CORE

Mathematical electron model and the SI unit 2017 Special Adjustment

Malcolm J. Macleod
maclem@platoscode.com

Following the 26th General Conference on Weights and Measures are fixed the numerical values of the 4 physical constants $\left(h, c, e, k_{B}\right)$. This is premised on the independence of these constants. This article discusses a model of a mathematical electron from which can be defined the Planck units as geometrical objects (mass $\mathrm{M}=1$, time $\mathrm{T}=2 \pi \ldots$...). In this model these objects are interrelated via this electron geometry such that once we have assigned values to 2 Planck units then we have fixed the values for all Planck units. As all constants can then be defined using geometrical forms (in terms of 2 fixed mathematical constants, 2 unit-specific scalars and a defined relationship between the units kg, m, s, A), the least precise CODATA 2014 constants ($G, h, e, m_{e}, k_{B} \ldots$) can then be solved via the most precise ($c, \mu_{0}, \alpha, R_{\infty}$), with numerical precision limited by the precision of the fine structure constant α. In terms of this model we now for example have 2 separate values for elementary charge, calculated from (c, α, R_{∞}) and the 2017 revision.

Table 1	Calculated using $\left(c^{*}, \mu_{0}^{*}, \alpha^{*}, R_{\infty}^{*}\right)$	CODATA 2014 values
Fine structure constant	$\alpha^{*}=137.035999139$	$\alpha=137.035999139(31)$
Speed of light	$c^{*}=299792458 u^{17}$	$c=299792458$
Permeability	$\mu_{0}{ }^{*}=4 \pi / 10^{7} u^{56}$	$\mu_{0}=4 \pi / 10^{7}$
Rydberg constant	$R_{\infty}{ }^{*}=10973731.568508 u^{13}$	$R_{\infty}=10973731.568508(65)$
Planck constant	$h^{*}=6.626069134 \mathrm{e}-34 u^{19}$	$h=6.626070040(81) \mathrm{e}-34$
Elementary charge	$e^{*}=1.60217651130 \mathrm{e}-19 u^{-27}$	$e=1.6021766208(98) \mathrm{e}-19$
von Klitzing $\left(h / e^{2}\right)$	$R_{K}^{*}=25812.80745559 u^{73}$	$R_{K}=25812.8074555(59)$
Electron mass	$m_{e}^{*}=9.10938231256 \mathrm{e}-31 u^{15}$	$m_{e}=9.10938356(11) \mathrm{e}-31$
Electron wavelength	$\lambda_{e}^{*}=2.4263102366 \mathrm{e}-12 u^{-13}$	$\lambda_{e}=2.4263102367(11) \mathrm{e}-12$
Boltzmann's constant	$k_{B}^{*}=1.37951014752 \mathrm{e}-23 u^{29}$	$k_{B}=1.38064852(79) \mathrm{e}-23$
Gravitation constant	$G^{*}=6.67249719229 \mathrm{e}-11 u^{6}$	$G=6.67408(31) \mathrm{e}-11$
Planck length	$l_{p}^{*}=.161603660096 \mathrm{e}-34 u^{-13}$	$l_{p}=.1616229(38) \mathrm{e}-34$
Planck mass	$m_{P}^{*}=.217672817580 \mathrm{e}-7 u^{15}$	$m_{P}=.2176470(51) \mathrm{e}-7$
Gyromagnetic ratio	$\gamma_{e} / 2 \pi^{*}=28024.95355 u^{-42}$	$\gamma_{e} / 2 \pi=28024.95164(17) \mathrm{e}-7$

1 Background

The mathematical electron model (see [1]) uses a unit-less (units $=1$) formula for an electron f_{e} (eqs. 1,20) to construct the Planck units as geometrical objects. In this model MLTA are interrelated (see units, eq.1), thus we need only assign numerical values to any 2 Planck units, for example $\mathrm{M}=m_{P}$ and $\mathrm{T}=t_{p}$, in order to fix the numerical values for all Planck units and from these the dimensioned constants ($G, h, c, e, m_{e}, k_{B} \ldots$) where α (fine structure constant) and $\Omega=2.0071349496 \ldots$ are dimensionless mathematical constants.

$$
\begin{gather*}
f_{e}=4 \pi^{2}\left(2^{6} 3 \pi^{2} \alpha \Omega^{5}\right)^{3}=.23895453 \ldots x 10^{23} \tag{1}\\
\text { units }=\frac{(A L)^{3}}{T}=\sqrt{\frac{L^{15}}{M^{9} T^{11}}}=1
\end{gather*}
$$

We find this set of geometries for MLTA;

$$
\begin{gather*}
M=(1) \tag{2}\\
T=(2 \pi) \tag{3}\\
L=\left(2 \pi^{2} \Omega^{2}\right) \tag{4}
\end{gather*}
$$

$$
\begin{equation*}
A=\left(\frac{2^{6} \pi^{3} \Omega^{3}}{\alpha}\right) \tag{5}
\end{equation*}
$$

To convert to CODATA 2014 values requires 2 dimensioned scalars. In this example I use a mass scalar k and time scalar t with associated units $u^{15}=$ mass, $u^{-30}=$ time. Assigning appropriate numerical values to (k, t)

$$
\begin{gather*}
k=m_{P}=.217672817 \ldots \times 10^{-7}, \text { unit }=u^{15}(\mathrm{~kg}) \\
t=t_{p} / 2 \pi=.171585512 \ldots \times 10^{-43}, \text { unit }=u^{-30}(\mathrm{~s}) \\
M=m_{P}=(1) k, \text { unit }=u^{15}(\mathrm{~kg}) \tag{6}\\
T=t_{p}=(2 \pi) t, \text { unit }=u^{-30}(\mathrm{~s}) \tag{7}
\end{gather*}
$$

We can now calculate scalars (l, a) and the Planck units LA

$$
\begin{gather*}
l=k^{9 / 15} t^{11 / 15}, \text { unit }=u^{9 / 15 * 15+11 / 15 *(-30)=-13}(\text { eq. } 1) \tag{8}\\
L=l_{p}=\left(2 \pi^{2} \Omega^{2}\right) l, \text { unit }=u^{-13}(m) \tag{9}\\
\frac{l^{15}}{k^{9} t^{11}}=\frac{\left(.203 \ldots x 10^{-36}\right)^{15}}{\left(.217 \ldots x 10^{-7}\right)^{9}\left(.171 \ldots x 10^{-43}\right)^{11}} \cdot \frac{u^{-13 * 15}}{u^{15 * 9} u^{-30 * 11}}=1 \tag{10}\\
a=\frac{1}{k^{9 / 15} t^{6 / 15}}, \text { unit }=u^{9 / 15 *(-15)+6 / 15 * 30=3} \tag{11}
\end{gather*}
$$

$$
\begin{gather*}
A=\left(\frac{64 \pi^{3} \Omega^{3}}{\alpha}\right) a, \text { unit }=u^{3} \text { (ampere) } \tag{12}\\
\frac{a^{3} l^{3}}{t}=\frac{\left(.126 \ldots x 10^{23}\right)^{3}\left(.203 \ldots x 10^{-36}\right)^{3}}{\left(.171 \ldots x 10^{-43}\right)} \cdot \frac{u^{3 * 3} u^{-13 * 3}}{u^{-30}}=1 \tag{13}
\end{gather*}
$$

The physical constants in terms of MLTA $(\mathrm{V}=2 \mathrm{~L} / \mathrm{T})$;

$$
\begin{gather*}
c^{*}=V=\left(2 \pi \Omega^{2}\right) \frac{k^{3 / 5}}{t^{4 / 15}}, u^{9 / 15 *(15)+8 / 30 *(-30)=17} \tag{14}\\
G^{*}=\frac{V^{2} L}{M}=\left(8 \pi^{4} \Omega^{6}\right) k^{4 / 5} t^{1 / 5}, u^{12-6=6} \tag{15}\\
e^{*}=A T=\left(\frac{128 \pi^{4} \Omega^{3}}{\alpha}\right) \frac{t^{3 / 5}}{k^{3 / 5}}, u^{-18--9=-27} \tag{16}\\
h^{*}=2 \pi L V M=\left(8 \pi^{4} \Omega^{4}\right) k^{11 / 5} t^{7 / 15}, u^{33-14=19} \tag{17}\\
k_{B}^{*}=\frac{\pi V M}{A}=\left(\frac{\alpha}{32 \pi \Omega}\right) k^{11 / 5} t^{2 / 15}, u^{33-4=29} \tag{18}\\
\sigma_{e}=\frac{3 \alpha^{2} A L}{\pi^{2}}=2^{7} 3 \pi^{3} \alpha \Omega^{5} t^{1 / 3}, u^{-10} \tag{19}\\
f_{e}=\frac{\sigma_{e}^{3}}{T}=\frac{\left(2^{7} 3 \pi^{3} \alpha \Omega^{5} t^{1 / 3}\right)^{3}}{2 \pi t}, u n i t s=\frac{\left(u^{-10}\right)^{3}}{u^{-30}}=1 \tag{20}\\
m_{e}^{*}=\frac{M}{f_{e}}, u n i t s=u^{15} \tag{21}\\
\lambda_{e}^{*}=2 \pi L f_{e}, u n i t s=u^{-13} \tag{22}\\
R_{\infty}^{*}=\frac{m_{e}}{4 \pi l_{p} \alpha^{2} m_{P}}=\frac{\pi V^{2} M}{\left(2^{23} 3^{3} \pi^{11} \alpha^{5} \Omega^{17}\right)}=\left(\frac{\alpha}{2^{11} \pi^{5} \Omega^{4}}\right) \frac{1}{k^{3 / 5} t^{11 / 1 / 15}}, u^{42+14=56}, u^{13} \tag{23}
\end{gather*}
$$

For example this common equation for alpha reduces to;

$$
\begin{equation*}
\alpha=\frac{2 h^{*}}{\mu_{0}^{*}\left(e^{*}\right)^{2} c^{*}}=\alpha, u^{19-56+54-17=0} \tag{25}
\end{equation*}
$$

Inserting the values for (α, Ω, k, t) in the above will give the calculated results listed in table 1.

2 CODATA 2014

By defining all the dimensioned constants in terms of (α, Ω), 2 scalars and the unit rule set u, we can define constants in terms of each other.

In the following the geometries of the least precise constants ($G^{*}, h^{*}, e^{*}, m_{e}^{*}, k_{B}^{*}$) can be constructed using the geometries of the most precise $\left(c^{*}, \mu_{0}^{*}, R_{\infty}^{*}, \alpha^{*}\right)$;

$$
\begin{gather*}
\left(h^{*}\right)^{3}=\left(8 \pi^{4} \Omega^{4} k^{11 / 5} t^{7 / 15} u^{19}\right)^{3}=\frac{2 \pi^{10}\left(\mu_{0}^{*}\right)^{3}}{3^{6}\left(c^{*}\right)^{5} \alpha^{13}\left(R_{\infty}^{*}\right)^{2}}, \text { unit }=u^{57} \tag{26}\\
\left(e^{*}\right)^{3}=\frac{4 \pi^{5}}{3^{3}\left(c^{*}\right)^{4} \alpha^{8}\left(R_{\infty}^{*}\right)}, \text { unit }=u^{-81} \tag{27}
\end{gather*}
$$

$$
\begin{gather*}
\left(k_{B}^{*}\right)^{3}=\frac{\pi^{5}\left(\mu_{0}^{*}\right)^{3}}{3^{3} 2\left(c^{*}\right)^{4} \alpha^{5}\left(R_{\infty}^{*}\right)}, \text { unit }=u^{87} \tag{28}\\
\left(G^{*}\right)^{5}=\frac{\pi^{3}\left(\mu_{0}^{*}\right)}{2^{20} 3^{6} \alpha^{11}\left(R_{\infty}^{*}\right)^{2}}, \text { unit }=u^{30} \tag{29}\\
\left(m_{e}^{*}\right)^{3}=\frac{16 \pi^{10}\left(R_{\infty}^{*}\right)\left(\mu_{0}^{*}\right)^{3}}{3^{6}\left(c^{*}\right)^{8} \alpha^{7}}, \text { unit }=u^{45} \tag{30}\\
\left(l_{p}^{*}\right)^{15}=\frac{\pi^{22}\left(\mu_{0}^{*}\right)^{9}}{2^{35} 3^{24} \alpha^{49}\left(c^{*}\right)^{35}\left(R_{\infty}^{*}\right)^{8}}, \text { unit }=\left(u^{-13}\right)^{15} \tag{31}\\
\left(m_{P}^{*}\right)^{15}=\frac{2^{25} \pi^{13}\left(\mu_{0}^{*}\right)^{6}}{3^{6}\left(c^{*}\right)^{5} \alpha^{16}\left(R_{\infty}^{*}\right)^{2}}, \text { unit }=\left(u^{15}\right)^{15} \tag{32}\\
\gamma_{e} / 2 \pi=\frac{g l_{p}^{*} m_{P}^{*}}{2 k_{B}^{*} m_{e}^{*}}, \text { unit }=u^{-13-29=3-30-15=-42} \tag{33}\\
\left(\gamma_{e} / 2 \pi\right)^{3}=\frac{g^{3} 3^{3}\left(c^{*}\right)^{4}}{2^{8} \pi^{8} \alpha\left(\mu_{0}^{*}\right)^{3}\left(R_{\infty}^{*}\right)^{2}} \tag{34}
\end{gather*}
$$

Inserting the above in the alpha formula

$$
\begin{equation*}
\alpha^{3}=\frac{8\left(h^{*}\right)^{3}}{\left(\mu_{0}^{*}\right)^{3}\left(e^{*}\right)^{6}\left(c^{*}\right)^{3}}=\alpha^{3}, \text { units }=1 \tag{35}
\end{equation*}
$$

We can then replace $\left(c^{*}, \mu_{0}^{*}, R_{\infty}^{*}, \alpha^{*}\right)$ with the numerical CODATA 2014 values for $\left(c, \mu_{0}, \alpha, R_{\infty}\right)$ giving the calculated results listed in table 1.

3 Revision 2017

As eq. 27 uses only $\left(c^{*}, R_{\infty}^{*}, \alpha\right)$ and as $e=1.602176634 \times 10^{-19}$ is the most precise of the revised values I shall discuss it here in terms of this model.

$$
\begin{equation*}
\alpha^{8}=\frac{4 \pi^{5}}{3^{3}\left(c^{*}\right)^{4}(e)^{3}\left(R_{\infty}^{*}\right)}, \text { unit }=1 \tag{36}
\end{equation*}
$$

Using the CODATA $2014 R_{\infty}$ gives $\alpha=137.03599520$

$$
\begin{equation*}
R_{\infty}^{*}=\frac{4 \pi^{5}}{3^{3}\left(c^{*}\right)^{4}(e)^{3}\left(\alpha^{8}\right)}, \text { unit }=1 \tag{37}
\end{equation*}
$$

Using the CODATA 2014α gives $R_{\infty}=$ 10973729.04723. In other words we now have 2 separate values for elementary charge, from $\left(c^{*}, R_{\infty}^{*}, \alpha\right)$ and from the revision.

Notes:

k_{B} does not agree with CODATA, however it can be used in eq. 33 to solve the gyro-magnetic ratio.
G agrees with Rosi et al $\mathrm{G}=6.67191(77)(62) \times 10^{-11}$ [3].
A complete discussion of this model can be found here [1], the formulas used in this article downloaded in maple format [2], for convenience I use the commonly recognized value for alpha as $\alpha \sim 137$;

References

1. Macleod, Malcolm J. "Programming Planck units from a virtual electron; a Simulation Hypothesis" Eur. Phys. J. Plus (2018) 133: 278
2. planckmomentum.com/rev2017.zip
(formulas in maple and pdf format)
3. Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, G. M. (26 June 2014).
"Precision measurement of the Newtonian gravitational constant using cold atoms", Nature. 510: 518-521.
www2.fisica.unlp.edu.ar/materias/FisGral2semestre2/
Rosi.pdf
