
Prototypes, Poles, and Topological 

Tessellations of Conceptual Spaces  
 
Abstract. The aim of this paper is to present a general method for constructing natural 

tessellations of conceptual spaces that is based on their topological structure. This 

method works for a class of spaces that was defined some 80 years ago by the Russian 

mathematician Pavel Alexandroff. Alexandroff spaces, as they are called today, are 

distinguished from other topological spaces by the fact that they exhibit a 1-1 

correspondence between their specialization orders and their topological structures.  

Recently, Rumfitt used a special case of Alexandroff’s method to elucidate the logic of 

vague concepts in a new way. Elaborating his approach, it can be shown that the color 

spectrum - and similarly other conceptual spaces – give rise to classical systems of 

concepts that have the structure of atomic Boolean algebras.   

Rumfitt is not the first of having investigated conceptual systems of conceptual spaces. 

Since some time, due to Gärdenfors and other authors, conceptual spaces have become 

a popular modeling tool in cognitive psychology, artificial intelligence, linguistics, and 

philosophy. The core idea of the conceptual space approach is that concepts can be 

represented geometrically as regions in similarity spaces. Using prototypes and the 

underlying metric of similarity spaces Gärdenfors constructs a geometrical discretization 

of conceptual spaces by so-called Voronoi tessellations. As will be shown in this paper, 

his account can be interpreted as a geometrical version of Alexandroff’s topological 

construction. More precisely, a Voronoi tessellation à la Gärdenfors is extensionally 

equivalent to a topological discretization constructed by Alexandroff’s method. Even 

more, Rumfitt’s as well as Gärdenfors’s constructions turn out to be special cases of an 

approach that works for a more general class of spaces, namely, for weakly scattered 

Alexandroff spaces. This suggests that the class of these Alexandroff spaces may 

provide a convenient framework for conceptual spaces in general.  

 

Key words: Conceptual Spaces, Polar Spaces, Alexandroff Spaces, Prototypes, 

Topological Tessellations, Voronoi Tessellations, McKinsey Axiom.     

  

1. Introduction. The aim of this paper is to present a general method for constructing 

natural tessellations of conceptual spaces that is based on their topological structure. 
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This method works for a class of spaces that was defined some 80 years ago by the 

Russian mathematician Pavel Alexandroff. Alexandroff spaces, as they are called today, 

are distinguished from other topological spaces by the fact that they exhibit a 1-1 

correspondence between their specialization orders and their topological structures.  

Recently, Rumfitt used a special case of Alexandroff’s method to elucidate the logic of 

vague concepts in a new way (cf. Rumfitt (2015, chapter 8). Elaborating his approach, it 

can be shown that the color spectrum - and other similar conceptual spaces – give rise 

to classical systems of concepts that have the structure of atomic Boolean algebras. 

More precisely, concepts are represented as regular open regions of an underlying 

conceptual space in such a way that something is subsumed under a certain concept iff 

it is represented by an element of the conceptual space that is maximally close to the 

prototypical element p of the space that is used to define the concept.  

Rumfitt is not the first of having proposed to study conceptual systems defined via 

prototypes of conceptual spaces. Since some time, Gärdenfors and his collaborators 

have shown that conceptual spaces provide a very useful modeling tool in cognitive 

psychology, artificial intelligence, linguistics, and philosophy. The core idea of the 

conceptual space approach is that concepts can be represented geometrically as regions 

of metrically structured similarity spaces. Using prototypes and the underlying metric of 

similarity spaces Gärdenfors constructs a geometrical discretization of conceptual spaces 

by so-called Voronoi tessellations. As will be shown in this paper his account can be 

interpreted as a geometrical version of Alexandroff’s topological construction. More 

precisely, a Voronoi tessellation à la Gärdenfors is extensionally equivalent to a 

topological discretization constructed by Alexandroff’s method. Even more, Rumfitt’s as 

well as Gärdenfors’s constructions turn out to be special cases of an approach that 

works for a more general class of spaces, namely, for weakly scattered Alexandroff 

spaces. The Boolean algebras of regular open regions of these spaces yield natural 
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atomic tessellations of them. This suggests that the class of Alexandroff spaces may 

provide a convenient framework for conceptual spaces in general.  

A conceptual space may be considered as a continuous realm of possible stimuli or 

experiences. A task of cognitive science is to understand how this realm is rendered  a 

structured space that can serve as a base for the elaboration of a more or less detailed 

classification of stimuli or experiences.1 For this task, Gärdenfors and his collaborators 

have proposed to employ so called Voronoi tessellations based on a Euclidean structure 

and a finite set of prototypes of the underlying conceptual space:    

 
A Voronoi tessellation based on a set of prototypes is a simple way of classifying a 

continuous space of stimuli. The partitioning results in a discretization of the 

space. The prime cognitive effect is that the discretization speeds up learning.  …  

[A] Voronoi tessellation is a cognitively economical way of representing 

information about concepts. Furthermore, having a space partitioned into a finite 

number of classes means that it is possible to give names to the classes. 

(Gärdenfors (2000, 89)) 

 
As we want to show the topological essence of Gärdenfors’s (and Rumfitt’s) discreti–

zations of continuous conceptual spaces is based on a structural correspondence 

between order structures and topological structures that was discovered by Alexandroff 

in the 1930s. 

A Voronoi tessellation of a conceptual space uniquely determines a topological 

tessellation that is extensionally equivalent to a regular open tessellation constructed by 

Alexandroff’s method. The constructions of Rumfitt and Gärdenfors boil down to very 

special cases of Alexandroff’s construction. Thus it makes sense to consider the far-

reaching generalizations that are suggested by Alexandroff’s original construction.   This 

																																																								
1  With some good will, Carnap’s „attribute spaces“ may be considered as forerunners of 
conceptual spaces in Gärdenfors’s sense. For a more detailed comparison of the similarities and 
differences of the two approaches see Sznajder (2016, section 6). In particular, in contrast to 
attribute spaces, the regions of conceptual spaces that correspond to concepts are non-
homogeneous in the sense that some (generating) points are more prototypical than others. 
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generalization suggests that Alexandroff spaces should be considered as a natural 

topological habitat of conceptual spaces. They provide the natural framework for 

conceptual spaces that are interested in those concepts that are empirically meaningful. 

This claim can be explicated as follows:   

 
(1) An empirically meaningful concept has to be stable in the sense that, if it 

applies to a situation x, it also applies to small variations x’ of x. This stability 

is accompanied with a certain conceptual vagueness. Stable concepts do not 

hold with absolute precision. They are unable to single out empirical objects 

with absolute precision. This should be considered as virtue rather than a vice. 

Otherwise, concepts would no longer be empirically applicable. 

(2) Arbitrary conjunctions of stable concepts should be stable. This requirement is 

the expression of a reasonable conceptual modesty. Otherwise, we could get 

rid of the inherent vagueness of empirical concepts by purely logical means, 

namely, by piling up more and more concepts that eventually result in an 

absolutely precise conceptualization of reality.  

(3) Topologically, the requirements (1) and (2) can be satisfied by the 

requirement that a conceptual space S has the structure of an Alexandroff 

topological space (S, OS) such that concepts are characterized as elements of 

the Boolean algebra O*S of regular open subsets of S. 

 
 In this paper we rely on a topological account of concepts, i.e., concepts are 

characterized as topologically well-formed regions of a topological space (X, OX), namely, 

as elements of O*X. This is similar to Gärdenfors’s geometrical approach of conceptual 

spaces according to which concepts are represented by convex regions of an underlying 

conceptual space that is usually assumed to be an Euclidean space endowed with a 

metric. In comparison with the geometrical account the topological one to be presented 
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in this paper is more austere insofar as one and the same topological structure may give 

rise to different geometrical structures.   

The outline of this paper is as follows: The preparatory section 2 recalls the basic 

topological concepts needed in the rest of this paper. Then, in section 3, a special class 

of conceptual spaces is discussed in detail, namely, “polar spaces” and their topological 

structures. These spaces were recently defined by Ian Rumfitt in his book The Boundary 

Stones of Reason (Rumfitt 2015) as a convenient framework for dealing with the logic of 

vague concepts. This class of spaces may be considered as an elementary but 

paradigmatic example for the general topological account elaborated in this paper. In 

section 4 the relation between the topologically defined tessellations of polar spaces and 

the better known geometrically defined Voronoi tessellations of Gärdenfors’s conceptual 

spaces is explicated. Section 5 deals with the topology and order structure of an 

especially subclass of Alexandroff spaces, namely, weakly scattered Alexandroff spaces. 

It is shown that this class of spaces may be considered as the most general class of 

spaces that gives rise to well-behaved classifications and categorizations of objects.   

    

2. Elements of Topology. In this section we recall some topological concepts that are 

necessary for understanding the rest of this paper. Let us start right-on with the basic 

definitions: 

  
(2.1) Definition. Let X be a set with power set PX. A topological space is a relational 

structure (X, OX) with OX ⊆ PX satisfying two requirements that Ø, X ∈ OX and finite 

intersections and arbitrary unions of elements of OX are elements of OX.The elements of 

OX are called the open sets of X. The set-theoretical complements CA of open sets A are 
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called closed sets, and the set of closed sets is denoted by CX.2 If there is no danger of 

confusion a topological space (X, OX) is simply denoted by X.♦ 

 
If X has more than one point several different topological structures OX exist on X. In 

particular, there are two extreme topological structures (X, O0X) and (X, O1X) defined by  

O0X := {Ø, X} and O1X := PX. The topology (X, O0X) is called the indiscrete topology on X, 

and the topology (X, O1X) is called the discrete topology. With respect to set-theoretical 

inclusion ⊆ all topological structures (X, OX) on X lie between these two (rather 

uninteresting) topologies: O0X ⊆ OX ⊆ O1X.♦    

 
Topological structures (X, OX) can be defined in many equivalent ways. For our purposes 

particularly useful is the definition in terms of closure operators cl or interior kernel 

operators int. These operators have to satisfy the so-called Kuratowski axioms: 

 
(2.2) Definition. Let X be a (non-empty) set with power set PX. A topological closure 

operator is an operator PX⎯⎯cl⎯⎯>PX satisfying the four requirements (1) – (4) 

below. Dually, a topological interior kernel operator is a map PX⎯⎯int⎯⎯>PX satis–fying 

the four requirements (1)* - (4)*: 

(1) cl(A ∪ B) = cl(A) ∪ cl(B).                                (1)*   int(A ∩ B) = int(A) ∩ int(B). 

(2) cl(cl(A)) = cl(A).                                            (2)*   int(int(A)) = int(A). 

(3) A ⊆ cl(A).                                                      (3)*   int(A) ⊆ A. 

(4)  cl(Ø) = Ø.                                                      (4)*   int(X) = X. 

Closure operators cl and interior kernel operators int are interdefinable: cl(A) = CintC(A),  

and int(B) = CclC(B), C being the set-theoretical complement with respect to X. 

Every topological closure operator cl uniquely defines a topological structure (X, OX) and 

viceversa: Given cl define the class of open sets OX ⊆ PX by OX := {B; B = Ccl(A); A ⊆ X}. 

																																																								
2 A set may be open and closed. For instance, the sets Ø and X are open and closed for any 
topological structure (X, OX). 
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Dually, given a topological interior operator int the corresponing topological structure OX 

is defined by OX := {A; A = int(A), A ⊆ X}.  

For every A ⊆ X the boundary bd(A) of A (in (X, OX) is defined as bd(A) = cl(A) ∩ 

cl(CA).♦ 

 
For the rest of this paper the following topological concepts are essential:  
 
 

(2.3) Definition.  Let (X, OX) be a topological space.  

(i)  An element x ∈ X is isolated (with respect to (X, Ox)) iff {x} ∈ OX. The set of isolated 

points of X is denoted by ISO(X). 

(ii)  A subset A ⊆ X is dense in X iff cl(A) = X.   

(iii) (X, OX) is weakly scattered iff ISO(X) is dense in X, i.e., cl(ISO(X)) = X.  

(iv) (X, OX) satisfies the McKinsey axiom iff int(cl(A)) ⊆ cl(int(A)) for all A ⊆ X.♦ 

 
(2.4) Lemma. Let (X, OX) be a topological space. The following assertions are equivalent: 

(i)  X is weakly scattered. 

(ii) X satisfies the McKinsey axiom. 

(iii) For all A ⊆ X iff bd(bd(A)) = bd(A). 

 
Proof: Proposition (2.1), Proposition (2.4) (Bezhanishvili, Mines, Morandi (2003)).♦  

 

(2.5) Proposition. Let (X, OX) be a topological space, cl and int its closure and interior 

kernel operator, respectively. An open subset A ∈ OX is regular open iff A = int(cl(A)). 

The set of all regular open subsets of X is denoted by O*X. O*X is well known to be a 

complete Boolean algebra. There is a canonical map OX⎯⎯j⎯⎯>O*X defined by j(A) := 

int(cl(A)) and an inclusion O*X⎯⎯i⎯⎯>OX such that j • i = idO*X.♦ 
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The following definition is essential for the class of topological spaces we will deal with in 

this paper, namely, Alexandroff spaces. 

 

(2.6) Definition (Specialization Order of a Topology). Let X be a set. A quasi-order on X 

is a binary relation ≤ such that for all x, y, z ∈ X (i) x ≤ x, (ii) x ≤ y, y ≤ z imply x ≤ z. If 

the relation ≤ also satisfies (iii) x ≤ y and y ≤ x imply x = y (anti-symmetry) the 

quasiorder is called a partial order. Then the structure (X, ≤) is called a poset.  

A topological structure (X, OX) defines a quasi-order (X, ≤) on X by x ≤ y := x ∈ cl(y). 

This quasi-order is called the specialization quasi-order of (X, OX). The set of maximal 

elements of (X, ≤) is denoted by M.3♦ 

 
For traditional topological spaces like Euclidean spaces (E, OE) the specialization order 

(E, ≤) is trivial, i.e. x ≤ y iff x = y. In contrast, for the topological structures to be 

considered in the following, the specialization order is non-trivial and of great 

importance. Under appropriate conditions, the topological structure (X, OX) of a 

topological space can be reconstructed from its specialization order (X, ≤).  

 
(2.7) Definition (Upper topology defined by a partial order (X, ≤)). Let (X, ≤) be partial 

order. For A ⊆ X define ↑A := {x; a ≤ x for some a ∈ A}. The set ↑A is called the upper 

set of A. Analogously, the lower set ↓A of A is defined by ↓A := {y; y ≤ a for some a ∈ 

A}. The upper topology (X, OX) corresponding to (X, ≤) is defined by OX := {↑A; A ⊆ 

X}.♦  

 
(2.8) Definition. A topological space X is an Alexandroff topological space iff arbitrary 

intersections of open sets are open. Equivalently (invoking the Kuratowski axioms) a 

topological space X is an Alexandroff space iff arbitrary unions of closed sets are closed.  

																																																								
3 For the Euclidean topology (R, OR) the specialization order ≤ is trivial, i.e., ≤ is just the 
identity =, and one has M = R. For the Alexandroff space (N, ON) (see (2.8)(iv)) one has M  = 
Ø.	
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Clearly, if X is Alexandroff for every A ⊆ X there exist a smallest open set V(A) 

containing A, namely, the intersection of all open sets that contain A. ♦    

 
In order to distinguish between different classes of topological spaces separation axioms 

have turned out to be a convenient means. A few important instances of separation 

axioms relevant for those topological spaces considered in this paper are given in the 

following definition. 

 
(2.9) Definition (Separation axioms). Let X be a topological space, and x, y different 

points of X. 

(i) X is a T0-space iff for every x ∈ X there exists an open set a ∈ OX such that either x ∈ 

a and y ∉ a, or x ∉ a and y ∈ a. 

(ii) X is a T1/2-space iff if every point x ∈ X is either open or closed. 

(iii) X is a T1-space iff if every point x ∈ X is closed. 

(iv) (X, OX) is a T2-space iff there exists open sets a ∈ OX and b ∈ OX containing x and y, 

such that x ∉ b and y ∉ a.♦ 

 

(2.10) Examples of Topological Spaces and their Separation Axioms. 

(i) If X has more than one point, the indiscrete topology (X, O0 X) is not T0. The discrete 

topology (X, O1X) is T2.  

(ii) The standard Euclidean topology OR of the real line R is generated by open intervals 

(a, b) = {x; a < x < b}. Two distinct points x and y can be separated by open intervals 

U(x) and U(y) that are disjoint to each other. Hence (R, OR) is a T2–space. All points are 

closed, no point is open. 

(iii) Let Q ⊆ R be the subset of rational numbers. The set Q as a subset of R inherits a 

topology from R by declaring a subset A of Q to be open iff A = Q ∩ B, for some B ∈ 

OR. The topological space (Q, OQ) has many clopen (= open and closed) subsets.   
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(iv) Let (N, ≤) be the set of natural numbers endowed with their natural order ≤. A 

topological space (N, ON) is defined by stipulating that Ø, N and the sets ↑n := {m; n ≤ 

m} are open for each n ∈ N. Then (N, ON) is an Alexandroff space that satisfies T0 but 

not T1. No point of (N, ON) is open, the only closed point of (N, ON) is 0.   

(v) An Alexandroff space (X, OX) satisfies T1 iff it is discrete.♦ 

 
(2.11) Proposition. The topological space (X, OX) is a T0-Alexandroff space iff its quasi-

specialization order (X, ≤) is a partial order.  

	
Proof. Check the definitions.♦  

 
The equivalence between the topological structure (X, OX) and the order-theoretical 

structure of the specialization (quasi-)order (X, ≤) renders modal logic a rich source of 

Alexandroff spaces:   

 
(2.12) Proposition. Let (W, ≤) an S4 Kripke frame of possible worlds W such that ≤ is 

reflexive, transitive, and anti-symmetric. Then the upper topology on W defines a T0 -

Alexandroff space (W, OW).♦ 

  
Now we can formulate the main formal result of this paper: 

 
(2.13) Theorem. Let (X, OX) be a weakly scattered Alexandroff space, ISO(X) the set of 

isolated elements of (X, ≤). Then the Boolean lattice O*X of regular open subsets of X is 

an atomic Boolean algebra, i.e., O*X = 2L, L being the set of atoms of O*X. More 

precisely, the elements of L are the regular open sets int(cl(p)), p ∈ ISO(X). The Boolean 

algebra O*X defines a regular open atomic tessellation of the space X by X = {intcl(p); p 

∈ ISO(X)} = VL.♦ 
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We will deal with this theorem on two different levels of generality: First, as an especially 

simple case, we will consider so-called polar spaces, recently introduced by Rumfitt 

(2015). These spaces are characterized by specialization orders (X, ≤) of depth 2. Then 

we consider general weakly scattered Alexandroff spaces (X, OX).   

 

3. The Topological Structure of Polar Spaces. In this section we explicate the topological 

structure of the polar spaces (cf. Rumfitt (2015, chapter (8.4)). In particular, we show 

that these spaces are very simple Alexandroff spaces.  

Rumfitt presents his approach by way of example, discussing the polar topology of the 

well-known color spectrum as a conceptual space of color experiences. He does not, 

however, calculate its topology in any detail. This will be undertaken in this section. 

Let X be a set of coloured objects that is to serve as the underlying set of a conceptual 

space for color experiences. We are looking for a discretization of X, i. e., a partition of X 

that allows us to classify color experiences in different categories. Usually, this is done 

with the aid of certain paradigmatic or prototypical experiences of red, of blue, yellow 

and so on. (cf. Gärdenfors (2000)). Rumfitt argues that the task of classification of 

colors is best conceptualized as a procedure based on a comparison with certain color 

experiences that are to be considered as paradigmatic or prototypical:   

 
The spectrum enables us to attach senses to colour terms not because it shows 

boundaries, but because it displays colour paradigms or poles. Sainsbury likens 

colour paradigms to ‘magnetic poles exerting various degrees of influence: some 

objects cluster firmly to one pole, some to another, and some, though sensitive to 

the forces, join no cluster’. … I prefer a simpler analogy which likens paradigms to 

gravitational poles, that is, massive bodies. If a small body is sufficiently close to a 

gravitational pole, it will be drawn towards it, rather as we are drawn to classify as 

red those objects that are sufficiently close in colour to a paradigm, or pole, of 

red. Rumfitt (2015, 236) 
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The essential mathematical structure to be extracted from this example is the following:  

Assume that there is given a set X of objects to be classified, and a subset P of X to be 

considered as a set of distinguished elements that are “paradigmatic” or “prototypical” 

objects. In the terminology of Rumfitt (2015) they are called poles. These poles are used 

to classify the ordinary objects. 

More precisely, the set of poles is used to endow X with the structure of a topologically 

structured conceptual space. Let us assume that for every object x ∈ X there is a non-

empty set m(x) ⊆ P of poles p such that all the p ∈ m(x) are maximally close to x. It may 

well be that for some x the set m(x) comprises more than one element, but m(x) is 

assumed to be always non-empty. It seems plausible to assume that for a pole p ∈ P one 

has m(p) = {p}. This is to be interpreted as the assumption that for a paradigmatic 

object p the unique maximally close paradigmatic object to it is p itself. The attribution 

of maximally close poles to each object x ∈ X can be conceived as a function 

X⎯⎯m⎯⎯>2P satifying two conditions: 

 
(3.1)      (i)   For all x ∈ X m(x) ≠ Ø              (ii)            For all p ∈ P m(p) = {p}.  

 
The function m is called a pole distribution for X and is denoted by (X, m, P). The 

requirements (3.1) (i) and (ii) guarantee that poles do some classificatory work by 

classifying the elements of X according to the poles that are maximally close to them: 

First, poles are distinguished from non-poles as those elements that are, so to speak, 

“self-classifying”, i.e., m(p) = {p}. 4  Secondly, pole distributions (X, m, P) define a 

topology on X with the help of the following interior kernel operator 2X⎯⎯int⎯⎯>2X: 

 
(3.2) Proposition. Let (X, m, P) be a pole distribution, A ⊆ X and define the operator by  

 
																																																								
4	Note that it is not required that m is defined with the aid of a fully-fledged metric on 
X as Gärdenfors seems to assume. 
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(3.2)1                  x ∈ int(A) iff x ∈ A & ∀p∈P (p ∈ m(x) ⇒ p ∈ A)  
 
Then int is a topological interior kernel operator that defines an Alexandroff 

topology. Informally formulated, x ∈ int(A) iff x ∈ A and moreover all poles that are 

maximally close to x also belong to A. In other words, the interior of A comprises 

those elements of A whose maximally close poles also belong to A. Thereby elements of 

int(A) “have no connection to elements outside A”.  

Equivalently, the topology corresponding to a pole distribution (X, m, P) can be 

defined by the closure operator cl  

(3.2)2                  x ∈ cl(A) iff x ∈ A or ∃p∈P(p ∈ A and  p ∈ m(x)). 

That is, the closure cl(A) of a set A comprises the members of A together with all 

objects for which at least one of their maximally close poles is in A. In other words, cl(A) 

comprises all elements of A that are in A or have at least connection to elements of A. 

The topological space (X, OX) defined by the operators int or cl is called the polar space 

of the distribution (X, m, P).♦ 

 
Proof. The proof that int and cl are topological operators consists in a routine check that 

these operators satisfy the Kuratowski axioms (2.2), see Rumfitt (2015, 243 - 246). A 

closer inspection of the definitions (3.2)1 or (3.2)2 reveals that they even satisfy the 

stronger Alexandroff condition (2.6).♦ 

 
Although Rumfitt introduces the topology (X, OX) given by a pole distribution (X, m, P) 

he does not describe the topology in any further detail. In particular, he does not 

mention that (X, OX) is an Alexandroff topology. Nor does he show explicitly that O*X is 

atomic. All this could have been proven easily with the formal apparatus he has at his 

disposal. Endowed with the topology defined by a pole distribution (X, m, P) the color 

spectrum (X, OX) is a very special Alexandroff space, namely, (X, OX) is a T0-space such 
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that the singletons {p} ⊆ P are open and all the singletons {x} for x ∈ X – P are closed.5  

More precisely, the following proposition obtains:     

 
(3.3) Proposition.  Let (X, OX) be the topological space defined by a pole distribution (X, 

m, P).  Then X is a T0–space. For all x ∈ X, the smallest open set that contains x is the 

set V(x) := {x} ∪ m(x). For the elements p ∈ P and x ∈ X – P one calculates:   

         
      int(p) = {p}              int(x) = Ø              V(x) = {x} ∪ m(x) 

      cl(x) =   {x}             cl(p) = {x; p ∈ m(x)},       int(cl(p)) = {x; {p} = m(x)} 

 
Proof. In order to prove these assertions one just has to check the definitions. Be it 

sufficient to prove that V(x) = {x} ∪ m(x). According to the definition of the interior 

operator int one has  

 
          y ∈ int({x} ∪ m(x))  ⇔   y ∈ {x} ∪ m(x) & ∀p(p ∈ m(y) ⇒ p ∈ {x} ∪ m(x)).  

 
Clearly every element in {x} ∪ m(x) satisfies this condition. On the other hand, any 

smaller set, properly contained {x}∪ m(x), does not satisfy the condition. For two 

different elements x and y V(x) and V(y) are different. Hence X is a T0-space. Thus the 

sets {{x} ∪ m(x), x ∈ X} form a unique minimal base for the topology on X.  

 
Proposition (3.3) provides the topological data that can be used to characterize 

Rumfitt’s polar spaces as a special class of topological spaces (cf. Bezhanishvili, Esakia, 

and Gabelaia (2003) and Bezhanishvili, Mines, and Morandi (2003)).   

 
(3.4) Proposition. Let (X, OX) be a polar space defined by a pole distribution (X, m, P). 

Then the following holds:  

(i)  X is weakly scattered.6  

																																																								
5 A space having this property is sometimes said to satisfy the T1/2-axiom located halfway 
between To  and T1.               
6 One can easily show that polar spaces are not only weakly scattered but even scattered. This 
will, however, not be needed in the following. 
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(ii)  X satisfies the McKinsey axiom.   

(iii) For all A ⊆ X bd(bd(A)) = bd(A). 

 
Proof. By (2.4) (i) – (iii) are equivalent. Hence it is enough to prove just (i). By (3.3) the 

set ISO(X) of isolated points of X is just the set P of poles. Hence every x is contained in 

at least one cl(p) by definition of the polar distribution m. Hence X = ∪p∈P cl(p) ⊆ 

cl(ISO(X)), i.e., X is weakly scattered.♦ 

 

(3.5) Proposition. Let (X, OX) be the polar topological space defined by (X, m, P).   The 

Boolean algebra O*X of regular open sets of (X, OX) is atomic. The atoms of O*X are the 

sets intcl(p)) = {x; {p} = m(x)}. In O*X two atoms int(cl(p)) and int(cl(p*)) generate the 

regular open set {x; {p, p*} ∩ m(x) ≠ Ø}. 

 
Proof. Check the definitions and apply (3.3). ♦ 

 
In section 5 we will show that the “correct” generalization of polar spaces, for which the 

Boolean algebra O*X is still atomic, is the class of weakly scattered Alexandroff spaces.    

 

4. Topological and Geometrical Tessellations. The aim of this section is to discuss several 

types of tessellations of conceptual spaces that can be used to set up conceptual 

classifications based on geometrical and/or topological structure of conceptual spaces.  

Due to the fact that for polar spaces (X, OX) the Boolean algebra O*X is atomic the 

resulting tessellation is particularly simple and essentially unique. 

 
(4.1) Definition. A regular open tessellation T of a topological space (X, OX) is a set of 

disjoint regular open subsets Ai ∈ O*X such that X = VAi. The supremum VAi of the Ai 

taken here in O*X, not in OX. If the sets Ai are atoms of O*X the tessellation T is called 

an atomic tessellation. Points of X that are not in the interior of any cell Ai are said to 

belong to the boundary bd(T) of the tessellation T.♦ 
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(4.2) Examples.  

(i) Let (X, OX) be a topological space, A ∈ O*X, A ≠ Ø, X. Denote the Boolean 

complement of A in O*X by A* (A* = int(CA)) Then {A, A*} is a regular open tessellation 

of X with the two cells A and A*. The boundary bd(T) of T is just the boundary bd(A) (= 

bd(A*)).  

(ii) More generally, let A1, … , An be n regular open subsets of X. The set {A1, … , An} 

generates a regular open tessellation of X that has 2m cells, m ≤ 2n.♦ 

 
These examples show that regular open tessellations of topological spaces abound. A 

more interesting problem is to prove whether or a space has a (unique) atomic regular 

open tessellation. As is well known Euclidean spaces (E, OE) lack atomic tessellations. On 

the other hand, polar spaces have atomic regular open tessellations:  

 
(4.3) Proposition. Let (X, m, P) be a pole distribution for X. Then the topological space 

(X, OX) has a canonical regular open atomic tessellation T by the atoms of the Boolean 

algebra O*X, i.e., T = Vp∈P int(cl(p)). 

 
Proof. Let (X, OX) be defined by (X, m, P). As proved in (3.8) the Boolean algebra O*X is 

isomorphic to the powerset 2P. Thus, the atoms of O*X generate a regular open 

tessellation T of X. The atoms of T are the regular open sets int(cl(p)) = {x; {p} = m(x)}, 

p ∈ P. Elements of X to which more than one pole is maximally close are located in the 

boundary of T, i.e., bd(T) = {x; {p, p’} ⊆ m(x) for some p, p’ ∈ P and p ≠ p’.♦ 

 

As mentioned already in the introduction, topologically defined polar spaces a la Rumfitt 

are not the only example of conceptual spaces. Probably better known are the 

geometrically defined conceptual spaces a la Gärdenfors that have become an 

increasingly popular modeling tool in many empirical sciences and also in philosophy. 
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Hence, after having dealt with polar spaces in some detail, it may be expedient now to 

deal in some more detail with that class of conceptual spaces, and to explain how 

Rumfitt’s and Gärdenfors’ conceptual spaces may be conceived both as Alexandroff 

spaces.  

Gärdenfors’ conceptual spaces are similarity spaces. Similarity spaces are multi-

dimensional structures with a metric defined on them. Distances in the space are meant 

to measure similarity: the smaller the distance between objects the larger the similarity 

between them. The distances in a similarity space are meant to measure dissimilarities 

between objects. The metrics most frequently encountered are the familiar Euclidean 

distance and the so-called Manhattan distance that simply adds up distances along all 

the dimensions of a space.  

Neither the shape of a similarity space nor the choice of a metric defined on it are 

arbitrary. Usually, both the structure and the metric of a similarity space are determined 

on the basis of a large set of similarity rations, often obtained in an empirical study, 

which serve as input for one of several related statistical techniques that turn similarities 

into geometric objects. 

Now, let us consider in some more detail, the arguably most prominent class of 

tessellations, namely, the so-called Voronoi tessellations (cf. Gärdenfors (2000), Decock 

and Douven (2015), Zenker and Gärdenfors (2015)). Voronoi tessellations may be 

characterized as geometrical tessellations. They are defined by using the underlying 

geometrical structure of Euclidean conceptual spaces, more precisely, their metrical 

structure. The general definition is as follows: 

Given a set P of two or more but a finite number of distinct points in the 

Euclidean plane, we associate all locations in that space with the closest 

member(s) of P with respect to the Euclidean distance. The result is a 

tessellation of the plane into a set of the regions associated with members of P. 

We call this tessellation the planar ordinary Voronoi diagram generated by P, 

and the regions constituting the Voronoi diagram ordinary Voronoi polygons. 
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(Okabe et al. (1992, p. 44))  

 
As an illustration of this general definition let us consider the simplest Voronoi 

tessellation of the Euclidean plane E: 

 
(4.4) Example. Let E be the Euclidean plane endowed with a Cartesian coordinate system 

(x, y). Choose two points pL = (-1, 0) and pR = (1, 0). Then the Voronoi tessellation in 

the sense of the above quoted definition taking pL and pR as generators is given by the 

two open cells    

        L: =  {(x,y); d((x,y), pl) < d((x,y), pR)}     R : = {(x,y); d((x,y), pR) < d((x,y), pL)} 

The boundary of this tessellation is given by the topological boundary bd(L) = bd(R) of 

the two half-planes L and R. It is the line  

                       {(x,y); d((x,y), pL) = d((x,y), pR}       =          {(x, y); x = 0}.♦ 

 
Following the procedure of (4.5) this construction is easily generalized to a partition of 

the plane into at most 2n regular open polygons (and their boundaries), n finite number. 

Let p1, …, pn a finite set of different points. Then a general Voronoi tessellation may be 

conceived of as the result of the intersection of the n!/2! (n-2)! pairs of half-planes each 

defined by the bisectors of pairs (pi, pj) of different points pi ≠ pj in such a way that the 

plane is divided into convex open cells together with their boundaries.   

Clearly, a geometrically defined Voronoi tessellation of Euclidean space gives rise to a 

regular open tessellation in the sense of (4.1): By construction all the open Voronoi cells 

are disjoint to each other, and, due to fact that they are convex (cf. Gärdenfors (2000, 

88) they are not only open but even regular open. By the very definition of the Voronoi 

cells the points not in the interior of a cell are those points that have equal distance to 

two (or more) paradigmatic points pi. Hence they are located on the topological 

boundary of those cells.  

A Voronoi tessellation based on the metrical structure of a Euclidean space E not only 
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defines a topological tessellation in the sense of (4.1), it also yields a polar distribution 

(E, m, P):  

 
(4.5) Proposition. Let T be a Voronoi tessellation of the Euclidean plane E defined by a 

finite set P of prototypes p1, …, pn. Then a pole distribution (X, m, P) is defined as 

follows: Take the Voronoi generators p1, …, pn as the set P of poles of a pole distribution 

X⎯⎯m⎯⎯>2P  defined as  

   m(x) = {pi; x ∈ cl(<pi>); <pi> the open Voronoi cell defined by the generators pi)}.  

The resulting polar topological space (E, m, P) defines a regular open tessellation of E by 

the regular open atoms int(cl(pi)) of O*E such that the int(cl(pi)) are just the Voronoi 

cells <pi>. More precisely, x ∈ E is contained in the interior of a cell int(cl(p)) iff m(x) = 

{p}.♦ 

 
By this recipe, the cells of the resulting topological tessellation of E coincide with the 

cells of the Voronoi tessellation of E. Moreover, the geometrically defined boundary of 

the Voronoi tessellation coincides with the topological boundary. In sum, every 

geometrically defined Voronoi tessellation based on a finite set of prototypical points 

gives rise to a uniquely defined topological tessellation defined by (X, m, P) that is 

extensionally equivalent. 

Compared with the geometrical construction of a Voronoi tessellation of the plane a 

topological tessellation requires much less structural presuppositions. This is a 

conceptual advantage insofar, as certain problems caused by the presence of 

representational artifacts disappear. For example, for Euclidean spaces there are many 

different metrical structures that define the same underlying topological structure.7 With 

respect to these different metrics, one and the same set P of prototypical points may 

																																																								
7 A prominent case is provided by the family of Minkowski-metrics di(x, y) for 1 ≤ i ≤ ∞. This 
problem is briefly discussed for i = 1 (taxi cab or Manhattan metric) and i = 2 (ordinary 
Euclidean metric in Gärdenfors (2000, chapter 3.9). The Euclidean metric d2 has the structural 
advantage that the cells of its Voronoi tessellations turn out to be convex. 
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give rise to different Voronoi tessellations. Which one should be chosen as the right one? 

Another problem that may be attributed to the too specific mathematical apparatus 

used for the definition of a Voronoi tessellation T of a conceptual space concerns the 

boundary bd(T) of T. It has been dubbed the “thickness problem” (cf. Douven et al. 

2013).  

The “thickness problem” may be explicated as follows. By the very construction of 

Voronoi tessellations, the boundaries of cells are “thin” compared with the interiors of 

the cells since they are lines consisting of points that have equal distances to two (or 

more) prototypical points. Douven et al. (2013) rightly point out that this assumption 

for most conceptual spaces is not very plausible. For instance, for the conceptual space 

of the color spectrum the boundary, say, between “red” and “orange” is defined by the 

points that have exactly the same distance from the prototypical points of “red” and 

“orange”. Empirically, this does not make much sense. What should it mean that a 

certain shade of color has the same distance from a prototypical “red” and a 

prototypical “orange”? Moreover, in the general case, there is no reason to assume that 

boundaries are “thin” compared with the regular open cells of the Voronoi tessellation. 

Douven et al. (2013) propose to overcome this shortcoming by the introduction of 

“collated Voronoi diagrams” that arise as the result of projecting similar ordinary Voronoi 

diagrams onto each other such that their boundaries define a blurred and more or less 

“thick” area thereby taking into account the vagueness of concepts and their 

boundaries.  

For topological tessellations no “thickness” problem arises, since they do not distinguish 

between “thick” and “thin” as geometrical tessellations do (in an artificial way). The 

following example shows that the topological approach easily deals with tessellations 

with cells whose boundaries are “thicker” than the cells themselves:  
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(4.6) Example. Let X be the set {α, N, ω}, N = {1, 2, … } the set of natural numbers and 

α and ω  two objects different from all elements of N and from each other. Take P = {α, 

ω} and define a pole distribution (X, m, P) by 

 
               m(i) = {α, ω} for i ∈ N,        m(α) = {α}     ,      m(ω)  =  {ω} 
 
The corresponding topological structure (X, OX) to this pole distribution is given by 

               cl(α) = {α} ∪ N    ,       cl(i) = {i}       ,         cl(ω)  =  {ω} ∪ N 

               int(α) = {α}          ,      int(N) = Ø      ,      int(ω) = {ω} 

               intcl(α)) =  {α}     ,       int(cl(ω)) = {ω}  ,   bd(ω) =   bd(α) = N. 
 
 
The cardinality of the boundary of the regular open cells {α} and {ω} is infinite and thus 

much larger than the cardinality of the regular open cells intcl(α)) = {α} and int(cl(ω)) = 

{ω}.♦   

 
The example (4.6) shows that the topological approach has no difficulty to 

accommodate the “thickness of boundaries”. Topological tessellations are flexible 

enough to accept cells with boundaries that are intuitively much “thicker” than the cells 

they are boundaries of.   

  

  

5. Weakly Scattered Alexandroff Spaces. Alexandroff topologies (X, OX) bring to the fore 

the order-theoretic features of topology by relating the topology OX to the 

specialization order (X, ≤). The essential feature that distinguishes Alexandroff 

topological spaces (X, OX) from ordinary topological spaces is the existence of an “open 

hull” V(A) ∈ OX for every A ∈ PX.   
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In this section we recall the necessary elements of the theory of Alexandroff topological 

spaces in order to show that weakly scattered Alexandroff spaces provide a natural 

generalization of polar spaces.  

For quite a long time Alexandroff spaces did not find much attention in mathematics or 

elsewhere. This changed, when it became clear that topology may have a bearing on 

theoretical computer science. As it turned out, Alexandroff topological spaces and 

related structures became important, see Gierz & alii (2003), Goubault-Larrecq (2013).   

Recall that an Alexandroff space X is defined as a topological space such that arbitrary 

intersections of open sets are open (and not only finite ones) (cf. (2.6)).  Clearly, every 

topological space X having only finitely many elements is an Alexandroff space. In other 

words, Alexandroff topology becomes an interesting concept only for spaces of infinite 

cardinality. Thus, the Alexandroff topology of the color circle and similar conceptual 

spaces defined by prototype distributions (X, m, P) may qualify as an interesting 

Alexandroff topology (cf. Rumfitt (2015).  

Let (X, OX) be a polar space defined by (X, m, P). The specialization order (X, ≤) is 

defined as x < y iff y is a prototype of x, i.e., y ∈ m(x). The smallest open subset that 

contains x is the set V(x) = {x, m(x)}. Thus, the polar topology OX is just Alexandroff 

topology defined by the specialization order (X, ≤). In particular, ↑x := {x, m(x)} = {y; x ≤ 

y}. Thus, for general Alexandroff spaces (X, OX) with specializiation order (X, ≤) one has: 

(5.1)                                x ∈ int(A) := ↑x = {y; x ≤ y} ⊆ A 

Thus, Rumfitt’s definition of the interior operator int for polar spaces is just a special 

case of the standard definition of int for general Alexandroff spaces in that m(x) is 

replaced by ↑x. This corresponds to the standard definition for general topological 

spaces. In the case of an Alexandroff the existence of an open neighborhood U(x) 

contained in int(A) can be expressed more specifically that int(A) must contain ↑x. Thus, 

Rumfitt’s definition of int for polar spaces is just a special case of the general definition 
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of the interior operator in of Alexandroff spaces. Correspondingly, for a general 

Alexandroff (X, OX) space one obtains for its closure operator:  

 
(5.2)    cl(A) = {x; ↓x ∩ A ≠ Ø}           ↓x := {y; y ≤ x} 

 
The simplest class of weakly scattered Alexandroff spaces are polar spaces defined by 

pole distributions (X, m, P). More general weakly scattered Alexandroff spaces share 

many properties with polar spaces. Thus it seems justified to assert that weakly 

scattered Alexandroff spaces may be considered as the “right” generalization of polar 

spaces.   

 

(5.3) Proposition. Let (X, OX) be a weakly scattered Alexandroff space with ISO(X) the 

set of isolated points. Then ISO(X) is the set of maximal points of the specialization 

order (X, ≤). Moreover, ISO(X) generates the filter DX of dense sets of X. 

 
Proof.  Let p be a maximal element of (X, ≤). By definition of the Alexandroff topology 

the singleton {p} is open, i.e., ↑p = {p}. Hence all maximal elements are isolated, and, 

vice versa, all isolated elements are maximal. Since (X, OX) is weakly scattered and 

Alexandroff one has X = ∪ cl(ISO(X)) = ∪p∈ISO(X) cl(p). Thus, by definition of the 

Alexandroff topology all x ∈ X there is at least one p such that x ∈ cl(p) = ↓p = {x; x ≤ 

p}.  

In order to show that ISO(X) generates DX as a filter one argues as follows. Let A be a 

dense subset of X. Then X = cl(A) = ∪a∈Acl(a) = ∪a∈A↓a. In order that ISO(X) is contained in 

cl(A) one must have for all p ∈ ISO(X) ⊆ A ∪a∈A↓a, since p is maximal in (X, ≤). Hence, 

ISO(X) is a minimal generator of DX as a filter.♦ 

 

(5.4) Corollary. Weakly scattered Alexandroff spaces (X, OX) satisfy the McKinsey axiom, 

i.e., bd(bd(A)) = bd(A) for all A ⊆ X.♦ 



	 24	

 
Due to (5.4), for weakly scattered Alexandroff spaces no problem of higher-order 

vagueness arises: Higher-order boundaries coincide with ordinary boundaries, i.e., bd(A) 

= bdn(A), for n ≥ 1. As is well known, the validity of the McKinsey axiom is equivalent to 

the fact that the logic of weakly scattered Alexandroff spaces is S4.1. 

 With respect to tessellations general weakly scattered Alexandroff spaces behave very 

much like polar spaces: Every weakly scattered Alexandroff space (X, OX) has a canonical 

atomic regular open tessellation defined by the atoms of O*X:    

 
(5.5) Proposition. Let (X, OX) be a weakly scattered Alexandroff space with speciali–

zation order (X, ≤), and ISO(X) the set of maximal elements. Then O*X is an atomic 

Boolean algebra with atoms int(cl(p)), p ∈ ISO(X), as generators. Thereby one obtains a 

regular open atomic tessellation of X by X = Vp∈ISO(X) int(cl(p))  . 

 
Proof. Let ISO(X) be the set of maximal elements of the specialization order (X, ≤). By 

definition, for each x ∈ X there is at least one p ∈ ISO(X) such that x ≤ p. Since the 

Alexandroff topology is the upper topology of the specialization order (X, ≤) the 

singletons {p} are open, and the closures cl(p) of {p} are the down sets ↓p := {x; x ≤ p}.  

The sets int(cl(p)) := {x; ↑x ⊆ ↓p} for p ∈ ISO(X) are atoms of O*X: For different p, p* 

the sets intcl(p) and intcl(p*) are disjoint and regular open, since int(cl(p)) ∩ int(cl(p*)) 

= intcl({p} ∩ {p*})  = Ø due to the fact that the operator intcl is a nucleus, i.e., it 

distributes over finite intersections.  

That intcl(p)) is an atom in O*X is seen as follows: Assume x ∈ A = intcl(A) ⊆ intcl(p). 

Since intcl(p)) is open one has ↑x ⊆ cl(p)). This entails x ≤ p and therefore p ∈ ↑x ⊆ A. 

Hence intcl(p) ⊆ intcl(A) = A. Hence A = intcl(p).  

Now we prove that any regular open A = Vn∈M’ intcl(n) for some M’ ⊆ M. Let MA := {p; p ∈ 

A ∩ M}. Clearly, Vn∈∈AM intcl(p) ⊆ A. If we can show that A ⊆ Vn∈∈AM intcl(p) we are done. 

Assume x ∈ A and define Mx := {p; x ≤ p and n ∈ ISO(X)}. Clearly Mx ⊆ AM. Hence x ∈ 
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cl(AM). Assume y ∈ ↑x. This is the case iff x ≤ y and this entails My ⊆ Mx. So we obtain ↑x 

⊆ cl(AM). This means x ∈ intcl(AM) = intcl(∪n∈AM{p}) = Vn∈AM intcl(p). This is to say A ⊆ 

Vp∈∈AM intcl(p).♦ 

 
Being Alexandroff and weakly scattered is a sufficient reason for a topological space (X, 

OX) to ensure that O*X defines a regular open atomic tesselllation of X. These two 

conditions are not necessary, however. It is easy to find (non-weakly-scattered) 

Alexandroff spaces or (non-Alexandroff) weakly scattered spaces that have regular open 

atomic tessellations. In order to succinctly summarize the results of this paper the 

following diagram may be helpful:  

 
G-Spaces ⇒  Polar Spaces  ⇒   MK-Alexandroff Space ⇒   O*-Atomic Spaces 

 

The terms of this diagram have the following meaning: 

 
G-Spaces                =        Conceptual spaces with tessellations geometrically                                                             

                                       defined by prototypes.  
 
          Polar Spaces            =        Conceptual spaces with tessellations topologically  

                                                  defined by pole distributions. 

 
            MK A-Spaces          =         Alexandroff Spaces that satisfy the MK-axiom.  

 

         O*-Atomic Spaces   =         Spaces such that O*X is atomic. 
 

The arrows are to be read as follows: G-spaces define in a canonical way polar spaces 

due to the fact that their metric and the set of prototypes define a polar distribution. 

Polar spaces are a proper subclass of weakly scattered Alexandroff spaces. These spaces 
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have been proved to possess an atomic regular open tessellation, i.e., they are O*-

atomic spaces. 8 

 

6. Concluding Remarks. In this paper some general reasons have been put forward for 

the claim that conceptual spaces should be conceived of as being endowed with the 

topological structure of Alexandroff spaces. One reason is that Alexandroff topologies 

are an expedient conceptual device to take care of the important role that prototypes 

and paradigmatic elements play in human categorization. In the simplest case, this is 

already evidenced by polar spaces (X, OX) that are defined by pole distributions (X, m, 

P). Weakly scattered Alexandroff spaces may be considered as a convenient 

generalization of this case since they preserve most of the useful properties exhibited by 

polar spaces, and on the other hand allow to get rid of the overly narrow framework that 

permits only one level of prototypes. Instead, in the case of weakly scattered 

Alexandroff spaces a partially ordered hierarchy of prototypes may occur. This enables 

us to deal with properties of different paradigmatic levels. If paradigms and prototypes 

play an important role in human categorization, and this seems to be the case, polar 

spaces, and, more generally, weakly scattered Alexandroff spaces provide a natural.  

As already said in the introduction, the basic assumption of the conceptual spaces 

approach in cognitive science is that concepts can be usefully represented as well-

formed subsets of a conceptual space that is structured in one way or other. The basic 

task of this approach is to find appropriate structures that allow to single out empirically 

useful concepts as structurally well formed. Topological structures are generally 

recognized as basic spatial structure for all kinds of spaces that show up in all realms of 

knowledge. Thus, it does not appear unreasonable to expect that topological structures 

																																																								
8 It should be noted, however, that there are Alexandroff spaces that are not weakly scattered 
but have nevertheless atomic O*X, and there are weakly scattered spaces that are not 
Alexandroff but nevertheless are O*-atomic spaces. 
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may also play a role in the theory of conceptual spaces. Topological concepts are 

sufficiently flexible to be adapted to various empirical necessities. It is a matter of 

empirical research to find out which topological structures for which type of conceptual 

spaces may be helpful.  

Gärdenfors and others have argued that convex structures of Euclidean spaces are 

appropriate for singling out meaningful concepts. The resulting Voronoi tessellations 

depend on a rather special geometrical structure. This has the danger of generating   

structural artifacts that may lack empirical content. For instance, it may be difficult to 

justify empirically that a given conceptual space should be endowed with a specific 

metric and not with another one. For instance, the convexity of the Voronoi cells of a 

certain discretization of a conceptual space depends on a specific metric, the choice of a 

different metric would yield different cells. As another example of a problem generated 

by the too specific structure imposed on conceptual spaces is that problem that Douven 

et al. (2013) have called the problem of “thickness”: Assuming a Euclidean structure of 

conceptual spaces entails a very special structure of the boundaries of their concepts 

that is difficult to justify empirically. More precisely, for Euclidean conceptual spaces the 

boundaries of concepts suffer from “extensional anorexia”, so to speak, in that they are 

overly thin (cf. Douven et al. (2013)). Topological tessellations do not suffer from this 

illness, since discretizations of conceptual spaces based on rather austere topological 

means generate less representational artifacts than those that are based on a much 

richer geometrical structure.  

Be this as it may topological structures are fundamental spatial structures, arguably even 

the most fundamental ones. Thus, if we agree with Gärdenfors’ thesis (Gärdenfors 

(2000, 262) that “to understand the structure of our thoughts … we should aim at 

unveiling our conceptual spaces”, we should invest some efforts to understand the 
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topological structures of our conceptual spaces. The topology of Alexandroff spaces 

may be a useful tool for this purpose. 
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Zur Kritik des zweiten Gutachters: 

1. Die Bemerkung über “heriditarily …” ist ebenfalls nur von mathematischer 

Bedeutung.  

2. “Topological tessellation” kann etwas genauer expliziert werden. Es geht mir um  

die Analogie. 


