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Abstract. Vector models of language are based on the contextual aspects of
words and how they co-occur in text. Truth conditional models focus on the
logical aspects of language, the denotations of phrases, and their compositional
properties. In the latter approach the denotation of a sentence determines its truth
conditions and can be taken to be a truth value, a set of possible worlds, a context
change potential, or similar. In this short paper, we develop a vector semantics for
language based on the simply typed lambda calculus. Our semantics uses tech-
niques familiar from the truth conditional tradition and is based on a form of
dynamic interpretation inspired by Heim’s context updates.
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1 Introduction

Vector semantic models, otherwise known as distributional models, are based on the
contextual aspects of language, the company each word keeps, and patterns of use in
corpora of documents. Truth conditional models focus on the logical and denotational
aspects of language, sets of objects with certain properties and application and compo-
sition of functions. Vector semantics and truth conditional models are based on different
philosophies; in recent years there has been much effort to bring them together under
one umbrella, see for example [1-3, 8, 9].

In a recent abstract [14], we sketched an approach to semantics that assigned vector
meanings to linguistic phrases using a simply typed lambda calculus in the tradition
of [10]. Our previous system was guided by a truth conditional interpretation and pro-
vided vector semantics very similar to the approaches of [1-3, 8, 9]. The difference was
that the starting points of these latter approaches are categorial logics such as Pregroup
Grammars and Combinatorial Categorial Grammar (CCG). Our reasoning for the use
of lambda calculus was that it directly relates our semantics to higher order logic and
makes standard ways of treating long distance dependencies and coordination accessi-
ble to vector-based semantics. In this short account, we follow the same lines as in our
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previous work. But whereas in previous work we worked with a static interpretation of
distributions, here, we focus on a dynamic interpretation.

The lambda calculus approach we use is based on the Lambda Grammars of [11,
12], which were independently introduced as Abstract Categorial Grammars (ACGs) in
[5]. The theory developed here, however, can be based on any syntax-semantics inter-
face that works with a lambda calculus based semantics. Our approach is agnostic as
to the choice of a syntactic theory. Lambda Grammars/ACGs are just a framework for
thinking about type and term homomorphisms and we are using them entirely in se-
mantics here. In a longer paper we will show in more detail how lambda logical forms
(the abstract terms) can be obtained: 1) from standard linguistic trees with the help of a
procedure that is essentially that of Heim and Kratzer [7]; 2) from LFG f-structures by
means of a ’glue logic’; 3) from Lambek proofs by means of semantic recipes; 4) and
from CCG derivations by means of using the combinators associated with CCG rules.

The dynamic interpretation we work with here is the “context change potential” of
[6]. We believe other dynamic approaches, such the update semantics of [16] and the
continuation-based semantics of [4], can also be used; we aim to do these in future.

2 Heim’s Files and Distributional Contexts

Heim describes her contexts as files that have some kind of information written on
(or in) them. Context changes are operations that update these files, e.g. by adding or
deleting information from the files. Formally, a context is taken to be a set of sequence-
world pairs, in which the sequences come from some domain D; of individuals, as
follows:

ctx C{(g,w) | g: N = Dy, w a possible world}

(We follow Heim [6] here in letting the sequences in her sequence-world-pairs be infi-
nite, although they are best thought of as finite.)

Sentence meanings are context change potentials (CCPs) in Heim’s work, functions
from contexts to contexts. A sentence S comes provided with a sequence of instructions
that, given any context ctz, updates its information so that a new context denoted as

ctx + S

results. The sequence of instructions that brings about this update is derived composi-
tionally from the constituents of .S.

In distributional semantics, contexts are words somehow related to each other via
their patterns of use, e.g. by co-occurring in a neighbourhood word window of a fixed
size or via a dependency relation. In practice, one builds a context matrix M over R2,
with rows and columns labeled by words from a vocabulary X' and with entries taking
values from R, for a full description see ([15]). M can be seen as the set of its vectors:

(V| 7: ¥ =R}

where each ¥ is a row or column in M.



Context Update for Lambdas and Vectors 3

If we take Heim’s domain of individuals D; be the vocabulary of a distributional
model of meaning, that is Dy := X, then a context matrix can be seen as a so-called
quantized version of a Heim context:

{(d,w)| ¢: X — R,wapossible world}

Thus a distributional context matrix is obtainable by endowing Heim’s contexts with R.
In other words, we are assuming that not only a file has a set of individuals, but also
that these individuals take some kind of values, e.g. from reals.

The role of possible worlds in a distributional semantics is arguable, as vectors
retrieved from a corpus are not naturally truth conditional. Keeping the possible worlds
in the picture provides a machinery to assign a proposition to a distributional vector
by other means and can become very useful. But for the rest of this abstract, we shall
deprive ourselves from this advantage and only work with the following set as our

context:
{1 7: X >R, g eM}

Distributional versions of Heim’s CCP’s can be defined based on the intuitions and
definitions of Heim. In what follows we pan out how these instructions let contexts
thread through vectorial semantics in a compositional manner.

3 Vectors, Matrices, Lambdas

Lambda Grammars of [11, 12] were independently introduced as Abstract Categorial
Grammars (ACGs) in [5]. An ACG generates two languages, an abstract language and
an object language. The abstract language will simply consist of all linear lambda terms
(each lambda binder binds exactly one variable occurrence) over a given vocabulary
typed with abstract types. The object language has its own vocabulary and its own
types. It results from 1) specifying a type homomorphism from abstract types to object
types and 2) specifying a term homomorphism from abstract terms to object terms.
The term homomorphism must respect the type homomorphism. For more information
about the procedure of obtaining an object language from an abstract language, see the
papers mentioned or the explanation in [13].

Let the basic abstract types of our setting be D (for determiner phrases), S (for
sentences), and N (for nominal phrases). Let the basic object types be I and R. The
domain D; corresponding to I can be thought of as a vocabulary, Dr models the set of
reals R. The usual operations on R can be defined using Tarski’s axioms (in full models
that satisfy these axioms Dr = R will hold; in generalised models we get what boils
down to a first-order approximation of R). Objects of type I — R are abbreviated to
I R; these are identified with vectors with a fixed basis.

We will associate simple words like names, nouns and verbs with vectors, i.e. with

—
objects of type IR and will denote these with constants like womaﬁ, smoke, etc. The
typed lambda calculus will be used to build certain functions with the help of these
vectors that will then function as the meanings of those words. The meanings of content
words will typically be functions that are completely given by some vector, but they will
not (necessarily) be identified with vectors (see also Table 1 below).
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a T H(a) p(7)

Anna (DS)S AZ.Zann (vo)u

woman N \Z.Zwoman vuo)u

tall NN AQZ.Q(\we.ZvF(tall, v, c))  (VUU)N(VU)U
—

smokes DS Ave.G(smoke, v, ¢) vU
_>

loves DDS Auve.I(love, u, v, ¢) VVvU

knows SDS )\pvc.pJ(lmv, v, c) uvu

every N(DS)S 2Q.Q (voyoyvuyu

who (DS)NN NZ'QZ.Q(Me.Zv(QZ'c))  (VU)((VU)U)VU)U

and (@S)(@S)(@S) AR'ARMXMe.R'X(RXc) (p@U)(p(@)U)(p(@)U)

Table 1. Some abstract constants a typed with abstract types 7 and their term homomorphic
images H (a) typed by p(7) (where p is a type homomorphism, i.e. p(AB) = p(A)p(B)). Here
Z is a variable of type VU, Q is of type (VU)U, v of type V, c of type M, and p and g are of
type U. The functions F', G, I, and J are explained in the main text. In the schematic entry for
and, we write p(@) for p(a1) - - - p(aw), if & = a1 - - - ap.

Sentences will be context change potentials. A context for us is a matrix, thus it
has type I?R. A sentence takes the type (I2R)(I?R). We abbreviate IR as V, I°R
as M and the sentence type M M as U (for ‘update’). Verbs take a vector for each of
their arguments, plus an input context, and return a context as their output. For instance,
an intransitive verb takes a vector for its subject plus a context and returns a modified
context. Thus it takes type VM M = VU. A transitive verb takes a vector for its subject,
a vector for its object and a context and returns a context. Thus it has type VVU.
Nouns are essentially treated as vectors (V), but, since they must be made capable
of dynamic behaviour, they are ‘lifted’ to the higher type (VU)U. Our dynamic type
homomorphism p is defined by letting p(N) = (VU)U, p(D) = V and p(S) = U.
Some consequences of this definition can be found in Table 1.

4 Context Update for Lambda Binders

Object terms corresponding to a content word ¢ may update a context matrix ¢ with the
information in @ and the information in the vectors of arguments of a. The result is a
new context matrix ¢’, with different value entries.

’ /
mi1 - Mk miy - Mg
I /
ma1 -+ M2k Moy« Moy
+77u7v,--~:
’ /
Mal Mk My - My,

An example of a set of elementary update instructions may be as follows.
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. AT .
— The function denoted by Avc.G(Smoke, v, c) increases the value entry of m;; of c,
for ¢ and j indices of smoke and its subject v.

— The function denoted by Auv.Ac.I(love, u, v, c) increases the value entries of 1,
mjg, and my, of ¢, for 4, j, k indices of loves, its subject u and its object v.

— The function denoted by Ave.F (taﬁ, v, ¢) increases the value entry of m;; of ¢, for
¢ and j indices of tall and its modified noun v. The entry for fall in Table 1 uses this
function, but allows for further update of context.

— The function denoted by Avc.J(Know, v, c) increases the value entry of m;; of c,
for 4 and j indices of Know and its subject v. The updated matrix is made the input
for further update (by the context change potential of the sentence that is known)
in Table 1.

Logical words such as every and and are often treated as noise in distributional seman-
tics and not included in the context matrix. We have partly followed this approach here
by treating every as the identity function (the noun already has the required ‘quantifier’
type (VU)U). To see this, note that the entry for ’every’, AQ.Q, is the identity function;
it takes a () and then spits it out again. The alternative would be to have an entry along
the lines of that of ’tall’, but this would not make a lot of sense. It is the content words
that seem to be important in a distributional setting, not the function words.

The word and does have a function here though—it is treated as a generalised form
of function composition. The entry for the word in Table 1 is schematic, as and does
not only conjoin sentences, but also other phrases of any category. So, the type of the
abstract constant connected with the word is (@S)(@S)(@S), in which @ can be any
sequence of abstract types. Ignoring this generalisation for the moment, we obtain S.S.S
as the abstract type for sentence conjunction, with a corresponding object type UUU,
and meaning Apgc.p(gc), which is just function composition. This is defined in a way
such that the context updated by and’s left argument will be further updated by its right
argument. So "Sally smokes and John eats bananas’ will, given an initial matrix c, first
update ¢ to G(Sally, smoke, c¢), which is a matrix, and then update this further with
"John eats bananas’ to I (eat, John, bananas, G(smoke, Sally, ¢)).

This treatment is easily extended to coordination in all categories. For example, the
reader may check that and admires loves (which corresponds to loves and admires)
has Auwve.I(admire, u, v, I(love, u, v, ¢)) as its homomorphic image.

The update instructions fall through the semantics of phrases and sentences compo-
sitionally. The sentence every tall woman smokes, for example, will be associated with
the following lambda expression:

(every tall woman)A¢.(smokes ()

This in its turn has a term homomorphic image that is S-equivalent with the following:
—
Ae.G (smoke,womaﬁ, F(‘al,womaﬁ, c))

which describes a distributional context update for it. This term describes a first update
of the context ¢ according to the rule for the constant tall, and then a second update
according to the rule for the constant SmoOKes. As a result of these, the value entries
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at the crossings of (tall, woman) and (woman, smokes) get increased. Much longer
chains of context updates can be ‘threaded’ in this way.

In the following we give some examples. In each case the a. sentence is followed by
an abstract term in b. which captures its syntactic structure. The update potential that
follows in c. is the homomorphic image of this abstract term.

(1) a. Sue loves and admires a stockbroker
b. (a stockbroker)\¢.Sue(and admires loves €)

R
c. Ac.I(admire, stockbroker, Sué, I (love, stockbroker, Sug, c))

(2) a. Bill admires but Anna despises every cop

b. (every cop)A¢.and(Anna(despise ¢€))(Bill(admire &))
c. Ac.I(despise, cop, anna, I(admire, cop, m7 c))

(3) a. The witch who Bill claims Anna saw disappeared
b. the(who(A¢.Bill(claims(Anna(saw &))))witch)disappears

c. Ac.G(disappear, witch, I(s@, witch, ann?i, J(claim, m, c)))

5 Conclusion and Future Directions

In previous work, we showed how a static interpretation of the lambdas will provide
vectors for phrases and sentences of language. There, the object type of the vector of a
word depended on its abstract type and could be an atomic vector, a matrix, or a cube, or
a tensor of higher rank. Means of combinations thereof then varied based on the tensor
rank of the type of each word. For instance one could take the matrix multiplication of
the matrix of an intransitive verb with the vector of its subject, whereas for a transitive
verb the sequence of operations were a contraction between the cube of the verb and the
vector of its object followed by a matrix multiplication between the resulting matrix and
the vector of the subject. A toolkit of functions needed to perform these operations was
defined in previous work. That toolkit can be restated here for the type I2 R, rather than
the previous I R, to provide means of combining matrices and their updates, if needed.
In this work, we show how a dynamic interpretation of the lambdas will also provide
vectors for phrases and sentences of language. Truth conditional and vector models of
language follow two very different philosophies. The vector models are based on con-
texts, the truth models on denotations. The dynamic interpretations of language, e.g.
the approach of Heim, are also based on context update, hence these seem a more ap-
propriate choice. In this paper, we showed how Heim’s files can be turned into vector
contexts and how her context change potentials can be used to provide vector interpreta-
tions for phrases and sentences. Our context update instructions were defined such that
they would let contexts thread through vector semantics in a compositional manner.
Amongst the things that remain to be done in a long paper is to develop a vector
semantics for the lambda terms obtained via other syntactic models, e.g. CCG, LFG,
and Lambek Grammars, as listed at the end of the introduction section. We also aim to
work with other update semantics, such as continuation-based approaches. One could
also have a general formalisation wherein both the static approach of previous work and
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the dynamic one of this work cohabit. This can be done by working out a second pair of
type-term homomorphisms that will also work with Heim’s possible world part of the
contexts. In this setting, the two concepts of meaning: truth theoretic and contextual,
each with its own uses and possibilities, can work in tandem.
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