
Hidden Protocols:
Modifying our expectations in an evolving world

Hans van Ditmarscha, Sujata Ghoshb, Rineke Verbruggec, Yanjing Wangd,∗

aLORIA, CNRS – Université de Lorraine, France
bIndian Statistical Institute, Chennai, India

cInstitute of Artificial Intelligence, University of Groningen, The Netherlands
dDepartment of Philosophy, Peking University, China

Abstract

When agents know a protocol, this leads them to have expectations about
future observations. Agents can update their knowledge by matching their
actual observations with the expected ones. They eliminate states where
they do not match. In this paper, we study how agents perceive proto-
cols that are not commonly known, and propose a semantics-driven logical
framework to reason about knowledge in such scenarios.

In particular, we introduce the notion of epistemic expectation models
and a propositional dynamic logic-style epistemic logic for reasoning about
knowledge via matching agents’ expectations to their observations. It is
shown how epistemic expectation models can be obtained from epistemic
protocols. Furthermore, a characterization is presented of the effective
equivalence of epistemic protocols. We introduce a new logic that incor-
porates updates of protocols and that can model reasoning about knowl-
edge and observations. Finally, the framework is extended to incorporate
fact-changing actions, and a worked-out example is given.

Keywords: protocols, dynamic epistemic logic, guarded automata

∗Corresponding author
Email addresses: hans.van-ditmarsch@loria.fr (Hans van Ditmarsch),

sujata@isichennai.res.in (Sujata Ghosh), rineke@ai.rug.nl (Rineke Verbrugge),
y.wang@pku.edu.cn (Yanjing Wang)

Preprint submitted to Artificial Intelligence December 23, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/186331964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Talking about knowledge and protocols, some questions come to our
minds: What do we mean by knowing a protocol? How does this proto-
col knowledge affect our knowledge of facts about the world? The literature
abounds with various formal models answering these questions from differ-
ent angles [1, 2, 3, 4, 5], and the proper representation and formalization
of knowledge and knowledge dynamics is a core interest in the area of
artificial intelligence [6, 7, 8, 9]. In some situations, agents have partial
knowledge of the underlying protocols that guide the behaviors of other
agents. Based on their incomplete knowledge of protocols and their obser-
vations, the agents try to reason about other agents’ epistemic attitudes as
well as about hard facts. Protocols play a role, for example, when agents
communicate using full-blown secret codes (see [10] for many intriguing
historical examples). Our daily communications provide more mundane
protocols that may help to hide information from part of the participants.

Example 1 (The voice of Kathleen Ferrier). Consider a café in the 1950s,
with three persons, Kate, Jane and Ann sitting across a table. Suppose Kate is
gay and wants to know whether either of the other two is gay. She wants to
convey the right information to the right person, without the other getting any
idea of the information that is being communicated. She states, ‘I am musical,
I like Kathleen Ferrier’s voice’. Jane, who is gay herself, immediately realizes
that Kate is gay, whereas, for Ann, the statement just conveys a particular
taste in music.1

Example 2 (Valentine’s Day). Coming back to the present day, consider a
similar café scenario with Carl, Ben and Alice. Carl and Ben are childhood
friends and know each other like the back of their hands. Carl says to Ben:
‘On Valentine’s day I went to the pub with Mike and Sara. It was a crazy
night!’ This immediately catches the attention of Alice, who is in love with
Mike. She asks: ‘What happened?’ Carl winks to Ben and says: ‘Nothing’.
Knowing Carl very well, Ben immediately realizes that indeed nothing has

1This example has been inspired by the interviews in [11], from which it appears that
in 1950s Amsterdam, ‘musical’ was indeed a code term for ‘gay’, known almost exclusively
by gay people. The additional mention of singer Kathleen Ferrier strengthened this ‘gay’
hint. Among gay women, Ferrier’s low contralto voice, for example in her performance as
Orfeo in Gluck’s Orfeo ed Euridice, was widely popular.

2

happened, whereas Alice becomes unsure of that, as she saw the wink that
Carl has given to Ben.

This paper presents a dynamic epistemic logic (DEL, [12, 13]) that can
suitably describe such scenarios. Knowing a protocol can mean ‘knowing
what to do according to the protocol’ [1]. It can also correspond to ‘un-
derstanding the underlying meaning of the actions induced by the proto-
col’ [2]. Here, we follow the latter interpretation, which appears to capture
the notion of a protocol in the types of situations we want to model. Kate’s
making a statement like ‘I am musical, I like Kathleen Ferrier’s voice’ cor-
responds to the fact that ‘Kate is gay’. In the second situation, ‘Nothing’
(even if accompanied by a wink) corresponds to the fact that ‘Nothing has
happened’.

Our work is inspired by two lines of research: the work relating dynamic
epistemic logic (DEL) and epistemic temporal logic (ETL) [3, 5, 14] and the
work on protocol changes [4, 15]. In [14], Pacuit and Simon model pro-
tocols as tree compositions, basically equating protocols with plans. Hoshi
et al. [3, 5] propose the notion of ‘state-dependent’ DEL-protocols (sets of
sequences of event models [13]) in order to handle protocols that are not
common knowledge. Consider an epistemic scenario wherein the agents
are not only uncertain about the factual state of the world but also about
the protocol that can be executed given some factual state, depicted as the
model:

s t

{a} {b}

p ¬p

1, 2

In this model, s, t are possible worlds, p is a proposition, and a, b are ex-
pected actions. The uncertainty of the agents about the protocol is denoted
by a state-dependent protocol assigning singleton action sets {a} to s and
{b} to t. Note that we have omitted the reflexive arrows for agents 1 and 2
for the sake of compact representation, and we will follow this convention
throughout this paper. A system wherein the protocol can be different in
any state is clearly more complex than a system wherein the protocol is a
background parameter, and thus can be assumed common knowledge to all

3

agents. But in the example model above, we can still reclaim some form
of common knowledge of the protocol, namely by describing it intuitively
as follows: if p then a and if ¬p then b. In order to discuss the knowledge
of protocols formally, we need to first fix a protocol specification language,
which will then enable us to represent such protocol models in a more
informative way.

Given a protocol language, how do we obtain such epistemic models
with protocol information from specifications of conditional protocols, and
vice versa? Similar questions are addressed in [4, 15], in which Wang
presents a logical framework that incorporates protocol specifications in
epistemic models and introduces the idea of matching observations to ex-
pectations. However, there, protocols are assumed to be common knowl-
edge. We do not assume that here.

Our work is based on the logic developed in [4] but in the current ar-
ticle we use epistemic models with procedural information as in [3, 5] to
deal with uncertainties about protocols, an agent’s knowledge of underly-
ing protocols, and her current observations affecting factual uncertainty. In
our framework, the protocols can be viewed as ‘given by nature’, so the
framework does not cover interesting aspects such as how and by whom
the protocols have been designed and how agents have come to agree to
use them.

The ingredients of our work are:

1. epistemic models encoding state-dependent expected observations;
2. an update mechanism for eliminating impossible worlds according to

the observation of agents and their expectations;
3. a formal language for specifying observations and protocols;
4. protocol models that represent agents’ incomplete information about

the ‘real’ protocols;
5. an update mechanism for incorporating protocol information (as pro-

tocol models) in epistemic (observation) models;
6. a notion of equivalence between protocol models;
7. a logic for reasoning about knowledge based on protocols;
8. fact-changing actions and factual change systems, in order to investi-

gate how we modify our expectations in an evolving world.

The paper is organized as follows. Section 2 introduces epistemic expec-
tation models and a simple propositional dynamic logic (PDL)-style epis-

4

temic logic for reasoning about knowledge via matching agents’ expecta-
tions to their observations. Section 3 discusses how we obtain epistemic
expectation models from protocol models (i.e., epistemic protocols). We
characterize three classes of epistemic expectation models that can be gen-
erated from various epistemic models. Furthermore we give a characteri-
zation of the effective equivalence of epistemic protocols. A logic is then
given to incorporate the updates of protocols and to model reasoning about
knowledge and observations. In Section 4 we address incorporation of fact-
changing actions. Section 5 discusses the application of the full framework,
including factual changes, to a well-known logic puzzle. Finally, we point
out relations to other research and future work in Sections 6 and 7.

This article is the extended version of [16]. The main differences are:
the introduction of the concept of observational saturation and a theorem
about its relation to protocol models (Theorem 29); results about systems
with fact-changing actions (Section 4); an extended application, namely
about a protocol in the ‘One hundred prisoners and a lightbulb’ puzzle
(Section 5); and a more extensive discussion of related work and ideas for
future research (Sections 6 and 7).

2. Reasoning via Expectation and Observation

In this section, we introduce epistemic expectation models, which are
Kripke models with expected observations. We propose a dynamic logic
style epistemic logic that is interpreted on such models for reasoning about
knowledge via matching observations with expectations.

2.1. Epistemic Expectation Models
Let I be a finite set of agents, and let P be a finite set of propositions de-

scribing the facts about the world. Let Bool(P) denote the set of all Boolean
formulas over P. To set up the semantics, we first define a Kripke model
in the usual sense, which models agents’ epistemic uncertainties regarding
the actual state of the world.

Definition 3 (Epistemic model). An epistemic modelMe is a triple 〈S,∼
, V 〉, where S is a non-empty domain of states, ∼ stands for a set of accessi-
bility (equivalence) relations {∼i| i ∈ I}, and V : S → P(P) is a valuation
assigning to each state a set of propositional variables (those that are ‘true in
that state’).

5

We will introduce the concept of epistemic expectation models based on
Kripke models, which captures the expected observations of agents. Agents
observe what is happening around them and reason based on these ob-
servations. Examples of such observations are ‘making an announcement’,
‘going to the right’, and ‘nodding your head’. One can distinguish such ob-
servations of actions from observations of facts, such as ‘the chair is red’.
Factual observations are not ruled out in our framework but we typically
have observations of actions in mind. To this end, we introduce a finite
set of actions, named Σ. An observation is a finite string of actions, for
example, abcd. Note that an agent may expect different (even infinitely
many) potential observations to happen at a given state, for example, she
may expect a . . . ab to happen for any finite sequence of as preceding the
terminating action b. As human beings and computers are essentially fi-
nite, we need to denote such expectations in a finitary way. To this end, we
introduce the observation expressions (as regular expressions over Σ):

Definition 4 (Observation expressions). Given a finite set of action sym-
bols Σ, the language Lobs of observation expressions is defined by the follow-
ing BNF:

π ::= δ | ε | a | π · π | π + π | π∗

where δ stands for the empty set ∅ of observations, the constant ε represents
the empty string, and a ∈ Σ.

The semantics for the observation expressions are given by sets of obser-
vations (strings over Σ), similar to those for regular expressions.

Definition 5 (Observations). Given an observation expression π, the corre-
sponding set of observations, denoted by L(π), is the set of finite strings over
Σ defined as follows:

L(δ) = ∅
L(ε) = {ε}
L(a) = {a}
L(π · π′) = {wv | w ∈ L(π) and v ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪⋃

n>0(L(π · · · π︸ ︷︷ ︸
n

))

6

Now we are ready to define epistemic observation models, which can be
seen as epistemic models together with, for each world, a set of potential
or expected observations.

Definition 6 (Epistemic expectation model). An epistemic expectation model
Mexp is a quadruple

〈S,∼, V, Exp〉,
where 〈S,∼, V 〉 is an epistemic model (the epistemic skeleton ofMexp) and
Exp : S → Lobs is an expected observation function assigning to each state an
observation expression π such that L(π) 6= ∅ (non-empty set of finite sequences
of observations). An epistemic expectation state is a pointed epistemic expec-
tation model 〈S,∼, V, Exp, s〉. Intuitively, Exp assigns to each state a set of
potential or expected observations.

Given an epistemic expectation modelMexp = 〈S,∼, V, Exp〉, note that
〈S,∼, V 〉 is an epistemic model in the usual sense. Hence, sometimes, we
also denote an epistemic expectation model as (Me, Exp), whereMe is the
corresponding epistemic model. An epistemic modelMe can be considered
as an epistemic expectation modelMexp where for all s ∈ S, Exp(s) = Σ∗

(where Σ∗ is shorthand for (a0+a1+· · ·+ak)∗, given that Σ = {a0, . . . , ak}).
Thus, in an epistemic model, the observations possible at each state are not
specified; one can expect to observe anything. In this sense, Me lacks in
providing procedural information about the world, andMexp fills that gap.
In what follows we often leave out the subscripts, whenever the respective
models are clear from the context.

Example 7 (Dutch or not Dutch). In the Netherlands, people often greet
each other by kissing three times on the cheek (left-right-left) while in the rest
of Europe, people usually kiss each other only twice. We can reason whether a
person is ‘Dutch-related’ by observing his behavior. Let pD be the proposition
meaning ‘Simon is Dutch-related’; a and b are two actions denoting kissing
the left cheek and kissing the right cheek, respectively. The following model is
what we expect (reflexive arrows are omitted again):

s t
1

pD ¬pD

a · b · a a · b

7

The indistinguishability relation above depicts that agent 1 does not know
whether pD. The associated observations are those that the agents might
expect in each state. Intuitively, if agent 1 observes Simon kissing three
times (observation aba), then he or she can infer that Simon is Dutch-
related. In the next subsection, a simple logic is defined to handle such
reasoning based on actual observations.

2.2. Public Observation Logic
In this subsection we define a simple dynamic logic with knowledge op-

erators to reason about knowledge via the matching of observations and
expectations. The idea is similar to the one behind public announcement
logic, where people update their information by deleting impossible sce-
narios according to what is publicly announced. Here we relax the link
between meaning and public actions (like an announcement). We assume
that when observing an action, people delete some impossible scenarios
where they wouldn’t expect that observation to happen. To make such rea-
soning formal, we first define the update of epistemic expectation models
according to some observation w ∈ Σ∗. The idea behind an updated expec-
tation model is that we delete the states where the observation w could not
have been happened.

Definition 8 (Update by observation). Let w be an observation over Σ and
letM = (S,∼, V, Exp) be an epistemic expectation model. The updated model
M|w = (S ′,∼′, V ′, Exp′). Here, S ′ = {s | L(Exp(s)\w) 6= ∅}, ∼′i = ∼i|S′×I×S′ ,
V ′ = V |S′ , and Exp′(s) = Exp(s)\w, where π\w is defined as the regular
expression denoting the set {v | wv ∈ L(π)} (π\w corresponds to right resid-
uation with respect to the monoid (Σ∗, ·, ε)).

A regular expression π\w is defined with an auxiliary output function
o from the set of regular expressions over Σ to {δ, ε}. If ε ∈ L(π), the
output function o maps a regular expression π to ε; otherwise, it maps π to
δ [17, 18]:

π = o(π) +
∑

a∈Σ(a · π\a)
o(ε) = ε
o(δ) = o(a) = δ
o(π + π′) = o(π) + o(π′)
o(π · π) = o(π) · o(π′)
o(π∗) = ε

ε\a = δ\a = b\a = δ (a 6= b)
a\a = ε
(π + π′)\a = π\a+ π′\a
(π · π′)\a = (π\a) · π′ + o(π) · (π′\a)
π∗\a = π\a · π∗
π\a0 · · · an = π\a0\a1 . . . \an

8

The above construction of the output function helps to compute the resid-
ual of compositions. Reading from left to right the above equations can be
viewed as rewriting rules which push the \a operation to the ‘inner’ part of
the expression and finally eliminate them. Thus by using these equations
we can compute residuals of observations syntactically.

We design the Public observation logic (POL) to reason about observations:

Definition 9 (Public observation logic). The formulas ϕ of POL are given
by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [π]ϕ

where p ∈ P, i ∈ I, and π ∈ Lobs . The other propositional connectives are
defined in the usual manner.

Intuitively, [π]ϕ says that ‘after any observation in π, ϕ holds’.

Definition 10 (Truth definition for POL). Given an epistemic expectation
model M = (S,∼, V, Exp), a state s ∈ S, and a POL-formula ϕ, the truth
of ϕ at s, denoted byM, s � ϕ, is defined as follows:

M, s � p ⇔ p ∈ V (s)
M, s � ¬ϕ ⇔ M, s 2 ϕ

M, s � ϕ ∧ ψ ⇔ M, s � ϕ andM, s � ψ
M, s � Kiϕ ⇔ for all t : (s ∼i t impliesM, t � ϕ)
M, s � [π]ϕ ⇔ for each w ∈ L(π) : (w ∈ init(Exp(s)) impliesM|w, s � ϕ)

where w ∈ init(π) iff ∃v ∈ Σ∗ such that wv ∈ L(π) (namely L(π\w) 6= ∅).

Consider the modelM in Example 7. If we observe one or two kisses,
first on the left and then on the right cheek (a · b), agent 1 still cannot tell
that Simon is Dutch-related (¬K1pD), but if there is one more kiss on the
left cheek to follow (a), then agent 1 knows. Formally, it can be verified
that M, s � [a · b](¬K1pD ∧ [a]K1pD) (cf. Example 7). More complicated
observation expressions π can be used to express (infinite) sets of observa-
tions, for example, [Σ∗ · a · Σ∗]Kiϕ says ‘as long as a is observed at some
point, i knows ϕ’ (recall that Σ∗ denotes the expression corresponding to
the set all observations).

9

Clearly, the standard bisimulation between epistemic models is not an
invariance of the above logic: POL can reason about what may happen
at each state. We now define bisimulation between epistemic expectation
models, which facilitates characterization results in later sections.

Definition 11 (Observation bisimulation). A binary relationR between the
domains of two epistemic expectation models M = (S,∼, V, Exp) and N =
(S ′,∼′, V ′, Exp′) is called a bisimulation if for any s ∈ S, s′ ∈ S ′, we have that
if (s, s′) ∈ R, then the following conditions hold:

Propositional invariance V (s) = V ′(s′);

Observational invariance L(Exp(s)) = L(Exp′(s′));

Zig if s ∼i t inM then there exists a t′ in N such that s′ ∼′i t′ and tRt′;

Zag if s′ ∼′i t′ in N then there exists a t inM such that s ∼i t and tRt′.

A bisimulation R is total if every state in one model is linked by R to some
state in the other model. M andN are said to be (total) bisimilar (M↔o N)
if there is a (total) bisimulation R betweenM and N . (M, s) and (N , s′) are
said to be bisimilar (M, s↔o N , s′) if there is a bisimulation R between them
such that (s, s′) ∈ R.

Note that the standard bisimilarity (notation ↔) is defined as ↔o without
the condition for the invariance for observations. It is not hard to show that
↔o and logical equivalence ≡POL coincide on finite models:

Proposition 12 (Bisimulation invariance). For any two finite epistemic ex-
pectation statesM, s and N , s′, the following statements are equivalent:

• M, s↔o N , s′

• For any formula ϕ ∈ POL :M, s � ϕ ⇐⇒ N , s′ � ϕ

Proof. [↔o =⇒ ≡POL]: We prove this by induction on ϕ. The Boolean and
Kiψ cases are trivial. Now consider ϕ = [π]ψ; so suppose that M, s ↔o

N , s′ butM, s � [π]ψ and N , s′ 2 [π]ψ. Then there exists a w ∈ L(π) such
that w ∈ init(Exp(s′)) and N|w, s′ � ¬ψ.

By the definition of↔o, we have L(Exp(s)) = L(Exp(s′)), therefore w ∈
init(Exp(s)). Thus M|w, s exists. We now show that M|w, s ↔o N|w, s′.

10

Let R be {(t, t′) ∈ SM|w × SN|w | M, t ↔o N , t′}. Clearly (s, s′) ∈ R. Note
that if L(Exp(t)) = L(Exp(t′)) then L(Exp(t)\w) = L(Exp(t′)\w); this proves
the invariance for observations. Based on this invariance, it is not hard to
verify that R is indeed an observation bisimulation betweenM|w and N|w.

SinceM|w, s↔o N|w, s′, by induction hypothesis we conclude that

M|w, s � ¬ψ.

Clearly, this contradicts the assumption thatM, s � [π]ψ.

[≡POL =⇒ ↔o]: Let R = {(t, t′) ∈ SM × SN | M, t ≡POL N , t′}. We can
show that R is an observation bisimulation. All the conditions are standard
and thus can be handled by standard techniques except the new clause
about the invariance for observations: we need to show that tRt′ implies
L(Exp(t)) = L(Exp(t′)). However, this is trivial, since in the language of
POL we can express 〈w〉>, so that M, t � 〈w〉> ⇐⇒ w ∈ L(Exp(t)). �

Intuitively, these epistemic expectation models can be seen as compact rep-
resentations of certain epistemic temporal models [2, 3]. An epistemic
temporal model is a Kripke model with both epistemic and temporal bi-
nary relations between possible worlds. To make the link more precise, we
can relate POL on epistemic expectation models to the same language on
epistemic temporal models with the usual PDL-style interpretation of [π]ϕ
formulas, as we now proceed to show. First let us define the epistemic
temporal models that are generated from epistemic expectation models.

Definition 13. LetM be an epistemic expectation model 〈S,∼i, V, Exp〉. The
M-generated epistemic temporal model (notation: ET(M)) is defined as 〈H, a→
,∼′i, V ′〉 where:

• H = {(s, w) | s ∈ S,w = ε or w ∈ L(Exp(s))};
• (s, w)

a→ (t, v) ⇐⇒ s = t and v = wa, a ∈ Σ;

• (s, w) ∼i (t, v) ⇐⇒ s ∼i t and w = v;

• p ∈ V ′(s, w) ⇐⇒ p ∈ V (s).

From this definition, it is not hard to see that all the agents can observe
all the actions. We can define the semantics of POL formulas on generated

11

epistemic temporal models N (we only show the non-trivial part):

N , h �EPDL Kiϕ ⇔ for all h′ : (h ∼i h′ implies N , h′ �EPDL ϕ)

N , h �EPDL [π]ϕ ⇔ for each w ∈ L(π), h
w→ h′ implies N , h′ �EPDL ϕ

We call the above semantically defined logic Epistemic-PDL (EPDL): the
language of POL interpreted on epistemic temporal models with respect to
�EPDL. To establish the precise link between epistemic expectation models
and epistemic temporal models, we can prove the following.

Proposition 14. Given a pointed POL modelM, s, and a POL formula ϕ, it
can be shown that:

M, s � ϕ ⇐⇒ ET(M), (s, ε) �EPDL ϕ.

Proof. We need to show for any epistemic expectation modelM, s and any
POL formula ϕ:

M, s � ϕ ⇐⇒ ET(M), (s, ε) �EPDL ϕ

We prove this by induction on ϕ. The Boolean case and the Kiψ case are
trivial. Now consider the case [π]ψ. Suppose without loss of generality that
there is an epistemic expectation modelM, s � [π]ψ and ET(M), (s, ε) 2EPDL
[π]ψ. Then there exists a w ∈ L(π) such that ET(M), (s, w) 2 ψ. By the def-
inition of ET(M), we conclude that w ∈ Exp(s), thus M|w exists. Based
on the definition of ET(M), it is not hard to show that ET(M|w), (s, ε) is
bisimilar (with respect to both ∼ and →) to ET(M), (s, w). Since EPDL is
clearly invariant under bisimulation, we have:

ET(M|w), (s, ε) �EPDL ¬ψ.
By induction hypothesis, M|w, s � ¬ψ, which contradicts the assumption
thatM, s � [π]ψ. �

Note that the generated epistemic temporal models can be infinite, and
thus the above result does not give a straightforward model checking proce-
dure for POL. According to the semantics of [π]ϕwe need to check infinitely
many w ∈ L(π). Fortunately, this can be handled by partitioning L(π) into
a finite number of regular expressions π0 . . . πk such that for any 0 ≤ i ≤ k
and any w, v ∈ L(πi), we haveM|w =M|v, providing decidability of model
checking after all (see [15] for details in a similar setting).

12

3. Expectation Comes from Protocols

Epistemic expectation models describe the agents’ expected observa-
tions, which in turn influence their reasoning. We investigate how agents
acquire and change their expectations, by looking at protocols and protocol
models as sources for the expected observations.

3.1. Protocol expressions
Informally, a protocol is a rule telling us what we should do under what

conditions. Protocols are ubiquitous in our daily life. A formal way of
expressing such protocols or rules is to use a specification language. We
specify protocols in the following language of protocol expressions Lprot:
Definition 15 (Protocol expression). The language Lprot of protocols is de-
fined by the following BNF:

η ::= δ | ε | a | ?ϕ | η · η | η + η | η∗

where δ stands for the empty language ∅, the constant ε represents the empty
string, and ϕ ∈ Bool(P).

The above language of protocol expressions is obtained by adding Boolean
tests to observation expressions. For example, (?love · stay)∗ · (?¬love ·
separate) expresses ‘we should stay together as long as we are in love’. For
a discussion on more complicated test scenarios (for example, considering
agents’ knowledge), see Section 7. We use test conditions in protocol ex-
pressions to describe the conditions under which certain observations can
happen. A protocol without tests corresponds to observations without any
conditions. This is the difference between protocols and the observations
that arise out of such protocols, and we maintain this difference by adding
tests to the observation expressions in order to express protocols. In the lat-
ter part of this section we will talk about public and private protocols. To
this end, we will use dynamic epistemic logic (DEL)-like models to discuss
knowledge and ignorance about protocols.

In the story of Example 7, there seems to be an underlying protocol: if
you are Dutch-related, then you kiss three times and if you are non-Dutch-
related, then you kiss two times. This is the reason for the agent to have the
corresponding expectations of the observations. This protocol (call it πK)
can be expressed as ?pD · a · b · a+?¬pD · a · b. We would like to generate the
epistemic expectation model in Example 7 (see page 7) from the protocol
πK and the following epistemic model:

13

s t
1

pD ¬pD

Intuitively, the information of the protocol πK can be incorporated by
adding to each state the possible observations allowed by the protocol. We
now move on to the technical details.

To compute the expected observations corresponding to a given proto-
col, we first define the semantics of protocol expressions. Intuitively, we
associate to each protocol η a set Lg(η) of guarded observations in the form
of

ρ0a0ρ1a1 . . . ρkak,

where each ρi ⊆ P denotes a state of affairs (the atomic propositions p ∈ ρ
are true while the others are false), encoding the conditions for the later
observations to happen. For Boolean formulas ϕ, we write ρ � ϕ if ϕ is true
under ρ (viewed as a valuation: p is true iff p ∈ ρ).

Definition 16. The set of guarded observations corresponding to a protocol
expression is defined by induction, as follows:

Lg(δ) = ∅
Lg(ε) = {ρ | ρ ⊆ P}
Lg(a) = {ρaρ | ρ ⊆ P}
Lg(?ψ) = {ρ | ρ � ψ, ρ ⊆ P}
Lg(η1 · η2) = {w � v | w ∈ Lg(η1), v ∈ Lg(η2)}
Lg(η1 + η2) = Lg(η1) ∪ Lg(η2)
Lg(η∗) = {ρ | ρ ⊆ P} ∪⋃

n>0(Lg(ηn)),

where � is the fusion product: w � v = w′ρv′ when w = w′ρ and v = ρv′, and
not defined otherwise.

Note that the ρi’s in a guarded observation remain unchanged since no
factual change is introduced by the execution of the actions (see Section 6
for a detailed discussion of fact-changing actions, such as toggling a light
switch). We derive the set of observations to be expected under the same
condition ρ according to η by a conversion function fρ : Lprot → Lobs:

14

fρ(δ) = δ
fρ(ε) = ε
fρ(a) = a

fρ(?ϕ) =

{
ε if ρ |= ϕ

δ else (i.e., if ρ 6|= ϕ)

fρ(η · η′) = fρ(η) · fρ(η′)
fρ(η + η′) = fρ(η) + fρ(η

′)
fρ(η

∗) = (fρ(η))∗

Definition 17 (Characteristic formula). Let ρ ⊆ P. Then we denote by ϕρ
the characteristic formula for ρ:

∧
p∈ρ p∧

∧
p 6∈ρ ¬p. For example, suppose that

P = {p, q}, then ϕ{p} = p ∧ ¬q.

Proposition 18. (a) For any η ∈ Lprot , it holds that

L(fρ(η)) = {w | w = a0 . . . ak, where ai ∈ Σ∪{ε} and ρa0ρa1 . . . akρ ∈ Lg(η)}.

Therefore:
(b) Every η has a normal form η◦ as follows:

η◦ =
∑
ρ⊆P

(?ϕρ · fρ(η))

such that Lg(η) = Lg(η◦). Here ϕρ is the characteristic formula for ρ as
defined in Definition 17.

Proof. We first show (a) by induction on η ∈ Lprot . The atomic cases are
straightforward. Now we check the complex cases:

η = η1 + η2:

L(fρ(η)) = L(fρ(η1 + η2)) = L(fρ(η1) + fρ(η2))
= L(fρ(η1)) ∪ L(fρ(η2))
= {w | w = a0 . . . ak, and ρa0ρ . . . ρakρ ∈ Lg(η1)}∪
{w | w = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η2)}(by IH)

= {w | w = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η1 + η2)}
η = η1 · η2:

L(fρ(η)) = L(fρ(η1 · η2)) = L(fρ(η1) · fρ(η2))
= {wv | w ∈ L(fρ(η1)) and v ∈ L(fρ(η2))}
= {wv | w = c0 . . . cm such that ρc0 . . . cmρ ∈ Lg(η1)

and v = b0 . . . bn such that ρb0 . . . bnρ ∈ Lg(η2)}(by IH)
= {u | u = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η1 · η2)}(by fusion product)

15

η = η∗1:

L(fρ(η)) = L(fρ(η
∗
1)) = L((fρ(η1))

∗)
= {ε} ∪⋃

n>0 L((fρ(η1))
n)

= {u | u = a0 . . . ak, and ρa0 . . . akρ ∈ {ρ | ρ ⊆ P} ∪⋃
n>0 Lg(ηn1)}(by IH)

= {u | u = a0 . . . ak, and ρa0 . . . akρ ∈ Lg(η∗1)}
This completes the proof for (a). From (a) and the definition of Lg, it
follows that:

Lg(fρ(η)) = {ρ′a0 . . . akρ′ | ρ′ ⊆ P and ρa0 . . . akρ ∈ Lg(η)}.

Let Gη
ρ = {ρa0ρa1 . . . akρ | ρa0ρa1 . . . akρ ∈ Lg(η)}, the set of all ρ-guarded

expressions in Lg(η). Then, by fusion product, it follows that Lg(?ϕρ ·
fρ(η)) = Gη

ρ. Thus,

Lg(η◦) = Lg(
∑
ρ⊆P

(?ϕρ · fρ(η))) =
⋃
ρ⊆P

Lg(?ϕρ · fρ(η)) =
⋃
ρ⊆P

Gη
ρ = Lg(η).

This proves (b). �

From Proposition 18, according to the protocol η, the expected observa-
tions on a state s in an epistemic modelM can be computed by fVM(s)(η).
For example, f{p}(?p · a+?¬p · b) = a. However, not every epistemic expec-
tation model can be generated by a single protocol. We will investigate this
issue in the next subsection.

3.2. Protocol models
We introduce epistemic protocol models to represent uncertainty about

protocols:

Definition 19 (Epistemic protocol model). An epistemic protocol model
A is a triple 〈T,∼, Prot〉, where T is a domain of abstract objects, ∼ stands for
a set of accessibility (equivalence) relations {∼i| i ∈ I}, and Prot : T → Lprot

assigns to each domain object a protocol. We call a pointed epistemic protocol
model an epistemic protocol and a singleton epistemic protocol model (T is
singleton) a public protocol.

Note that public protocols are (implicitly) commonly known by all the
agents.

16

Example 20. Consider the epistemic expectation model:

s t

p

1, 2

p

a b

We cannot associate a protocol η to the epistemic skeleton of the above model
in such a way that fVM (s)(η) = a and fVM(t)(η) = b, since VM(s) = VM(t).
Note that taking ?p(a + b) for η does not work. This model represents the
uncertainty of the agents about the protocol:

s t
1, 2

?p · a ?p · b

We will now proceed towards our main result in this section, namely that
an epistemic observation state uniquely determines an epistemic protocol,
and that an epistemic protocol and an epistemic state together uniquely
determine an epistemic observation state. To show the correspondence,
we need one more semantic operation, that is a modal product operation
of an epistemic expectation model and a protocol model. It formalizes
the change in possible observations induced by a protocol. We should see
this definition as installing a new protocol, by means of novel observations,
into the epistemic expectation model, and thus completely obliterating the
current expected observations.

Definition 21 (Protocol update). Given an epistemic expectation model
Mexp = 〈S,∼, V, Exp〉 and an epistemic protocol model A = 〈T,∼, Prot〉, we
define the product (Mexp ⊗A) = (S ′,∼′, V ′, Exp′) as follows:

• S ′ = {(s, t) ∈ S × T : L(fVM(s)(Prot(t))) 6= ∅};

• (s, t) ∼′i (s′, t′) iff s ∼i s′ inMexp and t ∼i t′ in A;

• V ′(s, t) = V (s);

• Exp′((s, t)) = fVM(s)(Prot(t)).

17

We mentioned that epistemic models can be seen as special cases of
epistemic expectation models, namely with the ‘anything goes’ protocol.
Therefore, also in that case the product operation between an epistemic
model and a protocol model corresponds to the installation of a protocol.

We now illustrate the definition of protocol update by the scenarios
presented in Example 1 and Example 2 of the introduction. In the pictures
below, we assume reflexivity, symmetry, and transitivity of the accessibility
relations.

Example 22. In the scenario of Example 1, at the beginning neither Jane nor
Ann knows the basic proposition g (Kate is gay). However, one of them, Jane,
is aware of the protocol that: if Kate is gay then she will make the statement
‘I am musical, I like Kathleen Ferrier’s voice’ (action a); and if she is not
gay, then she will talk about something else (action b). However, Ann has no
idea whether a and b can carry such information. The scenario is modeled as
follows, where the last model is the epistemic expectation model resulting from
the update of the protocol on the first epistemic model:

⌃⇤

⌃⇤

=�Jane, Ann Ann Ann Ann

Jane, Ann

Jane, Ann

s

t

u

v

(s, u)

(t, v)(s, v)

(t, u)g

¬g

a + b

g

g ¬g

¬g

a + b a + b

a b?g · a+?¬g · b

Here, g denotes the fact that ‘Kate is gay’, a denotes the observation of Kate
making the ‘musical statement’ and b stands for Kate saying something else.

Example 23. We now consider the scenario of Example 2. After Carl’s first
description of the night of Valentine’s day, Ben and Alice still do not know
what has happened. Now, the wink from Carl ‘installs’ the epistemic protocol
which creates uncertainty in Alice about the meaning of Ben’s later statements.
In contrast, because Ben knows Carl so well, he immediately gets the protocol
Carl is using. The modeling is as follows:

18

⌃⇤

⌃⇤

?p · Y +?¬p · N

?¬p · Y +?p · N

p

p

¬p

¬p

Y

Y N

N

p

¬p

=�Ben, Alice Alice Alice Alice

Ben, Alice

Ben, Alice

s

t

u

v

(s, u)

(s, v)(t, v)

(t, u)

Here, p denotes the fact that ‘Something has happened involving Mike and
Sara on Valentine’s night’, while ‘Y ’ corresponds to Carl answering affirma-
tively to Alice’s question, and ‘N ’ to Carl answering negatively.

We assume that Alice’s confusion would lead her to consider the possibility
of a protocol where Carl would say “Yes” if indeed nothing has actually
happened. Because of Carl’s wink, however, Alice becomes very distrustful
towards him.

According to our definition, an epistemic protocol model acts on an epis-
temic model, thereby determining a unique epistemic expectation model.
In the rest of this section we will investigate the converse question: Can an
arbitrary epistemic expectation model be generated by updating an epis-
temic model by an epistemic protocol model? This is indeed the case, as
we will now show.

Proposition 24. Given an epistemic expectation modelM = (N , Exp), there
is an epistemic model N ′ and an epistemic protocol model A such thatM↔o

N ′ ⊗A.

Proof. Let N ′ = (S ′,∼′, V ′) be the universal ignorance model, i.e., S ′ =
P(P), for each i,∼′i= S ′×S ′, and V ′(ρ) = ρ ⊆ P. GivenM = (S,∼, V, Exp),
letA = (S,∼, Prot) such that Prot(s) =?ϕV (s) ·Exp(s). (Remember that ϕV (s)

is the characteristic formula of V (s) ⊆ P, see Definition 17.) Now we show
that M ↔o N ′ ⊗ A by proving that R = {(s, (ρ, s)) | V (s) = ρ} is a
bisimulation relation.

The invariance conditions are immediate. Now suppose s ∼i t in M,
then (ρ, s) ∼i (V (t), t) inN ′⊗A by the definition of the product. Obviously,
tR(ρ′, t), where ρ′ = V (t).

19

Suppose (ρ, s) ∼i (ρ′, t). Then V (t) = ρ′. Therefore s ∼i t and tR(ρ′, t).
�

This result shows that every epistemic expectation model is reasonable
in the sense that it can be generated from an epistemic model by some
epistemic protocol model. However, it is more intuitive to consider the par-
ticular epistemic model N inM = (N , Exp), and ask if there is a protocol
model A such that N ⊗A ↔oM. For singleton protocol models, we have
a characterization result. First we need a definition.

Definition 25. An epistemic expectation modelM is said to be Boolean nor-
mal if for any two worlds s, t in it, VM(s) = VM(t) =⇒ L(Exp(s)) =
L(Exp(t)).

Theorem 26. Given an epistemic expectation model M = (N , Exp), M is
Boolean normal iff there exists a singleton protocol model A such that N ⊗
A ↔oM, where↔o is total.

Proof. ⇒: Let ϕs be the Boolean characterization formula corresponding to
VN (s). Let

ηM =
∑
s in N

?ϕs · Exp(s).

Because of the finiteness of P and Boolean normality, ηM has a finite rep-
resentation. Let AηM be the singleton pointed protocol model with Prot
assigning ηM to the single point. We can verify that N ⊗AηM ↔oM.
⇐: Suppose M is not Boolean normal, then there are s, t in M such

that V (s) = V (t) and Exp(s) 6= Exp(t). Due to the normal form of protocols,
updating with a public protocol on s, t will result in the same observations.
So there cannot be any single pointed protocol model to do the job. �

Not every epistemic expectation model is Boolean normal, therefore, by
Theorem 26, not every epistemic expectation model can be generated by a
public protocol on its epistemic skeleton. In fact, as demonstrated by the
following example, there are epistemic expectation models which cannot
be generated by any protocol model on its epistemic skeleton.

Example 27. Consider the following epistemic expectation modelM; we will
show thatM cannot be generated by any epistemic protocol on its epistemic
skeleton:

20

s s’

p

1

p

ab

s’’
2 b

¬p

Suppose towards contradiction that there is a protocol model A such that
the execution of A on the epistemic skeleton ofM gives an epistemic expecta-
tion model that is bisimilar toM. To compose s′ in the epistemic expectation
model, we need a state t in the protocol model such that Prot(t) allows a to
happen if p is true. Then t can be composed with the leftmost p-world above
as well, since the left world and middle world are Boolean indistinguishable.
Therefore there will be a p(a)-world in the resulting model which cannot reach
any ¬p-world in one step, due to the definition of ⊗ (the leftmost state above
cannot reach any ¬p-world in one step).

This leads us to consider a subclass of the epistemic expectation models
given as follows.

Definition 28 (Observational saturation). An epistemic expectation model
M is said to be observationally saturated iff the following holds:
For all states v, s, t inM, for all i ∈ I: If v ∼i s and V (s) = V (t), then there
exists u inM such that v ∼i u, s↔ u and ExpM(t) = ExpM(u).

Note that every Boolean normal epistemic expectation modelM is ob-
servationally saturated: suppose w ∼i s and V (s) = V (t) then clearly s↔ s
and ExpM(s) = ExpM(t) sinceM is Boolean normal. Note that the model
in Example 27 is not observationally saturated: the leftmost world and the
middle world share the same valuation but different observations, however,
there is no 1-successor of the leftmost world that is (standard) bisimilar to
the leftmost world and has the same expectation as the middle world.

In the following, we show that observational saturation is a sufficient
condition for an epistemic expectation model to be generatable from its
epistemic skeleton.

Theorem 29. Given an epistemic expectation model M = (N , Exp), if N is
observationally saturated then there is a protocol model A such that N ⊗
A↔oM.

21

Proof. Suppose N = (S,∼, V). For any s ∈ S, let ϕNs be the Boolean
characteristic formula of s. Let A = (S,∼′, Prot) where Prot(s) =?ϕNs ·
ExpM(s) and ∼′i= S × S for each i ∈ I.

Let R ⊆ S × SN⊗A be the binary relation

{(w, (v, t)) | w ↔ v and ExpM(w) = ExpM(t)}

It is easy to see that (w, (w,w)) ∈ R for all w ∈ S. We need to show that R
is indeed a total observation bisimulation (see Definition 11).

To this end, suppose wR(v, t). Since Prot(t) =?ϕNt · ExpM(t) and (v, t)
is in N ⊗ A, we have N , v � ϕNt . From the definition of R, we have
ExpM(w) = ExpM(t) and w ↔ v thus w and (v, t) should have the same val-
uation according to the definition of ⊗. Moreover, it holds that ExpM(w) =
ExpN⊗A((v, t)) since ExpM(w) = ExpM(t) and Prot(t) =?ϕNt · ExpM(t). Now
we only need to check the Zig-Zag conditions.

So, suppose w ∼i w′ in M. Since w ↔ v there is a v′ in M such that
v ∼i v′ and w′ ↔ v′ inM. Therefore VM(w′) = VM(v′), thus (v′, w′) exists
in N ⊗ A. Now due to the fact that the relations in A are universal, we
have (v, t) ∼i (v′, w′). It is clear that (w′, (v′, w′)) ∈ R.

Suppose (v, t) ∼i (v′, t′) in N ⊗ A; then v ∼i v′ in M and VM(v′) =
VM(t′). Since w ↔ v, there is a w′ inM such that w ∼i w′ and w′ ↔ v′ in
M. Therefore VM(w′) = VM(v′) = VM(t′). Now consider w′ and t′: sinceM
is observationally saturated, there is a w′′ inM such that w ∼i w′′, w′ ↔ w′′

and ExpM(w′′) = ExpM(t′). Since w′′ ↔ w′, we have w′′ ↔ v′. Therefore
(w′′, (v′, t′)) ∈ R.

To complete the proof, we need to show that the bisimulation is total.
It is clear that for each w: (w, (w,w)) ∈ R. Now for any (v, t) in N ⊗A, we
need to show that (v, t) is linked to some world inM by R. Suppose (v, t)
exists inM then VM(v) = VM(t). Note that v ∼i v for any i ∈ I since ∼i is
reflexive. By observational saturation, there is a w inM such that v ∼i w,
v ↔ w and ExpM(w) = ExpM(t). Therefore (w, (v, t)) ∈ R. �

3.3. Equivalence of protocols
In the introduction, we stated that one epistemic expectation model

might be generated in different ways, even based on the same epistemic
model. For example, consider the following expectation model:

22

s t

p

1, 2 ab

¬p

It can be generated from its epistemic skeleton by updating with the
public protocol ?p · b+?¬p · a or with the epistemic protocol model:

s t
1, 2

?p · b ?¬p · a

Actually, on arbitrary epistemic models, the announcement of ?p·b+?¬p·
a will always yield the same result as the above epistemic protocol model.
On the other hand, the announcement ?p · (a + b) gives a different update
result on the same epistemic model compared to the update with the fol-
lowing epistemic protocol:

s t
1, 2

?p · a ?p · b

Such examples suggest a notion of equivalence between protocol models.

Definition 30 (Effective equivalence). Two protocol models A and B are
said to be effectively equivalent (notation: A ≡ef B) if for any epistemic
expectation modelM :M⊗A ↔oM⊗B.

Inspired by the idea of action emulation introduced by Van Eijck, Ruan
and Sadzik in [19] and further explored in [20], we characterize the notion
of effective equivalence by the following structural equivalence. To simplify
the notation, let Lρ(η) be L(fρ(η)) (cf. Proposition 18).

Definition 31 (Protocol emulation). Two protocol models A = (S, Prot)
and B = (T, Prot) are said to be emulated (notation: A ≈ B) if there is
a binary relation E ⊆ S × T such that for every s ∈ A, there exists a t ∈ B
with sEt, and for every t ∈ B, there exists an s ∈ A with sEt, and whenever
sEt we have that:

23

• there exists ρ ⊆ P such that Lρ(Prot(t)) = Lρ(Prot(s)).

• if s ∼i s′ in A then there is a set T ′ ⊆ T such that:

1. for any t′ ∈ T ′: t ∼i t′;
2. for any t′ ∈ T ′: s′Et′;
3. for any ρ ⊆ P such that Lρ(Prot(s′)) 6= ∅ there exists t′ ∈ T ′ such

that Lρ(Prot(s′)) = Lρ(Prot(t′))

• if t ∼i t′ in B then there is a set S ′ ⊆ S such that:

1. for any s′ ∈ S ′: s ∼i s′;
2. for any s′ ∈ S ′: s′Et′;
3. for any ρ ⊆ P such that Lρ(Prot(t′)) 6= ∅ there exists s′ ∈ S ′ such

that Lρ(Prot(s′)) = Lρ(Prot(t′))

When restricted to public protocols, it is not hard to see that η ≈ η′ ⇐⇒
Lg(η) = Lg(η′). In general, we have the following result.

Theorem 32. For all finite protocol models A and B: A ≡ef B ⇐⇒ A ≈ B.

Proof. ⇐: Suppose A ≈ B. We need to show for any epistemic expectation
model M that: M⊗A ↔o M⊗ B. We define a binary relation between
M⊗ A and M⊗ B as (w, s)R(v, t) ⇐⇒ w = v, sEt and Exp((w, s)) =
Exp((v, t)). Whenever (w, s) ∈M⊗A, (w, t) ∈M⊗B for some t ∈ B. This
happens due to the fact that A ≈ B, and the epistemic relations in each
model are reflexive. Thus we have that the definition of R is both sound
and total. Now we verify the condition Zig of Definition 11 (the invariance
condition is trivial by definition of R). Suppose (w, s) ∼i (w′, s′), then
w ∼i w′ inM and s ∼i s′ in A. Since sEt, there is a t′ in B such that t ∼i t′,
s′Et′, and Lρ0(Prot(s′)) = Lρ0(Prot(t′)), where ρ0 = V (w′). Clearly (w′, t′) is
inM⊗B and Exp((w′, t′)) = Exp((w, s′)). Thus we have that (w, t) ∼i (w′, t′)
and (w′, s′)R(w′, t′). The condition Zag can be proved in a similar way.
⇒: Suppose A ≡ef B. It is clear that for a universal ignorance modelM

(cf. the proof of Proposition 24), we haveM⊗A ↔oM⊗B. We define a
relation E between the state spaces of A and B as: sEt iff (w, s) ↔o (w, t)
for some w. We can verify that E is a protocol emulation relation. The
first (consistency) condition of protocol emulation is immediate according
to the invariance condition of observation bisimulation. Now we show the

24

second one. Suppose s ∼i s′ and sEt. Now consider an arbitrary ρ ⊆ P
such that Lρ(Prot(s′)) 6= ∅. SinceM is a universal ignorance model, there
is a state w′ in M such that V (w′) = ρ and (w, s) ∼i (w′, s′). Since sEt
then by definition of E, (w, s) ↔o (w, t). Thus there is a (v′, t′) in M⊗ B
such that (w, t) ∼i (v′, t′) and (w′, s′) ↔o (v′, t′); clearly w′ and v′ share the
same valuation, thus w′ = v′ since M is a universal ignorance model. It
follows that t ∼i t′ and Lρ(Prot(s′)) = Lρ(Prot(t′)). Thus for all ρ ⊆ P such
that Lρ(Prot(s′)) 6= ∅ there is a state t′ with t ∼i t′ in B, such that s′Et′ and
Lρ(Prot(s′)) = Lρ(Prot(t′)). The third condition can be shown similarly. The
emulation relation is total, as we are considering total bisimulation here.
�

We now extend the framework of POL to provide a DEL-style logical
language that can describe the ‘installation’ or ‘change’ of protocols, to-
gether with the effect of the observations of agents, based on the current
protocol. Note that installing a protocol is different from executing a pro-
tocol: Installing a protocol gives the knowledge of the protocol before its
execution.

3.4. Epistemic Protocol Logic
In the language of epistemic protocol logic (EPL), we consider protocol

models as primitives in the language, giving a DEL-like language.

Definition 33 (Language of EPL). The formulas ϕ of EPL are given by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [π]ϕ | [!Ae]ϕ
where p ∈ P, i ∈ I, π ∈ Lobs , and Ae is an epistemic protocol with the
designated state e.

In defining the language we restrict ourselves to finite protocol models. The
models for the logic EPL are taken to be the epistemic expectation models
M = 〈S,∼, V, Exp〉. The truth definition is given as follows:

Definition 34 (Truth definition for EPL). Given an epistemic expectation model
M = 〈S,∼, V, Exp〉, a state s ∈ S, and an EPL-formula ϕ, the truth condi-
tions of ϕ at s coincide with POL for the formulas that they have in common.
The truth condition for the new formula in EPL is defined as follows:

25

M, s � [!Ae]ϕ ⇔ If L(fV (s)(Prot(e))) 6= ∅ thenM⊗A, (s, e) � ϕ

Recalling the meaning of the modal product operation, the expression ‘[!Ae]ϕ’
therefore stands for ‘after installing the new epistemic protocol Ae, the for-
mula ϕ is true’. As an example, let us give the model of Example 1 from
the introduction, the epistemic expectation model induced by the epistemic
protocol (modelled on page 18, call it Ae), and the updated model accord-
ing to observation a (in the picture, visualized by |a):

Ann Ann

Jane, Ann

Jane, Ann

(s, u)

(t, v)(s, v)

(t, u)g

g ¬g

¬g

a + b a + b

a b

Ann

Jane, Ann

(s, u)

(t, v)(s, v)

g

g ¬g

|a
✏

✏ ✏

Recall the original modelM:

⌃⇤
Jane, Ann

t
¬g

⌃⇤

s

g

Now we can verify for the actual state s:

M, s � [!Ae][a](KJaneg ∧ ¬KAnng), and
M, s � [!Ae][a]¬KAnn(KJaneg ∨KJane¬g).

The picture corresponding to Example 2 from the introduction is as
follows. Here, A′e′ is the corresponding epistemic protocol modelled on
page 18:

26

p

p

¬p

¬p

Y

Y N

N

Alice Alice

Ben, Alice

Ben, Alice

(s, u)

(s, v)(t, v)

(t, u) |N

p

¬p

Alice

(s, v)

(t, u)

✏

✏

Recall the initial model N :

⌃⇤
Ben, Alice

t

⌃⇤

s

p ¬p

Now we can verify for the actual state t:

N , t � [!A′e′][N](KBen¬p ∧ ¬KAlice¬p), but
N , t � [!A′e′][N]KAlice(KBenp ∨KBen¬p).

4. Incorporating factual changes

So far, we have only presented information changing actions, not fact-
changing actions: recall that Lg(η) consists of guarded strings with uniform
guards only. This may not be so realistic in practice, since many actions
used in protocols also change the facts, for example, ‘turn on the light if you
see that the light is off’. Factual change can be modelled by assigning to
each action a function that changes the valuation of basic propositions (as
in [21, 22]). Let us now show how protocols based on fact-changing actions
can be incorporated in our setting. Following [21], we first introduce fact-
changing actions.

Definition 35 (Fact-changing actions). A set of fact-changing actions (fc-
actions) is a tuple (Σ, ι) such that ι : Σ×P→ Bool(P).

Intuitively, ι captures the post-condition of actions: after executing action
a ∈ Σ, the propositional atom p is assigned the truth value of the propo-
sition ι(a, p). Thus, the new truth value of p is the truth value of ι(a, p)

27

evaluated before executing a. Note that in this paper we restrict ι(a, p) to
be Boolean. For example, let p be the proposition denoting ‘the door is
closed’ and let a be the action ‘slam the door’. Then slamming the door
(a) has a post-condition given by ι(a, p) = >. On the other hand, toggling
the switch (b) has the post-condition modelled by ι(b, q) = ¬q if q expresses
that ‘the switch is on’. Clearly, non-fact-changing actions can be seen as
(Σ, ι0), where for any a ∈ Σ, ι0(a) is the identity function.

For the ease of reading in proofs, we introduce factual change systems as
an alternative way of representing fact-changing actions. In the following,
ρ � ϕ means that the valuation represented by ρ, a subset of P, makes the
Boolean formula ϕ true.

Definition 36 (Factual change system). A Σ-factual change system (fc-sys-
tem) F is a tuple (Q, r) where Q = P(P) and r : Q×Σ→ Q is a function.

Because r is a deterministic transition function, it can be extended to the
domain of Q×Σ∗ in such a way that r(ρ, a0 · · · ak) is the unique state ρ′ ⊆ P
of the fc-system that is reachable from ρ ⊆ P via transitions sequentially
labelled by actions a0, . . . , ak.

Intuitively, a factual change system explicitly represents the post-con-
ditions of actions that can change the facts on states. We say that a set
of fact-changing actions (Σ, ι) is equivalent to a Σ-factual change system
(Q, r) if for any a ∈ Σ and any ρ, ρ′ ⊆ P the following holds:

ρ �
∧
p∈ρ′

ι(a, p) ∧
∧
p 6∈ρ′
¬ι(a, p) ⇐⇒ r(ρ, a) = ρ′

As a reminder, for each ρ ⊆ P, we write ϕρ as the abbreviation of the
characteristic formula (see Definition 17). Now we show that sets of fact-
changing actions can be seen as factual change systems and vice versa.

Proposition 37. (a) For each set of fc-actions (Σ, ι) there is an equivalent
Σ-fc-system.
(b) For each Σ-fc-system there is an equivalent set of fc-actions (Σ, ι).

Proof. (a) To define the corresponding transition function r in the factual
change system, we do the following. For every ρ ⊆ P and a ∈ Σ, we define
r(ρ, a) = ρ′ if and only if ρ �

∧
p∈ρ′ ι(a, p) ∧

∧
p 6∈ρ′ ¬ι(a, p).

(b) For the second part, we can define a set of fact-changing actions (Σ, ι)

28

by letting ι(a, p) =
∨
ρ⊆P{ϕρ | p ∈ r(ρ, a)}. We need to verify the equiva-

lence condition. Suppose r(ρ1, a) = ρ2, then by the definition of ι, it is clear
that ρ1 �

∧
p∈ρ2 ι(a, p). Since fc-systems are deterministic, for each p 6∈ ρ2:

ρ1 6∈ {ρ | p ∈ r(ρ, a)}. Therefore for each p 6∈ ρ2: ρ1 � ¬∨ρ⊆P{ϕρ | p ∈
r(ρ, a)}. Thus ρ1 �

∧
p 6∈ρ2 ¬ι(a, p).

On the other hand, if r(ρ1, a) = ρ3 6= ρ2 then there is a proposition p ∈ P
on which ρ2 and ρ3 do not agree. Suppose that p ∈ ρ3 but p 6∈ ρ2. Since
ι(a, p) =

∨
ρ⊆P{ϕρ | p ∈ r(ρ, a)} then ρ1 2 ι(a, p). Thus ρ1 2

∧
p∈ρ2 ι(a, p).

Similarly, we can show that if p ∈ ρ2 but p 6∈ ρ3 then ρ1 2
∧
p 6∈ρ2 ¬ι(a, p).

Therefore ρ1 2
∧
p∈ρ2 ι(a, p) ∧

∧
p 6∈ρ2 ¬ι(a, p). �

In the sequel, we only work with fc-systems in the proofs. To interpret
observation expressions with respect to an fc-system F , we only need to
revise Definition 16 of Lg as follows:

LFg (a) = {ρaρ′ | ρ a→ ρ′ in F}

To install protocols with factual change on an epistemic model, we need
to compute the state-dependent expectations according to those protocols.
However, it is not immediately clear how we can rewrite a protocol into a
normal form as in Proposition 18, where the tests only happen at the be-
ginning. To model the updates of protocols with factual change, we first
need to prove an analogue of Proposition 18. This will be Proposition 41.
To prove this proposition we need techniques for guarded automata devel-
oped in [23].

Given P, let T be the set 22P. Intuitively, X ∈ T represents a Boolean
formula over P.

Definition 38 (Automata on guarded strings [23]). A finite automaton on
guarded strings (or a guarded automaton) over a finite set of actions Σ and
a finite set of atomic propositions P is a tuple A = (Q,Σ,P, q0, 7→, F), where
Q is a set of states with the designated start state q0; 7→ is a set of transitions
labelled by actions in Σ (action transitions) and sets X ∈ T (test transitions);
F is the set of final states. A accepts a finite string w over Σ ∪ T (notation:
w ∈ LΣ∪T(A)), if it accepts w as a standard finite automaton over label set
Σ ∪T. The acceptance for guarded strings is defined based on the acceptance
of normal strings and the following transformation function G which takes a
string over Σ ∪T and outputs a set of guarded strings, as follows:

29

G(a) = {ρaρ′ | ρ, ρ′ ⊆ P}
G(X) = {ρ | ρ ∈ X}

G(ww′) = {vρv′ | vρ ∈ G(w) and ρv′ ∈ G(w′)}

We say that A accepts a finite guarded string v : ρ0a0ρ1 . . . ak−1ρk over Σ and
P, if v ∈ G(w) for some string w ∈ LΣ∪T(A). Let Lg(A) be the language of
guarded strings accepted by A.

A guarded automaton is said to be deterministic if it satisfies the follow-
ing properties (cf. [23]):

• Each state is either a state that only has outgoing action transitions
(action state) or a state that only has outgoing test transitions (test
state).

• The outgoing action transitions are deterministic: for each action
state q and each a ∈ Σ, state q has one and only one a-successor.

• The outgoing test transitions are deterministic: they are labelled by
{{ρ} | ρ ⊆ P} and for each test state q and each ρ, state q has one
and only one {ρ}-successor. Clearly these tests ρ at a test state are
logically pairwise exclusive and altogether exhaustive (viewing ρ as
the characteristic Boolean formula ϕρ, see Definition 17).

• The start state q0 is a test state and all accept states are action states.

• Each cycle contains at least one action transition.

A Kleene-like theorem about the relation between guarded automata
and guarded regular expressions has been proved in [23]. Here follows a
reminder.

Theorem 39 ([23]). For each guarded regular expression η over P and Σ
there is a deterministic guarded automaton A over P and Σ such that Lg(η) =
Lg(A), and vice versa.

Given an fc-system F , we define a translation tF : Lprot → Lprot by
replacing each a with

∑
ρ⊆P{?ϕρ ·a·?ϕρ′ | ρ

a→ ρ′ in F}. It is not hard to see
that for each guarded expression η: LFg (η) = Lg(tF(η)). From Theorem 39,
we have the following corollary.

30

Corollary 40. Given an fc-system F , for each guarded expression η, there is
a deterministic guarded automaton A and a deterministic finite automaton A′

over the alphabet Σ ∪ 2P such that:

LFg (η) = Lg(A) = L(A′).

Proof. Consider tF(η). The existence of the deterministic guarded automa-
ton A follows from Theorem 39 directly. By the definition of determinism,
L(A) is a set of guarded strings in the shape of {ρ0}a0{ρ1} · · · {ρn−1}an−1{ρn}.
Clearly

G({ρ0}a0{ρ1} · · · {ρn−1}an−1{ρn}) = ρ0a0ρ1 · · · ρn−1an−1ρn

Now we can build the desired deterministic finite automaton A′ over the
symbol set Σ∪ 2P by simply replacing the transition labels {ρ} in A by ρ. �

Finally, we are ready to prove an analogue of Proposition 18: there is a
normal form of guarded regular expressions with respect to an fc-system F
in which tests only appear at the beginning. This is stated formally in the
following proposition.

Proposition 41 (Normal form with respect to F). Given an fc-system F ,
every η has a normal form

ηF =
∑
ρ⊆P

(?ϕρ · πρ)

for some πρ ∈ Lobs such that LFg (η) = LFg (ηF).

Proof. From Corollary 40, for a given fc-systemF and a guarded expression
η we have a deterministic automaton A over Σ∪2P such that L(A) = LFg (η).
Due to the construction of A, the start state has only outgoing ρ transitions
for each ρ ⊆ P, thus we can separate the automaton that corresponds to
the guarded regular expression into |2P| zones. Let qρ be the state that is
the ρ-successor of the start state in A; by determinism there is only one such
state. Let Aρ be the ε-non-deterministic automaton over Σ just like A, but
setting qρ as the start state and replacing any label ρ ⊆ P by ε. By Kleene’s
theorem, there is a regular expression πρ over Σ such that L(πρ) = L(Aρ).
We claim the following:

31

Claim
LFg (ρ · πρ) = {ρv | ρv ∈ LFg (η)}.

Proof. First suppose that ρa0ρ1 · · · ρn−1an−1ρn ∈ LFg (ρ·πρ), then a0 . . . an−1 ∈
L(Aρ). Therefore ρa0ρ′1 · · · ρ′n−1an−1ρ′n ∈ LFg (η) for some ρ′1 . . . ρ

′
n. Since the

fc-system is deterministic, ρ′i = ρi for 1 ≤ i ≤ n. Thus ρa0ρ1 · · · ρn−1an−1ρn ∈
LFg (η). For the other direction, suppose that ρa0ρ1 · · · ρn−1an−1ρn ∈ LFg (η),
then a0 . . . an−1 ∈ L(Aρ) = L(πρ). By determinism of F it is clear that
ρa0ρ1 · · · ρn−1an−1ρn ∈ LFg (ρ · πρ).

From the claim, we can generate the desired normal form for η with respect
to a given fc-system F . �

Based on Proposition 41, we can define the ‘installation’ of protocols
with fact-changing actions on epistemic expectation models, similar to Def-
inition 21. Before we proceed to the definition, note that given ηF =∑

ρ⊆P(?ϕρ · πρ), we have that fρ(ηF) = πρ for any ρ ⊆ P (cf. the definition
of fρ before Definition 17). Let us now see how the fact-changing actions
affect our knowledge state in this evolving world. To this end we first in-
troduce fact-changing epistemic expectation models and protocol models,
MF

exp and AF , given by 〈Mexp ,F〉 and 〈A,F〉, whereMexp is an epistemic
expectation model, A is a protocol model and F is a factual change system.

Definition 42 (Protocol update with factual changes). Given a fact-changing
epistemic expectation model MF

exp = 〈S,∼, V, Exp,F〉, and a fact-changing
epistemic protocol model AG = 〈T,∼, Prot,G〉, we define the product (MF

exp⊗
AG) = (S ′,∼′, V ′, Exp′,F ′) as follows:

• S ′ = {(s, t) ∈ S × T : L(fVM(s)(ProtG(t))) 6= ∅};

• (s, t) ∼′i (s′, t′) iff s ∼i s′ inMexp and t ∼i t′ in A;

• V ′(s, t) = V (s);

• Exp′((s, t)) = fVM(s)(ProtG(t));

• F ′ = G.

where ProtG(t) is the normal form of Prot(t) with respect to G.

32

Accordingly, the truth condition of the new formulas of EPL with respect
to these models is changed to the following:

MF
exp , s � [!AGe]ϕ ⇔ If L(fV (s)(ProtG(e))) 6= ∅ thenMF

exp ⊗AG, (s, e) � ϕ

MF
exp , s � [π]ϕ ⇔ for each w ∈ L(π) : (w ∈ init(Exp(s)) impliesMF

exp|w, s � ϕ)

where MF
exp|w = (S ′,∼′, V ′, Exp′,F) with S ′,∼′, Exp′ defined as before in

M|w (cf. Definition 8) and V ′(s) = r(V (s), w) where r is the (extended)
transition function in F (cf. Definition 36).

Example 43. Consider a room where a child is playing with a small plastic
seat, and Dora standing outside the room. Before Dora enters, she does not
have any idea whether the seat is in an upright position. This is modelled by
considering the epistemic modelM:

s t

p

Dora

¬p

Here, p stands for ‘the seat is in an upright position’. Suppose a denotes the
action ‘pulling the seat down’ and b denotes the action ‘pulling the seat up’.
Then what the child is doing can be described by the protocol model AF :

s t
Dora

?p · a ?¬p · b

Here, both a and b are fact-changing actions: ι(a, p) = ¬p, and ι(b, p) = ¬p.
We note that any epistemic model is an epistemic expectation model which in
turn can be considered as a fact-changing epistemic expectation model where
ι is the identity mapping in the second argument. The updated product model
will be of the form:

33

s t

p

Doraa b

¬p

At the actual state s of the epistemic modelM, we have:

M, s � [!AFe][a]KDora¬p

That is, after entering the room, upon observing action a, Dora will come to
know that the seat is not in an upright position.

In the following section, we describe a more detailed application of factual
change systems.

5. Application: One Hundred Prisoners and a Lightbulb

In this section we model within our framework the ‘100 prisoners and
a lightbulb’ puzzle [24, 25] from the novel perspective of the guard in the
puzzle. The following description is based on [24].

A group of 100 prisoners, all together in the prison dining
area, are told that they will be all put in isolation cells and then
will be interrogated one by one in a room containing a light
with an on/off switch. The prisoners may communicate with
one another by toggling the light-switch (and that is the only
way in which they can communicate). All the prisoners know
that the light is initially switched off. There is no fixed order of
interrogation, or fixed interval between interrogations, and at
any stage every prisoner will be interrogated again sometime in
the future. When interrogated, a prisoner can either do nothing,
or toggle the light-switch, or announce that all prisoners have
been interrogated. If that announcement is true, the prisoners
will (all) be set free, but if it is false, they will all be executed.
While still in the dining room, and before the prisoners go to
their isolation cells, can the prisoners agree on a protocol that
will set them free?

34

Two protocols to solve the puzzle are as follows [24]. We move to the
perspective of n + 1 prisoners, where n ≥ 2. (The case n = 1 is a tricky
boundary case which requires special treatment. For simplicity we leave it
out in this paper.)

Protocol 1 The n+1 prisoners appoint one amongst them as the
leader. The remaining n prisoners are the followers. All n follow-
ers turn the light on (i.e., toggle the switch) the first time they
enter the room when the light is off; on other occasions, they do
not toggle the switch. The leader turns off the light (toggles the
switch) the first n times that the light is on when he enters the
interrogation room; on other occasions, he does not toggle the
switch. After turning the light off for the nth time, the leader
announces that all prisoners have been interrogated.

Protocol 2 The leader does exactly as in Protocol 1. The follow-
ers do all they do in Protocol 1, but also do more. Each follower
counts the number of times the state of the light has changed
from off to on according to his own observation (see the expla-
nation below). If a follower has observed n such changes, he
announces that all prisoners have been interrogated.

We say that a follower observes a change of the state of light from off
to on, if the light was off in his last interrogation but the light is on in
his current interrogation. Moreover, there are also two special cases in the
counting of such changes:

1. Since initially the light is switched off, when a follower enters the
room for the first time and observes that the light is on, it counts as
an off-on change;

2. When a follower is about to toggle the light from off to on according
to the protocol, it also counts as an off-on change.

The above explanation will be made more precise in the formalization of
Protocol 2 below.

Note that the interest of Protocol 2 is that followers may indeed an-
nounce that all prisoners have been interrogated before the leader does.
However, for more than a few prisoners the likelihood of this is very low
(see [24]).

35

5.1. A formalization of the puzzle
We first formalize the protocols in our framework. The leader is a pris-

oner that we name 0, and the followers are prisoners named 1, . . . , n (with
n ≥ 2). The set ΣLB of possible actions for the n + 1 agents/prisoners
i = 0, . . . , n is as follows:

name description
ti i toggles
ai i announces
ei i enters
xi i exits

The set PLB of relevant atomic propositions is as follows:

name description
l light is on
fin protocol terminates
qi i has toggled the switch
mi the light was on, last time when i left the room (where i 6= 0)
pj0 0 has toggled the light for at least j times (where 0 ≤ j ≤ n)
pji i has counted off-on changes for at least j times (where i 6= 0)

The post-conditions are given by the following table (where the remaining
post-conditions are the identity).

(1) ι(ai, fin) = > i ≥ 0
(2) ι(xi,mi) = l i ≥ 0
(3) ι(ti, qi) = > i ≥ 0
(4) ι(ti, l) = ¬l i ≥ 0

(5) ι(t0, p
j
0) = pj0 ∨ (pj−10 ∧ l) j > 0

(6) ι(ei, p
j
i) = pji ∨ (pj−1i ∧ ((¬mi ∧ l) ∨ (¬qi ∧ ¬l))) i > 0

Post-condition (2) expresses that when i leaves the room he memorizes
the situation of the light; post-condition (5) allows leader 0 to count the
number of times that he toggled the switch; post-condition (6) lets i count
the number of off-on changes. By Proposition 37, the above fact-changing
actions (ΣLB, ι) can be turned into an equivalent factual change system
FLB.

We are now ready to express the protocols in our protocol language.

36

Protocol 1 η1 = (?¬fin · Σn
i=0(ei · θi · xi))∗, where:

• θ0 :=?l · t0 · (?pn0 · a0+?¬pn0)+?¬l

• θi := ?(¬l ∧ ¬qi) · ti+?¬(¬l ∧ ¬qi) i > 0

Protocol 2 η2 = (?¬fin · Σn
i=0(ei · θ′i · xi))∗, where:

• θ′0 := θ0

• θ′i := ?pni · ai+?¬pni · θi i > 0

It is not hard to see that the formulas θi are almost the literal transla-
tions of the specifications of Protocol 1. For i > 0, θ′i only adds the extra
announcement action based on θi. Note that θi, θ′i are deterministic in the
sense that there is always a unique way to proceed, due to the mutually
exclusive preconditions of the actions.

5.2. Some example runs of the protocols
The initial situation can be represented as a singleton expectation model

M, s with the universal protocol Σ∗LB and the valuation assigning > only
to p0i for all i ≥ 0.

Example 44. Assume that there is a set of three prisoners {0, 1, 2} and that
the sequence of interrogations is 1020. We show an execution of Protocol 1
(formalized as η1) on M. Note that the followers do not need to count in
Protocol 1, thus we omit all the pji , mi for i > 0:

l fin q0 q1 q2 p00 p10 p20
M ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥
e1 ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥

t1 · x1 · e0 > ⊥ ⊥ > ⊥ > ⊥ ⊥
t0 · x0 · e2 ⊥ ⊥ > > ⊥ > > ⊥
t2 · x2 · e0 > ⊥ > > > > > ⊥

t0 ⊥ ⊥ > > > > > >
a0 ⊥ > > > > > > >

In the above table, we combine several actions into a sequence if after the first
action, the valuation of the relevant propositions stays the same throughout
the whole sequence; for example, after t1, the valuation of the propositions in

37

concern is not changed by x1 and e0. As the above table shows, 1 first turns
the light on, 0 turns the light off, 2 turns the light on again, and finally 0
turns the light off and announces that everybody has been interrogated. Let
ηFLB
1 be the singleton protocol model with respect to η1 and FLB. Now we can

verify the following:

M, s � [!ηFLB
1]〈e1 · t1 · x1 · e0 · t0〉(¬〈a0〉> ∧ 〈x0 · e2 · t2 · x2 · e0 · t0〉〈a0〉>)

Formally, one needs first to convert η1 with respect to FLB into the correspond-
ing normal form using the guarded automata construction of Proposition 41,
and then construct the epistemic expectation model M⊗ ηFLB

1 according to
Definition 42, and finally check the truth value of the remaining [!ηFLB

1]-free
formula on this model. For details of similar, rather involved, computations
in the setting of other examples, see [4, p.47].

Example 45. Still assuming that there are three prisoners, we now look at
the interrogation sequence 1202 under Protocol 2. In the following table, the
irrelevant propositions are omitted:

l fin q0 q1 q2 p00 p10 p20 m2 p02 p12 p22
M ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ > ⊥ ⊥
e1 ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ > ⊥ ⊥

t1 · x1 > ⊥ ⊥ > ⊥ > ⊥ ⊥ ⊥ > ⊥ ⊥
e2 > ⊥ ⊥ > ⊥ > ⊥ ⊥ ⊥ > > ⊥

x2 · e0 > ⊥ ⊥ > ⊥ > ⊥ ⊥ > > > ⊥
t0 · x0 ⊥ ⊥ > > ⊥ > > ⊥ > > > ⊥

e2 ⊥ ⊥ > > ⊥ > > ⊥ > > > >
a2 ⊥ > > > ⊥ > > ⊥ > > > >

Follower 1 turns the light on; then follower 2 finds the light on and does
not toggle the switch but counts 1; subsequently, leader 0 turns the light off;
and finally follower 2 finds the light off, counts to 2 since he is ready to toggle
the light, and then announces that everybody has been interrogated. Note that
in the above table, m2 plays an important role. We can verify:

M, s � [!ηFLB
2]〈e1 · t1 · x1 · e2 · x2 · e0 · t0〉(¬〈a0〉> ∧ 〈x0 · e2〉〈a2〉>)

5.3. Correctness of the two protocols
To check the correctness of the protocols, we need to show that if some-

one makes an announcement then each of the prisoners has been interro-
gated in the room at least once. Instead of this condition, we will actually

38

check a stronger one, namely: If someone, say agent i, makes an announce-
ment (ai), then all the other prisoners j 6= i have toggled the switch (qj).
Note that an agent can only make an announcement if he is in the room (ei
always precedes ai in η1 and η2), thus it suffices to check qj for all j 6= i.
The correctness of Protocol 2 relies on the assumption that n ≥ 2 ensures
that the leader has toggled the light at least once before any follower can
make the announcement. Formally, we can verify the following:

M, s � [!ηFLB
1][Σ∗LB](〈a0〉> →

∧
j 6=0

qi) ∧ [!ηFLB
2][Σ∗LB]

∧
i≥0

(〈ai〉> →
∧
j 6=i

qj)

5.4. What does the guard know?
We can verify that the guard will always know when the prisoners will

make the announcements, given that the protocol is public (recall that g is
the guard). Let ϕi = (〈ai〉> → Kg〈ai〉>) ∧ (¬〈ai〉> → Kg¬〈ai〉>). Now
the following is straightforward, since there is only one world in the model
throughout the evaluation:

M, s � [!ηFLB
1][Σ∗LB]ϕ0 ∧ [!ηFLB

2][Σ∗LB]
∧
i≥0

ϕi

To confuse the guard, the prisoners may truthfully declare that they
have agreed to use one of the two protocols, without telling the guard
which one. Here we only model the uncertainty of the guard, not of the
prisoners, by the following protocol model AFLB :

u v
g

⌘1 ⌘2

After updating AFLB onM, the new modelM′ =M⊗AFLB will have
two g-indistinguishable states (s, u) and (s, v) with different expectations
but the same valuation. For any w ∈ Σ∗LB, it is clear that the states inM′|w,
if such states exist, have the same valuation, since the effect of executing w
is deterministic. Therefore, the guard does not have any uncertainty about
atomic propositions in PLB:

M, s � [!AFLB
v][Σ∗LB]

∧
p∈PLB

((p→ Kgp) ∧ (¬p→ Kg¬p)).

39

On the other hand, an observation may be consistent with one state
but not with the other. In particular, a sequence of actions ending by an
announcement ai may be possible on (s, v) but not possible on (s, u) since
Protocol 2 (formalized as η2) allows more prisoners to make the announce-
ment, as was seen, for example, in the interrogation sequence 1202 in
Example 45:

M, s 2 [!AFLB
v][Σ∗LB]

∧
0≤i≤n

ϕi.

The above shows that the guard cannot always predict the announce-
ments. On the other hand, he might find out which protocol the prisoners
are running through his observations. The following formula says: If a
follower does not announce that all prisoners have been interrogated in a
situation in which he could do so according to Protocol 2, then the guard
can eliminate the possibility that the prisoners are using Protocol 2 and
make correct predictions of the future announcement:∧

0<j≤n

[!AFLB
u][Σ∗LB · ej](pnj → [(tj + xj) ·Σ∗LB]

∧
0≤i≤n

ϕi).

Our language is very handy in verifying such complicated properties.

6. Related work

There are important differences between our work and the standard
DEL approach with action models [13]. This summarizes those differences:

• In our setting the meaning of an action is not fixed. It is given by
the expectations that come from protocols. For example, the way you
interpret a fire depends on the protocol. It can be a warning or a
welcome. There is no fixed precondition attached to the actions as in
DEL.

• The π in the [π] modalities in the language of POL are regular sets
of action sequences. In DEL, in contrast, arbitrary finite action se-
quences (the Kleene * operator) are not commonly considered.

• Our protocol models look like action models in DEL but instead of
preconditions we have protocols on each state, and the update with

40

such a model on an expectation model computes the expectations
according to the protocols on each possible world of the expectation
model, in contrast to the precondition matching in the standard DEL
updates. Moreover, we introduce a notion of equivalence between
protocol models based on the ideas of action emulation [20].

• Protocols in our setting are syntactic objects that are part of the logical
language. In DEL, protocols are typically sets of sequences of DEL-
actions.

We now continue with a more detailed comparison between our ap-
proach and DEL. In [4, 15], Wang introduces a logical framework for the
dynamics of protocols and knowledge. In his framework, public protocols
can be installed and changed, and the knowledge of agents is updated by
matching expectations from protocols with observations. A similar update
mechanism in the context of message passing can be found in the recent
work [26] inspired by [2]. We also follow this type of ‘matching updates’
in this work, but deviate from [4, 15] by using epistemic models with ex-
plicit expectations, which we call epistemic expectation models, instead of
standard epistemic models. Moreover, we use ‘hidden protocols’ on top of
public ones.

Our epistemic expectation models may look similar to the models used
in the work by Hoshi and colleagues [5, 3], where each epistemic state
is equipped with an extensional DEL-protocol, namely a set of sequences
of pointed action models. However, in the current article, a protocol is
simply a syntactic expression based on tests and atomic actions that have
neither inner structures nor fixed meanings. By using the protocol spec-
ification language, we can separate the protocols from epistemic models,
and discuss the ‘installation’ of possibly uncertain protocol information on
the epistemic models. In particular, we can formally discuss which kinds of
expectations come from which kinds of protocols. Such a formal account
of protocols also facilitates the study of the equivalence between protocols.
We incorporate potentially iterative program-like observations, which also
distinguishes us from the single-step updates in DEL-based protocol logics
[26, 5, 3], where the iteration of updates often introduces undecidability,
as observed in [27].

In [14], Pacuit and Simon present a PDL-style logic for reasoning about
protocols under imperfect information. Their focus is on the executability

41

and achievable outcomes of branching protocols under the uncertainties of
the game states. In contrast, uncertainties may have two sources in the cur-
rent paper: uncertainties about the real world and uncertainties about the
protocols. The latter kind of uncertainty creates novel issues not covered
by [14]. Executability of protocols also plays a role in our work but in a
simpler way because of the linear interpretation of protocols, compared to
the much more refined tree interpretation of protocols in [14]. Instead of
executability, we focus more on the update effects of observations based on
protocol information. In fact, the executors and the observers of the proto-
col can well be different. The protocol may be executed by external agents
which are not modeled in the framework.

7. Conclusion and future work

The information that actions carry may depend on agents’ knowledge
of protocols. In this paper we studied cases where protocols are not com-
monly known and proposed a semantics-driven logical framework for up-
dating knowledge by observations based on epistemic protocols. We have
left a complexity analysis, for example, in line of [4], for the future. Al-
though our semantics-driven logics POL and EPL are ‘dynamic epistemic’
in spirit, the usual reduction-based completeness proof for DEL-like logics
does not apply, since the dynamic operators [π] in POL cannot be elimi-
nated. Complete axiomatizations of POL and EPL demand new techniques,
pioneered in [28, 29]. We have partial results but we leave a systematic
study to a future occasion. Let us consider various other extensions of our
work.

We only used Boolean tests in the language Lprot . A more expressive
protocol language includes epistemic tests. An example of such a proto-
col would be (?¬Kp · (a + b))∗ · (?Kp · c): as long as you do not know p,
keep choosing an a or b action, until you get to know p, and then do c.
As observed in [30], knowledge-based protocols are much more involved
than fact-based protocols. Defining the interpretation and executability of
such protocols is a challenge, because checking epistemic formulas is non-
local. Also, the introduction of knowledge tests may make the satisfiability
problem of the logic undecidable. For example, the observations may eas-
ily encode iterated public announcement, which is known as a source of
undecidability in such logics [27]. On the positive side, by including more

42

expressive tests we expect better matching between epistemic expectation
models and epistemic protocols (cf. Theorem 29).

Another extension is to consider less radical update mechanisms for in-
stalling new protocols. In our current approach, when installing a new
protocol, we simply ignore and overwrite the old expected observations
completely. Consider a singleton observation epistemic model with obser-
vation a+ c. Now, when updating with the protocol a+ b we simply replace
a + c by a + b. Instead, we could integrate a + c with a + b, somehow.
For example, such a ‘non-radical’ protocol update with a + b could result
in b (intersected refinement), or in (b + c) · (a + b) (concatenation), or in
(b + c) + (a + b) (choice), and so on. See [15] for a discussion. Finally,
we could relax the assumption of public observation, for example, some
actions might not be observable to certain agents.

It would also be interesting to relax the underlying logic and to use
KD45, modeling belief, instead of S5, modeling knowledge. For example,
in the models of protocol updates for the story of Example 1 of the intro-
duction (see page 18), it would fit more naturally with the story if the link
for Ann between the alternatives in the epistemic protocol model were uni-
directional only, namely from ?g · a+?¬g · b to a+ b, plus a Jane-loop from
?g ·a+?¬g ·b to itself and Jane- and Ann-loops from a+b to itself, as follows.

s t
Ann

a + b?g · a+?¬g · b

Jane Jane, Ann

This would model installing the protocol wherein Anne is unaware of
the gay interpretation.

Currently, the model on page 18 installs the possibly later observed in-
formation that Ann is uncertain whether the statement is to be interpreted
as ‘Kate is gay’ or not, but she considers the option. By contrast, in the
actual story, Jane will only interpret a as a sure sign of ‘Kate is gay’ and b
as a sign of ‘Kate is not gay’. We would rather be able to model that Jane
considers both the ‘Kate is gay’ and the ‘no double meaning’ interpretation
of a and b, corresponding to Ann’s stance in the current model, whereas
Ann only considers the ‘no double meaning’ interpretation and believes that
Jane does so too.

43

The subject of hidden protocols is also interesting from the point of
view of language pragmatics. Speakers who intend to convey information
to only some of their listeners in such a way that others will not understand
what is going on, are deliberately acting against some of Grice’s maxims of
cooperative conversation [31]. Forms of indirect or uncooperative commu-
nication, such as veiled bribes and threats, have already been investigated
from the perspective of pragmatics and cognitive science, relating them also
to aspects like lack of common knowledge [32, 33, 34, 35]. Our analysis
of hidden protocols in this paper, by distinguishing between expected ob-
servations and actions, is more fine-grained than the changes in ‘standard’
dynamic epistemic logic, but could benefit from taking such Gricean aspects
into account. Thus, in addition to observational powers of the agents, also
their assertive powers may be modeled. Finally, it would be interesting to
investigate the role of the interlocutors’ goals and intentions when they ut-
ter a veiled speech act that is part of a hidden protocol (cf. [36, 37, 38, 39]).

Acknowledgments

Hans van Ditmarsch is also affiliated to IMSc (Institute of Mathematical
Sciences, Chennai, India), as associated researcher. Part of this research
was carried out by Hans van Ditmarsch and Yanjing Wang during their
joint stays at the IMSc. Hans van Ditmarsch thanks the Netherlands Orga-
nization for Scientific Research (NWO) for a visiting grant 040.11.177 to
Rineke Verbrugge, University of Groningen, of which the conference pre-
cursor [16] of this publication can be seen as an outcome. Hans van Dit-
marsch also acknowledges support from ERC starting grant EPS 313360;
this work has also been partially supported by the European Union Seventh
Framework Programme under grant agreement no. 295261 (MEALS). Su-
jata Ghosh acknowledges NWO research grant 600.065.120.08N-201 and
Rineke Verbrugge acknowledges NWO research grants 600.065.120.08N-
201 and Vici grant NWO 227-80-001, both for her own research and for
being able to invite Hans van Ditmarsch, Sujata Ghosh and Yanjing Wang as
visitors to Groningen to cooperate on this extended article. Yanjing Wang
thanks the National Social Science Foundation of China for the research
grant 11CZX054 which also supports this work. He also acknowledges
INSA-JRD TATA Fellowship which enabled him to visit Indian Statistical
Institute (ISI), Chennai and helped in preparing the final version. The au-
thors would like to thank the anonymous reviewers and the editors of this

44

journal for their very helpful comments.

[1] R. Fagin, J. Y. Halpern, M. Y. Vardi, Y. Moses, Reasoning about Knowl-
edge, MIT Press, Cambridge, MA, 1995.

[2] R. Parikh, R. Ramanujam, A knowledge based semantics of messages,
Journal of Logic, Language and Information 12 (2003) 453–467.

[3] J. van Benthem, J. Gerbrandy, T. Hoshi, E. Pacuit, Merging frame-
works for interaction, Journal of Philosophical Logic 38 (2009) 491–
526.

[4] Y. Wang, Epistemic Modelling and Protocol Dynamics, Ph.D. thesis,
University of Amsterdam, 2010.

[5] T. Hoshi, Epistemic Dynamics and Protocol Information., Ph.D. thesis,
Stanford University, 2009.

[6] Y. Zhang, Y. Zhou, Knowledge forgetting: Properties and applications,
Artificial Intelligence 173 (2009) 1525–1537.

[7] F. Belardinelli, A. Lomuscio, Quantified epistemic logics for reasoning
about knowledge in multi-agent systems, Artificial Intelligence 173
(2009) 982–1013.

[8] J. Halpern, Y. Moses, A guide to completeness and complexity for
modal logics of knowledge and belief, Artificial Intelligence 54 (1992)
319–379.

[9] E. Davis, Knowledge and communication: A first-order theory, Artifi-
cial Intelligence 166 (2005) 81–139.

[10] S. Singh, The Code Book: The Evolution of Secrecy from Mary, Queen
of Scots, to Quantum Cryptography, Doubleday, New York, NY, USA,
1999.

[11] A. van Kooten Niekerk, S. Wijmer, Verkeerde Vriendschap: Lesbisch
Leven in de Jaren 1920-1960, Sara, Amsterdam, 1985.

[12] A. Baltag, A logic for suspicious players: Epistemic actions and belief-
updates in games, Bulletin of Economic Research 54 (2002) 1–45.

45

[13] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic
Logic, volume 337 of Synthese Library, Springer, Berlin, 2007.

[14] E. Pacuit, S. Simon, Reasoning with protocols under imperfect infor-
mation, The Review of Symbolic Logic 4 (2011) 412–444.

[15] Y. Wang, Reasoning about protocol change and knowledge, in: Pro-
ceedings of the 4th Indian Conference on Logic and its Applications
(ICLA 2011), LNAI 6521, Springer, Berlin, 2010, pp. 189–203.

[16] H. van Ditmarsch, S. Ghosh, R. Verbrugge, Y. Wang, Hidden protocols,
in: K. R. Apt (Ed.), Proceedings of the 13th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK-2011), ACM, 2011, pp.
65–74.

[17] J. A. Brzozowski, Derivatives of regular expressions, Journal of the
ACM 11 (1964) 481–494.

[18] J. H. Conway, Regular Algebra and Finite Machines, Chapman and
Hall, London, 1971.

[19] J. van Eijck, J. Ruan, T. Sadzik, Action emulation, Synthese 185
(2012) 131–151.

[20] D. van Eijck, F. Sietsma, Action emulation between canonical models,
in: Proceedings of Conference on Logic and the Foundations of Game
and Decision Theory 2012.

[21] J. van Benthem, J. van Eijck, B. Kooi, Logics of communication and
change, Information and Computation 204 (2006) 1620–1662.

[22] J. van Eijck, Perception and change in update logic, in: J. van Ei-
jck, R. Verbrugge (Eds.), Games, Actions and Social Software, volume
7010 of Texts in Logic and Games (FOLLI subseries of LNCS), Springer
Verlag, Berlin, 2011, pp. 119–140.

[23] D. Kozen, Automata on Guarded Strings and Applications, Technical
Report, Cornell University, Ithaca, NY, USA, 2001.

[24] H. van Ditmarsch, J. van Eijck, W. Wu, Verifying one hundred pris-
oners and a lightbulb, Journal of Applied Non-Classical Logics 20
(2010) 173–191.

46

[25] H. van Ditmarsch, J. van Eijck, W. Wu, One hundred prisoners and a
lightbulb - logic and computation, in: F. Lin, U. Sattler, M. Truszczyn-
ski (Eds.), KR, AAAI Press, 2010, pp. 90–100.

[26] B. Rodenhäuser, A logic for extensional protocols, Journal of Applied
Non-Classical Logics 21 (2011) 477–502.

[27] J. S. Miller, L. S. Moss, The undecidability of iterated modal rela-
tivization, Studia Logica 79 (2005) 373–407.

[28] Y. Wang, Q. Cao, On axiomatizations of public announcement logic,
Synthese (2013). Online first: http://dx.doi.org/10.1007/s11229-
012-0233-5.

[29] Y. Wang, G. Aucher, An alternative axiomatization of DEL and its
applications, in: Proceedings of IJCAI2013, pp. 1147–1154.

[30] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Knowledge-based pro-
grams, Distributed Computing 10 (1997) 199–225.

[31] H. P. Grice, Logic and conversation, in: P. Cole, J. L. Morgan (Eds.),
Syntax and Semantics, volume 3, New York: Academic Press, 1975,
pp. 41–59.

[32] H. Clark, Using Language, Cambridge University Press, Cambridge,
1996.

[33] R. Verbrugge, L. Mol, Learning to apply theory of mind, Journal of
Logic, Language and Information 17 (2008) 489–511. Special issue
on formal models for real people, edited by M. Counihan.

[34] S. Pinker, M. Nowak, J. Lee, The logic of indirect speech, Bulletin of
Economic Research 54 (2002) 1–45.

[35] H. van Ditmarsch, J. van Eijck, R. Verbrugge, Common knowledge
and common belief, in: J. van Eijck, R. Verbrugge (Eds.), Discourses
on Social Software, volume 5 of Texts in Games and Logic, Amsterdam
University Press, Amsterdam, 2009, pp. 99–122.

[36] M. Bratman, Intention, Plans, and Practical Reason, Harvard Univer-
sity Press, Cambridge, MA, 1987.

47

[37] A. Rao, M. Georgeff, Modeling rational agents within a BDI-archi-
tecture, in: R. Fikes, E. Sandewall (Eds.), Proceedings of the Sec-
ond Conference on Knowledge Representation and Reasoning, Mor-
gan Kaufman, 1991, pp. 473–484.

[38] B. Grosz, C. Sidner, Plans for discourse, in: P. Cohen, J. Morgan,
M. Pollack (Eds.), Intentions in Communication, MIT Press, Cam-
bridge, MA, 1990, pp. 417–444.

[39] F. Dignum, B. Dunin-Kȩplicz, R. Verbrugge, Creating collective inten-
tion through dialogue, Logic Journal of the IGPL 9 (2001) 145–158.

48

