied is dominated by both the production term, Πp and the turbulent dissipation487
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term, εp; the former is where the isotropy is introduced and that is why it is so influ-488

ential. It has been shown by Simonin [44, 45] that the particle turbulence Reynold489

stresses are highly anisotropic and require transport equations for each term. This490

is a clear limitation of the current model and from the performance of the current491

RA-TFM an introduction of anisotropy for at least the particle phase is vital in an492

accurate prediction of the particle phase energy behaviour. Recently, Capecelatro493

et al. [7, 8] has derived a multiphase Reynolds-stress model which could fill this gap.494

Its application to a flow configuration similar to the one used in this work would be495

particularly interesting.496

3.4. Particle wall boundary conditions497
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Figure 11: Particle turbulent intensity for case 3. Solid line showing the φ = 0.001, thick dashed
line showing φ = 0.01 and the thin dashed line showing φ = 0. Data from Fessler and Eaton [19]
with a mass-loading of 10%.

As noted in Fessler and Eaton [19], the particles tend to conserve almost all498

their energy when interacting with the wall and consequently spend very little time499

interacting with it. As a consequence of this observation the specularity coefficient500

was varied from 0-0.01 in order to ascertain its effect on the numerical predictions.501

Fig. 11 shows the particle turbulent intensity prediction of the RA-TFM with502

varying specularity coefficients. Immediately a general observation can be made;503

the particle phase wall boundary conditions have a relatively small impact on the504

prediction of particle fluctuation energy. This is to be expected as the particles505
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spend very little time interacting with the wall and the particle fluctuation energy506

is dominated by the production in the shear layer.507

The biggest difference can be seen by comparing φ = 0 with φ = 0.01 − 0.001,508

and looking at locations (x/H = 5 - x/H = 12). The free slip condition exerts its509

influence on the prediction immediately downstream of the shear layer, this results510

in an underestimation in comparison with the larger φ values. When comparing511

this result with the experimental data it seems that the prediction lies closer to the512

measured values, this is seen most clearly at location (x/H = 5) across (y/H > 1)513

and across the whole profile at location (x/H = 12).514

When comparing the near wall predictions of particle fluctuation energy it can515

be seen that there is a slight under-prediction when comparing φ = 0 and φ =516

0.01− 0.001. This is to be expected as a higher specularity coefficient will result in517

a higher value of particle fluctuation energy due to the production of mean particle518

shear. All three simulations under-predict the near wall behaviour, this result is519

attributed to the lack of particle phase fluctuation anisotropy, but put more explicitly520

the experimental observations show that the particle fluctuation energy is stretched521

in the wall-normal direction. This stretching continues up to the wall (at x/H =522

7), the RA-TFM used in this work can not predict this behaviour due to the inherit523

assumptions made throughout.524

A specularity coefficient value of 0.1 was tested but yielded unphysical results.525

[3, 61] also found that a low specularity coefficient was representative of high velocity,526

dilute fluid-particle flow. The unphysical results were due to the lowering of the slip527

velocity near the wall. The mean velocity profiles for the fluid and particle phase528

tend to converge as the no slip condition (φ = 1) is approached. At the relatively529

high speed velocities used in this study this resulted in a gross overestimation of530

the particle fluctuation energy. An explanation for this behavior is as follows, the531

high specularity coefficient at the wall promotes "sticking" of the particles. As these532

particles are stuck at the wall and then released they begin to produce mean shear533

in the particle phase momentum equation. This shearing which is imposed by the534

boundary condition results in an overestimation of turbulence production resulting535

in excessively large values of the particle phase fluctuation energy.536

3.5. RA-TFM discussion537

Given the plethora of terms required to close the RA-TFM, a discussion of the538

relevant and negligible terms is warranted. The discussion is confined to the closure539

modelled terms with transport, convective and Laplacian terms omitted. We begin540

our discussion by focusing on the turbulent dispersion/drag/drift term which can541

be found in Eq. 2 & 4 of Section 2. Throughout the study this term remained542
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negligible and this was true for both the glass particles of case 1 & 2 and the copper543

particles of case 3. The reasons for this are two-fold: across the width of the pipe544

the gradient of the volume fraction remains small due to the uniformity imposed545

by gravity. This uniformity of the particle volume fraction across the pipe width of546

near identical conditions has also been reported by Vreman [54] & Yamamoto et al.547

[57]. This uniformity changes in the presence of the shear layer as there is a smaller548

particle volume fraction in the recirculating region than in the shear layer. This549

large particle volume fraction gradient is directly opposed by the increase of the St,550

as highlighted previously in Section 3.1 the St increases dramatically in the shear551

layer thus decreasing the amount of dispersion.552

Next, the turbulent pressure term, which contains the term 2/3ρpαpkp, remains553

negligible throughout. This term arises due to compressibility effects which are554

expected to be high for large Mach numbers, which was not the case in this work.555

The covariance of the volume fraction and fluid pressure gradient remains very small556

throughout; this was to be expected as it represents the fluctuations in the buoyancy557

force. Due to the high density ratio, ρp/ρf the flow was not considered buoyancy558

driven and so this term was negligible.559

The velocity-fluid-pressure-gradient covariance term was found to be negligible for560

glass particles but was vital in the successful prediction of the mean particle velocities561

of the copper particles. In fact, without this term the mean particle velocities were562

over-predicted by up to 10%. If we revisit this term it becomes clear as to why;563

the term takes the form αpρpg (neglecting the constant density ratio) and when the564

particle volume fraction is present there is a static pressure gradient of the particles565

acting on the mean momentum of both the particle and fluid phase. This means that566

the mean slip velocity is affected by the imposed pressure gradient. In this work it567

resulted in a reduction of the mean particle velocities. Consequently, this term can568

not be neglected for particles with large densities or (put more generally) for large569

St.570

For the multiphase turbulence modelling coupling terms found in Eq. 5, 6, 10 &571

11, only the velocity correlation terms were found to be relevant for this flow. These572

terms are responsible for the turbulence attenuation, so it follows that they should573

remain. The volume-fraction-velocity correlation was found to be negligible due to574

the high density ratio used in this work, but for small density ratios this term may be575

relevant. The mean slip term was found to be non-negligible but its magnitude was576

not enough to affect the solution. Interestingly, in this work there was a large mean577

slip value near the wall which is where this term is expected to be at its largest. Due578

to the use of single-phase wall functions this behaviour may have been suppressed579

resulting in an underestimation.580
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Finally, a note on the limitations of the current approach. As shown in Fox [21] the581

hydrodynamic model (volume fraction. particle velocity and granular temperature)582

is derived from the mesoscale model i.e the Boltzmann equation, using a Chapman-583

Enskog expansion (shown in Garzó et al. [22]) in powers of Knudsen number. It584

is owing to this mathematical linearisation that the hydrodynamical model is not585

valid for large values of Knudsen number (Kn > 1). The hydrodynamical model, as586

hinted at, is therefore most accurate for small values of Knudsen number (Kn � 1),587

a feature of collisionally dominated flows (see Table 4 for Kn).588

The flow regime used in this study is characterized as moderately dilute where589

collisions are expected. For the smallest mass loading (case 3), the Knudsen number590

was found to be (Kn < 10−4) across the pipe, whilst for higher mass loadings the591

Knudsen number was much lower. As this constraint is one across the whole domain592

this can not always be fulfilled. When considering a fluidised bed for example, the593

upper region of the chamber will not fulfill this criteria as no collisions are present as594

there are no particles. For this study the recirculating region posed a problem as only595

a small number of particles were present in the region. This meant that in this region596

the Knudsen number would fluctuate due to the vortex shedding and temporarily597

be O(1), compromising the validity of the solution. It was found that the value of598

granular temperature was relatively high which may have allowed for near equilibrium599

conditions thus satisfying the hydrodynamic constraint. Unfortunately, this type of600

constraint is unavoidable when employing a hydrodynamical description and this can601

not necessarily be fulfilled in every region of the flow. For a more flexible approach,602

kinetic-based equations can be formulated from moments (see [5, 32, 35, 39]).603
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4. Conclusions604

The current work has investigated turbulent attenuation of moderately dilute flow605

in a vertically orientated backward-facing step using a Reynolds-Averaged Two-Fluid606

model. The RA-TFM model is implemented into OpenFOAM with the implementa-607

tion procedure and the treatment of challenging terms provided. The model results608

are compared against benchmark experimental data and also against the model of609

Peirano and Leckner [40]. A summary of our findings are as follows:610

1. Prediction of the mean particle velocities and both turbulence quantities (tur-611

bulent kinetic energy of the fluid and particles) were in good agreement with612

the benchmark experimental data.613

2. The inclusion of the correlated kp and uncorrelated Θp particle motion was614

crucial in accurately predicting the behaviour of the turbulent shear layer.615

This was further highlighted when compared to the turbulent particle kinetic616

energy predictions from the modified Peirano model.617

3. The form of the velocity correlation coupling terms, i.e. separate coupling618

terms for turbulent kinetic energy and turbulent kinetic energy dissipation,619

resulted in a successful prediction of turbulence attenuation.620

4. A specularity coefficient value of 0.001 was found to be representative of the621

particle-wall behaviour in this study. Changes in the specularity coefficient (φ622

< 0.01) had very little effect on the particle fluctuation energy prediction.623

5. It has been shown that the behaviour of the particles interacting in a shear layer624

is highly anisotropic. The current predictions of this behaviour are limited due625

to the reliance on the Boussinesq approximation which introduces isotropy into626

the model.627
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Nomenclature628

U0 centreline velocity, [ms−1]
CD drag coefficient, [−]
Ai diagonal coefficients of the matrix
g gravity, [ms−2]
n unit vector normal to the wall, [−]
Rep particle Reynolds number, [−]
dp particle diameter, [m]
ui velocity, [ms−1]
uw wall velocity, [ms−1]
up,w particle slip velocity parallel to the wall, [ms−1]
u′′p particle velocity fluctuation w.r.t PA velocity, [ms−1]
u′′2p,i particle Reynolds stress component in direction i, [ms−1]
u′′′f fluid velocity fluctuation w.r.t PA velocity, [ms−1]
h pipe width, [m]
pi pressure, [Pa]
g0 radial distribution coefficient, [−]
H step height, [m]
t time, [s]
ki turbulent kinetic energy, [m2s−2]
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Greek letters629

αi volume fraction, [−]
αp,max maximum particle volume fraction, [−]
β momentum exchange coefficient, [kgm−3s−1]
εi turbulent kinetic energy dissipation, [m2s−3]
Θp granular temperature, [m2s−2]
κp particle fluctuation energy, [m2s−2]
κΘs diffusion coefficient for granular energy, [kgm−1s−1]
µi shear viscosity, [kgm−1s−1]
µi,t turbulent shear viscosity, [kgm−1s−1]
νi kinematic viscosity, [m2s−1]
νi,t turbulent kinematic viscosity, [m2s−1]
ρi density, [kgm−3]
σf fluid phase stress tensor,[kgm−1s−2]
σp particle phase stress tensor, [kgm−1s−2]
τd particle relaxation time, [s]

Subscripts630

1 RA-TFM
2 MPM
f fluid
i general index
p particle
x x direction
y y direction
z z direction

Superscripts631

′′ PA particle velocity fluctuation
′′′ PA fluid velocity fluctuation

Special notation632

〈·〉 Reynolds averaging operator
〈·〉i phase averaging operator associated with phase i
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Table 4: Model characteristics.

β =
ρpαp
τd

=
3

4

αpαfρfur
dp

Cd

Cd =

{
24
Rep

[
1 + 0.15Re0.287

p

]
if Rep < 1000

0.44 if Rep ≥ 1000

Rep =
ρfdp|up − uf |

µf

Ep,1 ≡ κp = kp + 3/2Θp

Ep,2 ≡ κp = 3/2Θp

τf ≡ Tf = kf/εf

St = τd/τf

Tp =
kp
εp

Kn =

√
πdp

12αpg0L

χ =
αpρp
αfρf

e = 0.9
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Table 5: Definition of variables.

κp = kp + 1.5Θp

µf = ρfνf

µft = αfρfνft = αfρfCfµ
k2
f

εf

µp = αpρpνp =
2µpdil

(1 + e)g0

[
1 +

4

5
(1 + e)g0αp

]2
+

4

5
α2
pρpdpg0(1 + e)

(Θp

π

)1/2

µpdil =
5
√
π

96
ρpdpΘ

1/2
p

µpt = αpρpνpt = αpρpCpµ
k2
p

εp

pp = ρpαpΘp + 2(1 + e)ρpα
2
pg0Θp

γ =
12(1− e2)go√

πdp
α2
pρpΘ

3/2
p

κΘ =
2

(1 + e)g0

[
1 +

6

5
(1 + e)g0αp

]2
κΘ,dil + 2α2

pρpdpg0(1 + e)
(Θp

π

) 1
2

κΘ,dil =
75

384

√
πρpdpΘ

1/2
p

g0 =
[
1−

( αp
αp,max

) 1
3
]−1

Sp =
1

2
[∇up + (∇up)T ]− 1

3
∇ · upI

Sf =
1

2
[∇uf + (∇uf )T ]− 1

3
∇ · ufI

kfp = βk
√
kfkp

εfp = βε
√
εfεp
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Table 6: Definition of phase-averaged variables.

αp = 〈αp〉

αf = 〈αf〉

up = 〈u〉p

uf = 〈u〉f

Θp = 〈Θ〉p

kp =
1

2
〈u′′p · u′′p〉p

kf =
1

2
〈u′′′f · u′′′f 〉f

εp =
1

ρpαp
〈σ̄p : ∇u′′p〉

εf =
1

ρfαf
〈σ̄f : ∇u′′′f 〉

σp = µp[∇up + (∇up)
T ]− 1

3
µp∇ · upI

σf = µf [∇uf + (∇uf )
T ]− 1

3
µf∇ · ufI

u′′p = up − 〈up〉p

qΘ = 〈qΘ〉p =
κΘ

αpρp
∇Θp

u′′′f = uf − 〈uf〉f

〈up〉p = 〈αpup〉/〈αp〉

〈uf〉f = 〈αfuf〉/〈αf〉

u′′pu
′′
p = 〈u′′pu′′p〉p
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5. Appendix633

Here the equations used in the MPM are presented. A full explanation of the634

equations can be found in Peirano and Leckner [40]. The modification of the model635

comes from the type of closure for the particle-fluid covariance in which the isotropic636

model of Sinclair and Mallo [46] is used.637

The continuity equations for each phase read:638

639
∂αpρp
∂t

+∇ · αpρpup = 0 (42)

640

641
∂αfρf
∂t

+∇ · αfρfuf = 0 (43)

642

The momentum balance equation for each phase:643

644
∂αpρpup

∂t
+∇ · αpρpupup = αp∇ · τp − αp∇pf −∇pp + β(uf − up) + αpρpg (44)

645

646
∂αfρfuf

∂t
+∇ · αfρfufuf = αf∇ · τf − αf∇pf − β(up − uf ) + αfρfg (45)

5.1. Kinetic Theory of Granular Flow647

Following the kinetic theory of granular flow the closure of the particle pres-648

sure, shear and bulk viscosities can be provided. The granular temperature Θp is649

introduced as a measure of the particle velocity fluctuations [23].650

Θp =
1

3
u′′2p (46)

where u′′p is the particle fluctuation velocity. A balance equation is introduced for651

the granular energy (3
2
Θp) to satisfy the continuity and momentum balance for both652

phases. The fluctuation energy conservation for the particles is then given as:653

3

2

[∂αpρpΘp

∂t
+∇ · αpρpΘpup

]
= (pp

¯̄I + ¯̄τ) : ∇up +∇ · κ∇Θp − γp + Jvis + Jslip (47)

where the first term on the RHS is the fluctuation energy created by the shearing in654

the particle phase. The second term is associated with the diffusion of fluctuating655

energy, the third term is responsible for the dissipation due to inelastic collisions.656
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Finally, Js is either dissipation of granular temperature due to viscous damping657

and/or creation of granular temperature from the slip between the fluid and particles.658

Both terms can be written more intuitively to read:659

Jvis + Jslip = β(u′′pu
′′
p − u′′pu

′′′
f ) (48)

The first term can be modeled as 3Θp according to Gidaspow [23] and the last term660

can be modeled as kpf .661

5.2. Turbulence modelling662

The transport equations for the fluid phases turbulence model kf − εf reads as663

follows:664

∂αfρfkf
∂t

+∇ · αfρfkfuf = ∇ · αfρfνt∇kf + αfG− αfρfεf + Πkf (49)

665
∂αfρfεf

∂t
+∇ · αfρfεfuf = ∇ · αfρfνt∇εf +

εf
kf

[
C1αfG−C2αfρfεf +C3Πkf

]
(50)

Where G is the production of the turbulent kinetic energy, which is expressed as666

follows:667

G = 2νρf

(
Sf : Sf −

2

3
tr(Sf )

2 · I
)

+
2

3
ρfkf∇ · (ufI) (51)

The term Πkf accounts for turbulence modulation from particles and represents the668

velocity fluctuation correlation of each phase,669

Πkf = −β(2kf − kpf − urud) (52)

The term ud accounts for turbulence dispersion and is also known as the drift velocity.670

Here it is given from the formulation of [44].671

ud = −Dsf

( 1

αp
∇αp −

1

αf
∇αf

)
(53)

The fluid-particle covariance term is given by Sinclair and Mallo [46] and is also672

termed an isotropic model.673

kpf = cpf
√
kfΘp (54)
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