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Summary. We reconsider the pragmatic interpretation of intuitionistic logic [21]
regarded as a logic of assertions and their justifications and its relations with classical
logic. We recall an extension of this approach to a logic dealing with assertions
and obligations, related by a notion of causal implication [14, 45]. We focus on
the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on
polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the
S4 modal translation, we give a definition of a system AHL of bi-intuitionistic logic
that correctly represents the duality between intuitionistic and co-intuitionistic logic,
correcting a mistake in previous work [7, 10]. A computational interpretation of co-
intuitionism as a distributed calculus of coroutines is then used to give an operational
interpretation of subtraction. Work on linear co-intuitionism is then recalled, a linear
calculus of co-intuitionistic coroutines is defined and a probabilistic interpretation
of linear co-intuitionism is given as in [9]. Also we remark that by extending the
language of intuitionistic logic we can express the notion of expectation, an assertion
that in all situations the truth of p is possible and that in a logic of expectations
the law of double negation holds. Similarly, extending co-intuitionistic logic, we can
express the notion of conjecture that p, defined as a hypothesis that in some situation
the truth of p is epistemically necessary.

to Carlo Dalla Pozza (1942-2014)

1 Preface: intuitionistic pragmatics and its extensions.

Conceptually, this paper is about a logico-philosophical framework called Logic
for Pragmatics, initiated by Carlo Dalla Pozza and Claudio Garola [21], to
represent intuitionistic Logic (IL) as a logic of assertions and justifiability and
also to specify the relations of intuitionistic logic with Classical Logic (CL) as
a logic of propositions and truth. 1 Asserting, making hypotheses, establishing
1 Carlo Dalla Pozza has been a significant and stimulating presence in Italian philo-

sophical logic and also a good friend. He had an unusual breadth of intellectual
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obligations, asking questions are illocutionary acts [6]; their study is regarded
as belonging to pragmatics, thus such a representation of intuitionism may
be seen as the beginning of a logical study of pragmatic phenomena. In the
Dalla Pozza and Garola’s framework, a declarative sentence results from an
application of the illocutionary force of assertion to a proposition, classically
understood. Such a sentence is formally represented as `p.

The language LP of the logic for pragmatics is based on classical propositional
logic, built from atomic propositions p, the propositional constants true >
and false ⊥ with classical connectives (∧,∨,→,¬), but it has also pragmatics
connectives, building sentences from assertions, rather than propositions; such
connectives are interpreted intuitionistically. Namely, intuitionistic assertive
formulas A are built from elementary formulas `p, the type of assertions of
p, an assertion f which is always justified, with intuitionistic conjunction (∩),
implication (⊃), disjunction (∪) and negation (∼ A). A semantics for such a
language can be given through the familiar translation of IL into classical S4,
epistemically understood, due to Gödel [28], McKinsey and Tarski [33]:

( `p)M = �p, (A ⊃ B)M = �(AM → BM ),
(g)M = >, (∼ A)M = �¬AM ,

(A ∩B)M = AM ∧BM , (A ∪B)M = AM ∨BM .

This translation allows us to obtain Kripke’s possible world semantics for IL
from the possible world semantics for classical S4 [31]. However our basic
understanding of intuitionistic logic is based not on Kripke’s semantics, but
on the Brouwer-Heyting-Kolmogorov interpretation (BHK) which takes the
informal notion of proof and of mathematical method as fundamental: an el-
ementary formula p is interpreted through its informal proofs, a proof of an
implication A ⊃ B is a method transforming a proof of A into a proof of B,
there is no proof of the absurdity, and so on. This is also the interpretation
of intuitionistic pragmatic connectives in Dalla Pozza and Garola’s logic.

We reconsider an extension of the logic for pragmatics to co-intuitionistic logic
[7, 8, 9, 13], thought of as a logic of hypotheses. Co-intuitionistic hypothetical
formulas C are built from H p, the type of hypothesis that p may be true and
a hypothesis f which is never justified with disjunction (g), subtraction (r)
and co-intuitionistic negation (supplement) a C. These connectives are dual
of the intuitionistic ones. The S4 interpretation of co-intuitionistic logic in [7]
is as follows:

(H p)M = ♦p, (C rD)M = ♦(CM ∧ ¬DM ),
(f)M = ⊥, (a C)M = ♦¬CM ,

(C gD)M = CM ∨DM , (C fD)M = CM ∧DM .
(1)

Notice that the dual of ` p is H ¬p, not H p: hence definition in (1) is
correct for a treatment of co-intuitionism but is not suitable to represent

interests, including philosophy of science and of laws, and was a generous person,
as a man and as researcher. We remember here his intelligence and generosity.
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the duality between intuitionistic and co-intuitionistic logic. For this pur-
pose let {p0, p

∗
0, p1, p

∗
1, . . .} be a sequence of propositional atoms. We set `pi

in intuitionistic language, but H p∗i in the co-intuitionistic one and in the
modal translation we let (H p∗i )

⊥ = ♦¬pi. Then the S4 interpretation of
co-intuitionistic logic becomes dual to that of intuitionistic logic:

(H p∗)M = ♦¬p, (C rD)M = ♦(CM ∧ ¬DM ),
(f)M = ⊥, (a C)M = ♦¬CM ,

(C gD)M = CM ∨DM , (C fD)M = CM ∧DM .
(2)

Here however the co-intuitionistic side is no longer a logic of hypotheses, but of
negative hypotheses about a proposition p, i.e., objections to the assertability
of p. Here we face the problem of extending the BHK interpretation to the
logic of hypotheses.

We also look at the pragmatic interpretation of bi-intuitionistic logic as a logic
of assertions and hypotheses (AHL) proposed in [8, 10] with modal translation
in S4 and at the sequent calculus AH-G1 which extends intuitionistic and
co-intuitionistic logic with two negations, both denoted by ( )⊥, relating the
two sides. Using the definition in (2) instead of that in (1), our “polarized”
bi-intuitionistic logic is a logic of assertions and objections and does represent
the duality between intuitionistic and co-intuitionistic logic.

Expectations are defined in [8] as elementary expressions Ep that have modal
translation (Ep)M = �♦p. Let LE be the language generated by elementary
expressions Ep with intuitionistic conjunction, implication and negation only.
It is easy to show that the set of LE formulas that are valid with respect to
the modal translation is closed for the classical double negation law.

∼∼ E ⇒ E.

(Exactly the same holds for expectations of objections Ep∗.) This is a prag-
matic interpretation of the �♦ modal translation of propositional classical
logic [52], but without disjunction, which therefore retains the intuitionistic
interpretations of the connectives and satisfies the double negation rule.

Opposite of expectations are conjectures that have modal translation (Cp)M =
♦�p.

There is a tradition of polarization of classical logic and linear logic start-
ing from J-Y. Girard fundamental paper [25] and continued in many ways
particularly in the work by O. Laurent in relation to game semantics whose
significance for the study of bi-intuitionism should be explicitly discussed. We
have to leave this for future work.



4 Bellin, Carrara, Chiffi

2 Part I. Intuitionistic pragmatics: a philosophical
overview.

Carlo Dalla Pozza and Claudio Garola’s pragmatic interpretation [21] presents
intuitionistic logic as a logic of assertions, following suggestions by Michael
Dummett; however, intuitionistic pragmatics is given in a two-layers formal
system where classical semantics is also represented; broadly speaking, their
goal is to show how intuitionism can be reconciled with classical logic. The
grammar of the formal language LP of the logic for pragmatics is a follows:

α := p | > | ⊥ | ¬α | α1 → α2 | α1 ∧ α2 | α1 ∨ α2

A,B := `α | g | ∼ A | A ⊃ B | A ∩B | A ∪B (3)

Negation can be defined as ∼ A =df A ⊃ u where u is a assertions that is
always unjustified.

The elementary formulas of Dalla Pozza and Garola’s formal language LP
have the form `α where Frege’s symbol “ `” represents an (impersonal) illocu-
tionary force of assertion and α is a propositional formula interpreted in clas-
sical truth-functional semantics. Thus in accordance with Frege propositions
are classically true or false; illocutionary acts of assertions can only be justified
or unjustified. However, unlike in Frege, there are pragmatic connectives that
build up formulas from elementary assertions. Such pragmatic expressions are
interpreted according to the Brouwer-Heyting-Kolmogorov (BHK) interpre-
tation of intuitionistic connectives. In this framework the BHK interpretation
is as follows:

• `α, an assertion that p, is justified by a proof (or conclusive evidence) of
the truth of α;

• A ⊃ B is justified by a method transforming a justification of the sentence
A into a justification of the sentence B;

• A ∩B is justified by a pair 〈e1, e2〉 of justifications, e1 of A and e2 of B;
• A0 ∪A1 is justified by a pair 〈e, i〉 where i = 0, 1 and e is a justification of

Ai;
• ∼ A is justified by a method transforming a proof of A into an absurdity.

Every pragmatic expression of Dalla Pozza and Garola’s formal language LP
has justification conditions in accordance with the BHK interpretation. An
expression meeting such conditions is justified; otherwise it is unjustified. In
any elementary expression `α the radical part α is a proposition in the sense
of Frege and has a truth value true or false in the sense of classical logic;
moreover, such a semantic value contributes to determine whether or not the
justification conditions for `α are met.

Pragmatic expressions A have a classical semantic value through Gödel, McK-
insey and Tarski’s translation of intuitionistic logic into the classical modal
logic S4:
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( `α)M = �α, (A ⊃ B)M = �(AM → BM ),
(g)M = >, (∼ A)M = �¬AM ,

(A ∩B)M = AM ∧BM , (A ∪B)M = AM ∨BM .

To obtain a representation of intuitionistic logic in language LP Dalla Pozza
and Garola consider the set of formulas A whose elementary expressions have
the form `p with p is atomic. In this way the justification value of A depends
only on the BHK interpretation and not on the classical structure of the
radical parts of elementary expressions.

2.1 Classical constructivism or intuitionistic pragmatics?

However, the informal Brouwer-Heyting-Kolmogorov’s interpretation of con-
nectives can also be developed in a classical constructive interpretation. This
would be true of interpretations taking the S4 translation of intuitionistic logic
as defining its meaning. We may call this kind of interpretations reductive.

Reductive interpretations are among the first models of intuitionism. As
pointed out by Artemov [3], section 2, “Kolmogorov in 1932 (and then Gödel
in 1933) intended to interpret Int on the basis of the usual mathematical
notion of proof (problem solution), and thus to provide a definition of Int
within classical mathematics independent of intuitionistic assumptions.” Arte-
mov follows this approach in the paper Explicit Provability and Constructive
Semantics [3]. There he defines the system LP, Logic of proofs, whose ex-
pressions t : A realise the necessity operator �A of S4. Here t is a “proof
polynomial”, built from variables and constants with the operation of appli-
cation (t · s), sum (s + t) and proof checker !t and the formula A may be a
dependent type expression in the case of the axiom t : F →!t : (t : F ) that
realises the S4 �A→ ��A. Then Artemov gives a provability interpretation
of LP in Peano Arithmetic. (This result is the analogue or Solovay’s interpre-
tation in PA of the Gödel-Löb GL modal logic of arithmetic provability.) The
point here is that an intuitionistic proof d of A is first translated into a proof
polynomial t : A′ and then interpreted as an arithmetic expression of classical
PA. Thus Artemov can claim that this work completes Gödel’s representation
of intuitionistic formulas in S4 by giving also an interpretation of intuition-
istic proofs in a classical provability interpretation of S4. Intuitionism is thus
reduced to classical constructivism.

We quoted an example of reductive interpretation in the Logic of Prooofs, but
S. Artemov and R. Iemhoff have also given interpretations of intuitionistic
logic in Heyting arithmetic [4]. Justification Logics is a large research area
and we have no pretence to survey it here. Comparison with the approach of
the Logic for pragmatics is left for future work.

The intentions of Dalla Pozza and Garola are in fact reductive and thus we
can say that Artemov’s classical LP provides a very sophisticated develop-
ment of such a project. However, if the logic for pragmatics has also to serve
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the purpose of representing intuitionism and its difference from classical logic,
then we must make sure that the logical representation of intuitionistic logic
within it does satisfy the requirements of an intuitionistic philosophy. Unfor-
tunately this is not clear: the meta-theory of Dalla Pozza and Garola’s logic
for pragmatics makes essential use of classical logic.

But can the logic for pragmatics represent intuitionism without reducing it to
classical constructivism? A concern is mathematical: one would like to think
of a logic for pragmatics as open to modern results of proof theory, such as
the Curry-Howard correspondence, type theory and categorical logic: a good
part of these subjects belongs to intuitionistic mathematics.

It must be said that Dalla Pozza’s attitude has never been dogmatic with re-
spect to the application of his framework. The main goal is to present different
logics with an intended interpretation with respect to actual linguistic usage
and thus clarify their relations, as it is in the case of intuitionistic pragmatics
and classical semantics. But most of mathematics is not logic and it stands
on its own: only in some cases we can find intended interpretations of formal
systems or show how a formal systems, seen as theoretical construction, can
be related to linguistic practice (see the treatment of relevant and linear logic
in [11]) .

Another concern is philosophical, in particular two of Dalla Pozza’s philosoph-
ical theses are typical of the use of classical logic in the meta-theory.

(1) Propositions are only those of classical logic.
(2) Illocutionary forces apply only to classical propositions.

By (2), a justification of ` p is conclusive evidence of the truth of p in the
classical interpretation of truth. Thus the entire construction seems to rely on
an understanding of p as a classical proposition.

One may say that an intuitionistically adequate representation of intuition-
ism require the use of an intuitionistic meta-theory.2. We may also allow only
propositions p that are intuitionistically acceptable in elementary formulas
` p: in an intuitionistic approach, their justification value depends on the
verification conditions for p, which are given by the meaning of p. If p is intu-
itionistically unacceptable then `p is a void assertion. How much is changed
in Dalla Pozza and Garola’s framework [21] if one takes this route?

In accordance with the Curry-Howard correspondence, we can say that sen-
tences of the logic for pragmatics can always seen as types of their justifica-
tion values. In any type system (e.g., the simply typed lambda calculus with
products) terms are representation of intuitionistic proofs and types are the
intuitionistic proposition which is proved, thus a natural form of justification
terms for the logic for pragmatics is that of a typed λ-term of the form t : A
2 We do not adopt this method: in this paper we use classical modal logic exten-

sively in our discussion. Use of constructive S4 would otherwise be required in an
intuitionistic meta-theory.



Logic for pragmatics 7

where t represents a proof of A. Since terms encode proofs, in the representa-
tion of proofs by λ-terms “nothing is added or reduced”. But in Martin-Löf
type theory to say that a proposition, regarded as a type, is true amounts to
say that it is inhabited by a term representing its proof, i.e., truth coincides
with provability. Clearly any true proposition can be asserted. Hence all the
distinctions established by the logic for pragmatics are trivialized.

Thus it seems that even in the most abstract form an intuitionistic logic for
pragmatics becomes useful when a distinction can be made between the jus-
tification conditions of a particular class of elementary expressions and for
the non-elementary ones. A distinctive contribution of the logic for pragmat-
ics, both in the “reductive” and in the “intuitionistic” version, has been to
highlight the role of the illocutionary force occurring in elementary expres-
sions of natural language in determining the logical properties of common
sense reasoning with those expressions: indeed what counts as a justification
of a sentence essentially depends on whether its elementary components are
assertions, hypotheses, questions, answers, commands and so on. Different
illocutionary acts have different logical properties.

This is the case of work by Kurt Ranalter, developing ideas by Bellin and
Dalla Pozza [11] on a logic of assertions, obligations and causal implication,
represented as relevant implication, in the framework of the intuitionistic logic
for pragmatics. Such a logic provides innovative tools for representing deontic
reasoning, modelled first by Kripke-style semantics [14] and then developed
in Ranalter’s thesis [44] into a categorical model [45].

This is evident also considering assertions and hypotheses, as we shall see.
Moreover, different forms of negations, such as the intuitionistic negation
(denial) (∼ A) of a sentence A or the co-intuitionistic supplement, to be
interpreted as doubt (a C) that C may be false, may be related to a basic
distinction between assertive and hypothetical reasoning. Thus the law of ex-
cluded middle Cg a C for hypothetical expressions has different justification
values than its corresponding form A∪ ∼ A, where is assertive.

However, in natural language assertions are mostly about empirical facts jus-
tified by empirical evidence which comes with different degrees of strength. It
seems that what’s needed to justify an assertion is only conclusive evidence;
but what counts as ‘conclusive evidence’ may depend on the subject matter.
In the framework of the logic for pragmatics, one would like assertions of el-
ementary formulas to satisfy the Factivity Axiom: if p is assertible, then p is
true. But very often common sense reasoning is not grounded in conclusive ev-
idence and factivity does not hold. This is the domain of a logic of hypotheses,
which may be justified already by non-conclusive evidence.

In the representation of intuitionistic logic elementary expressions `α must
have an atomic radical part α. Does this restriction suffice to guarantee that
intuitionistic logic is adequately represented in this logic for pragmatics? Ac-
tually, Dalla Pozza considers the case of propositions p that have a semantic



8 Bellin, Carrara, Chiffi

value true or false, but no evidence at all may be available of this fact. They
are called intrinsically undecidable or pragmatically undecidable sentences.

Example 1. A statement by Jules-Henri Poincaré ([39], Book 2, chapter 1) is
often quoted, that all bodies in the universe expand continuously and uniformly
- including the magnitudes we take as standards of measurement. There can
be no conclusive justification for asserting this statement nor for asserting its
negation.(We do not take into account here the argument that observation of
a non-uniform expansion would constitute an experimental test against the
statement.)

From the viewpoint of an intuitionistic philosophy, as expressed by Michael
Dummett [23], intrinsically undecidable statements have no definite truth
value; in fact, if we cannot specify conditions in which we would be able
to obtain evidence of their truth, they must be considered meaningless. How-
ever Dummett does not propose to eliminate the property of statements of
being true in favour of being justifiably assertible: the notion of truth carries
a connotation of objectivity that must be retained. Thus Dummett advocates
a notion of intuitionistic truth which may be applied only to assertive state-
ments having definite justification conditions.

3 Intermezzo: Assertions, Obligations and Causal
Inference

An application of the intuitionistic logic for pragmatics to common sense
reasoning and deontic logic comes from the paper [11] and its proof theoretic
treatment of Assertions, Obligations and Causal Implication. This work has
been developed by Kurt Ranalter’s dissertation and papers [14, 44, 45].

The logic, called ILPAOC , deals with the properties of impersonal acts of
assertion and acts of obligation, and relates them through a notion of causal
implication, regarded as a fragment of relevant logic. Kurt Ranalter started
by giving a Kripke semantics for ILPAOC proves a completeness theorem,
decidability and finite model property [14]. Then the system was refined it to
show that it is sound and complete with respect to a class of algebraic, Kripke
and categorical models [44, 45]. This work has an interest for linguistics and
the representation of common sense reasoning. It gives a rigorous framework
for deontic reasoning with respect to causal inference and assertive reasoning.
It provides an example of an abstract categorical representation that unifies
a complex structure, involving different forms of deduction represented by
different consequence relations. We cannot discuss here the semantics and
sketch here only the syntax to illustrate possible linguistic applications.

We have an intuitionistic system of logic for pragmatics, formalized with two
consequence relations, intuitionistic and intuitionistic relevant, let’s call it
ILPAOC . The purpose of this calculus is to formalize inferences of the follow-
ing forms:
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Suppose the gun is loaded and pulling the trigger causes killing a polar bear.

(1.1) Hence, if one ought to pull the trigger then they ought to kill a bear.
Similarly, we can infer

(1.2) Hence, if it is forbidden to kill a bear then it is forbidden to pull the trigger.
(3.1) Hence, if it is permissible to pull the trigger then it is permissible to kill a bear.

We focus on (1.1). Here we have the description of a causal chain of events
by a conditional of the form if the gun is loaded (L) and the trigger is pulled
(T ), then a bear is killed (K), formally represented by the formula ζ:

ζ : `L ⊃c ( `T ⊃c `K).

The inference (1.1) is then formalized as follows:

`L, `T, `L ⊃c ( `T ⊃c `K)⇒ `K

`L, O T, `L ⊃c ( `T ⊃c `K)⇒OK
(4)

Causal implication is thought to hold between events e1, . . . , en and an event
e whenever e follows from e1, . . . , en in accordance with a natural law. Here
events e1, e2 and e are described by assertions `L and `T and `K and we
have a method, namely a causal law, allowing us to transform a justification
of `L and `T into a justification of `K.

The notion of causality considered here is further specified as follows. First,
only an event-describing assertion can be the antecedent of a causal impli-
cation. Second, neither the antecedent nor the consequent of a causal im-
plication can be the expression of an obligation. For instance, we can write
` L ⊃ (O T ⊃O K), but using causal rather than intuitionistic implication
would be an extension of the notion of causality which is regarded as ungram-
matical here.

Third, the main property of causal implication is that it is relevant, i.e., non-
monotonic. Let e1, e2 and e3 be described by `p, `q and `r and suppose e2 is
a causal precondition of e1 but e3 is not. Then it must be incorrect to infer `
r ⊃c ( `q ⊃c `p) from `q ⊃c `p. This fact is best described as a property of the
consequence relation “⇒” in which we express causal inferences, namely, by
saying that a causal consequence relation is non-monotonic. It follows that in a
Gentzen system for causal implication we cannot admit the rule of weakening,
that would allow us to introduce `r in the antecedent. On the other hand, the
rule of contraction is permissible: an event e can have multiple consequences
and there is no reason to restrict the number of uses of its description `p in
an inferential process.

The above fragment of causal and deontic reasoning is formalized by the
following grammar and sequent calculus. Let p1, p2, . . . be an infinite sequence
of propositional letters.
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η := `pi (assertive elementary expressions)
ξ := η | η ⊃c ξ (causal expressions)
γ := O p | ξ (causal deontic expressions)

We use ηp as a metavariable for the assertive elementary expression `p and ηop
for the deontic exrpession O p. Ξ and Γ denote sequences of causal and causal
deontic expressions, respectively.

identity

axiom
ηp ⇒ ηp

cut

Γ1 ⇒ γ γ, Γ2 ⇒ γ′

Γ1, Γ2 ⇒ γ′

structural rules
Contraction

γ, γ, Γ ⇒ γ′

γ, Γ ⇒ γ′

Exchange

Γ, γ1, γ2, Γ
′ ⇒ γ′

Γ, γ2, γ1, Γ
′ ⇒ γ′

causal implication
Ξ, ηp ⇒ ξ

⊃c R
Ξ ⇒ ηp ⊃c ξ

Ξ1 ⇒ ηp ξ, Ξ2 ⇒ ξ′
⊃c L

Ξ1, ηp ⊃c ξ, Ξ2 ⇒ ξ′

causal deontic rule
ηp1 , . . . , ηpn , Ξ ⇒ ηp

ηo
p1 , . . . , η

o
pn
, Ξ ⇒ ηo

p

It is possible to combine causal-deontic and intuitionistic reasoning by extend-
ing the grammar and the sequent calculus as follows. We need sequents with
two areas in the antecedent of the form

Γ︸︷︷︸
relevant

; ∆︸︷︷︸
intuitionistic

⇒ δ

where formulas in Γ are causal deontic and in ∆ intuitionistic. The rule of
weakening is allowed only in the intuitionistic area, contraction and exchange
in both. In addition, there is a rule of dereliction:

Γ, γ;∆⇒ δ

Γ ; γ,∆⇒ δ .

4 Bi-Intuitionistic logic

Dalla Pozza’s approach has been extended to co-intuitionistic logic, inter-
preted as a logic of hypothetical reasoning, which is thought of as symmetric
to assertive reasoning. Co-intuitionism has been studied in the S4 translation,
in proof theory with term assignments [15, 8, 13] and on a categorical model of
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co-intuitionism [9]. An interpretation of bi-intuitionistic logic as a logic AHL
of assertions and hypotheses has also be proposed [7, 8, 10], where assertive
intuitionistic logic and hypothetical co-intuitionistic logic are combined with
two dual negations, both denoted by ( )⊥, relating the two sides. A sequent
calculus, called AH-G1 here, gives an axiomatization of AHL (see the Ap-
pendix, Section 9). However, there is an obvious mistake in the definition of
AHL in the prevous papers that we correct here.

For another sequent calculus axiomatizing AHL, called ILPAC (Intuitionistic
Logic for Pragmatics of Assertions and Conjectures), Biasi and Aschieri [15]
gave a term calculus in the style of Herbelin and Curien λλ calculus. They
proved strong normalization of this term calculus by reducing it to the simply
typed λ calculus with pairing and projections. Their term calculus represents
justification conditions for intuitionistic assertions but refutation conditions
for co-intuitionistic hypotheses. As a consequence, there is an isomorphism
between a proof of an assertive formula A and a refutation of the

The interest in the subject has come from the first author. We must say that
although Carlo Dalla Pozza has been informed of these researches and their
conceptual content, he has always manifested his view that a theory of hy-
potheses and conjectures should be developed in a probabilistic framework
and in a Bayesian theory of learning rather than by developing a pragmatic
theory of co-intuitionistic logic with the tools used for the pragmatic inter-
pretation of intuitionism. On this topic the book [22] is about to be published
posthumously.

4.1 Bi-Heyting algebras and categorical models of bi-intuitionism.

The mathematical theory of co-intuitionistic logic, initiated by Cecylia Rauszer
[46, 47] and promoted among others by William Lawvere [32], begins by du-
alizing the language and the known algebraic semantics of intuitionistic logic.

Definition 1. A Heyting algebra is a bounded lattice A = (A,∨,∧, 0, 1)
(namely, with join and meet operations, the least and greatest element), and
with a binary operation, Heyting implication (→), which is defined as the right
adjoint to meet. A co-Heyting algebra is a lattice C such that its opposite Cop
(reversing the order) is a Heyting algebra. C has structure (C,∨,∧, 1, 0) with
an operation of subtraction (r) defined as the left adjoint of join. Thus we
have the rules

Heyting algebra
c ∧ b ≤ a

c ≤ b→ a

co-Heyting algebra
a ≤ b ∨ c
ar b ≤ c

(5)

A bi-Heyting algebra is a lattice that has both the structure of Heyting and of
a co-Heyting algebra.
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Definition 2. (Rauszer’s Kripke semantics) Kripke models for bi-intuitionistic
logic have the formM = (W,≤,) where the accessibility relation ≤ is reflex-
ive and transitive, and the forcing relation “” satisfies the usual conditions
for ∨, ∧, 0 and 1 and moreover

w  A→ B iff ∀w′ ≥ w.w′  A implies w′  B;
w  ArB iff ∃w′ ≤ w.w′  A and w′ 6 B.

Such conditions guarantee the monotonicity property for all bi-intuitionistic
formulas. Informally, they could be explained by saying that implication has to
hold in all possible worlds “in the future of our knowledge” and subtraction in
some world “in the past of our knowledge”. In fact Rauszer’s Kripke semantics
for bi-intuitionistic logic is associated with a modal translation into (what is
called today) tensed S4.

One would like to generalize these notions to a categorical semantics for bi-
intuitionistic logic, but a result by Tristan Crolard [18] (Theorem 1.14) shows
that any such categorical model would be trivial.

Theorem 1. If a Cartesian Closed Category (CCC) C is such that Cop has
also the structure of a CCC (namely, C has coproducts and co-exponents),
then C is isomorphic to a partial order.

As a corollary, Crolard shows the following result.

Proposition 1. In the category Sets the coexponent BA of two sets A and B
is defined if and only if A = ∅ or B = ∅.

The Theorem is a main motivation for “polarization”, namely, for working
with two categories, a CCC A and a co-CCC B modelling minimal intuition-
istic logic and co-intuitionistic logic, respectively, related by two contravariant
functors.

Dualities

In the proof theory of intuitionism and co-intuitionism the consequence rela-
tion are as follows:

intuitionistic co-intuitionistic
A1, . . . , An ⇒ A C ⇒ C1, . . . , Cn

The following result applies to C.Rauszer’s bi-intuitionistic logic and its modal
translation.

Proposition 2. There is a duality ( )∗ between IL and co-IL with the follow-
ing property. Let Γ ∗ = C∗1 , . . . , C

∗
n. In Rauszer’s Kripke semantics Γ ⇒ A is

valid if and only if A∗ ⇒ Γ ∗ is valid. In particular A is valid [contradictory]
iff A∗ is contradictory [valid].
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See Crolard [18], (Proposition 2.2. and theorem 2.14). Significant corollaries
are the following:

1. Dual to assertive intuitionistic contradiction A ∩ ∼ A is hypothetical
excluded middle A∗g a A∗, which is valid in co-intuitionistic logic;

2. Dual to assertive intuitionistic excluded middle A ∪ ∼ A is hypothetical
contradiction A∗ f a A∗, which is consistent in co-intuitionistic logic.

4.2 Bi-intuitionistic pragmatic language.

Here is our official definition of the extended pragmatic language LAH of
assertions and objections, amended from [10] by using the definition in (2) in
place of that in (1) in Section 1.

Definition 3. (assertions, hypotheses) Let {p0, p
∗
0, p1, p

∗
1, . . .} be a sequence

of propositional variables. For each pair (pi, p∗i ) we set `pi and H p∗i .

• assertive:
A,B := `p |g | u | A ⊃ B | A ∩B | A ∪B | C⊥

• hypothetical:
C,D :=H p∗ |f | j | C rD | C gD | C fD | A⊥

• defined negations:
∼ A =df A ⊃ u a C =df j r C.

Definition 4. (modal translation)

assertive: hypothetical:
( `p)M = �p (H p∗)M = ♦¬p
(g)M = > (f)M = ⊥
(u)M = ⊥ (j) = >

(A ⊃ B)M = �(AM → BM ) (C rD)M = ♦(CM ∧ ¬DM )
(A ∩B)M = AM ∧BM (C gD)M = CM ∨DM

(A ∪B)M = AM ∨BM (C fD)M = CM ∧DM

(C⊥)M = ¬CM A⊥ = ¬(AM )

Defined negations:
(∼ A)M = �¬AM and (a C)M = ♦¬CM .

• Let LA be the language generated by the above grammar for assertive for-
mulas without the (C)⊥ rule. LA is the language of the intuitionistic logic
for pragmatics, which we may identify with intuitionistic propositional
logic Int.

• Similarly, let LH be the language generated by the above grammar for
hypothetical formulas without the (A)⊥ rule. LH is the language of the
co-intuitionistic logic for pragmatics, which we may identify with co-
intuitionistic propositional logic co-Int.

• Let AHL be the logic defined by the language LAH withe the semantics
given by the modal translation into S4.
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A sequent calculus AH-G1 for the logic AHL is given in the Appendix,
Section 9. It is sound and complete for the modal translation in S4.

In AHL the operations ( )⊥ in (C)⊥ and (A)⊥ are part of the language LAH .
Their actions can be specified by the modal translation. Do they represent the
meta-theoretic duality between intuitionism and co-intuitionism? The answer
is yes. Consider the following equivalences:

(a) ( `p)⊥ ≡H p∗ (H p∗)⊥ ≡ `p
(b) (A ∩B)⊥ ≡ A⊥ gB⊥ (C gD)⊥ ≡ C⊥ ∩D⊥
(c) (A ⊃ B)⊥ ≡ B⊥ rA⊥ (C rD)⊥ ≡ D⊥ ⊃ C⊥

(6)

Proposition 3. The equalities in definition 6 are satisfied by the modal trans-
lation in S4.

By Proposition 3 the dual negations internal to the language LAH and meta-
theoretic duality agree. Thus we can use it to eliminate dual negations when
possible.

Remark 1. Notice that if we use the definition (1) in Section 1 then the internal
dual negations no longer correspond to the meta-theoretic duality between
intuitionistic and co-intuitionistic logic under the S4 translation: indeed if
we set (H p)M = ♦p then we cannot express an equivalent of ( ` p)⊥ in the
language LH , and similarly there is no equivalent of (H p)⊥ in the language
LA. Hence the meta-theoretic operation ( )⊥ becomes a partial function.

4.3 Examples

We give here an example of derivation in the sequent calculus AH-G1, whose
axioms and rules are in Appendix, Section 9.

For A be assertive and C hypothetical we use the following abbreviations:

• �· C :=∼ ((C)⊥) and symmetrically
• ♦· A :=a ((A)⊥).

Proposition 4. The following sequents are provable in AH-G1.

(i) A⊥⊥ ; ⇒ A; and A ;⇒ A⊥⊥; and symmetrically ;C ⇒ ;C⊥⊥ and
;C⊥⊥ ⇒ ;C.

(ii) A ; ⇒ �· ♦· A; and ; ♦· �· C ⇒ ; C.

(iii) M ⊃ �· C ⇒ �· (M⊥ g C) and �· (M⊥ g C) ;⇒ ; M ⊃ �· C.

Proof. (i) and (iii) are left as an exercise.
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; ⇒ u ; j

A ; ⇒ A ;
a⊥hL

A ; A⊥ ⇒ ;
rR

A ; ⇒ u ;a (A⊥)| {z }
♦· A

h⊥aL

A, (♦· A)⊥| {z }
∼A

; ⇒ u ;

⊃R

A ; ⇒ ∼ ((♦· A)⊥)| {z }
�· ♦· A=∼∼A

;

; C ⇒ ; C
h⊥aR

⇒ C⊥ ; C u ; j ⇒ ;
⊃L

∼ (C⊥)| {z }
�· C

; j ⇒ ; C

a⊥hR

; j ⇒ ; (�· C)⊥| {z }
aC

, C

rL

; a ((�· C)⊥)| {z }
♦· �· C=aaC

⇒ ; C

By applying meta-theoretic dualities the sequents in (ii) are equivalent to

(ii) A⇒∼∼ A and ;aa C ⇒;C.

Moreover the sequents in (iii) are simplified as the equivalence

∼ (M ∩ C⊥)⇔ (M ⊃∼ (C⊥).

In [10] we were interested in the notion of chirality proposed by Paul-André
Melliès [34] and in the following conjecture:

Bi-intuitionistic logic AHL constitutes a dialogue chirality.

With the present definition (4) in Section 4.2 the conjecture is plausible.
We give in the Appendix, Section 9, the main definition of chirality and the
considerations concerning Melliès conjecture.

5 Expectations and Conjectures.

In [8] two new “illocutionary forces” were introduced in the language LAH
of assertions and hypotheses: expectations Eα and conjectures Cα with the
following modal translation:

(Eα)M := �♦α and (Cα)M := ♦�α (7)

The intuitive explanation of these illocutionary forces is supported and in part
explained by the modal translation and its Kripke semantics:

• the expectation Eα that α is true is the assertion that the truth of α is
epistemically possible or in any situation a situation can be reached where
α is true.

• The conjecture Cα that α is true is the hypothesis that the truth of α is
epistemically necessary or a situation can be reached where α is true in all
situations resulting from it.

As above, we consider only the case of α atomic and we write Ep∗ and Cp to
make sure that expectations and conjectures are understood as dual.
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5.1 Expectations: classical logic in intuitionistic pragmatics.

Let LE be the language defined by the grammar.

E,F := Ep∗ | g | E ⊃ F | E ∩ F | ∼ E

and let EL be the set of all formulas E in the language LE whose S4 trans-
lation is valid.

Proposition 5. The theory EL (logic of expectations) is closed under the
double negation rule, i.e., ∼∼ E ⇒ E is a valid axiom of EL.

It is an exercise in the modal logic S4 to prove the proposition by induction
on the definition of LE formulas.

On the other hand, if we extend LE with intuitionistic disjunction (∪), then
the inductive step for disjunction fails:(

∼∼ (Ep∗ ∪ Eq∗)
)
6≡
(
∼∼ Ep∗

)
∪
(
∼∼ Eq∗

)
.

Remark 2. It is known [52] that a direct translation (Am) of the full language
of (propositional) classical logic in classical S4 can be given mapping p 7→
�♦p; but here, crucially, we need the translation (A∨B)m = �♦(Am ∨Bm).
On the other hand, excluding disjunction from the classical (propositional)
language we still obtain the Am modal translation from the modal translation
of the connectives of intuitionistic logic, starting from the map p 7→ �♦p
for the atoms3. Thus we have given a pragmatic interpretation of a classical
result.

A completely symmetric discussion applies to conjectures, where the language
of conjectures is closed under the following rule which is co-intuitionistically
invalid:

Cp ⇒ aa Cp

Remark 3. Consider the bi-intuitionistic language LAH Notice that (Ep∗)M ≡(
∼ (H p∗)⊥

)M : (
∼ (H p∗)⊥

)M = �¬¬♦p∗ = �♦p∗

Similarly, (Cp)M ≡
(
a ( `p)⊥

)M :(
a ( `p)⊥

)M = ♦¬¬�p = ♦�p.

This fact can be generalized. Let A be assertive and C hypothetical. We write

• Let �· C :=∼ ((C)⊥). Then (�· C)M = �♦CM . Symmetrically
• Let ♦· A :=a ((A)⊥). Then (♦· A)M = ♦�AM .
3 Grigori Mints showed us the connection between our work and the classical trans-

lation �♦ [52].
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6 Part II Co-intuitionistic pragmatics.

In Part II we assume the usual definition hypotheses H p, but the same re-
marks apply to for negative hypotheses

6.1 Justification conditions and semantic values for hypotheses.

How are justification conditions and semantic values assigned to hypothetical
expressions? Answering this question is difficult. We want to extend the BHK
interpretation to a co-intuitionistic logic of hypotheses. In the case of intu-
itionistic assertive A, a justification for A is conclusive evidence for A; here
what counts as conclusive evidence is relative to the standards of scientific dis-
ciplines, in particular, in mathematics we need a proof of A. To characterise
justification conditions for hypotheses we may use use legal terminology and
say that a justification for H p is a “scintilla of evidence” that p may be true.4

It is quite evident that the justification conditions of the expression Hp are
problematic and constitutes a weak spot for the generalisation of the BHK
interpretation.

There are at least two approaches: one is to say that if it is compatible with
the context of our knowledge to make the hypothesis C, then the simple
awareness of this generic compatibility must count as evidence for C. Another
approach is to say that, on the contrary, some circumstances giving positive
confirmation for the truth of C are required. Let us consider in particular the
Example 1 in Section 2.1.

Poincaré’s statement is certainly compatible with our present knowledge, al-
though it is beyond our means to put it to test; but exactly the same can
be said of its negation. Hence the only “scintilla of evidence ” for it and for
its negation is a mere realization of compatibility. In general any proposition
p a classical logician may consider as meaningful and capable of a semantic
value can also be tested for compatibility with our present knowledge; if the
result of this test is positive, then it constitutes evidence for H p. In a classical
theory of meaning the statement may be regarded as meaningful and its com-
patibility with our present knowledge may justify considering it as an abstract
hypothesis, albeit not a viable scientific hypothesis. On the other hand, there
is no doubt that for an intuitionistic viewpoint like Dummett’s the statement
ought to be regarded as meaningless and there can be no spark of evidence for
a meaningless statement. Moreover it seems that in the approach “hypotheti-
cal evidence as confirmation” we are exploring, a “scintilla of evidence” for a

4 In the theory of argumentation for legal reasoning, six proof standards have been
identified: no evidence at all, scintilla of evidence, preponderance of evidence, clear
and convincing evidence, beyond reasonable doubt and dialectical validity.[30, 17]
Let’s identify “dialectical validity” with conclusive evidence, justifying assertions,
and “scintilla of evidence”, as the standard justifying hypotheses: the other three
standards are defined through probabilities.
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hypothesis cannot be just an abstract test of compatibility, but does require
some positive evidence.

6.2 Hypothetical contexts and connectives.

An intuitionistically acceptable explanation of hypothetical co-intuitionistic
logic is in Dummett and Prawitz’s meaning as use approach [23, 43]. Such
an approach usually gives an account of how the justification condition for
molecular expressions depend on the justification condition of the immedi-
ate components according to the meaning of their main connective. Here the
meaning of a connective may be explained according to (a) an introduction
rule in Natural Deduction [a right rule in the sequent calculus] or (b) ac-
cording to an elimination rule [a left rule] [43]. In case (a) one shows how
the justification conditions of a molecular formula are determined from the
justification conditions of its component formulas; in case (b) one shows how
the immediate consequences of a molecular formula are determined from the
immediate consequences of its component formulas. Then, roughly speaking,
the justification of an introduction-elimination pair [a right-left pair] follows
from the inversion principle [40], by showing that nothing is derivable after a
normalization step [a symmetric cut elimination step] that was not derivable
before.

We discussed in some detail a meaning as use explanation of co-intuitionistic
connectives in [10], section 2.1 and we shall not repeat it here. In our view,
however, such an an explanation must also explain the justification conditions
of elementary formulas, as done here in section (6.1), but also the meaning of
the co-intuitionistic consequence relation

C ⇒ D1, . . . , Dn (8)

To explain the consequence relation in (8), two approaches are available, which
were discussed also in [10]. One, which we sketch here, explains how given
evidence x for the hypothesis C we obtain “parcels of hypothetical evidence”
t1, . . . , tn for D1, . . . , Dn. More precisely, following the BHK interpretation.
we may say that an effective interpretation of (8) is as follows:

H.1: “there is a method F transforming sufficient evidence for jus-
tifying the hypothesis C into sufficient evidence for justifying (the
disjunction of) the hypotheses D1, . . . , Dn.

The second approach is to explain how given refutations for D1, . . . , Dn one
constructs a refutation of C:

H.2: “there is a method F op to transform evidence refuting all the
hypotheses D1, . . . , Dn into evidence refuting the hypothesis C.

The latter approach fits in well with an interesting account of co-intuitionism
by Y. Shramko [49]: co-intuitionistic sentences are interpreted as statements
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that have not yet been refuted. Following Popper, scientific laws formalizable
as universally quantified statements cannot be conclusively confirmed, but
can and must in principle be falsifiable; hence co-intuitionism is the logic
of scientific research. In the second approach it is conclusive evidence that is
considered and transformed; in mathematics, refuting a hypothesis C amounts
to prove a theorem C⊥. We shall explore the first approach, assuming that
we know what sufficient grounds for hypotheses are.

We give an informal account of the second approach, formalized as a “calculus
of co-intuitionistic coroutines” as done in the papers [8, 9, 13], adapting an
idea by Crolard [19]. Thus we have a typed computational context of justifica-
tion

x : C ⇒ Sx : ∆ (9)

where in Sx = t1, . . . , tn consists of separate “parcels of evidence” for the
hypotheses D1, . . . , Dn = ∆. Essential to the co-intuitionistic nature of the
calculus is that C is the only open assumption in the context, thus that x is
the one and only free variable occurring in Sx. We may think of a distributed
system, where each term ti : Di has a location within a context connected by
x.5

We focus on subtraction, as the treatment of the other connectives is more
familiar. We assign terms of our calculus to the following sequent calculus
rules and we explain the operational semantics of our calculus which reflects
adequately the pragmatic meaning of logical operations.

H ⇒ Γ,C D ⇒ ∆
r R

H ⇒ Γ,C rD,∆

C ⇒ D,Υ
r L

C rD ⇒ Υ

with reduction rule
H ⇒ Γ,C D ⇒ ∆

r R
H ⇒ Γ,C rD,∆

C ⇒ D,Υ
r L

C rD ⇒ Υ
cut

H ⇒ Γ,∆, Υ

reduces to

H ⇒ Γ,C C ⇒ D,Υ
cut1

H ⇒ Γ,D, Υ D ⇒ ∆
cut2

H ⇒ Γ,∆, Υ

Suppose we have a context Sz indexed with z. We write it in the form of a
sequent

z : C ⇒ ` : D,Sz : Υ,

where ` is a list of zero or more terms giving justifications of D. We need lists
because there is a rule of contraction right in the co-intuitionistic calculus.

5 We speak of a distributed system as a promising metaphor: no such implemen-
tation of the calculus has been done. Without using spatial terms one can say
“clearly distinct from”, rather than instead of “being away from”.
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Moreover suppose we have also a context consisting only of the variable v :
C r D To have a justification v of C r D means to be able to extract from
it a justification z(v) for C and also to set aside the part of the derivation
yielding a justification ` of D from the justification z of C: we use a term
postpone(z 7→ `, v) for this purpose. Here “setting aside” ` is the operational
consequence of the inconsistency between v : C rD and the evidence ` : D.6

Finally, in Sz the variable z is now substituted by z(v). Thus the subtraction
left rule as follows:

z : C ⇒ ` : D, Sz : Υ
r L

v : C rD ⇒ postpone(z 7→ `, v) : •, Sz(v) : Υ
(10)

In the subtraction right rule we have an operation make-coroutine connecting
two computational contexts, namely,

x : H ⇒ Sx : Γ, t : C y : D ⇒ Sy : ∆.

We can merge the two contexts into one, still depending on x : H, by deriving
(i) either a justification of C r D (ii) or a justification of D given that of
C. In case (i) we write make-coroutine(t, y) : C rD; in case (ii) we have a
justification y(t) : D.
Now we substitute y(t) for y in Sy : ∆, expressing the dependency of the
context Sy(t) : ∆ from t. This is clearly distinct from Sx, being indexed with
y(t). Notice however that x occurs free in t; hence x occurs everywhere in
Sy(t). The C rD right rule is as follows:

x : H ⇒ Sx : Γ, t : C y : D ⇒ Sy : ∆
r R

x : H ⇒ Sx : Γ, make-coroutine(t, y) : C rD, Sy(t) : Υ
(11)

Now consider a cut where the left and right cut-formula C r D has been
introduced by the right and left rules, as in (11) and (10), respectively. Then
a justification for C r D of the form make-coroutine is substituted for y
in postpone(x 7→ `, y). The upshot is that when eliminating the cut, the
“postponed” computation ` can be used to “fill the jump” from C to D in
(11).

x : H ⇒ Sx : Γ, t : C z : C ⇒ ` : D, Sz : ∆

x : H ⇒ Sx : Γ, `′ : D, St : ∆ y : D ⇒ Sy : Υ

x : H ⇒ Sx : Γ,St : ∆,S`′ : Υ

(12)

where St =df Sz{z := t}, `′ =df `{z := t} and S`′ is a list of contexts resulting
from repeatedly substituting each term j ∈ `′ for z in Sz.
Summing up, the operational interpretation of the postpone operation as-
signed to the subtraction left rule is essentially in the act of removing from the
6 The postpone term is not assigned to a formula: we may assign it to a symbol •

which is not a type and thus cannot occur as a sub-formula of other formulas.
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current space of justification the derivation of a justification for D from a jus-
tification for C, asauming D to be incompatible with C. This is not so far from
the meaning as use interpretation of the left subtraction rule, which defines
the meaning of the connective of subtraction in Dummett and Prawitz’s inter-
pretation. We see here that co-intutionistic dialectic creates new hypotheses
in the subtraction right and removes some of them in subtraction left and does
not reach the logical level of assertions (except perhaps in the case where all
consequences of an assumption v : H have been removed). Yet this calculus is
in some sense “symmetric” to the simply typed λ-calculus with pairing and
projections and can simulate λ computations by cut-elimination [8].

7 The linear case.

Roughly speaking, the linear calculus of co-intuitionistic coroutines is defined
by the restriction that all operators are applied to terms and not lists of terms.
In particular, we have postpone(x 7→ t, u) instead of postpone(x 7→ `, u).

Co-intuitionistic logic is a very static model of computation. Coroutines in
the sense of Tristan Crolard [19] are defined in the very rich environment of
the λµ-calculus, which gives a computational interpretation of classical logic.
Here we do not exit from co-intuitionistic dialectic. An interesting feature of
this calculus is in the treatment of parallel composition in its interaction with
the operators.

Some applications of co-intuitionistic logic to models of computation were
investigated in the linear calculus.

• Our calculus of co-routines is essentially based on contexts Sx; these consist
of the parallel composition of term, induced and modified (among other) by
the make-coroutine and postpone operations. To explore its connection
with parallel and distributed computing a comparison with the π-calculus
and with membrane computing (λP -systems) was then sketched in [13].

• A categorical model of linear co-intuitionistic logic with exponentials was
given by the first author in [9], based on G. Bierman’s thesis [16]. There
the calculus of coroutines was used as a term assignment for the categorical
construction.

7.1 Linear co-intuitionism

We give here precise definitions for the linear calculus of co-intitionistic corou-
tines, typed in linear co-intuitionistic logic with subtraction, par (℘) and ⊥,
the identity of disjunction.

Definition 5. We are given a countable set of free variables (denoted by x,
y, z . . .), and a countable set of unary functions (denoted by x, y, z, . . .). The
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terms of our calculus, denoted by R, are either m-terms, denoted by M , N ,
or p-terms, denoted by P .

(i) Terms, m-terms and p-terms are defined by the following grammar.

M,N := x | x(M) | connect to(R) | M℘N | casel(M) | caser(M) |
| make-coroutine(M, x) | [] .

P := postpone(y 7→ N,M) | postpone(M).
R := M | P.

We usually abbreviate “make− coroutine” as “mkc” and “postpone” as
“postp”. We often write P for a list P1, . . . , Pm, and similarlyM forM1, . . . ,Mn.
“[]” is the empty term (nil).

Definition 6. (i) The free variables FV (M) in a term R are defined thus:

FV ([]) = ∅
FV (x) = {x}

FV (x(M)) = FV (M)
FV (connect to(R)) = FV (R)

FV (M℘N) = FV (M) ∪ FV (N)
FV (casel(M)) = FV (caser(M)) = FV (M)

FV (mkc (M, x)) = FV (M)
FV (postp(x 7→ N,M)) = (FV (N) r {x}) ∪ FV (M).

FV (postp(M)) = FV (M).

Definition 7. (i) Let ‖ be a binary operation on terms (parallel composition)
which is associative, commutative and has the empty term [] as the identity.
Terms generated by (zero or more) applications of parallel composition are
called contexts. Thus contexts are generated by the following grammar:

C := R | (C‖R)

modulo the structural congruences

(i) R0‖(R1‖R2) ≡ (R0‖R1)‖R2,
(ii) R0‖R1 ≡ R1‖R0,
(iii) R0‖[] ≡ R0,
(iv) C0‖R‖C1 ≡ C0‖R′‖C1 if R ≡ R′.

Let R1‖ . . . ‖Rk be a context, where all Ri are non-null , i ≤ k. Notice that the
notation is well-defined by generalized associativity. We write Sx : R1‖ . . . ‖Rk
if all free variables occurring in R1, . . . , Rk are in the list x.

Definition 8. An expression Sx : R1‖ . . . ‖Rk is a (correct) computational
context if it satisfies the following axioms.

1. Each term in the set {R1, . . . , Rk} contains x and no other free variable.
2. In every term of the form postp(y 7→ N,M) the term N contains a free

variable y with y /∈ FV (M) and no other free variable.
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A computational context can be denoted by listing the non-empty terms it
contains: Sx = P1, . . . , Pm |M1, . . . ,Mn. (The separation “|” between p-terms
and m-terms is only a notational convenience in view of typing).

Remark 4. By axiom 1 the relevant components of a computational context
are uniquely identified. Axiom 2 is analogue to the acyclicity condition in
proof nets for linear logic.

There is a standard, but combersome notion of α-equivalence which we skip
(see [9]).

Note 1. (i) Consider the terms make− coroutine and binary postpone. They
are binders acting on a whole computational context, rather than on a delim-
ited scope within a single term. We may call their action remote binding ; it
is expressed by a substitution of some m-term x(M) for the free variable x
throughout a computational context Sx. One could express remote binding by
a more familiar notation, as in the λ-calculus or in the π-calculus; but then
in the typed case one could not assign a separate m-term to each formula in
the succedent. At best, one could assign an “access port” to a unique term
assigned to the whole sequent, as in the translations of linear logic into the
π-calculus (see [13]). A motivation here is to create a “distributed calculus”
for our “multiple conclusion” logical deductive system.

(ii) The p-term binary postpone is also a local binder of the free variable
occurring in its argument. Indeed in a term postpone(y 7→ N,M) a free vari-
able y occurring in N becomes locally bound; then y is replaced by y(M)
in the computational context, to express remote binding. A more complete
notation of our p-terms would be postpone(y 7→ N,M) with y for y, explic-
itly establishing the connection between the locally bound variable and its
corresponding unary function.

Definition 9. Substitution of a term M for a free variable x in a term R is
defined as follows:

x[x := M ] = M, y[x := M ] = y if x 6= y;
connect to(N)[x := M ] = connect to(N [x := M ])

postp(N)[x := M ] = postp(N [x := M ])
y(N)[x := M ] = y(N [x := M ]);

(N0℘N1)[x := M ] = (N0[x := M ] )℘(N1[x := M ])
casel(N)[x := M ] = casel(N [x := M ]),
caser(N)[x := M ] = caser(N [x := M ]);
mkc(N, y)[x := M ] = mkc(N [x := M ], y),

postp(y 7→ (N1), N0)[x := M ] = postp(y 7→ (N1[x := M ]), N0[x := M ]).

Proposition 6. (i) Sx = x and Sy = postp(y) are computational contexts.

Let Sx = R1‖ . . . ‖Rm‖M and Sy = Rm+1‖ . . . ‖Rm+n be computational con-
texts. We write Sy[y := N ] for Rm+1[y := N ]‖ . . . ‖Rm+n[y := N ]. Then
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(ii) S ′x = R1‖ . . . ‖Rm‖(Sy[y := M ]) is a computational context (substitu-
tion);

(iii) S ′x = R1‖ . . . ‖Rm‖mkc(M, y)‖Sy[y := y(M)] is a computational context
(make coroutine);

(iv) Let Sx = R1‖ . . . ‖Rm and Sy = Rm+1‖ . . . ‖Rm+n be computational con-
texts. Then

Sz = Sx[x := casel(z)]‖Sy[y := caser(z)]

is a computational context (cases);

(v) Let Sx = R1‖ . . . ‖Rm‖M be a computational context. Then

Sy = postp(x 7→M,y)‖R1‖ . . . ‖Rm

is a computational context (postpone);

(vi) Let Sx = R1‖ . . . ‖Mi‖Mi+1‖ . . . ‖Rm be a computational context. Then
S ′x = R1‖ . . . ‖(Mi℘Mi+1)‖ . . . ‖Rm} is a computational context (par).

In all cases the proposition is proved simply by checking that the resulting set
of terms contains exactly one free variable.

The operation β-reduction transforms a computational context Sx into a com-
putational context S ′x. It may be either local, affecting only the redex itself,
or a global operation with side-effects on parts of Sx mainly, relabelling the
terms that express binding by make− coroutine, postpone or store.

Definition 10. β-reduction of a redex Red in a computational context Sx is
defined as follows.

(i) If Red is a m-term N of the following form, then the reduction is local
and consists of the rewriting N  β N

′ in Sx as follows:

postp(connect to(R)) β [].
casel (N0℘N1) β N0; caser (N0℘N1) β N1.

If the principal operator of Red is a binary postpone, then the reduction is
global and consists of the following rewriting.

(ii) If Red has the form postp(z 7→ N, mkc(M, y)), then Sv is partitioned as

Sv = Red ∪ Svyz
[
y := y(M), z := z(mkc(M, y))

]
(a simultaneous substitution of y(M) for y and of z(mkc(M, y)) for z in Svyz).
Then a reduction of Red transforms the computational context as follows:

Sv = Svyz
[
y := N [z := M ], z := M

]
.

The use of computational contexts in the decoration of sequent-style Natural
Deduction derivations in co-intuitionistic logic is illustrated in Table 1.
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axiom

x : A . | x : A

cut

v : E . P | M : Γ,M : A x : A . Q | N : ∆

x : E . P ,Q
′
[x := M ] | M : Γ,N [x := M ] : ∆

⊥-intro

x : E . P | M : Γ (R ∈ P ∪M)

x : E . P | M : Γ, connect to(R) : ⊥

⊥-elim

x : ⊥ . postp(x) |

We write Q
′

for Q[x := x(M)] and N
′

for N [x := x(M)]

r-intro

v : E . P | M : Γ,M : C x : D . Q | N : ∆

v : E . P , Q
′ | M : Γ,N

′
: ∆, mkc(M, x) : C rD

r-elim

z : E . P | M : Γ,M : C rD x : C . Q | N : D,N : ∆

z : E . P , Q
′
, postp(x 7→M, z) | M : Γ,N

′
: ∆

℘-intro

x : E . P | M : Γ,M0 : C0, M1 : C1

x : E . P | M : Γ,M0℘M1 : C0℘C1

℘-elim

z : E . Q | N : ∆,N : C0℘C1

... x0 : C0 . P 0 | M0 : Γ0 x1 : C1 . P 1 | M1 : Γ1

z : E . Q, P
′
0, P

′
1 | N : ∆, M

′
0 : Γ0, M

′
1 : Γ1

where P
′
0 = P [x0 := casel(z)],M

′
0 = M0[x0 := casel(z)],

P
′
1 = P 1[x0 := caser(z)],M

′
1 = M1[x0 := caser(z)]

Table 1. Decorated Natural Deduction for multiplicative co-ILL

7.2 Examples of computational contexts.

1. The simplest example is that of a p-term postpone(x) alone.

Sx : postpone(x).

Its typing is given by the axiom x : ⊥ . postp(x) | .
2. Let

Sx = postp(x) ‖ connect to(postp(x)) ‖ connect to(postp(x)).
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It can be regarded as an expansion of S ′x: x‖ connect to(x). Their typings
are as follows:

x : ⊥ . postp(x) | connect to(postp(x)) : ⊥, connect to(postp(x)) : ⊥

and
x : ⊥ . | x : ⊥, connect to(x) : ⊥.

3. Let Sy be postp(y) and Sx = x ‖ connect to(x). We obtain a new com-
putational context by parallel composing x with the result of substituting
connect to(x) for y in Sy:

S′x = x ‖ postp(connect to(x))

which β-reduces to S′′x : x ‖ []. The typed versions are as follows:

x : ⊥ . postp(connect to(x)) | x : ⊥ reduces to x : ⊥ . x : ⊥.

4. Let Sx = mkc(x, y)‖y(x) and let Sv = postp(z 7→ z, v). Then substituting
mkc(x, y) for v in Sv we obtain a new computational context

S ′x = postp(z 7→ z, mkc(x, y))‖y(x)

which β-reduces to
S ′′x = x.

A typing of S ′x is
x : C . x : C y : C . y : C

x : C . mkc(x, y) : C r C, y(x) : C z : C . z : C

x : C . postp(z 7→ z, mkc(x, y)|y(x) : C

The β-reduction amounts to performing two substitutions, first of x for z and
then of x for y:

x : C . x : C z : C . z : C
x : C . x : C y : C . y : C

x : C . x : C
In the setting of a term calculus for co-intuitionistic logic parallel composition
is an operation on the terms of the multiple-conclusion logical context, induc-
tively defined form primitive constructors and destructors operators to form
a computational context. Such constructions make sense also in an untyped
setting, where computational contexts are subject only to a mild constraint,
the presence of exactly one free variable in them.

7.3 A probabilistic interpretation.

The sequent calculus with term-assignment informally described in Section
6.2 allows us to establish a connection with probabilistic interpretations of
hypotheses. The following result is from [9].
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In our setting co-intuitionistic logic admits a simple probabilistic interpre-
tation which fits well in the view of co-intuitionism as a logic of hypotheses.
Indeed if co-intuitionistic logic is about the justification properties of hypothe-
ses, which we now assess in a probabilistic setting, then the co-intuitionistic
consequence relation must preserve probability assignments from the premises
to the conclusions; a term calculus for such a logic must allow us to compute
probabilities and verify the preservation property. We sketch our result only
for the multiplicative linear fragment, i.e., for typing derivations in the linear
system with subtraction only.

Definition 11. To the typed terms of linear co-intuitionistic logic we assign
events in a probabilistic setting. We write C, C ∩D and C ∪D for com-
plementation, intersection and union between events; there is an impossible
event ∅ and a certain event ∅. A map ( )P : judg→ events is an assignment
(t : A) 7→ A satisfying the following constraints:

if (M : C)P = C and (x : D)P = D, then (mkc(M,x) : C rD)P = C ∩D;
(postp(x 7→M,N))P = ∅.

Let d be a sequent calculus derivation of x : H . t1 : C1, . . . , tn : Cn. We
generate such a probabilistic assignment ( )P : judg → events to the typed
terms in d as follows: (i) in the case of an axiom we choose an event arbitrarily;
(ii) in the conclusion of an inference, to the principal formula we assign an
event as required by the constraints of Definition 2.1., given the assignments
to premises, and we leave the assignment to the extra formulas unchanged.

Proposition 7. (Decomposition property) Let d be a sequent calculus
derivation of x : H . t1 : C1, . . . , tn : Cn, let ( )P : judg → events be an
assignment to the typed terms in d that satisfies the constraints of Definition
2.1. and suppose H,C1, . . . ,Cn are assigned to x : H . t1 : C1, . . . , tn : Cn.
There are pairwise disjoint events C′1 ⊆ C1, . . . ,C′n ⊆ Cn such that

(C′1 ∪ . . . ∪C′n) ∩H = H.

The events C′1 ∪ . . . ,C′n can be constructed from the dependencies of the
terms t1, . . . , tn.

Example 2. Consider the following very simple example:

x : C . x : C y : D . y : D
x : C . mkc(x, y) : C rD, y(x) : D

If events C and D are assigned to the typed terms x : C and y : D, respectively,
we have the following inclusions:

C ⊆ C D ⊆ D
C ⊆ (C ∩D) ∪D

But we have equality only by assigning C∩D to y(x) : D as suggested by the
dependency of y : D on x : C.
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Proof of the decomposition property. By induction on d. See [9].

Remark 5. (i) Since events are assigned to expressions t : X rather than to
formulas X, if t : X and u : X occur in the same context then (t : X)P and
(u : X)P are events that may or may not be disjoint of each other.

(ii) The common sense reading of the co-intuitionistic consequence relation
H ` C1, . . . , Cn is as follows.

If it is justified to make the hypothesis H, then it is justified to make
the hypotheses C1, . . . , Cn.

The probabilistic interpretation gives a mathematical counterpart of this read-
ing.

If the probability of the event H assigned to x : H is greater than zero,
then the conditional probability of the union of the events C1, . . . ,Cnassigned
to t1 : C1, . . . , tn : Cn, given H is equal to one.

The indexing of the terms t1, . . . , tn can be regarded as computational de-
vices for verifying such an interpretation in the sense of the Decomposition
Property.

8 Conclusions

We have examined the logical and philosophical standpoint of the logic for
pragmatics initiated by Carlo Dalla Pozza and Claudio Garola with the paper
[21]. It has the foundational ambition of showing the compatibility of intu-
itionism, as a logic of assertions and justifications, with classical logic, as a
logic of propositions and truth, in their two-layers system, according to the
principle change of logic, change of subject matter. We recognized that that
system gives a primary role to classical logic and the use of classical logic in
the meta-theory showed a reductive goal of reducing intuitionism to classical
constructivism.

We did not examine the project of Justification Logic promoted by S. Artemov
nor compared the massive work in that area with Dalla Pozza and Garola’s
contributions but recognized a similarity of intentions between the logic for
pragmatics and some work in Justification Logic.

We asked whether a non-reductive representation of intuitionism in the logic
for pragmatics was possible within that framework. We recognized the role
of illocutionary forces to separate the extensional semantics of classical logic
from the intensional aspects of illocutionary acts as represented in elementary
sentences. This intensional quality gives room to relate the logic for pragmatics
to modern aspects of intuitionism such as the Curry-Howard correspondence
and the “propositions as types” approach. However, an essential point in Dalla
Pozza and Garola’s viewpoint is that the distinction between truth and prov-
ability cannot be blurred. Their commitment to classical semantics is clear:
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in elementary expressions classical proposition are intended within the scope
of the operator of assertion or other illocutionary acts. A similar distinction
between provability and an intuitionistic notion of truth should be retained if
only intuitionistically acceptable propositions were allowed within the scope
of illocutionary operators, ruling out “intrinsically undecidable” statements.

An application of the principles of the logic for pragmatics to a treatment of
imperatives and norms, causal inferences and assertive reasoning was sketched
as proposed in [11, 14]. Such a logic, called ILPAOC , deals with the properties
of impersonal acts of assertion and acts of obligation, and relates them through
a notion of causal implication, regarded as a fragment of relevant logic. We
only considered here the syntax of ILPAOC .

In Section 4.2 we reconsidered the treatment of bi-intuitionistic logic as de-
veloped in [7, 8, 10] and gave a correct definition of the logic AHL that does
represent the duality between intuitionism and co-intuitionism as a logic of
assertions and objections. We ensure that the dual negations ( )⊥ that are
internal to the language LAH agree with the maps between the intuitionistic
language LA and the co-intuitionistic language LH . As a consequence, the con-
jecture that the categorical notion of chirality applies to the bi-intuitionistic
logic AHL , as stated in [10], remains plausible.

Next we considered what appear as new illocutionary operators of expectation
E and conjecture C. They are defined through the S4 modal translation, by
letting (Ep∗)M = �♦p∗ and (C(p))M = ♦�p. Then the Kripke model interpre-
tation gives us the intuition of an expectation that in any situation we expect
to find a situation where p is true. Similarly the intuition of a conjecture is
given by the possibility of a situation where p is valid.

We show that the language built from elementary formulas Ep∗ with intuition-
istic conjunction and implication but not intuitionistic disjunction is closed
under the double negation rule. It is a classical result that a “�♦” translation
of classical logic into S4 given by the map p 7→ �♦p and the intuitionistic
translation of the connectives except idisjunction, is sound and complete: we
give a pragmatic interpretation of it. An entirely analogue discussion applies
to the relations between Conjectures and Hypotheses.

A pragmatic treatment of co-intuitionism, seen as a logic of hypotheses, was
then reviewed, considering work by Bellin et al. [7, 8, 9, 13, 10]. The difficulty
of extending the BHK interpretation to co-intuitionism was also recognized,
given the elusive nature of the notion of a “spark of evidence” which suffices
to justify a hypothesis.

On the other hand, the term assignment to co-intuitionistic sequent calcu-
lus using a distributed calculus of coroutines “dual” to the simply typed λ-
calculus, does provide a pragmatic intuition of how “parcels of evidence” may
be treated in this logic. Essentially we have the notion of a computational
context Sx, consisting of the parallel composition of terms which are then
assigned to a co-intuitionistic sequent x : C ⇒ t1 : C1, . . . , tn : Cn. Such
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context are extended by merging two contexts in a cut, in a subtraction right
and in adisjunction left inference, and are reduced in a subtraction left and
a disjunction right inference. With subtraction left we associate an operator
postpone(z 7→ `, u) that takes threads from z : C to the list ` : D and sets
them aside in a location •, because such threads are incompatible with the
information that v : C rD.

z : C ⇒ ` : D, Sz : Υ
r L

v : C rD ⇒ postpone(z 7→ `, v) : •, Sz(v) : Υ

These threads will be reused if in the normalization process the formula C r
D is eliminated. As we can see, thus the calculus represents the dialectical
process of extending and reducing the context of possible alternatives that
are consequences of a single hypothesis. Moreover we have a computational
notion of normalization that can simulate the simply typed λ calculus with
pairs and projections. We claim that this calculus gives a clear picture of what
is done within the logic.

We give an informal presentation of the co-intuitionistic calculus of coroutines
first. Then in the linear case we give a formal presentation.

It is evident that the distributed calculus of co-intuitionistic coroutines gives a
static picture of a computations: it multiplies possible parallel avenue, some of
which are first postponed then recovered. This is not surprising: the refutation
of a hypothesis requires conclusive evidence against it, but deriving partial
evidence for hypotheses from the evidence for one hypothesis cannot yield a
conclusive evidence. The computational use of coroutines in the context of
functional programming is gives a totally different view of the dynamics of
computation. This indeed is the case with T. Crolard notion of coroutine, in
the context of the λµ-calculus.

On the other hand a natural mathematical treatment of hypotheses is by
using probability theory, as Carlo Dalla Pozza did in his work on Bayesian
probability. We do have some information about how the probability of a
hypothesis is related to the probabilities of its consequences. in a remark
Indeed a probabilistic interpretation can be given to linear co-intuitionistic
sequents decorated with a co-intuitionistic calculus of coroutines. Then one
proves that the probability of a hypothesis x : H is the same as the sum of the
probabilities of the terms ti : HI in the computational context Sx, provided
that the probability assignments are done correctly : this information can be
given to us by the terms ti in the computational context Sx. The result applies
to the linear cointuitionistic calculus.

In conclusion, the logic for pragmatic has raised interesting problems in the
consideration of the relations between intuitionistic logic, classical semantics
and classical modal logic. Also it has given given interesting applications to
representation of common sense reasoning and deontic logic. The problem of
an interpretation of bi-intuitionistic logic which could represent the duality
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between intuitionistic and co-intuitionistic logic in proof-theoretic and cat-
egorical terms remains open, but the conjecture by Melliès that it can be
represented as a dialogue chirality remains plausible.
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9 APPENDIX I. Sequent Calculus AH-G1

We give here the sequent calculus used in [10] for the logic AH.

9.1 Sequent calculus AH-G1.

The sequent calculus AH-G1 has sequents of one of the forms

Θ ; ⇒ A ; Υ or Θ ; C ⇒ ; Υ

where the multiset Θ and A are assertive formulas and the multiset Υ and C
are hypothetical formulas. We use the abbreviation

Θ ; ε ⇒ ε′ ; Υ

where exactly one of ε or ε′ is non-null. The inference rules of AH-G1 are in
the following Tables.

logical axiom:
A ; ⇒ A ;

logical axiom:
; C ⇒ ; C

cut1:

Θ ; ⇒ A ; Υ A,Θ′ ; ε ⇒ ε′ ; Υ ′

Θ,Θ′ ; ε ⇒ ε′ ; Υ, Υ ′

cut2:

Θ ; ε ⇒ ε′ ; Υ,C Θ′ ; C ⇒ Υ ′

Θ,Θ′ ; ε ⇒ ε′ ; Υ, Υ ′

Proper axioms of assertions and hypotheses

`/ H left

`p ; j ⇒ ; H p

`/H right
`p ; ⇒ u ; H p

Table 2. Identity Rules
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contraction left

A,A,Θ ; ε ⇒ ε′ ; Υ

A,Θ ; ε ⇒ ε′ ; Υ

contraction right

Θ ; ε ⇒ ε′ ; Υ,C.C

Θ ; ε ⇒ ε′ ; Υ,C

weakening left

Θ ; ε ⇒ ε′ ; Υ

A,Θ ; ε ⇒ ε′ ; Υ

weakening right

Θ ; ε ⇒ ε′ ; Υ

Θ ; ε ⇒ ε′ ; Υ,C

Table 3. AH-G1 Structural Rules

assertive validity axiom:

Θ ; ⇒ g ; Υ

⊃ right:
Θ,A1 ; ⇒ A2 ; Υ

Θ ; ⇒ A1 ⊃ A2 ; Υ

⊃ left :
Θ1; ⇒ A1 ; Υ1 A2, Θ2 ; ε ⇒ ε′ ; Υ2

A1 ⊃ A2, Θ1, Θ2 ; ε ⇒ ε′ ; Υ1, Υ2

∩ right:

Θ ; ⇒ A1 ; Υ Θ ; ⇒ A2 ; Υ

Θ ; ⇒ A1 ∩A2 ; Υ

∩ left:

Ai, Θ ; ε ⇒ ε′ ; Υ

A0 ∩A1, Θ ; ε ⇒ ε′ ; Υ

for i = 0, 1.

Table 4. AH-G1 intuitionistic rules

hypothetical absurdity axiom:

Θ ; f ⇒ ; Υ

r right:
Θ1 ; ε ⇒ ε′ ; Υ1, C1 Θ2 ; C2 ⇒ ; Υ2

Θ1, Θ2 ; ε ⇒ ε′ ; Υ1, Υ2, C1 r C2

r left:
Θ; C1 ⇒ ; Υ,C2

Θ ; C1 r C2 ⇒ ; Υ

g right:
Θ ; ε ⇒ ε′ ; Υ,C0, C1

Θ ; ε ⇒ ε′ ; Υ,C0 g C1

g left:
Θ1 ; C1 ⇒ ; Υ1 Θ2 ; C2 ⇒ ; Υ2

Θ1, Θ2 ; C1 g C2 ⇒ ; Υ1, Υ2

Table 5. AH-G1 Co-Intuitionistic Rules

Remark 6. The syntax is chosen so that exactly one formula occurs in one of
the focussed areas. If the right one is occupied by an assertive formula, we
think of the sequent as part of an intuitionistic proof; similarly, when the left
one is occupied by a hypothetical formula, the sequent is regarded as part of
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h⊥a right:

Θ ; C ⇒ ; Υ

Θ ; ⇒ C⊥ ; Υ

h⊥a left:

Θ; ε ⇒ ε′ ; Υ,C

C⊥, Θ ; ε ⇒ ε′ ; Υ

a⊥h right:

Θ,A ; ε ⇒ ε′ ; Υ

Θ ; ε ⇒ ε′ ; Υ,A⊥

a⊥h left:

Θ; ⇒ A ; Υ

Θ ; A⊥ ⇒ ; Υ

u/j left

u ; j ⇒ ;

u/j right

; ⇒ u ; j

Table 6. AH-G1 Duality Rules

a co-intuitionistic proof. The duality rules operating on focussed areas switch
between the two interpretations.

9.2 Dialogue chirality.

The concept of chirality, due to Paul-André Melliès [34], provides an abstract
characterisation of the interactions within bi-intuitionism and the emergency
of classical behaviour in them. We have a pair of dual monoidal categories
(A,B), where the “intuitionistic” structure A is cartesian closed, and B is“co-
intuitionistic”.

Definition 12. A dialogue chirality on the left is a pair of monoidal categories
(A,∧, true) and (B,∨, false) equipped with an adjunction

A

L

%%
⊥ B
R

ee

whose unit and counit are denoted as

η : Id → R ◦ L ε : L ◦R→ Id

together with a monoidal functor

(−)∗ : A → Bop

and a family of bijections

χm,a,b : 〈m ∧ a|b〉 → 〈a|m∗ ∨ b〉

natural in m, a, b (curryfication). Here the bracket 〈a|b〉 denotes the set of
morphisms from a to R(b) in the category A:
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〈a|b〉 = A(a,R(b)).

The family χ is moreover required to make the diagram

〈(m ∧ n) ∧ a | b〉
χm∧n

//

assoc.

��

〈a | (m ∧ n)∗ ∨ b〉

=

〈m ∧ (n ∧ a) | b〉
χm // 〈n ∧ a | m∗ ∨ b〉

χn // 〈a | n∗ ∨ (m∗ ∨ b)〉

assoc. monoid. of (−)∗

OO

commute for all objects a, m, n, and all morphisms f : m→ n of the category
A and all objects b of the category B.

Thus in a chirality we have a sort of “De Morgan definition” of implication.

Consider the “sketch of proof” given in [10]. Paul-André Melliès’ notion
of dialogue chirality [34] requires two monoidal categories (A,∧, true) and
(B,∨, false), a monoidal contravariant functor ( )∗ : A → Bop and an adjunc-
tion L a R between functors L : A → B and R : B → A. We claimed that
polarized bi-intuitionism AHL with the sequent calculus AH-G1 constitutes
a dialogue chirality.

We suggested to define A as the free category on the language LA of Int with
equivalence classes of AH-G1 intuitionistic sequent derivations as morphisms
and B as the free category on the language LH of co-Int with co-intuitionistic
sequent derivations as morphisms. We gave AH-G1 proofs that can be inter-
preted as the unit and the co-unit of an adjunction between suitable functors
L =♦· and R =�·, namely, the proof of Proposition 4 (ii) in Section 4.3. Then
we claimed that the operation ( )⊥ : A → Hop is functorial. In a logic of
assertions and hypotheses by the Remark 1 with the definition (1) in Section
1 adopted in [10], the metatheoretic map ( )⊥ is not defined on elementary
formulas of LA. Hence the conjecture is false. But in a logic of assertions and
objections with the official definition 3 in Section 4.2 the metatheoretic map
( )⊥ is total, hence there is no obvious error in our suggested approach to
Melliès conjecture.


