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Abstract. We can classify the (truth-theoretic) paradoxes according to their degrees of paradoxicality. Roughly

speaking, two paradoxes have the same degrees of paradoxicality, if they lead to a contradiction under the same

conditions, and one paradox has a (non-strictly) lower degree of paradoxicality than another, if whenever the former

leads to a contradiction under a condition, the latter does so under the very condition. This paper aims at setting

forth the theoretical framework of the theory of paradoxicality degree, and putting forward some basic open questions

about paradoxes around the notion of paradoxicality degree.
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1. Paradoxes and Degrees of Paradoxicality

We work in the ‘standard language’ for the Liar and the like paradoxes, that is, the language

obtained from the first-order language of the arithmetic by augmenting a distinguished unary

predicate symbol T . Let L be the first-order language of the arithmetic, which includes S, +,

· and 0 as its non-logical symbols. Let L + be the language obtained from L by augmenting a

distinguished unary predicate symbol T . Unless otherwise claimed, when we say a formula, we

mean a formula of L +. We will also use L + to denote the set of all sentences, and so by A ∈ L +,

we mean A is a sentence of L +. The intended model of the language L is N = ⟨N,′ ,+, ·, 0 ⟩, that

is, the structure of natural numbers. Correspondingly, for L +, we will only consider those models

of the form ⟨N, X⟩, where X ⊆ N is the extension of T . We can routinely define VN,X(A), i.e., the

truth value of A in the model ⟨N, X⟩. Since the ground model N is always fixed, we use VX(A)

instead of VN,X(A). When VX(A) = T(F), we will say A is true (false) for X. Sometimes, we also

use X |=A for VX(A) = T. For brevity, we use A ≡ B to denote that A↔ B is true for all X ⊆ N.

For a sentence A, we use ⌜A⌝ for the Gödel’s number of A, and ⌜A⌝ for the corresponding

numeral to the number ⌜A⌝. But, to avoid too many complications, we will often identify ⌜A⌝ with

⌜A⌝, and identify a set Σ of sentences with the set of the Gödel’s number of all sentences in Σ. For

example, we will use T ⌜A⌝ instead of T
(
⌜A⌝

)
, and use VΣ(A) instead of V{⌜B⌝ | B∈Σ}(A). For any

n ≥ 0, define inductively Tn⌜A⌝ as follows: T 0⌜A⌝ = A and Tn+1⌜A⌝ = T ⌜Tn⌜A⌝⌝ for n ≥ 0.

Our method of constructing the paradoxes is the standard one via Gödel’s diagonal lemma. For

instance, by use of Gödel diagonalization, we can construct the Liar sentence λ, which satisfies the

equivalence λ ≡ ¬T ⌜λ⌝.
Next we define the revision sequence, which is a basic notion from the revision theory of truth.

Note that the revision sequence was originally defined for arbitrarily large ordinals by Gupta and

Herzerger. But for the present purpose, we only need to consider the revision sequences of length

ω.
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Definition 1.1 ([Gupta(1982)], p. 10; [Herzberger(1982)], p. 68). For a set Σ of sentences, define

Σr = {A ∈ L + | Σ |=A}. Define a sequence Σ0, . . . , Σk, . . . as follows: Σ0 = Σ, and Σk+1 = Σr
k

for all k ≥ 0. This sequence is called the revision sequence starting from Σ.

We will generalize the notion of the revision sequence. To motivate the generalization, we recall

that to say a set of sentences is paradoxical is to say there is no interpretation of T such that

Tarski’s scheme T ⌜A⌝ ↔ A holds for all A in this set. A precise definition is as follows.

Definition 1.2. A set Σ of sentences is paradoxical, if there is no Γ satisfying the condition:

Γ ∩ Σ = Γr ∩ Σ. That is, there is no Γ such that for any A ∈ Σ, VΓ(T ⌜A⌝) = VΓ(A).

From now on, we always use K to denote the digraph ⟨W,R⟩ unless otherwise claimed. An

assignment in K is a mapping from W to the powerset P(L +).

Definition 1.3 ([Hsiung(2009)], pp. 243-244). Let Σ be a set of sentences. An assignment in K,

say t, is admissible for Σ, if for all u, v ∈W satisfying uR v,

t(v) ∩ Σ = t(u)r ∩ Σ (1)

Σ is paradoxical in K, if there is no admissible assignment for Σ in K.

When Σ is the set of all sentences, W is the set of natural numbers and R is the successor

relation between natural numbers, an admissible assignment t for Σ in K is a revision sequence

starting from the set t(0). And so the revision sequence is a special instance of the admissible

assignment. And the notion of being paradoxical in a digraph is also a generalization of being

paradoxical. Actually, Σ is paradoxical, iff it is paradoxical in the minimal reflexive digraph. Note

also that (1) is equivalent to

for all A ∈ Σ, Vt(v)(T ⌜A⌝) = Vt(u)(A).

And so the biconditional (1) is a formal representation of biconditional (2) in L +:

T ⌜A⌝ (holds) at v, iff A (holds) at u, (2)

(where u and v are any points in the domain of a digraph such that u bears the binary relation of

the digraph to v.) Hence, when a set of sentences is paradoxical in a digraph, we can think that it

is impossible to evaluate these sentences (without contradiction) in the digraph such that scheme

(2) holds for all of these sentences.

The idea behind the notion of paradoxicality in a digraph is that paradoxes are conditionally

contradictory. As we all know, paradoxical sentences lead to a contradiction, but unlike those

contradictory sentences such as ‘the snow is white and it is not white’, they are not absolutely

contradictory otherwise there is no way to ban them from our cherished theories.
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Definition 1.4 ([Hsiung(2009)], pp. 248, 254). Let Σ,Γ be two sets of sentences. Define Σ≤P Γ,

if for any digraph K, whenever Σ is paradoxical in K, Γ is also paradoxical in K. Define Σ≡P Γ, if

Σ≤P Γ and Γ≤P Σ. Define Σ<P Γ, if Σ≤P Γ but Σ ̸≡P Γ.

Note that ≡P is an equivalence relation. When Σ≡P Γ, we will say Σ and Γ have the same

degree of paradoxicality . When Σ<P Γ, we say Σ has a (strictly) lower degree of paradoxicality

than Γ.

2. Boolean Paradoxes

By the Gödel diagonal lemma, we can construct a large number of paradoxes in L +. Here are

some examples:

Example 2.1. (a) (Cliche) the n-cycle liar λn = {λni | 1 ≤ i ≤ n}, where λn1 ≡ ¬T⌜λnn⌝ and

λni+1 ≡ T ⌜λni ⌝ (1 ≤ i < n).

(b) ([Herzberger(1982)], pp. 74-75 and [Yablo(1985)], p. 340) the ω-cycle liar λω = {λωα | 1 ≤ α ≤

ω}, if λω1 ≡ ¬T⌜λωω⌝, λωi+1 ≡ T ⌜λωi ⌝ (i ≥ 1) and λωω ≡ ∀x (x > 0 → T ⌜λωẋ⌝).

(c) ([Yablo(1985)], p. 340 and [Yablo(1993)]) Yablo’s paradox ν = {ν1, ν2, ν3, . . .}, where for any

n > 0,

νn ≡ ∀x (x > n̄→ ¬T ⌜νẋ⌝)

Definition 2.2. Let ∆ be a finite set of sentences, say {δ1, δ2, . . . , δm}.

(1) ∆ is a Boolean system, if for all 1 ≤ i ≤ m,

δi ≡ fi
(
T ⌜δj1⌝, . . . , T ⌜δjni

⌝
)
,

where fi is a Boolean function which has T ⌜δj1⌝, . . . , T ⌜δjni
⌝ as its arguments.

(2) A Boolean paradox is a paradoxical Boolean system.

Remark: Roughly speaking, Boolean paradoxes are those paradoxes in which there is no occur-

rence of quantifiers, whose scope covers at least an occurrence of the truth predicate T . For any

positive n, the n-cycle liar is a Boolean paradox, but neither the ω-cycle liar nor Yablo’s paradox

is Boolean.

Example 2.3. A typical Boolean paradox is Wen’s paradox ([Wen(2001)], p. 44)
δ1 ≡ T ⌜δ2⌝ ∧ ¬T ⌜δ3⌝
δ2 ≡ ¬T ⌜δ1⌝ ∨ T ⌜δ3⌝
δ3 ≡ T ⌜δ1⌝ ∧ T ⌜δ2⌝
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We can give a complete characterization of the Boolean paradoxes with respect to their degrees

of paradoxicality. The key to characterize them is the revision periods.

For the revision sequence X = ⟨Xk | k ≥ 0⟩, we also use Xk(A) = T instead of Xk |=A (and

Xk(A) = F instead of Xk ̸|=A). When Xk(A) = T, we can say A is true at stage k of X .

Definition 2.4. Let ∆ be a set of sentences.

(1) A number m ≥ 1 is a (revision) period of ∆ on a revision sequence X = ⟨Xk | k ≥ 0⟩, if there

exists a number N ≥ 0 such that Xk+m(A) = Xk(A) for all k ≥ N and for all A ∈ ∆. m is a

period of ∆, if m is a period of ∆ on some X .

(2) A period p of ∆ is said to be primary, if m ∤ p (i.e., p is not divisible by m) for any period m

of ∆ with m ̸= p.

Example 2.5. (a) the n-cycle paradox has the unique primary period 2i+1, where n = 2i(2j + 1)

(b) Yablo’s paradox has the unique primary period 2 (the same as the Liar does)!

(c) the ω-cycle paradox (and other transfinite cycle paradoxes) has no periods at all.

Remark: all the known paradoxes in the field of truth theory, without exception, have a unique

primary period if they have at least one.

Proposition 2.6. Every Boolean paradoxes has only finitely many but non-zero primary periods.

The following graph-theoretical notion is also crucial for our characterization of Booleans para-

doxes.

Definition 2.7. Let K = ⟨W,R ⟩ be a frame. A sequence ξ = u0 u1 . . . ul is a walk from u0 to ul,

if either uiRui+1 or ui+1Rui holds for any 0 ≤ i < l. ξ is a closed walk, if u0 = ul. ξ is a cycle, if

none of the points in ξ is repeated except that u0 = ul.

Define a mapping h on the set of walks of K as follows: for any world u ∈ W , hK(u) = 0; and

for any walk ξ = u0 u1 . . . ul ul+1 (l ≥ 0),

hK(ξ) =

 hK(u0 u1 . . . ul) + 1, if ulRul+1;

hK(u0 u1 . . . ul)− 1, otherwise.

hK(ξ) is called the height of ξ in K. The subscript K will be suppressed if no confusion arises.

Our characterization theorem about Boolean paradoxes is as follows:

Theorem 2.8. ([Hsiung(2017)], p. 885) For any Boolean paradox ∆ and for any digraph K, the

following three conditions are equivalent:

(a) ∆ is non-paradoxical in K.
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(b) For each connected component of K, there exists a primary period of ∆, which divides the height

of any cycle in this component.

(c) For each closed walk in K, its height is a period of ∆.

The following is a converse of Proposition 2.6, by which we can construct as we like.

Theorem 2.9. ([Hsiung(2017)], p. 885) For any finite non-empty set P of numbers greater than

1, if no element of P is a multiple of any other, then there exists a Boolean paradox such that the

set of its primary periods is just P .

Example 2.10. A paradox of primary periods 2 and 3: {δ1, δ2, δ3}, such that
δ1 ≡ (T ⌜δ1⌝ ∧ T ⌜δ2⌝) ∨ (T ⌜δ1⌝ ∧ ¬T ⌜δ2⌝ ∧ T ⌜δ3⌝)
δ2 ≡ (T ⌜δ1⌝ ∧ T ⌜δ3⌝) ∨ (¬T ⌜δ2⌝ ∧ ¬T ⌜δ3⌝)

∨(¬T ⌜δ1⌝ ∧ T ⌜δ2⌝ ∧ T ⌜δ3⌝)
δ3 ≡ (T ⌜δ1⌝ ∧ ¬T ⌜δ3⌝) ∨ (¬T ⌜δ1⌝ ∧ T ⌜δ2⌝ ∧ ¬T ⌜δ3⌝)

By the above main theorems, we can get a description of the structure of degrees of Boolean

paradoxes.

Theorem 2.11. ([Hsiung(2017)], p. 885) The set of Boolean paradoxes ordered by the binary

relation ≤P is an unbounded dense lattice.

Example 2.12. An example for Denseness:

• The periods of the Liar: {2, 4, 6, . . . , 2n, . . .}

• The periods of the Joudain’s card: {4, 8, 12, . . . , 4n, . . .}

the Liar <P the Jourdain’s card.

Now find a paradox, namely ∆, such that

the Liar <P ∆ <P the Jourdain’s card.

• The periods of ∆: {4, 6, 8, 12, . . . , 4n, 6n, . . .}

Example 2.13. An example for Greatest Lower Bound:

• The periods of the Liar: {2, 4, 6, . . . , 2n, . . .}

• The periods of Wen’s paradox: {3, 6, 9, . . . , 3n, . . .}

the Liar |P Wen’s paradox.

Find a paradox ∆, such that its degree is the greatest lower bound of degrees of the Liar and

Wen’s paradox.
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• The periods of ∆: {2, 3, 4, 6, . . . , 2n, 3n, . . .}

Example 2.14. An example for Least Upper Bound:

• The periods of the Liar: {2, 4, 6, . . . , 2n, . . .}

• The periods of Wen’s paradox: {3, 6, 9, . . . , 3n, . . .}

the Liar |P Wen’s paradox.

Find a paradox ∆, such that its degree is the least upper bound of degrees of the Liar and

Wen’s paradox.

• The periods of ∆: {6, 12, 18, . . . , 6n, . . .}

Even we only consider Boolean paradoxes, and even they are only a small part of the paradoxes

and have relatively simple syntactical structures, the area of our study is proved to be rich in

mathematical structures and properties.

Now we raise a question about Boolean paradoxes. Wen’s paradox (as shown in Example 2.3) is

evidently not directly self-referential. But the paradoxes we construct by the methods of Theorem

2.9 are usually directly self-referential (an typical example is shown in Example 2.10). Our question

is whether we can construct a non-directly-self-referential Boolean paradox for a given finitely many

primary periods.

Problem 2.15. ([Hsiung(2017)], p. 898-899) Is there a Boolean paradox {δ1, δ2, δ3} of the

periodicity set {2, 3} which is not directly self-referential in the following sense: for any

1 ≤ i ≤ 3, there is no occurrence of T ⌜δi⌝ in the right side of definitional equivalence of

δi? For any Boolean paradox, is there a Boolean paradox which has the same primary

periods as the known one, but is not directly self-referential in the similar sense we

just explain for the Boolean paradox of the periodicity set {2, 3}?

3. The Algebraic Structure for Degrees of Paradoxes

Theorem 2.11 provides us a description of the algebraic structure for degrees of Boolean para-

doxes. A natural question is to ask about the algebraic structure for degrees of all paradoxes. For

instance, can Theorem 2.11 be extended to all the paradoxes, no matter they are Boolean or not.

A basic result about the paradoxes is that their degrees are bounded above by the degree of

ω-liar or by the degree of McGee’s paradox ([McGee(1985)], p. 400).

Theorem 3.1. ([Hsiung(2018)]) The ω-liar and McGee’s paradox have the highest degree of para-

doxicality.
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Dually, we ask:

Problem 3.2. ([Hsiung(2017)], p. 913) Is there a paradox whose degree is the lowest

(among all the degrees of paradoxes)?

We conjecture that the answer to this question is positive. A reasonable candidate is the paradox

whose primary periods are exactly the prime numbers. And, if it is so, the crucial point of this

question is how to construct such a paradox.

There are some new questions we can ask of course. The first question we ask is about the

completeness of degrees of paradoxes.

Problem 3.3. Is the structure for degrees of paradoxes complete? In other words, for

countably infinite many paradoxes, is there always a paradox whose degree is least

upper bound/greatst lower bound of the degrees of these paradoxes?

Remark: Problem 3.3 is well-defined because of Theorem 3.1 and Problem 3.2.

Problem 3.4. For any paradox, is there any paradox such that the supremum of

their degrees is just the degree of ω-liar (i.e., the greatest degree)? Or, For any

paradoxicality, is there any degree of paradoxicality such that their supremum is just

the greatest degree?

Dually, we ask: for any paradox, is there any paradox such that the infimum of

their degrees is just the smallest degree (assume it does exist)?

To sum up, we actually ask whether the degrees of paradoxicality can form a Boolean algebra.

Up to now, we can summarize the above observations and problems by Figure 1. Note, in

Figure 1, the big diamond stands for the degrees of paradoxes, and the small diamond surrounded

by the dashed line stands for the degree of Boolean paradoxes. The degrees of the Liar and its

finitary variants occur in the middle line of the two diamonds, and the degree of Yablo’s paradox

occurs at the same level as that of the Liar (Theorem 5.1).

As far as the small diamond is concerned, Theorem 2.11 provides a lot of information. The

future main task is to investigate the whole big diamond.

4. Some Implicitly defined Paradoxes

We can define semantically some paradoxes in L + without seeing their syntactical specification.

The following are some simplest examples.

Definition 4.1 ([Hsiung(2009)], 248). For any positive number n, we use λn for a sentence such

that for any frame K and for any admissible assignment t of K, and for any points u and v of W

such that uRn v,

t(v) |=λn ⇐⇒ t(u) ̸|=λn. (3)
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λ

λ2

λ4

...

λω

ν
λ3λ5

Figure 1: degrees of paradoxes

Here, note that uRn v denotes that there exist u0, . . . , un such that u0 = u, un = v and for

0 ≤ i < n, uiRui+1. λ
n is called ‘n-jump liar’. Clearly, the 1-jump liar is the liar, which is the

unique one that we have known its syntactical representation among all the jump liars up to now.

Let us say the n-jump liar is implicitly defined.

Problem 4.2 ([Hsiung(2009)], 269). For any number n > 1, is there any sentence of L +,

which is a syntactical specification of λn? Or more briefly, can we always construct

the n-jump liar?

We can of course provide more implicitly defined paradoxes as we like. Here are some examples.

For convenience, I will use

ψ
P (u,v)⇐===⇒ φ

to denote the statement that “ψ ⇐⇒ φ” holds for all worlds u and v in the domain of a frame

such that the condition P (u, v) is satisfied.

Definition 4.3. For any positive number n, let λi (1 ≤ i ≤ n) be sentences such that for any

frame K and for any admissible assignment t of K, we have

t(v) |=λ1
uRv⇐==⇒ t(u) ̸|=λn. (4-1)

t(v) |=λ2
uR2v⇐==⇒ t(u) ̸|=λ1. (4-2)

t(v) |=λ3
uR3v⇐==⇒ t(u) ̸|=λ2. (4-3)

. . . . . .
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t(v) |=λn
uRnv⇐===⇒ t(u) ̸|=λn−1. (4-n)

Problem 4.4. Find the characterization frames for the set of λi (1 ≤ i ≤ n). And if

possible, construct these sentences in L +.

5. Yablozation of Paradoxes

One interesting respect of Yablo’s paradox is that it gives a method of eliminating self-reference

of a paradox (see for instance [Schlenker(2007)]). More interesting, such a method seems not to

damage the degree of paradoxes which removing the self-reference of a paradox.

Theorem 5.1. ([Hsiung(2013)], p. 26) The Yablo’s paradox has the same degree of paradoxicality

as the Liar.

More generally, for any n-cycle liar λn, we can define its Yablozation νn as follows: let νn =

{νij | 1 ≤ i ≤ n, j ≥ 1} such that

(1) for all j ≥ 1, ν1j is the sentence which says νnk is untrue for all k > j;

(2) for all 1 ≤ i < n, j ≥ 1, νi+1
j is the sentence which says νik is true for all k > j.

As is illustrated in the right column of table 1, all of these sentences form an infinite matrix. Note

that the above procedure of Yablozation is also called “unwinding”. See for instance [Cook(2004)],

pp. 770-771.

λn νn

λn1 ν11 ν12 ν13 . . .

λn2 ν21 ν22 ν23 . . .

λn3 ν31 ν32 ν33 . . .

. . . . . . . . . . . . . . .

λnn νn1 νn2 νn3 . . .

Table 1: The n-cycle liar and its Yablozation

Theorem 5.2. For any positive integer n, the n-cycle liar and its Yablozation have the same degree

of paradoxicality.

Clearly, the above procedure of Yablozation can be extended to any paradox. For instance, for

Yablo’s paradox itself, we can Yabloze it one more and get an even big monster paradox.

Problem 5.3. Does a paradox always have the same degree of paradoxicality as its

Yablozation?

There is no reason to resist conjecturing that the answer should be positive.
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