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Abstract

This paper extends Fitting’s epistemic interpretation of some Kleene logics, to also account
for Paraconsistent Weak Kleene logic. To achieve this goal, a dualization of Fitting’s “cut-down”
operator is discussed, rendering a “track-down” operator later used to represent the idea that no
consistent opinion can arise from a set including an inconsistent opinion. It is shown that, if some
reasonable assumptions are made, the truth-functions of Paraconsistent Weak Kleene coincide with
certain operations defined in this track-down fashion. Finally, further reflections on conjunction
and disjunction in the weak Kleene logics accompany this paper, particularly concerning their
relation with containment logics. These considerations motivate a special approach to defining
sound and complete Gentzen-style sequent calculi for some of their four-valued generalizations.
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1 Introduction

Paraconsistent Weak Kleene logic (PWK, for short) is the three-valued logic that arises from the weak
truth-tables due to Kleene [33], when the intermediate value (which we will, provisionally, call u) is
taken to be a designated value. These truth-tables—represented in Figure 1 below—are peculiarly
referred to as weak, because they exhibit a sort of “infectious” behavior of the intermediate value: in
fact, this value is assigned to a complex formula whenever one of its components is assigned so.

Moreover, notice that the Paracomplete Weak Kleene logic (Kw
3 , for short) is another three-valued

logic that arises from these truth-tables, when the intermediate value is not taken to be designated.
Naturally, it is because these logics are defined making essential use of the weak Kleene truth-tables
that, e.g. in [27], Fitting refers to them (and by extension to their eventual four-valued generalizations,
on which more below) as weak Kleene logics.1

¬
t f
u u
f t

∧ t u f
t t u f
u u u u
f f u f

∨ t u f
t t u t
u u u u
f t u f

Figure 1: The weak Kleene truth-tables

These systems can be compared, primarily, with the three-valued logics defined in terms of the
otherwise strong Kleene truth-tables—represented in Figure 2 below. Thus, when the intermediate
value featured in this strong truth-tables is taken to be non-designated the induced system is usually
referred to as Strong Kleene logic (K3, for short), while the system induced by taking the intermediate
value to be designated is usually referred to as Priest’s Logic of Paradox (LP, for short). Analogously
to the previous remarks, then, it is because these logics are defined making essential use of the strong
Kleene truth-tables that, e.g. in [26], Fitting refers to them (and by extension to their eventual
four-valued generalizations, on which more below) as strong Kleene logics.

1It should be noted that PWK and Kw
3 are usually identified as the classical,“internal” or {¬,∧,∨}-fragments of

Halldén’s and Bochvar’s logics of nonsense presented, respectively, in [7] and [29].
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¬
t f
u u
f t

∧ t u f
t t u f
u u u f
f f f f

∨ t u f
t t t t
u t u u
f t u f

Figure 2: The strong Kleene truth-tables

Among the weak Kleene logics, an increasing amount of recent work has been focused on Para-
consistent Weak Kleene (see e.g. [12], [11], [10], [35], [9], [47], [36], [40]), with the salient absence of
a cogent philosophical interpretation for it. The aim of this paper is to try to overcome this lack, by
offering an epistemic interpretation for PWK, that is, an epistemic understanding of its truth-values,
its consequence relation and its characteristic truth-tables.

To achieve this goal, we will benefit from Fitting’s epistemic interpretation of some of the Kleene
logics in works such as [25], [26] and [27]. Interestingly, Fitting himself showed how his epistemic
interpretation is flexible enough not only to endow the strong Kleene logic K3 and one of its four-
valued generalizations, the logic FDE (studied in [16] and [6]) with an epistemic interpretation, but
also to provide such a reading for the paracomplete weak Kleene logic Kw

3 and one of its four-valued
generalizations, the logic Sfde (on which more below). Quite surprisingly, an attempt to broaden the
range of application of this reading to cover the case of Paraconsistent Weak Kleene has not been
proposed so far. This is, specifically, what we intend to do in this paper: to show how Fitting’s
epistemic interpretation of the Kleene logics can also account for the case of PWK. We are, so to say,
after the missing piece of the puzzle.

To this extent, the paper is structured as follows. In Section 2 we give a few formal preliminaries
and discuss a little bit more rigorously some aspects of the weak Kleene logics and their four-valued
generalizations. Section 3 is the main section of the paper, where Fitting’s epistemic interpretation
of the Kleene logics is reviewed, and our novel reading of Paraconsistent Weak Kleene is presented
in full detail. Section 4 has two parts, and in each of them additional formal results are presented.
First, some new results are provided, concerning the relation between subsystems of the weak Kleene
logics and containment logics—i.e. systems whose valid inference comply with certain set-theoretic
containment principles relating the set of propositional variables appearing in the premises and the
set of propositional variables appearing in the conclusion. Secondly, making essential use of these new
results, sound and complete Gentzen-style sequent calcui for some four-valued generalization of the
weak Kleene logics are introduced. Finally, Section 5 outlines some concluding remarks.

2 Preliminaries

Let L be a propositional language and let Var be a set of propositional variables, assumed to be
countably infinite. By FOR(L) we denote the absolutely free algebra (of formulae), freely generated
by Var, with universe FOR(L). In all of the cases considered in this paper the propositional language
will be fixed to be the set {¬,∧,∨}. In what follows, capital Greek letters Γ,∆, etc. will denote sets
of formulae, and lowercase Greek letters ϕ,ψ, etc. will denote arbitrary formulae. As usual, a logic
L is a pair 〈FOR(L),`L〉, where `L ⊆ ℘(FOR(L))× FOR(L) is a substitution-invariant consequence
relation.

For L a propositional language, an L-matrix (a matrix, for short) is a structure M = 〈V,D,O〉,
where 〈V,O〉 is an algebra of the same similarity type as L, with universe V and a set of operations
O, and D ⊂ V.2 Given a matrix, a valuation v is an homomorphism from FOR(L) to V, for which
we denote by v[Γ] the set {v(γ) | γ ∈ Γ}, i.e. the image of v under Γ. Finally, by a matrix logic L
we understand a pair 〈FOR(L),�M〉 where �M ⊆ ℘(FOR(L))× FOR(L) is a substitution-invariant

2Notice that O is a set that includes for every n-ary operator � in the language L, a corresponding n-ary truth-function
f�M : Vn −→ V.
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consequence relation defined by letting

Γ �M ϕ⇐⇒ for every valuation v, if v[Γ] ⊆ D, then v(ϕ) ∈ D

Moreover, when L = 〈FOR(L),�M〉 we may alternatively denote �M as �L.
Moving on to some specifics of our investigation, when analyzing logical systems below, it will be

useful to consider infectious matrix logics, as defined next.3

Definition 2.1. A matrix logic L = 〈FOR(L),�M〉 is infectious if and only if there is an element
x ∈ V such that for every n-ary f�M ∈ O it holds that

if x ∈ {v1, . . . ,vn}, then f�M(v1, . . . ,vn) = x

As is easy to see, both Paraconsistent Weak Kleene and Paracomplete Weak Kleene can be faithfully
described as three-valued infectious logics, with the subtle difference that in the former the infectious
value is taken to be designated, whereas in the latter it is not. Furthermore, of much interest to us and
of much use in finding an epistemic interpretation for PWK, is to look at infectious subsystems—most
particularly four-valued subsystems—of these three-valued matrix logics. Without loss of generality, in
what follows we will be assuming that semantics for these systems count with the classical truth-values
t and f , and two additional truth-values: > and ⊥.

Four-valued subsystems of the Kleene logics in general, and some subsystems of PWK in particular,
have been studied in recent works, e.g. [48], [47] and [41]. Along this line, normal four-valued gener-
alizations of the Kleene logics are taken to be those in which the truth-functions for the connectives
coincide with those of Classical Logic, when restricted to the set {t, f}. Among the normal generaliza-
tions, however, there are two further salient families which have caught the attention of scholars: the
family of regular and the family of monotonic generalizations.

Regular systems are defined in [48, p. 226] to be such that all of its truth-functions comply with
the criterion—quoted from [41, p. 4] with notation adjusted to fit ours—that a given column (row) of
the truth-table contains t in the > or ⊥ row (column), only if the column (row) has t in all of its cells;
and likewise for f . Monotonic systems are presented, as is usual, in terms of all of the truth-functions
of the underlying matrix preserving some previously defined order over the truth-values. As detailed
in [41, p. 4], the four truth-values of Kleene’s four-valued generalizations are ordered in [48] by letting:
⊥ ≤ f , ⊥ ≤ t, f ≤ >, t ≤ >, allowing t and f to be incompatible—this is, precisely, the “information”
order of the lattice A4 detailed in [6].

As reported in [41], it was proved in [48] that there are 81 four-valued monotonic logics of which
only 6 are regular. To this extent, it must be highlighted that the four-valued generalizations of
the weak Kleene logics that we are going to discuss next are not regular, although they are indeed
monotonic—as is routine to check.

In this vein, it is worth looking at the four-valued logic Sfde presented below, in Definition 2.2.
This system, introduced by Harry Deutsch in [14], has since then been discussed several times in the
literature, with different purposes, e.g. in [26], [34], [44], [21], [47], [42].

Definition 2.2. Sfde is the four-valued logic induced by the matrix 〈VSfde ,DSfde ,OSfde〉, where VSfde =
{t,>,⊥, f}, DSfde = {t,>}, OSfde = {f¬Sfde , f

∧
Sfde

, f∨Sfde} and these truth-functions are defined by the
truth-tables in Figure 3.

The most important thing about Sfde is that Fitting, in [27], has taken this logic to be a four-
valued generalization of Kw

3 . Why so? On the one hand, it is legitimate to say it is a generalization
of Paracomplete Weak Kleene, first, because its semantics include an undesignated infectious value,
just like the semantics for Kw

3 . Secondly, because this fact—together with the information that it is
normal, in the above technical sense—secures that when valuations are restricted to the set {t,⊥, f} we
obtain nothing more than the semantics for Kw

3 . On the other hand, it is a four-valued generalization,

3The following definition is inspired by [31], although a similar definition might be found in [19]. For a generalization
of this notion that also applies to non-deterministic matrices (as defined in [3]) see [47].
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f¬Sfde
t f
> >
⊥ ⊥
f t

f∧Sfde t > ⊥ f

t t > ⊥ f
> > > ⊥ f
⊥ ⊥ ⊥ ⊥ ⊥
f f f ⊥ f

f∨Sfde t > ⊥ f

t t t ⊥ t
> t > ⊥ >
⊥ ⊥ ⊥ ⊥ ⊥
f t > ⊥ f

Figure 3: Truth-tables for the logic Sfde (the four-valued generalization of Kw
3 )

because its semantics include an additional non-classical truth-value, namely >, such that both it and
its negation are designated—whence e.g. Explosion, the inference ϕ ∧ ¬ϕ � ψ, is invalid in Sfde. This
informs us, moreover, that we are in front of a paraconsistent subsystem of Kw

3 .
The importance of considering four-valued generalizations of Kleene logics does not rely, however,

just on their technical interest. In fact, as we will see later in Section 3, it is only after offering an
epistemic interpretation for Belnap-Dunn logic FDE—whose truth-functions are discussed in Section 3.2
below—and looking at Strong Kleene logic K3 through the eyes of such a reading, that Fitting provided
an epistemic interpretation of the latter. Similarly, it was only after offering an epistemic interpretation
for Sfde and looking at Paracomplete Weak Kleene with the tools provided by such a reading, that
Fitting arrived at an epistemic interpretation for Kw

3 .
Thus, it will be through a similar path that we will arrive at an epistemic interpretation for PWK.

We will, then, find a suitable four-valued generalization of Paraconsistent Weak Kleene, which we will
later endow with an epistemic interpretation. Hence, it will be only after looking at PWK through
this interpretation, that we will be able to provide an epistemic understanding for it. Our target
four-valued system, which we will call dSfde, is presented below in Definition 2.3. This system was
first introduced in [47], although with a different name.4 Here, we prefer to call it dSfde for it clearly
is the dual of Deutsch’s Sfde.

5

Definition 2.3. The logic dSfde is induced by the matrix 〈VdSfde ,DdSfde ,OdSfde〉, where VdSfde =
{t,>,⊥, f}, DdSfde = {t,>}, OdSfde = {f¬dSfde , f

∧
dSfde

, f∨dSfde} and these truth-functions are defined by
the truth-tables in Figure 4.

f¬dSfde
t f
> >
⊥ ⊥
f t

f∧dSfde t > ⊥ f

t t > ⊥ f
> > > > >
⊥ ⊥ > ⊥ f
f f > f f

f∨dSfde t > ⊥ f

t t > t t
> > > > >
⊥ t > ⊥ ⊥
f t > ⊥ f

Figure 4: Truth-tables for the logic dSfde (the four-valued generalization of PWK)

The most important thing to say about dSfde is that this logic can, indeed, be regarded as a four-
valued generalization of PWK. Why so? On the one hand, it is a generalization of Paraconsistent
Weak Kleene, first, because its semantics include a designated infectious value, just like the semantics
for PWK. Secondly, because this fact—together with the information that it is normal, in the above
technical sense—secures that when valuations are restricted to the set {t,>, f} we obtain nothing
more than the semantics for PWK. On the other hand, it is a four-valued generalization, because its
semantics include an additional non-classical truth-value, namely ⊥, such that both it and its negation

4In the context of [47], the logic dSfde is referred to as the system Lnb'.
5Meaning that, letting Σ¬ = {¬σ | σ ∈ Σ} for every Σ ⊆ FOR(L), we can prove

Γ �Sfde ∆ ⇐⇒ ∆¬ �dSfde Γ¬

which we leave to the reader as an exercise. Moreover, for the purpose of giving a deeper meaning to referring to this
four-valued generalization of PWK with the name dSfde, it would be interesting to present an intensional system dS
which dualizes Deutsch’s S and, then, prove that dSfde is in fact its first-degree fragment. We conjecture this intensional
system can be designed by substituting the content-inclusion clause γw′ (B) ≤w′ γw′ (A) featured in Ferguson’s semantics
for conditionals in the system S (detailed in [20, p. 77-79]), with the alternative clause γw′ (A) ≤w′ γw′ (B).
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are undesignated—whence e.g. Implosion, the inference ψ � ϕ ∨ ¬ϕ, is invalid in dSfde. This informs
us, moreover, that we are in front of a paracomplete subsystem of PWK.

Before moving on to discuss the target epistemic interpretations of these logics, let us take a brief
pause to notice that the weak Kleene logics and their four-valued generalizations are equipped with
conjunctions and disjunctions that are utterly peculiar, least to say. In the case of Paracomplete Weak
Kleene, a remarkable feature of it is that it invalidates the inference called Addition, i.e. ϕ � ϕ ∨ ψ.
Whereas, in the case of Paraconsistent Weak Kleene, a remarkable feature of it is that it invalidates
the inference called Simplification, i.e. ϕ ∧ ψ � ψ. It is reasonable to ask, then, how can the failure of
inferences so basic can be made sense of?

First, regarding the failure of Addition, various explanations have been given, which appeal to
the meaninglessness [7] or the off-topic character [4] of the issues represented by the newly added
disjuncts, to free-choices in deontic logic [50], computational failures [22], [18], analytic connections
between premises and conclusions [23] and many other things. Of all these, we will come back to
the explanation of the failure of Addition in terms of the absence of analytic connections, when we
discuss analytic entailments as modeled by containment logics, in Section 4. We will, obviously, also
come back the epistemic explanation of the failure of Addition when we spell out Fitting’s epistemic
interpretation of Paracomplete Weak Kleene, in Section 3.3.

Notwithstanding the importance of each of these particular explanations, we can refer to a unifying
account of all these treatments of disjunctions which do not satisfy Addition, proposed by Thomas
Ferguson in the recent paper [18]. There, Ferguson follows Zimmerman’s reflections in [50], noting that
in many of these accounts the failure of Addition is explained by disjunction having a conjunctive flavor
to it—or otherwise being nothing more than a conjunction in disguise. The conjunction in question
being formed by the explicitly stated disjunction and the implicit requirement that both disjuncts
satisfy a certain enabling condition, to be further specified in each interpretation. The failure of
Addition is accounted for, in this way, by noticing that the fact that one of the disjuncts holds does
not guarantee the satisfaction of all the required constraints. In fact, were some of the disjuncts not
to satisfy the required enabling condition, then the (apparent) disjunction will not be satisfied—for
more on this, see [18, p. 344-349].

Secondly, regarding the failure of Simplification, also various explanations have been given, which
appeal to the meaninglessness of one of the conjuncts [29], to a causal, explanatory or otherwise
grounding-like connection between premises and conclusions [37], to regressive analytic connections
between premises and conclusions [37], and many other things. Of all these, we will come back to the
explanation of the failure of Simplification in terms of the absence of regressive analytic connections,
when we discuss regressive analytic entailments as modeled by containment logics, in Section 4. We
will, again, also come back the epistemic explanation of the failure of Simplification, when we give a
our novel epistemic interpretation of Paraconsistent Weak Kleene, in Section 3.4

Until now, no unifying account of all these treatments of conjunctions which do not satisfy Sim-
plification has been proposed. Whether or not it is actually possible to do so, is something we do not
know and, in fact, an issue whose discussion will take us probably too far afield. Nevertheless, we can
still point out that our epistemic explanation of the failure of Simplification will share some features
with the account—implicitly—proposed by Ciuni in [10] to understand the failure of Simplification in
Paraconsistent Weak Kleene, when this system is understood as a logic devised to handle paradoxes
and semantic pathologies of the like.

There, Ciuni proposed to explain the failure of Simplification in Paraconsistent Weak Kleene by
pointing out that, when it is employed as a logic to handle paradoxes, conjunction has a disjunctive
flavor to it—or otherwise is nothing more than a disjunction in disguise. The disjunction in question
being formed by the explicitly stated conjunction and the possibility that either of the conjuncts satis-
fies a certain overriding condition: in the particular case he is discussing, that of being a pathological
proposition. In this way, were some of the conjuncts to satisfy this overriding condition, the (apparent)
conjunction will be satisfied. We shall highlight that, as the reader will notice in the sequel, our own
epistemic interpretation of PWK and therefore of the failure of Simplification in it, will exhibit a similar
pattern—although the ingredients will be completely different. We will come back to this similarity

5



below, at the end of Section 3.4.
Having said this, let us now turn to the epistemic interpretation of the Kleene logics.

3 The Epistemic Interpretation of Kleene logics

In this section we will, first, review Fitting’s epistemic interpretation of the strong Kleene logic K3 and
its four-valued generalization FDE. After that, we will look at Fitting’s epistemic interpretation of the
Paracomplete Weak Kleene logic Kw

3 and its four-valued generalization Sfde. We will, finally, advance
an epistemic interpretation of Paraconsistent Weak Kleene logic and its four-valued generalization
dSfde, which is novel to this work.

3.1 What is an Epistemic Interpretation?

Before jumping to the interpretations themselves, we should explain what are we trying to do in
providing an epistemic interpretation for the Kleene logics, i.e. what Fitting did and what will we,
consequently, try to do. To briefly answer this question we shall say our aim is to provide an epis-
temic reading of the truth-values featured in the corresponding Kleene logics, their notion of logical
consequence, and the truth-functions characteristic of these systems.

We will devote the specific Sections 3.2 to 3.4 below to discuss the epistemic interpretation of the
distinctive truth-functions of each of the strong and weak Kleene logics. Here, we shall talk about
what is shared by the epistemic interpretations of each of these systems, namely, the reading of the
truth-values and the consequence relation at play.

In relation to these, in e.g. [26] Fitting suggests us to consider the next situation. Suppose we have
a certain group of experts E whose opinion we value and who we are consulting on certain matters,
in the form of a series of yes/no questions. When asking these experts about a certain proposition ϕ
some will say it is true, some will say it is false, some may be willing to decline expressing and opinion
and some may have reasons for calling it both true and false. Fitting suggests that in these cases we,
correspondingly, assign ϕ a sort of generalized truth-value

v(ϕ) = 〈P,N〉

where P is the set of experts who say ϕ is true, and N is the set of experts who say ϕ is false [27, p.
57]. Thus, it is possible that P ∪N 6= E and it is also possible that P ∩N 6= ∅.6

Given this picture, let us now focus on the epistemic reading of the four truth-values t,>,⊥, f .
These values are usually interpreted—that is, outside of the epistemic interpretation, e.g. in [43]—
as, respectively, true only, both-true-and-false, neither-true-nor-false and false only. However, in the
context of the epistemic reading we are currently discussing, the assignment of the non-classical values
⊥ and > to a certain formula corresponds, respectively, to the case where no expert expresses an
opinion towards the formula in question, i.e. to the generalized truth-value 〈∅, ∅〉, and the case where
all experts say that the formula in question is true, and at the same time they say it is false, i.e. to the
generalized truth-value 〈E , E〉. In the former case, we might say they have an indeterminate opinion,
and in the latter case we might say they have an inconsistent opinion.

Similarly, the assignment of the classical values t and f correspond, respectively, to the case where
all experts say the formula in question is true and no expert says it is false, i.e. to the generalized
truth-value 〈E , ∅〉, and the case where no expert says that the formula is true and all experts say that
the formula is false, i.e. to the generalized truth-value 〈∅, E〉. Moreover, with regard to the full set
of the four generalized truth-values, we will take the terminological liberty—in alignment with the
previous remarks—of calling t,> and f the determinate values, while calling t,⊥ and f the consistent

6As Fitting highlights in many places, considerations along these lines already suggest we are going to end up, down the
road, with a lattice-theoretic structure (called a bilattice) which can be put to very good use for logical investigations.
But we will try not to go into the formal details of the connection between this investigations and those concerning
bilattices, leaving this discussions for another time.
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values. Thus, to account for the strong and weak Kleene logics presented above, it is necessary to think
that every time the experts are consulted on a certain proposition ϕ the resulting general opinion can
be represented by one of the four truth-values t,>,⊥, f .

This epistemic interpretation of the truth-values t,>,⊥, f , certainly puts things under a different
light, but it still does not account for an epistemic understanding of a logic. For that purpose we need
to give an epistemic understanding of the underlying truth-functions of the given logic (whether its
one of the strong or the weak Kleene ones) and of the accompanying definition of logical consequence.
The latter issue is easier to settle. Being relatively conservative, in what follows we will always be
taking logical consequence to be somehow related to truth-preservation. More specifically, by this we
mean that an argument will be valid if and only if whenever the premises are taken to be true by all
experts, so is the conclusion.

The task of giving an epistemic understanding of the strong and the weak Kleene truth-tables
and of their four-valued generalizations will demand a little bit more work. Fitting achieved this by
taking these truth-functions to embody different approaches to determine what experts think of certain
complex formulae such as ϕ∧ψ and ϕ∨ψ—i.e. whether they think they are true or false—given how
these experts stand concerning their components. In a nutshell, we can say that Fitting took the truth-
functions characteristic of each of the Kleene logics discussed by him, to incarnate different policies
applicable when pooling the opinion of the consulted experts. Thus, in what remains of this section
we will be discussing what are these different policies in the case of the strong Kleene logics and of the
Paracomplete Weak Kleene logic, showing at last how it is possible to extend this account to provide
an epistemic interpretation of the truth-functions of Paraconsistent Weak Kleene.

3.2 The Epistemic Interpretation of strong Kleene logics

Given the above remarks, the last thing required to provide an epistemic interpretation of the strong
Kleene logics K3 and its four-valued generalization FDE is to clarify which policies for pooling the
opinion of the consulted experts are characteristic of these logics. The unsurprising answer will be:
the most intuitive and straightforward ones.

In fact, concerning a conjunction ϕ∧ψ, Fitting says that we should calculate its generalized truth-
value—the pair comprising, first, the set of experts which think it is true and, second, the set of
experts which think it is false—as follows. On the one hand, it seems intuitive to say that the experts
which believe ϕ ∧ ψ is true are those who believe both ϕ and ψ are true. That is to say, the set of
experts which believe ϕ∧ ψ is true can be calculated by taking the intersection of two sets: the set of
experts who think ϕ is true, and the set of experts who think ψ is true. On the other hand, it also
seems intuitive to say that the experts which believe ϕ ∧ ψ is false are those who believe either ϕ or
ψ are false. That is to say, the set of experts which believe ϕ ∧ ψ is false can be calculated by taking
the union of two sets: the set of experts who think ϕ is false, and the set of experts who think ψ is
false. Fitting proposes to formally represent this, given two propositions ϕ and ψ whose generalized
truth-values are v(ϕ) = 〈P1, N1〉 and v(ψ) = 〈P2, N2〉, by defining an operation u between them as

ϕ u ψ = 〈P1 ∩ P2, N1 ∪N2〉

Analogous reasoning establishes that for the case of a disjunction ϕ∨ψ, its generalized truth-value
should be calculated as follows. On the one hand, it seems intuitive to say that the experts which
believe ϕ ∨ ψ is true are those who believe ϕ or ψ are true. That is to say, the set of experts which
believe ϕ∨ψ is true can be calculated by taking the union of two sets: the set of experts who think ϕ
is true, and the set of experts who think ψ is true. On the other hand, it also seems intuitive to say
that the experts which believe ϕ ∨ ψ is false are those and only those who believe both ϕ and ψ are
false. That is to say, the set of experts which believe ϕ ∨ ψ is false can be calculated by taking the
intersection of two sets: the set of experts who think ϕ is false, and the set of experts who think ψ is
false. Fitting proposes to formally represent this, given two propositions ϕ and ψ whose generalized

7



truth-values are v(ϕ) = 〈P1, N1〉 and v(ψ) = 〈P2, N2〉, by defining an operation t between them as7

ϕ t ψ = 〈P1 ∪ P2, N1 ∩N2〉

Finally, for the case of a negation ¬ϕ, its generalized truth-value should be calculated by switching
the role of the set of experts saying ϕ is true and the set of experts saying ϕ is false. That is, those
experts who say that ϕ is true, should be counted as saying that ¬ϕ is false, and those experts saying
that ϕ is false should be counted as saying that ¬ϕ is true. Formally, for a given proposition ϕ whose
generalized truth-value is v(ϕ) = 〈P1, N1〉, Fitting defines the operation ¬ as

¬ϕ = 〈N1, P1〉

Let us, now, consider the case where every time the experts are consulted on a certain proposition
ϕ, the resulting general opinion can be represented by one of the four truth-values t,>,⊥, f . If, in this
context, we were to graphically summarize the outcome of the previous pooling directives concerning
negation, conjunction and disjunction, we will arrive at the following “truth-tables”

¬
t f
> >
⊥ ⊥
f t

u t > ⊥ f
t t > ⊥ f
> > > f f
⊥ ⊥ f ⊥ f
f f f f f

t t > ⊥ f
t t t t t
> t > t >
⊥ t t ⊥ ⊥
f t > ⊥ f

which are, respectively, those of the truth-functions f¬FDE, f∧FDE and f∨FDE of Belnap-Dunn four-valued
logic FDE, as discussed e.g. in [16] and [6]. This suggests that the above remarks amount to an
epistemic interpretation of Belnap-Dunn four-valued logic.

The question remains, however, of how to use the above considerations to provide an epistemic
interpretation for Strong Kleene logic K3. If we imagine a situation in which all experts are consulted
and, for no proposition ϕ all experts express an inconsistent opinion, this will amount to restricting
the FDE valuations to the “consistent” values: namely, t,⊥, f . The three-valued logic induced by
this restriction is K3 and it is, thus, through this reflections that Fitting arrived at an epistemic
interpretation for Strong Kleene logic.

Interestingly, this can be further applied to provide an epistemic interpretation for Priest’s Logic
of Paradox LP. In fact, if we imagine a situation where, for all propositions on which the experts
are asked about, no expert refrains from expressing an opinion, this will amount to restricting the
FDE valuations to the “determinate” values: namely, t,>, f . The three-valued logic rendered by this
constraints is, thus, LP—which, additionally, provides an epistemic interpretation for this interesting
Kleene logic.

Let us, then, see how a modification of these remarks may lead to an epistemic interpretation of
the weak Kleene logics.

3.3 The Epistemic Interpretation of Paracomplete Weak Kleene

How does Fitting arrive at the desired interpretation of Paracomplete Weak Kleene? It is only after
taking the weak Kleene truth-tables to summarize a quite distinctive approach to pooling the opinion
of the consulted experts. An approach, that is, which must—in a very sensible way—diverge from that
of the strong Kleene logics reviewed in the previous subsection.

In fact, in [27] Fitting is quite clear about this, noting that sometimes we may want to collect
and ponder the opinion of the consulted experts in special ways. Recall that the framework allows
experts to be silent about certain matters when they are asked about their opinions. Thus, e.g. when
evaluating a conjunction ϕ ∧ ψ or a disjunction ϕ ∨ ψ we may

7Fitting actually denotes the operations u and t with the symbols ∧ and ∨, respectively. However, in an effort to
minimize confusion as much as possible, we decided to change these in order to differentiate them from the connectives
usually employed to represent conjunction and disjunction. However, this is only a stylistic choice, and none of the
formal results depends on this.
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want to ‘cut this down’ by considering people who have actually expressed an opinion on
both propositions [ϕ] and [ψ] [27, p. 66-67]

Whence, we shall call the resulting alternative conjunctions and disjunctions—following Ferguson in
[20] and [21]—the “cut-down variants” of these logical operations. Rendering that the “cut-down” way
in which we calculate e.g. the set of experts who believe the conjunction ϕ ∧ ψ is true (alternatively,
false), requires taking the intersection of set of experts that we previously classified as saying ϕ ∧ ψ
is true (false), with the set of experts who have actually expressed an opinion towards both ϕ and ψ.
Similarly, for a disjunction ϕ∨ψ and a negation ¬ϕ. In these cases, we may say these variants operate
within Fitting’s epistemic interpretation of the Kleene logics, following the motto

no determinate opinion can arise from a set that includes an indeterminate opinion

Let us, now, have a closer look at Fitting’s proposal to formally model this cut-down approach.
The first step is to define a unary operator—eloquently called a “cut-down operator”, by Ferguson—

which, for a given proposition ϕ outputs the set of experts who have expressed any determinate opinion
whatsoever (either positive or negative) towards ϕ. This is done by taking the union of the experts
who said it is true and the set of experts who said it is false.

This can be rigorously represented with the help of a further operation on generalized truth-values,
called the gullability or “accept anything” operation ⊕ (see, e.g. [27, p. 56]). Given two propositions
ϕ and ψ, the gullability operation between them gives as a result a generalized truth-value where, on
the one hand, all who think ϕ or ψ are true are brought together and, on the other hand, all who think
ϕ or ψ are false are also brought together.

That is to say, the result of calculating the gullability operation between ϕ and ψ is a pair, obtained
as follows. As a the first coordinate, we have the union of the set of experts who think ϕ is true with
the set of experts who think ψ is true. As the second coordinate, we have the union of the set of experts
who think ϕ is false with the set of experts who think ψ is false. Speaking more formally, consider two
propositions ϕ and ψ such that their generalized truth-values are, respectively, v(ϕ) = 〈P1, N1〉 and
v(ψ) = 〈P2, N2〉. The gullability operation applied to them is defined such that

ϕ⊕ ψ = 〈P1 ∪ P2, N1 ∪N2〉

It is, then, with the aid of this operation that the cut-down [[ϕ]] of a proposition ϕ, whose generalized
truth-value is v(ϕ) = 〈P1, N1〉, can be defined as

[[ϕ]] = ϕ⊕ ¬ϕ = 〈P1 ∪N1, P1 ∪N1〉

noting, furthermore, that the only case where [[ϕ]] = 〈∅, ∅〉 is the case where no expert expressed a
determinate opinion towards ϕ—corresponding to the assignment of the truth-value ⊥ to ϕ.

The second step to formally model Paracomplete Weak Kleene’s operations in this epistemic setting,
is to design, with the help of these tools, e.g. “cut-down” conjunctions and disjunctions. To accomplish
this we can use the help of yet another operation on generalized truth-values, called the consensus or
“agreement” operation ⊗ (see, e.g. [27, p. 56]). Given two propositions ϕ and ψ, the consensus
operation between them gives as a result a generalized truth-value where, on the one hand, all those
who agree that ϕ and ψ are true are brought together and, on the other hand, all those who agree
that ϕ and ψ are false are also brought together.

That is to say, the result of calculating the consensus between ϕ and ψ is a pair, obtained as follows.
As a the first coordinate, we have the intersection of the set of experts who think ϕ is true with the set
of experts who think ψ is true. As the second coordinate, we have the intersection of the set of experts
who think ϕ is false with the set of experts who think ψ is false. Speaking more formally, consider two
propositions ϕ and ψ such that their generalized truth-values are, respectively, v(ϕ) = 〈P1, N1〉 and
v(ψ) = 〈P2, N2〉. The consensus operation applied to them is defined such that

ϕ⊗ ψ = 〈P1 ∩ P2, N1 ∩N2〉
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It is, then, with the aid of these formal instruments that we are able to define the target cut-down
variants of conjunction and disjunction. Let us focus, for instance, in the case of conjunction. Fitting
indicates that we ought to take the generalized truth-value of ϕ ∧ ψ and cut it down to the set of
people who have actually expressed an opinion towards both ϕ and ψ. In other words, the generalized
truth-value of this cut-down conjunction should be obtained as follows.

On the one hand, we should cut down the set of experts who believe both ϕ and ψ are true. This
can be done by taking the intersection of set of experts who think both ϕ and ψ are true, with the
set of experts who have actually expressed a determinate opinion towards both propositions. On the
other hand, we should cut down the set of experts who believe either ϕ or ψ are false. This can be
done by taking the intersection of set of experts who think either ϕ or ψ are false, with the set of
experts who have actually expressed a determinate opinion towards both propositions.

Both these moves, together, amount to nothing other than taking the consensus ⊗ between the set
of experts that we previously classified as saying ϕ ∧ ψ is true (or false)—i.e. ϕ u ψ—and the set of
experts who have actually expressed an opinion towards both ϕ and ψ—i.e. the cut-downs of ϕ and
ψ, namely [[ϕ]] and [[ψ]]. Similar reasoning leads to similar results for disjunction and negation. More
formally, Fitting defines a cut-down conjunction M and a cut-down disjunction O as follows, noting
that negation is not altered by these modifications.8

ϕMψ = (ϕ u ψ)⊗ [[ϕ]]⊗ [[ψ]] ϕOψ = (ϕ t ψ)⊗ [[ϕ]]⊗ [[ψ]]

Finally, if the four values t,>,⊥, f are taken into account, the “truth-tables” for the operations of
conjunction, disjunction and negation—understood in this “cut-down” fashion—would be the follow-
ing, as is easy to check.

¬
t f
> >
⊥ ⊥
f t

M t > ⊥ f
t t > ⊥ f
> > > ⊥ f
⊥ ⊥ ⊥ ⊥ ⊥
f f f ⊥ f

O t > ⊥ f
t t t ⊥ t
> t > ⊥ >
⊥ ⊥ ⊥ ⊥ ⊥
f t > ⊥ f

These are, respectively, the truth-functions f¬Sfde , f
∧
Sfde

and f∨Sfde of the four-valued logic Sfde, depicted in
Figure 3 above. Hence, the previous account can be taken to represent nothing more than an epistemic
interpretation of this four-valued logic.

Of most importance to us, though, is that our discussion of Sfde as a four-valued generalization of
Paracomplete Weak Kleene in Section 2 already suggests how are we going to provide an epistemic
interpretation for Kw

3 . Indeed, if we imagine a situation in which experts are consulted, and for no
proposition ϕ all the experts think ϕ is true and all experts think ϕ is also false, i.e. if all of them
have consistent opinions on absolutely all propositions, this will formally amount to restricting the
valuations of Sfde to the “consistent” values: namely, the truth-values t,⊥, f . The three-valued logic
induced by this restriction will be no other than Kw

3 and it is, therefore, through these remarks that
Fitting arrived at an epistemic interpretation for Paracomplete Weak Kleene.

Let us now illustrate how the failure of Addition is, thus, properly understood in this framework.
Consider, for example, the case where all experts think ϕ is true and no expert thinks it is false and,
simultaneously, all experts think ψ is neither true nor false—i.e. v(ϕ) = 〈E , ∅〉 and v(ψ) = 〈∅, ∅〉. Given
our previous considerations, we can equivalently say that ϕ is assigned the truth-value t, whereas ψ
is assigned the truth-value ⊥. As a result of this, the value of the ‘cut-down’ disjunction ϕ O ψ
will be 〈∅, ∅〉—that is, the epistemic counterpart of ⊥. Thus, we have a disjunction that is not true
which has, nevertheless, one true disjunct. In other words, the failure of Addition is understood in
this interpretation by taking disjunction to be a cut-down disjunction. Under such a reading, it is
clear how from e.g. the fact that all experts think ϕ is true it does not follow that all experts think
ϕ ∨ ψ is true—the reason being that all experts may have no opinion whatsoever with regard to ψ.
Furthermore, allowing us to establish that in the context of this epistemic interpretation the fact that

8See Fitting [26, p. 67] and Ferguson [20, p. 24], [21, p. 3].
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all experts have an opinion on the given disjuncts works as the aforementioned “enabling condition”
(cf. Section 2) for a disjunction to be true.

In what follows we will be proceeding similarly to arrive at our desired epistemic interpretation for
Paraconsistent Weak Kleene.

3.4 The Epistemic Interpretation of Paraconsistent Weak Kleene

Our aim, now, is to provide a novel understanding of Paraconsistent Weak Kleene’s truth-functions
by taking them to summarize a distinctive approach to pooling the opinion of the experts being
consulted. This approach will have to, yet again, diverge quite sensibly not only from the pooling
policies incarnated by the strong Kleene logics—but also from the one incarnated by Paracomplete
Weak Kleene, discussed in the previous section.

We will motivate our approach noting that there might be further special ways in which we might
want to collect and ponder the opinion of the experts. Let us recall, for example, that the general
framework outlined by Fitting allows experts to have inconsistent opinions about certain matters, i.e.
some experts may have reasons for calling a proposition ϕ both true and false.

Thus, e.g. when considering a conjunction ϕ ∧ ψ or a disjunction ϕ ∨ ψ we may want—in a way
that is perfectly dual to Fitting’s suggestions above—to “track down” people who have expressed an
inconsistent opinion towards either ϕ or ψ. Whence, we shall call the resulting alternative conjunctions
and disjunctions, the “track-down” variants of these famous logical operations. In these cases, we may
say these variant operate within Fitting’s epistemic interpretation, following the motto

no consistent opinion can arise from a set that includes an inconsistent opinion

Let us, now, have a closer look at our proposal to formally model this track-down approach.
The first step to technically represent these track-down variants, is to define a unary operator—to

be called a “track-down” operator—which, for a given proposition ϕ outputs the set of experts who
have expressed an inconsistent opinion towards ϕ. This is done by taking the intersection of the set
of experts who said it is true and the set of experts who said it is false.

This can be formally represented with the help of the consensus operation, letting the track-down
||ϕ|| of a proposition ϕ, whose generalized truth-value is v(ϕ) = 〈P1, N1〉, be defined as

||ϕ|| = ϕ⊗ ¬ϕ = 〈P1 ∩N1, P1 ∩N1〉

noting, furthermore, that the only case where ||ϕ|| = 〈E , E〉 is the case where all experts expressed an
inconsistent opinion towards ϕ—corresponding to the assignment of the truth-value > to ϕ.

The second step to formally model Paraconsistent Weak Kleene’s operations in this epistemic
setting, is to design, with the help of these tools, e.g. “track-down” conjunctions and disjunctions.
Let us focus, for instance, in the case of conjunction. Our previous motivations indicate we ought
to take the generalized truth-value of ϕ ∧ ψ and “track down” the set of people who have expressed
an inconsistent opinion towards either ϕ or ψ. In other words, the generalized truth-value of this
track-down conjunction should be obtained as follows.

On the one hand, we should collect the set of experts who believe either ϕ or ψ are false, together
with the set of people who have expressed an inconsistent opinion towards either ϕ or ψ. This can be
done by taking the union of set of experts who think both ϕ and ψ are true, with the set of experts
who have expressed an inconsistent opinion towards either propositions. On the other hand, we should
collect the set of experts who believe either ϕ or ψ are false, together with the set of people who have
expressed an inconsistent opinion towards either ϕ or ψ. This can be done by taking the union of set
of experts who think either ϕ or ψ are false, with the set of experts who have expressed an inconsistent
opinion towards either propositions.

Both these moves amount to nothing other than taking the result of the ⊕ operation between the
set of experts that we previously classified as saying ϕ ∧ ψ is true (or false)—i.e. ϕ u ψ—and the set
of experts who have expressed an inconsistent opinion towards either ϕ or ψ—i.e. the track-downs of
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ϕ and ψ, namely ||ϕ|| and ||ψ||. Similar reasoning leads to similar results for disjunction and negation.
More formally, we can define a track-down conjunction N and a track-down disjunction H as follows,
noticing that negation is not altered by these modifications.

ϕNψ = (ϕ u ψ)⊕ ||ϕ|| ⊕ ||ψ|| ϕHψ = (ϕ t ψ)⊗ ||ϕ|| ⊗ ||ψ||

Thus, just like in the cut-down case where the set of experts being considered is shrunk to cover
all those experts expressing a determinate opinion on all the relevant propositions, in the track-down
case something similar happens. In fact, in the track-down case the set of experts being considered
is enlarged to cover all those experts expressing an inconsistent opinion on some of the relevant
propositions, whence it is asked of the pooling procedure not to forget that some people do not
have a consistent opinion towards the issues in question.

Finally, if the four values t,>,⊥, f are taken into account, the “truth-tables” for the operations
of conjunction, disjunction and negation—understood in this “track-down” fashion—would be the
following, as is easy to check.

¬
t f
> >
⊥ ⊥
f t

N t > ⊥ f
t t > ⊥ f
> > > > >
⊥ ⊥ > ⊥ f
f f > f f

H t > ⊥ f
t t > t t
> > > > >
⊥ t > ⊥ ⊥
f t > ⊥ f

As advertised, these are, respectively, the truth-functions f¬dSfde , f
∧
dSfde

and f∨dSfde of the four-valued logic
dSfde, whose truth tables we depicted in Figure 4 above. Hence, the previous account can be taken to
constitute an epistemic interpretation of this four-valued logic.

Of most importance to us, however, is that our discussion of dSfde as a four-valued generalization
of Paraconsistent Weak Kleene in Section 2 allows us to transition from the above remarks to an
epistemic interpretation for PWK. In fact, if we consider a situation in which experts are consulted,
and for no proposition ϕ all experts refrain from expressing an opinion about it, i.e. if all of them
have determinate opinions on absolutely all propositions, this will formally amount to restricting the
valuations of dSfde to the “determinate” values: namely t,>, f . The three-valued logic induced by this
restriction is our target logic PWK. It is, therefore, through these considerations that we arrive at our
desired epistemic interpretation for Paraconsistent Weak Kleene—thus fulfilling the main goal of this
paper.

Let us now illustrate, as expected, how the failure of Simplification is, thus, properly understood in
this framework. Consider, for example, the case where all experts think ϕ is true and at the same time
all experts think it is false, while also all experts think ψ is false and no expert thinks it is true—i.e.
v(ϕ) = 〈E , E〉 and v(ψ) = 〈∅, E〉. Given our previous considerations, we can equivalently say that ϕ
is assigned the truth-value >, whereas ψ is assigned the truth-value f . As a result of this, the value
of the “track-down” conjunction ϕ N ψ will be 〈E , E〉—that is, the epistemic counterpart of >. In a
nutshell, the failure of Simplification is understood in this interpretation by taking conjunction to be
a track-down conjunction. Under such a reading, it is clear how from e.g. the fact that all experts
think ϕ∧ψ is true it does not follow that all experts think that ψ is true—the reason being the truth
of the conjunction might be caused by all experts having an inconsistent opinion with regard to ϕ.

We can, furthermore, connect this to our purported understanding of the failure of Simplification
in terms of conjunction being a “disguised disjunction”, formed by the conjuncts in question and two
more disjuncts representing the possibility that either of the conjuncted propositions triggers a certain
overriding condition. It is clear from the above that the epistemic interpretation of Paraconsistent Weak
Kleene outlined allows for this reading. In fact, in the context of such an epistemic interpretation,
the fact that all experts have an inconsistent opinion on one of the given conjuncts works as the
aforementioned “overriding condition” (cf. Section 2) for a conjunction to be true.

The previous reflections put PWK and its four-valued generalization under a new light with regard to
philosophical and logical investigations. But, speaking of a formal logic, we believe some philosophical

12



achievements can be made of a broader significance if we can supplement them with attractive formal
results. This is why in the next section, we devote ourselves to offer some of these.

In Section 4 we present sound and complete two-sided sequent calculi for the four-valued gener-
alizations of the weak Kleene logics. We motivate the particular calculi below, by pointing out some
results on the relation between weak Kleene logics and containment logics.

4 Sequent Calculi

In what follows we will endow the previously discussed four-valued generalizations of the weak Kleene
logics with suitable Gentzen-style sequent calculi.

Before moving on, let us notice that natural deduction calculi have been recently offered for the
weak Kleene logics and some of their four-valued generalizations. Indeed, these were introduced for
Kw
3 and PWK in [40], for Sfde in [42], and for some subsystems thereof in [41].9 Although a similar

presentation can be carried out for dSfde, for matters of space we focus here on Gentzen-style sequent
calculi for this logic, leaving the investigation of a natural deduction calculus for it for another occasion.

To arrive at our desired sequent calculi, we will draw inspiration from the techniques introduced
by Coniglio and Corbalán in [12] to provide calculi of the like for the systems PWK and Kw

3 . The
main feature of such proof systems is that they are obtained by taking an appropriate sequent calculus
for Classical Logic, and applying different restrictions to the operational rules featured in it. More
particularly, these restrictions pertain to some inclusion requirements between the set of propositional
variables of the active formulae of the corresponding rules, and the set of propositional variables
appearing in some of the side formulae.

The main reason for requiring the rules to comply with these provisos is that weak Kleene logics
happen to be closely connected with a family of systems whose valid inferences enjoy certain variable
inclusion features. This family of systems, denominated containment logics e.g. in [45], gathers logics
where an inference holds only if certain set-theoretic containment principle holds between the set of
propositional variables appearing in the premises and the set of propositional variables appearing in
the conclusion.10

Thus, Coniglio and Corbalán arrived at sequent calculi for PWK and Kw
3 by noticing that these weak

Kleene logics can be described as being pretty close—in a sense to be precised below—to containment
subsystems of Classical Logic. By following a similar path, we will arrive at sequent calculi for dSfde
and Sfde, by noticing that these logics can be rightfully described as proper containment subsystems
of some other Kleene logics. To accomplish this, we will benefit from connecting weak Kleene logics,
in general, with containment logics, later looking at these four-valued systems as an instance of a more
general phenomenon.

4.1 Connecting weak Kleene logics and containment logics

Let var(Γ) represent the set of propositional variables appearing in the set of formulae Γ, allowing us
to refer e.g. to var({ϕ}) and var({ϕ,ψ}) as var(ϕ) and var(ϕ,ψ), respectively.

A very well-known famlily of containment logics—to which we will refer as Parry logics—are such
that all its valid inferences enjoy a property we may call the �-Parry Principle, i.e. the property that

Γ � ψ only if var(ϕ) ⊆ var(Γ)

indeed, a species of Parry’s Proscriptive Principle discussed in [39], applied to entailment.11 Thus,
logics satisfying the �-Parry Principle saliently inavalidate Addition—i.e. ϕ � ϕ ∨ ψ—for it may well
happen that the propositional variables appearing in ψ are not included among those appearing in ϕ.

9In particular, [41] presents natural deduction calculi for the logics Kw
4b and Kw

4n referred in [47], respectively, as Leb'
and Lb'e.

10Some important works revolving around these systems are e.g. [39], [46], [1], [37], [38], [19], [24], [11], among others.
11In fact, [19] calls it �-Proscriptive Principle. There is nothing substantial in the choice of denomination here, though.
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Systems of this sort have been studied, discussed and advanced by logicians such as Angell [1], Fine
[24], Paoli [37], Epstein [17], Correia [13] and Ferguson [22]—alongside, of course, Parry [39] himself—
with the specific aim of modelling analytic entailments. An analytic connection between premises and
conclusion holds, these authors claim, when the content of the conclusion is included in the content of
the premises. Indeed, e.g. [1] and [30] understand a logical behavior of this sort as extending Kant’s
notion of analyticity, according to which the predicate is included in the subject, to also apply to
arguments. When the content of a given complex formula is obtained by collecting the content of
the propositional variables appearing in it, it is straightforward to see how the requirement that an
entailment is analytic directly implies the failure of Addition—for, in this sense, the content of ϕ ∨ ψ
is usually not taken to be included in the content of ϕ.

However, notwithstanding the fact that �-Parry logics invalidate Addition, it is not true that all
systems where Addition is invalid are �-Parry logics. In fact, Paracomplete Weak Kleene logic is a
witness of this case. For Explosion—i.e. the inference ϕ,¬ϕ � ψ—is valid in it, but does not enjoy the
�-Parry property. This can be generalized, as the following characterization of logical consequence in
Kw
3 shows.

Observation 4.1 ([49]). For all sets of formulae Γ ∪ {ϕ},

Γ �Kw
3
ϕ⇐⇒

{
Γ �CL ϕ and var(ϕ) ⊆ var(Γ), or

Γ �CL ∅

Thus, we can say that Kw
3 is close to a containment subsystem of Classical Logic. In fact, letting

the �-Parry fragment of a logic L, denoted LPP� , be defined such that

Γ �LPP�
ϕ⇐⇒ Γ �L ϕ and var(ϕ) ⊆ var(Γ)

it can be observed that the only thing standing between the �-Parry fragment of Classical Logic (i.e.
CLPP�) and Paracomplete Weak Kleene are the Kw

3 -valid inferences involving inconsistent premises.12

Interestingly, in [19] it is pointed out how to obtain �-Parry logics, having Kw
3 as a starting point.

Let us say that a logic L = 〈FOR(L),�L〉 has anti-theorems if there is some ψ ∈ FOR(L) such that
ψ �L ∅. Then, a connection between weak Kleene logics and �-Parry logics can be established by the
following general result.

Proposition 4.2 ([19]). Let L be a language and let M = 〈V,D,O〉 be an L-matrix such that V \ D
contains an infectious value. If L = 〈FOR(L),�M〉 has no anti-theorems, then L is a �-Parry logic.

Notice, first, that this explicitly appeals to subsystems of Paracomplete Weak Kleene, as every
logic induced by a matrixM = 〈V,D,O〉 such that V \D contains an infectious value is a subsystem of
Kw
3 . Note, moreover, that in light of this observation it is sufficient to consider certain paraconsistent

subsystems of Paracomplete Weak Kleene to arrive at a �-Parry logic. It is in this sense that, in [19]
and [18] the four-valued logic Sfde—which is both a paraconsistent logic and a subsystem of Kw

3 —is
described as a the �-Parry fragment of Priest’s Logic of Paradox.

Observation 4.3 ([19]). For all sets of formulae Γ ∪ {ϕ},

Γ �Sfde ϕ⇐⇒ Γ �LP ϕ and var(ϕ) ⊆ var(Γ)

Now, moving on to the relation that Paraconsistent Weak Kleene and subsystems thereof have
with containment logics, we will highlight that just like we connected containment logics to systems
where Addition fails, we can do the same with systems where Simplification fails. Let us consider
another family of containment logics—to which we will refer as Dual Parry logics—such that all its
valid inferences enjoy a property we may call the �-Dual Parry Principle, i.e. the property that

Γ �L ϕ only if ∃Γ′ ⊆ Γ,Γ′ 6= ∅, var(Γ′) ⊆ var(ϕ)

12For an extensive discussion of CLPP� , its relation to Parry logics and weak Kleene logics, see [19].
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which is a clear dualization of the �-Parry Principle, arrived at by reversing the direction of the famous
containment principle discussed before.13 Thus, logics satisfying the �-Dual Parry Principle saliently
invalidate Simplification—i.e. ϕ ∧ ψ � ψ—for it may well happen that the propositional variables
appearing in ϕ are not included among those appearing in ψ.

Systems of this sort have been considered by e.g. Epstein [17] and Paoli [37] with the specific aim
of modeling, what the latter calls, regressive analytic entailments. A regressive analytic connection
between premises and conclusions is holds when we

proceed from simple ingredients (simple ideas as primitive concepts, simple propositions as
axioms), down to more complex ones; by analyzing a derived concept or a theorem, we can
overturn the procedure and regress to the basic components [37, p. 2]

Whence, this seemingly gives regressive analytic entailments a sort of explanatory flavor, the symptom
of which appears to be the complexity increase (or stability) from premises to conclusions [37, p. 2].
Yet again, if we apply these ideas to the content of premises and conclusions, and then obtain the
content of complex expressions by collecting that of the propositional variables appearing in it, it is
straightforward to see how the requirement that an inference is regressive analytic directly implies the
failure of Simplification—for, in this sense, the content of ϕ ∧ ψ is usually not taken to be included in
the content of ψ.14

Again, notwithstanding the fact that �-Dual Parry systems invalidate Simplification, it is not true
that all logics that invalidate Simplification are �-Dual Parry systems. Indeed, Paraconsistent Weak
Kleene logic is a witness of this case. For Implosion—i.e. the inference ψ � ϕ ∨ ¬ϕ—is valid in it,
although this inference does not enjoy the �-Dual Parry property. This can be generalized, as the
following characterization of logical consequence in PWK shows.

Observation 4.4 ([11]). For all sets of formulae Γ ∪ {ϕ},

Γ �PWK ϕ⇐⇒

{
Γ �CL ϕ and ∃Γ′ ⊆ Γ,Γ′ 6= ∅, var(Γ′) ⊆ var(ϕ), or

∅ �CL ϕ

Thus, we can say that PWK is close enough to a containment subsystem of Classical Logic. In fact,
letting the �-Dual Parry fragment of a logic L, denoted LDPP� , be defined such that

Γ �LDPP�
ϕ⇐⇒ Γ �L ϕ and ∃Γ′, ∅ 6= Γ′ ⊆ Γ, var(Γ′) ⊆ var(ϕ)

it can be observed that the only thing standing between the �-Dual Parry fragment of Classical Logic
(i.e. CLDPP�) and Paraconsistent Weak Kleene are the PWK-valid inferences involving tautlogical
conclusions.

Interestingly, by a dualization of [19, Observation 1] advanced in [47, p. 297], it can be pointed
out how to obtain �-Dual Parry logics, having PWK as a starting point. Let us say that a logic L =
〈FOR(L),�L〉 has theorems if there is some ψ ∈ FOR(L) such that ∅ �L ψ. Then, a connection between
weak Kleene logics and �-Dual Parry logics can be established by the following general observation.

Proposition 4.5. Let L be a language and let M = 〈V,D,O〉 be an L-matrix such that D contains
an infectious value. If L = 〈FOR(L),�M〉 has no theorems, then L is a �-Dual Parry logic.

Proof. Assume all of the antecedent conditions hold and suppose, for reductio, that L is not a �-Dual
Parry logic. This implies there is an inference Γ �M ϕ such that it is not true that ∃Γ′ ⊆ Γ,Γ′ 6=
∅, var(Γ′) ⊆ var(ϕ). This implies that for all γ ∈ Γ, var(γ) * var(ϕ).

13In [15], [17] and [37], similar properties have been called, respectively, Converse Parry Property, Dual Dependence
and Regressive Analiticity. Yet again, there is nothing substantial going on in the choice of denomination here—but for
a criticism of the terminology employed in [15], see [32, p. 176, fn. 20].

14Moreover—as is also argued in [37]—consequence relations enjoying this feature have been motivated by those who
favor the idea that the entailments have some causal or grounding flavor to it, as e.g. in [8], which would explain that
simple constituents entail some of the compounds they constitute, but not the other way around.
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Let Σ \ ∆ be the result of subtracting from Σ all the elements that are in ∆. Since L has no
theorems, moreover, we can assume that there is a valuation v such that v(ϕ) /∈ D. Let us refer to the
infectious value contained in D as x. We can construct a valuation v∗ such that

v∗(p) =

{
x if p ∈ var(Γ) \ var(ϕ)

v(p) otherwise

Since, by the above, we are justified to assume that for all γ ∈ Γ, var(γ) \ var(ϕ) 6= ∅, we know that
for all γ ∈ Γ, there is a q ∈ var(γ)\var(ϕ) such that v∗(q) = x. Whence, for all γ ∈ Γ, v∗(γ) = x ∈ D,
further implying that v∗[Γ] ⊆ D, while at the same time v∗(ϕ) /∈ D. Then, v∗ witnesses that Γ 2M ϕ,
which contradicts our initial assumption. Therefore, L is a �-Dual Parry logic.

Notice, first, that this explicitly appeals to subsystems of Paraconsistent Weak Kleene, as every
matrix logic induced by a matrix M = 〈V,D,O〉 such that D contains an infectious value is a sub-
system of PWK. Note, moreover, that in light of this observation it is sufficient to consider certain
paracomplete subsystems of Paraconsistent Weak Kleene to arrive at a �-Dual Parry logic. Thus, as
a consequence of these remarks and those made in [47], the four-valued logic dSfde—which is both a
paracomplete logic and a subsystem of PWK—can be regarded as the �-Dual Parry fragment of Strong
Kleene logic.

Observation 4.6. For all sets of formulae Γ ∪ {ϕ},

Γ �dSfde ϕ⇐⇒ Γ �K3 ϕ and ∃Γ′, ∅ 6= Γ′ ⊆ Γ, var(Γ′) ⊆ var(ϕ)

Proof. That Γ �dSfde ϕ implies Γ �K3 ϕ is established by the fact that dSfde is a subsystem of K3,
established in [47] and easy to check by looking at their matrices. That Γ �dSfde ϕ implies ∃Γ′, ∅ 6=
Γ′ ⊆ Γ, var(Γ′) ⊆ var(ϕ) follows from Proposition 4.5 above.

Finally, having looked at the systems dSfde and Sfde as containment subsystems of Strong Kleene
logic and Priest’s Logic of Paradox, respectively, we will now move on to present their corresponding
sequent calculi. As we advertised, these will be obtained by imposing certain appropriate containment
provisos to the operational rules of appropriate Gentzen-style sequent calculi for K3 and LP.

4.2 Definitions

Definition 4.7. By a sequent Γ � ∆ we mean an ordered pair 〈Γ,∆〉 of (non-simultaneously empty)
finite sets of formulae of FOR(L).15

Definition 4.8. Let L be a matrix logic L = 〈FOR(L),�M〉 such that M = 〈D,V,O〉. An M
valuation v satisfies a sequent Γ � ∆ (symbolized v �M Γ � ∆) if and only if v(γ) ∈ D for all γ ∈ Γ,
then v(δ) ∈ D for some δ ∈ ∆. A sequent Γ � ∆ is valid (symbolized �M Γ � ∆) if for every M
valuation v, v � Γ � ∆

Thus, we may interchangeably refer to an inference or sequent Γ � ∆ which is valid in the logic
L = 〈FOR(L),�M〉 as Γ �M A or �M Γ � ∆. Recall, also, that in such cases we may alternatively
denote �M as �L.16

Definition 4.9. A sequent rule R preserves validity in M if for every instance
r

Γ � ∆
of R and for

every M valuation v, if v �M Σ � Π for every Σ � Π ∈ r, then v �M Γ � ∆

15Note that, since we are working with sequents built from sets, the Contraction and Exchange rules are going to be
built into the system, and no explicit mention of them is going to be necessary.

16Notice, that in dealing with sequent calculi we are moving from consequence relations relating sets of premises with
a single conclusion, to consequence relations relating sets of premises with multiple conclusions. All our discussion was
carried out in the former setting, but can be understood in terms of the latter, whence there is nothing worrisome in
this.

16



Definition 4.10 ([12]). The sequent calculus GCL contains the following rules.17

ϕ � ϕ [Id ]

Γ � ∆
Γ, ϕ � ∆

[WL]
Γ � ∆

Γ � ϕ,∆
[WR]

Γ, ϕ � ∆ Γ � ϕ,∆
Γ � ∆

[Cut ]

Γ � ϕ,∆
Γ,¬ϕ � ∆

[¬L]
Γ, ϕ � ∆

Γ � ¬ϕ,∆ [¬R]

Γ, ϕ, ψ � ∆

Γ, ϕ ∧ ψ � ∆
[∧L]

Γ � ϕ,∆ Γ � ψ,∆
Γ � ϕ ∧ ψ,∆ [∧R]

Γ, ϕ � ∆ Γ, ψ � ∆

Γ, ϕ ∨ ψ � ∆
[∨L]

Γ � ϕ,ψ,∆
Γ � ϕ ∨ ψ,∆ [∨R]

Proposition 4.11 ([12]). Let Γ ∪∆ be a finite non-empty set of formulae of L. Γ � ∆ is provable in
GCL if and only if �CL Γ � ∆.

Definition 4.12. Let us refer to the rules below as the De Morgan rules.

Γ, ϕ � ∆

Γ,¬¬ϕ � ∆
[¬¬L]

Γ � ϕ,∆
Γ � ¬¬ϕ,∆ [¬¬R]

Γ,¬ϕ � ∆ Γ,¬ψ � ∆

Γ,¬(ϕ ∧ ψ) � ∆
[¬∧L]

Γ � ¬ϕ,¬ψ,∆
Γ � ¬(ϕ ∧ ψ),∆

[¬∧R]

Γ,¬ϕ,¬ψ � ∆

Γ,¬(ϕ ∨ ψ) � ∆
[¬∨L]

Γ � ¬ϕ,∆ Γ � ¬ψ,∆
Γ � ¬(ϕ ∨ ψ),∆

[¬∨R]

Observation 4.13. The rules [¬¬L], [¬∧L], [¬∨L], [¬¬R], [¬∧R], [¬∨R] are admissible in GCL.

Definition 4.14 ([2]). Let the calculus GK3 be the result of subtracting the rule [¬R] and adding the
De Morgan rules to GCL. Let the calculus GLP bet he result of subtracting the rule [¬L] and adding
the De Morgan rules to GCL.18

17Coniglio and Corbalán call this system C, but for matters of uniformity we will adopt the name GCL, since it gives
a more suggestive idea that we are working with a Gentzen-style sequent calculus for CL.

18Let us clarify a number of things. First, the sequent calculus for LP is presented by [5] without a proper name,
whence we call it GLP here. The sequent calculus for K3 is not presented in [5], but it is pointed out that it should
be constructed this way, which is done in e.g. [28]—although in [28] the axioms only feature literals, i.e. propositional
variables or their negations, which is again inessential given the rest of the rules. Secondly, in [5] and [28], these calculi
are presented with both the left and right Weakening rules being absorbed into the axioms. There is nothing substantial
to this, given in the context of a calculus satisfying [Cut ], both sets of rules are interderivable. Thirdly, both in the
context of [5] and [28], the calculi for LP and K3 are taken as the result of subtracting from GCL both negation rules
[¬L] and [¬R] and adding, alongside with the De Morgan rules, the axioms (which can be traced back to [2]) we call
[Exhaustion] and [Exclusion], respectively

Γ � ϕ,¬ϕ,∆
[Exhaustion]

Γ, ϕ,¬ϕ � ∆
[Exclusion]

However, this difference in presentation is inessential. For, in the context of a calculus satisfying [Id ], [WL], [WR] and
[Cut ], on the one hand [Exhaustion] and [¬R] are interderivable and, on the other, [Exclusion] and [¬L] are interderivable.
This can be witnessed by the following derivations

Γ, ϕ � ∆ Γ � ϕ,¬ϕ,∆
[Exhaustion]

Γ � ¬ϕ,∆
[Cut]

ϕ � ϕ
[Id]

Γ, ϕ � ϕ
[WL]

Γ, ϕ � ϕ,∆
[WR]

Γ � ϕ,¬ϕ,∆
[¬R]

Γ � ϕ,∆ Γ, ϕ,¬ϕ � ∆
[Exclusion]

Γ,¬ϕ � ∆
[Cut]

ϕ � ϕ
[Id]

Γ, ϕ � ϕ
[WL]

Γ, ϕ � ϕ,∆
[WR]

Γ, ϕ,¬ϕ � ∆
[¬L]
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Theorem 4.15 ([2]). Let Γ∪∆ be a finite non-empty set of formulae of L. Γ � ∆ is provable in GK3

if and only if �K3 Γ � ∆.

Theorem 4.16 ([2]). Let Γ∪∆ be a finite non-empty set of formulae of L. Γ � ∆ is provable in GLP
if and only if �LP Γ � ∆.

Theorem 4.17 ([2]). Let Γ∪∆ be finite non-empty set of formulae of L. The sequent Γ�∆ is provable
in GK3, then there is a Cut-free derivation of it. Similarly for GLP.

Definition 4.18 ([12]). Let the calculus GPWK result from GCL minus the rules [∧R] and [∧L], and
the additional restriction that the rule [¬L] must comply with the proviso that var(ϕ) ⊆ var(∆)—in
which case, we will call this rule [¬HL].19

Definition 4.19 ([12]). Let the calculus GKw
3 result from GCL minus the rules [∨R] and [∨L], and

the additional restriction that the rule [¬R] must comply with the proviso that var(ϕ) ⊆ var(Γ)—in
which case, we will call this rule [¬BR].20

Theorem 4.20 ([12]). Let Γ ∪ ∆ be a finite non-empty set of formulae of L. Γ � ∆ is provable in
GPWK if and only if �PWK Γ � ∆.

Theorem 4.21 ([12]). Let Γ∪∆ be a finite non-empty set of formulae of L. Γ�∆ is provable in GKw
3

if and only if �Kw
3

Γ � ∆.

Theorem 4.22 ([12]). Let Γ ∪ ∆ be finite non-empty set of formulae of L. If the sequent Γ � ∆ is
provable in GPWK, then there is a Cut-free derivation of it. Similarly for GKw

3 .

Let us now turn to the calculi GdSfde and GSfde for the four-valued generalizations of PWK and
Kw
3 , i.e. dSfde and Sfde. Their presentation is heavily inspired in the above discussed calculi presented

in [12] for PWK and Kw
3 —where they are properly discussed as the {¬,∧,∨}-fragment of Halldén’s and

Bochvar’s logics of nonsense, respectively.

Definition 4.23. Let the calculus GdSfde result from GK3, adding the restrictions that the rule [¬L]
must comply with the proviso that var(ϕ) ⊆ var(∆), and the rules [∧L] and [¬∨L] must comply with
the proviso that var(ϕ,ψ) ⊆ var(∆)—in which case, we will call these rules [¬HL], [∧HL] and [¬∨HL].

Definition 4.24. Let the calculus GSfde result from GLP, adding the restrictions that the rule [¬R]
must comply with the proviso that var(ϕ) ⊆ var(Γ), and the rules [∨R] and [¬∧R] must comply with
the proviso that var(ϕ,ψ) ⊆ var(Γ)—in which case, we will call these rules [¬BR], [∨BR] and [¬∧BR].

4.3 Soundness and Completeness for GdSfde
In what follows proceed to prove the soundness and completeness results for the sequent calculus
GdSfde. For soundness, the proof is standard, by the usual means.

Lemma 4.25. Every sequent rule of the calculus GdSfde preserves dSfde-validity.

Proof. Obviously the axiom and the structural rules preserve validity. We prove the case for the
restricted operational rules and leave the rest as an exercise to the reader.

[¬HL] Let v be a dSfde valuation such that v �dSfde Γ � ϕ,∆ and assume var(ϕ) ⊆ var(∆). Suppose
v(γ) ∈ {t,>} for all γ ∈ Γ ∪ {¬ϕ}. Then, by hypothesis, v(δ) ∈ {t,>} for some δ ∈ ∆, or
v(ϕ) ∈ {t,>}. Since v(¬ϕ) ∈ {t,>}, then v(ϕ) ∈ {f ,>}. If v(ϕ) = f , then v(δ) ∈ {t,>} for
some δ ∈ ∆. If v(ϕ) = >, then v(p) = > for some p ∈ var(ϕ). Since var(ϕ) ⊆ var(∆), there is
a δ ∈ ∆ such that q ∈ var(δ) and v(q) = >, whence v(δ) = > for some δ ∈ ∆. In both cases it
follows that v(δ) ∈ {t,>} for some δ ∈ ∆, establishing that v �dSfde Γ,¬ϕ � ∆.

19Coniglio and Corbalán call this system H3, but for matters of uniformity we will adopt the name GPWK, since it
gives a more suggestive idea that we are working with a Gentzen-style sequent calculus for PWK.

20Coniglio and Corbalán call this system B3 but, yet again, for matters of uniformity we will adopt the name GKw
3 ,

since it gives a more suggestive idea that we are working with a Gentzen-style sequent calculus for Kw
3 .
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[∧HL] Let v be a dSfde valuation such that v �dSfde Γ, ϕ, ψ � ∆ and assume var(ϕ,ψ) ⊆ var(∆).
Suppose v(γ) ∈ {t,>} for all γ ∈ Γ ∪ {ϕ ∧ ψ}. If v(ϕ ∧ ψ) = t, then given the dSfde truth-
function for conjunction, we can establish that v(ϕ) = t and v(ψ) = t, whence by hypothesis
v(δ) ∈ {t,>} for some δ ∈ ∆. If v(ϕ ∧ ψ) = >, then either there is a p ∈ var(ϕ) such that
v(p) = >, or there is a q ∈ var(ψ) such that v(q) = >. Either way, since var(ϕ,ψ) ⊆ var(∆)
we know that there is a δ ∈ ∆ such that there is an r ∈ var(δ) for which v(r) = >, whence
v(δ) ∈ {t,>} for some δ ∈ ∆. In both cases it follows that v(δ) ∈ {t,>} for some δ ∈ ∆,
establishing v �dSfde Γ, ϕ ∧ ψ � ∆.

[¬∨HL] Let v be a dSfde valuation such that v �dSfde Γ,¬ϕ,¬ψ � ∆ and assume var(ϕ,ψ) ⊆ var(∆).
Suppose v(γ) ∈ {t,>} for all γ ∈ Γ ∪ {¬(ϕ ∨ ψ)}. If v(¬(ϕ ∨ ψ)) = t, then given the dSfde
truth-functions for negation and disjunction, we can establish that v(¬ϕ) = t and v(¬ψ) = t,
and hence by hypothesis v(δ) ∈ {t,>} for some δ ∈ ∆. If v(¬(ϕ ∨ ψ)) = >, then either there is
a p ∈ var(ϕ) such that v(p) = >, or there is a q ∈ var(ψ) such that v(q) = >. Either way, since
var(ϕ,ψ) ⊆ var(∆) we know that there is a δ ∈ ∆ such that there is an r ∈ var(δ) for which
v(r) = >, whence v(δ) ∈ {t,>} for some δ ∈ ∆. In both cases it follows that v(δ) ∈ {t,>} for
some δ ∈ ∆, establishing v �dSfde Γ,¬(ϕ ∨ ψ) � ∆.

This concludes the proof.

Theorem 4.26 (Soundness of GdSfde). Let Γ∪∆ be a finite non-empty set of formulae of L. If Γ�∆
is provable in GdSfde, then �dSfde Γ � ∆.

Proof. If Γ � ∆ is an axiom, then it is valid in GdSfde. By induction on the depth of a derivation of
Γ � ∆ in GdSfde it follows, by the above Lemma 4.25, that Γ � ∆ is valid in GdSfde.

Proposition 4.27 (Non-triviality of GdSfde). Let Γ be a finite non-empty set of formulae of L. The
sequent Γ � ∅ is not provable in GdSfde.

Proof. Let v be a dSfde-valuation such that v(p) = > for every p ∈ var(Γ). It follows that v 2dSfde Γ�∅
and thus 2dSfde Γ � ∅. By contraposition of Soundness, we can conclude that the sequent Γ � ∅ is not
provable in GdSfde.

We now turn to completeness.

Proposition 4.28. Let Γ ∪ ∆ be a finite non-empty set of formulae of L. If Γ � ∆ is provable in
GdSfde, then it is provable in GK3.

Proof. Straightforward, since GdSfde is a restriction of GK3.

Lemma 4.29. Let Γ ∪∆ be a finite non-empty set of formulae of L. If Γ � ∆ is provable in GK3 and
var(Γ) ⊆ var(∆), then Γ � ∆ is provable in GdSfde without using the Cut rule.

Proof. Remember that proofs in sequent calculi are rooted binary trees such that the root is the sequent
being proved and the leafs of the tree are instances of [Id ], in other words, sequents of the form ϕ�ϕ.

Now, assume that Π is a Cut-free derivation of Γ � ∆ in GK3 such that var(Γ) ⊆ var(∆). If Π
is a Cut-free derivation in GdSfde, then the result is established. If Π is not a Cut-free derivation in
GdSfde, then there must be in Π applications of the rules [¬L], [∧L] and [¬∨L] where the required
provisos are not satisfied

Γ∗ � ∆∗, ϕ

Γ∗,¬ϕ � ∆∗
[¬L]

Γ∗, ϕ, ψ � ∆∗

Γ∗, ϕ ∧ ψ � ∆∗
[∧L]

Γ∗,¬ϕ,¬ψ � ∆∗

Γ∗,¬(ϕ ∨ ψ) � ∆∗
[¬∨L]

Now, since Π is a Cut-free proof, we are guaranteed that the root sequent Γ � ∆ contains all the
propositional variables appearing in Π. Since, by hypothesis, we know that var(Γ) ⊆ var(∆), we can
affirm that var(Π) = var(∆).
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What is left is, then, to design a procedure to transform Π into a Cut-free proof of Γ�∆ in GdSfde.
We do this in two steps. First, we enlarge every node of Π by adding ∆ to its right-hand side. By
doing this, we obtain a rooted binary tree Π′, whose leafs are sequents of the form ϕ � ϕ,∆. Second,
we extend each leaf with a branch starting in an instance of [Id ], that is, a sequent of the form ϕ � ϕ,
followed by any number of necessary iterated applications of the right Weakening rule [WR], so that
the sequent ϕ � ϕ,∆ is obtained.

From this procedure, we get a rooted binary tree Π′′ which is undoubtedly a Cut-free derivation
in GK3 of the sequent Γ � ∆, such that the critical instances of the rules [¬L], [∨L] and [¬∧R] have in
Π′′ the form

Γ∗ � ϕ,∆∗,∆
Γ∗,¬ϕ � ∆∗,∆

[¬L]
Γ∗, ϕ, ψ � ∆∗,∆

Γ∗, ϕ ∧ ψ � ∆∗,∆
[∧L]

Γ∗,¬ϕ,¬ψ � ∆∗,∆

Γ∗,¬(ϕ ∨ ψ) � ∆∗,∆
[¬∨L]

and are, thus, admissible in GdSfde. Finally, from this we infer that Π′′ is a Cut-free derivation in
GdSfde of the sequent Γ � ∆.

Corollary 4.30. Let Γ ∪∆ be a finite non-empty set of formulae of L. If �dSfde Γ � ∆ but var(Γ) (
var(∆), then there is a Γ′ ⊆ Γ such that �dSfde Γ′ � ∆, where var(Γ′) ⊆ var(∆).

Proof. First, notice that if �dSfde Γ � ∆, then var(Γ) 6= ∅ 6= var(∆). Now, assume �dSfde Γ � ∆
but var(Γ) * var(∆). Hence, define Γ′ = Γ \ {γ ∈ Γ | var(γ) * var(∆)}, whence Γ′ ⊂ Γ and
var(Γ′) ⊆ var(∆). Suppose there is a dSfde valuation v such that v(γ) ∈ {t,>} for all γ ∈ Γ′. If
v(γ) = > for some γ ∈ Γ′, then v(p) = > for some p ∈ var(γ) and, therefore, v(p) = > for some
p ∈ var(Γ′). Since var(Γ′) ⊆ var(∆), then v(q) = > for some q ∈ var(∆), whence there is a δ ∈ ∆
such that v(δ) = >. This establishes �dSfde Γ′ � ∆. If v(γ) = t for all γ ∈ Γ′, then suppose for reductio
that v(δ) ∈ {⊥, f} for all δ ∈ ∆, which implies that 2dSfde Γ′ � ∆. But then, v(p) ∈ {t,⊥, f} for all
p ∈ var(∆). And since var(Γ′) ⊆ var(∆), this will also require that v(q) ∈ {t,⊥, f} for all q ∈ var(Γ′).
Consider, now, a dSfde valuation v∗ such that

v∗(p) =

{
> if p ∈ var(Γ) \ var(∆)

v(p) if p ∈ var(∆)

Then, by the above this will imply v∗(γ) ∈ {t,>} for all γ ∈ Γ , but v∗(δ) ∈ {⊥, f} for all δ ∈ ∆,
whence v∗ witnesses 2dSfde Γ � ∆, contrdaciting our initial assumption. Therefore, if �dSfde Γ � ∆ but
var(Γ) ( var(∆), then there is a Γ′ ⊆ Γ such that �dSfde Γ′ � ∆, where var(Γ′) ⊆ var(∆).

Theorem 4.31 (Completeness of GdSfde). Let Γ ∪∆ be a finite non-empty set of formulae of L. If
�dSfde Γ � ∆, then Γ � ∆ is provable in GdSfde without using the Cut rule.

Proof. Assume �dSfde Γ � ∆. By Observation 4.6, we know that �K3 Γ � ∆, and also by Theorem 4.15
we are granted that Γ � ∆ is provable in GK3. To finally establish that Γ � ∆ is provable in GdSfde
without using the Cut rule, we consider two cases. First, if var(Γ) ⊆ var(∆), we know by Lemma 4.29
that this is the case. Second, if var(Γ) ( var(∆), we know by Corollary 4.30 that there is a Γ′ ⊆ Γ
such that �dSfde Γ�∆′, where var(Γ′) ⊆ var(∆). Now, by Lemma 4.29 we know that Γ′�∆ is provable
in GdSfde without using the Cut rule, by means of a proof Π1 (i.e. a rooted binary tree) whose root
is Γ′ � ∆ and whose leafs are instances of [Id ], of the form ϕ � ϕ. Finally, we transform Π1 into a
proof Π′1, by extending down the node Γ′ �∆ by means of the required iterated applications of the left
Weakening rule [WL], until we arrive at the sequent Γ � ∆. But this rooted binary tree Π′1 is now a
proof in GdSfde of the sequent Γ � ∆, without using the Cut rule.

Corollary 4.32 (Cut-elimination for dSfde). Let Γ∪∆ be a finite non-empty set of formulae in L. If
the sequent Γ � ∆ is provable in GdSfde, then there is a Cut-free derivation of Γ � ∆ in GdSfde.

Proof. Assume that Γ � ∆′ is provable in GdSfde. By Theorem 4.34, that is, because the system is
sound, we know that �GdSfde Γ�∆. But, then, by Theorem 4.39, that is, becuase the system is complete,
we know that Γ � ∆ is provable in GdSfde without using the Cut rule.
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4.4 Soundness and Completeness for GSfde
Lemma 4.33. Every sequent rule of the calculus GSfde preserves Sfde-validity.

Proof. Obviously the axiom and the structural rules preserve validity. We prove the case for the
restricted operational rules and leave the rest as an exercise to the reader.

[¬BR] Let v be a Sfde valuation such that v �Sfde Γ, ϕ� ∆ and assume that var(ϕ) ⊆ var(Γ). Suppose
v(γ) ∈ {t,>} for all γ ∈ Γ. Thus, v(p) ∈ {t,>, f} for all p ∈ var(Γ). Since var(ϕ) ⊆ var(Γ), we
also know that v(q) ∈ {t,>, f} for all q ∈ var(ϕ). Hence, v(ϕ) ∈ {t,>, f}. If v(ϕ) ∈ {>, f}, then
v(¬ϕ) ∈ {t,>}, whence v(δ) ∈ {t,>} for some δ ∈ ∆ ∪ {¬ϕ}. If v(ϕ) = t, then by hypothesis
there is a δ ∈ ∆ such that v(δ) ∈ {t,>}, whence v(δ) ∈ {t,>} for some δ ∈ ∆ ∪ {¬ϕ}. Either
way, this establishes v �Sfde Γ � ¬ϕ,∆.

[∨BR] Let v be a Sfde valuation such that v �Sfde Γ � ϕ,ψ,∆ and assume that var(ϕ,ψ) ⊆ var(Γ).
Suppose v(γ) ∈ {t,>} for all γ ∈ Γ. Hence, v(p) ∈ {t,>, f}, for all p ∈ var(Γ). Since var(ϕ,ψ) ⊆
var(Γ) we know that v(q) ∈ {t,>, f}, for all q ∈ var(ϕ,ψ) and, moreover, v(ϕ) ∈ {t,>, f} and
v(ψ) ∈ {t,>, f}. By hypothesis, there is a δ ∈ ∆ ∪ {ϕ,ψ} such that v(δ) ∈ {t,>}. Thus, either
there is a δ ∈ ∆ such that v(δ) ∈ {t,>}, or v(ϕ) ∈ {t,>}, or v(ψ) ∈ {t,>}. Finally, given
v(ϕ) ∈ {t,>, f} and v(ψ) ∈ {t,>, f}, and given the Sfde truth-function for disjunction, we can
establish that in all these cases it follows that there is a δ ∈ ∆∪{ϕ∨ψ} such that v(δ) ∈ {t,>}.
Therefore, v �Sfde Γ � ϕ ∨ ψ,∆.

[¬∧BR] Let v be a Sfde valuation such that v �Sfde Γ�¬ϕ,¬ψ,∆ and assume that var(ϕ,ψ) ⊆ var(Γ).
Suppose v(γ) ∈ {t,>} for all γ ∈ Γ. Thus, v(p) ∈ {t,>, f}, for all p ∈ var(ϕ,ψ). Since
var(ϕ,ψ) ⊆ var(Γ) we know that v(q) ∈ {t,>, f}, for all q ∈ var(ϕ,ψ) and, moreover, that
v(¬ϕ) ∈ {t,>, f} and v(¬ψ) ∈ {t,>, f}. By hypothesis, there is a δ ∈ ∆ ∪ {¬ϕ,¬ψ} such
that v(δ) ∈ {t,>}. Thus, either there is a δ ∈ ∆ such that v(δ) ∈ {t,>}, or v(¬ϕ) ∈ {t,>},
or v(¬ψ) ∈ {t,>}. Finally, given v(¬ϕ) ∈ {t,>, f} and v(¬ψ) ∈ {t,>, f}, and given the Sfde
truth-functions for negation and conjunction, we can establish that in all these cases it follows
that there is δ ∈ ∆ ∪ {¬(ϕ ∧ ψ)} such that v(δ) ∈ {t,>}. Therefore, v �Sfde Γ � ¬(ϕ ∧ ψ),∆.

This concludes the proof.

Theorem 4.34 (Soundness of GSfde). Let Γ∪∆ be a finite non-empty set of formulae of L. If Γ � ∆
is provable in GSfde, then �Sfde Γ � ∆.

Proof. If Γ � ∆ is an axiom, then it is valid in GSfde. By induction on the depth of a derivation of
Γ � ∆ in GSfde it follows, by the above Lemma 4.33, that Γ � ∆ is valid in GSfde.

Proposition 4.35 (Non-triviality of GSfde). Let Γ be a finite non-empty set of formulae of L. The
sequent Γ � ∅ is not provable in GSfde.

Proof. Let v be a Sfde-valuation such that v(p) = > for every p ∈ var(Γ). It follows that v 2Sfde Γ � ∅
and thus 2Sfde Γ � ∅. By contraposition of Soundness, we can conclude that the sequent Γ � ∅ is not
provable in GSfde.

We now turn to completeness.

Proposition 4.36. Let Γ∪∆ be a finite non-empty set of formulae of L. If Γ�∆ is provable in GSfde,
then it is provable in GLP.

Proof. Straightforward, since GSfde is a restriction of GLP.

Lemma 4.37. Let Γ∪∆ be a finite non-empty set of formulae of L. If Γ � ∆ is provable in GLP and
var(∆) ⊆ var(Γ), then Γ � ∆ is provable in GSfde without using the Cut rule.
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Proof. Remember that proofs in sequent calculi are rooted binary trees such that the root is the sequent
being proved and the leafs of the tree are instances of [Id ], in other words, sequents of the form ϕ�ϕ.

Now, assume that Π is a Cut-free derivation of Γ � ∆ in GLP such that var(∆) ⊆ var(Γ). If Π is a
Cut-free derivation in GSfde, then the result is established. If Π is not a Cut-free derivation in GSfde,
then there must be in Π applications of the rules [¬R], [∨R] or [¬∧R] where the required provisos are
not satisfied

Γ∗, ϕ � ∆∗

Γ∗ � ¬ϕ,∆∗ [¬R]
Γ∗ � ϕ,ψ,∆∗

Γ∗ � ϕ ∨ ψ,∆∗ [∨R]
Γ∗ � ¬(ϕ ∧ ψ),∆∗

Γ∗ � ¬ϕ,¬ψ,∆∗ [¬∧R]

Now, since Π is a Cut-free proof, we are guaranteed that the root sequent Γ � ∆ contains all the
propositional variables appearing in Π. Since, by hypothesis, we know that var(∆) ⊆ var(Γ), we can
affirm that var(Π) = var(Γ).

What is left is, then, to design an algorithmic procedure to transform Π into a Cut-free proof of
Γ�∆ in GSfde. We do this in two steps. First, we enlarge every node of Π by adding Γ to its left-hand
side. By doing this, we obtain a rooted binary tree Π′, whose leafs are sequents of the form Γ, ϕ � ϕ.
Second, we extend each leaf with a branch starting in an instance of [Id ], that is, a sequent of the form
ϕ � ϕ, followed by any number of necessary iterated applications of the left Weakening rule [WL], so
that the sequent Γ, ϕ � ϕ is obtained.

From this procedure, we get a rooted binary tree Π′′ which is undoubtedly a Cut-free derivation in
GLP of the sequent Γ � ∆, such that the critical instances of the rules [¬R], [∨L] and [¬∧R] have in
Π′′ the form

Γ,Γ∗, ϕ � ∆∗

Γ,Γ∗ � ¬ϕ,∆∗ [¬R]
Γ,Γ∗ � ϕ,ψ,∆∗

Γ,Γ∗ � ϕ ∨ ψ,∆∗ [∨R]
Γ,Γ∗ � ¬(ϕ ∧ ψ),∆∗

Γ,Γ∗ � ¬ϕ,¬ψ,∆∗ [¬∧R]

and are, thus, admissible in GSfde. Finally, from this we infer that Π′′ is a Cut-free derivation in GSfde
of the sequent Γ � ∆.

Corollary 4.38. Let Γ ∪∆ be a finite non-empty set of formulae of L. If �Sfde Γ � ∆ but var(∆) (
var(Γ), then there is a ∆′ ⊆ ∆ such that �Sfde Γ � ∆′, where var(∆′) ⊆ var(Γ).

Proof. First, notice that if �Sfde Γ � ∆, then var(Γ) 6= ∅ 6= var(∆). Now, assume �Sfde Γ � ∆ but
var(∆) * var(Γ). Hence, define ∆′ = ∆ \ {δ ∈ ∆ | var(δ) * var(Γ)}, whence ∆′ ⊂ ∆ and var(∆′) ⊆
var(Γ). Suppose additionally, for reductio, that there is a Sfde valuation v such that v(γ) ∈ {t,>} for
all γ ∈ Γ, but v(δ) ∈ {⊥, f} for all δ ∈ ∆′, thus implying 2Sfde Γ � ∆′. Construct now a Sfde valuation
v∗ such that

v∗(p) =

{
⊥ if p ∈ var(∆) \ var(Γ)

v(p) if p ∈ var(Γ)

Hence, v∗ is such that v∗(γ) ∈ {t,>} for all γ ∈ Γ, but v∗(δ) ∈ {⊥, f} for all δ ∈ ∆, whence v∗ witnesses
2Sfde Γ�∆, contradicting our initial assumption. Thus, there is a ∆′ ⊂ ∆ such that �Sfde Γ�∆′, where
var(∆′) ⊆ var(Γ). Therefore, if �Sfde Γ � ∆ but var(∆) ( var(Γ), then there is a ∆′ ⊆ ∆ such that
�Sfde Γ � ∆′, where var(∆′) ⊆ var(Γ).

Theorem 4.39 (Completeness of GSfde). Let Γ ∪ ∆ be a finite non-empty set of formulae of L. If
�Sfde Γ � ∆, then Γ � ∆ is provable in GSfde without using the Cut rule.

Proof. Assume �Sfde Γ�∆. By Observation 4.3, we know that �LP Γ�∆, and also by Theorem 4.16 we
are granted that Γ � ∆ is provable in GLP. To finally establish that Γ � ∆ is provable in GSfde without
using the Cut rule, we consider two cases. First, if var(∆) ⊆ var(Γ), we know by Lemma 4.37 that
this is the case. Second, if var(∆) ( var(Γ), we know by Corollary 4.38 that there is a ∆′ ⊆ ∆ such
that �Sfde Γ � ∆′, where var(∆′) ⊆ var(Γ). Now, by Lemma 4.37 we know that Γ � ∆′ is provable in
GSfde without using the Cut rule, by means of a proof Π1 (i.e. a rooted binary tree) whose root is
Γ � ∆′ and whose leafs are instances of [Id ], of the form ϕ � ϕ. Finally, we transform Π1 into a proof
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Π′1, by extending down the node Γ � ∆′ by means of the required iterated applications of the right
Weakening rule [WR], until we arrive at the sequent Γ � ∆. But this rooted binary tree Π′1 is now a
proof in GSfde of the sequent Γ � ∆, without using the Cut rule.

Corollary 4.40 (Cut-elimination for Sfde). Let Γ ∪∆ be a finite nonempty set of formulae in L. If
the sequent Γ � ∆ is provable in Γ � ∆ in GSfde, then there is a Cut-free derivation of Γ � ∆ in GSfde.

Proof. Assume that Γ�∆′ is provable in GSfde. By Theorem 4.34, that is, because the system is sound,
we know that �GSfde Γ � ∆. But, then, by Theorem 4.39, that is, becuase the system is complete, we
know that Γ � ∆ is provable in GSfde without using the Cut rule.

5 Conclusion

In this paper we showed that, by following Fitting’s epistemic interpretation of the strong Kleene
logics K3 and FDE, and the Paracomplete Weak Kleene logic Kw

3 , an up to now unnoticed epistemic
interpretation of Paraconsistent Weak Kleene logic PWK is available. This interpretation is carried
out by focusing on a four-valued generalization of PWK, namely the logic dSfde, and showing that its
truth-functions can be interpreted in terms of what we called track-down operations. These operations,
built inspired in the idea that no consistent opinion can arise from a set that includes an inconsistent
opinion, coincide with the truth-functions of Paraconsistent Weak Kleene when certain reasonable
constraints are assumed.

In addition to providing this novel interpretation of Paraconsistent Weak Kleene, the failure of
Conjunctive Simplification in such a system and its sublogics is discussed in terms of track-down
conjunctions and, also, in connection with containment logics. Concerning this latter relation, Para-
consistent Weak Kleene is shown to be closely related, and its theoremless subsystems are shown
to belong, to a family of systems that respect a containment principle dual to Parry’s Proscriptive
Principle for entailment. These considerations mirror the previous remarks made in the literature
concerning the other three-valued weak Kleene logic, namely Kw

3 , whose subsystems counting with no
anti-theorems were shown by Ferguson to respect Parry’s Proscriptive Principle for entailment.

These observations allowed us to design sound and complete Gentzen-style sequent calculi for this
four-valued generalizations of PWK and Kw

3 , i.e. the systems we referred to as dSfde and Sfde, drawing
inspiration from the techniques recently applied by Coniglio and Corbalán to provide calculi of these
sort for the three-valued weak Kleene logics. The main feature of these calculi, both for logics of the
three- and four-valued kinds, was the presence of linguistic (i.e. variable inclusion) provisos in some of
the operational rules for the calculi, pertaining the set of propositional variables of the active formulae
of the corresponding rules, and the set of propositional variables appearing in some of the side formulae
of such rules.
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