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1. The Problem of Mathematical Knowledge 

 

It is often argued that mathematics is “the paradigm of certain and final 

knowledge” (Feferman 1998, 77). The degree of certainty that mathematics is able 

to provide is considered one of its qualifying features by many authors. For 

example, Byers states that the certainty of mathematics is “different from the 

certainty one finds in other fields [...]. Mathematical truth has [...] [the] quality of 

inexorability. This is its essence” (Byers 2007, 328).  

It is also often claimed that mathematics is objective, in the sense that it is 

mind-independent, and so that it is independent from our biological constitution. 

For example, George and Velleman state that understanding the nature of 

mathematics does not require asking “such questions as ‘What brain, or neural 

activity, or cognitive architecture makes mathematical thought possible?’,” because 

“such studies focus on phenomena that are really extraneous to the nature of 

mathematical thought itself” (George, Velleman 2002, 2).  

Mathematics proved tremendously useful in dealing with the world. Indeed, 

current natural science is “mathematical through and through: it is impossible to do 

physics, chemistry, molecular biology, and so forth without a very thorough and 

quite extensive knowledge of modern mathematics” (Weir 2005, 461). But despite 

its being so pervasive in scientific knowledge, we do not have yet an 

uncontroversial and science-oriented account of what mathematics is. So, “in a 

reality [...] understood by the methods of science,” we are unable to answer to the 

following question: “where does mathematical certainty come from?”, even 

because most mathematicians and scientists “do not take seriously the problem of 

reconciling” the certainty of mathematical knowledge “with a scientific world-

view” (Deutsch 1997, 240).  

Moreover, many authors are skeptical about the very possibility of developing a 

naturalist perspective on mathematics. They think that “mathematics is an 

enormous Trojan Horse sitting firmly in the center of the citadel of naturalism,” 

because even if “natural science is mathematical through and through,” 

mathematics seems to “provide a counterexample both to methodological and to 

ontological naturalism.” Indeed, mathematics ultimately rests on axioms, which are 

“traditionally held to be known a priori, in some accounts by virtue of a form of 

intuitive awareness.” The epistemic role of the axioms in mathematics seems 

“uncomfortably close to that played by the insights of a mystic. When we turn to 

ontology, matters are, if anything, worse: mathematical entities, as traditionally 

construed, do not even exist in time, never mind space” (Weir 2005, 461-462). In 
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fact, the majority of mathematicians and philosophers of mathematics argues for 

some form of mathematical realism (Balaguer 2009).  

Thus, it is very difficult even to envisage how naturalistically accounting for 

what mathematics is and how we acquire mathematical knowledge. For example, 

Brown admits that he has “no idea how the mind is able to ‘grasp’ or ‘perceive’ 

mathematical objects and mathematical facts”, but he nevertheless is certain that it 

“is not by means of some efficient cause” (Brown 2012, 12). The difficulty of 

accommodating mathematical knowledge within a coherent scientific world-view 

is what Mary Leng called ‘the problem of mathematical knowledge’. According to 

her, “the most obvious answers to the two questions ‘What is a human?’ and ‘What 

is mathematics?’ together seem to conspire to make human mathematical 

knowledge impossible” (Leng 2007, 1).1 

A clarification is in order. There is a huge number of works in cognitive science 

devoted to study numerical capacities in human and non-human animals (see e.g. 

Cohen Kadosh, Dowker 2015; Dehaene, Brannon 2011; Dehaene, Duhamel, 

Hauser, Rizzolatti 2005), but we will not be primarily concerned with these works 

here. Indeed, these researches do shed light on how to naturalistically conceive of 

mathematics (De Cruz 2006). But they have so far investigated the origin and 

functioning of some very basic numerical abilities. These basic capacities are 

thought to had evolved because they allow us to approximately deal with 

numerosities sufficiently well to ensure the survival. This seems insufficient to 

justify the claim that mathematical knowledge is certain. However, no adequate 

scientific account of how we develop advanced mathematics starting from those 

basic numerical abilities has been provided yet (see e.g. Spelke 2011). Thus, even 

if prima facie the study of such basic cognitive abilities does not support the 

traditional view of mathematics, it seems at the moment unable to definitely 

confute that view. Indeed, according to many authors that support the traditional 

view, throwing light on the evolutionary roots of these numerical capacities is, in 

and of itself, insufficient to naturalistically explain two things: first, the degree of 

certainty of mathematics; second, the effectiveness in dealing with the world that 

our advanced mathematics displays. For example, Polkinghorne states that it 

“seems clear enough that some very modest degree of elementary mathematical 

understanding [...] would have provided our ancestors with valuable evolutionary 

advantage. But whence has come the human capacity [...] to attain the ability to 

conjecture and eventually prove Fermat’s Last Theorem, or to discover non-

commutative geometry? Not only do these powers appear to convey no direct 

survival advantage, but they also seem vastly to exceed anything that might 

plausibly be considered a fortunate spin-off from such mundane necessity” 

(Polkinghorne 2011, 31-32). Since we are dealing here with the issue of whether 

the traditional view is compatible with a naturalist stance, as it will become more 

clear in what follows, we will not dwell on those attempts that try to naturalize 

mathematics by focusing on discoveries related to our basic numerical abilities, 

                                                 
1 On the difficulty of making the traditional view of mathematics compatible with a 

naturalist stance, cf. Núñez 2009, 69: “Lakoff and I called this view the romance of 

mathematics, a kind of mythology in which mathematics has a truly objective existence, 

providing structure to this universe and any possible universe, independent of and 

transcending the existence of human beings or any beings at all. However, despite its 

immediate intuitiveness and despite being supported by many outstanding physicists 

and mathematicians, the romance of mathematics is scientifically untenable.” 
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without addressing the issue of whether the traditional view of mathematics should 

be maintained or not in the light of our scientific understanding of those abilities. 

This article aims to suggest that a promising step towards the elaboration of an 

adequate naturalist account of mathematics and mathematical knowledge may be to 

take the method of mathematics to be the analytic method rather than the axiomatic 

method. Indeed, it seems impossible to naturalize mathematics without challenging 

at least some crucial aspects of the traditional view of mathematics, according to 

which mathematical knowledge is certain and the method of mathematics is the 

axiomatic method. Nor does it seem possible to keep maintaining that the method 

of mathematics is the axiomatic method and mathematical knowledge is certain, if 

we dismiss that view. The analytic view of the method of mathematics, which has 

been mainly advocated by Carlo Cellucci in recent years (Cellucci forthcoming, 

2017, 2013), will be illustrated in some detail; then, I will argue that this view 

could contribute to develop a naturalist account of mathematics and mathematical 

knowledge. I will also take Cellucci’s insight further and point out that the analytic 

view of method can do that at a cost: it forces us to rethink the ‘traditional image’ 

of mathematics. Indeed, if we take the method of mathematics to be the analytic 

method, mathematical knowledge cannot be said to be certain, and the only kind of 

mathematical knowledge that we can have is plausible knowledge. 

 

 

2. The Method of Mathematics 

 

The certainty of mathematical knowledge is usually supposed to be due to the 

method of mathematics, which is commonly taken to be the axiomatic method.2 In 

this view, the method of mathematics differs from the method of investigation in 

the natural science: whereas “the latter acquire general knowledge using inductive 

methods, mathematical knowledge appears to be acquired [...] by deduction from 

basic principles” (Horsten 2015). According to Frege, when we do mathematics we 

form chains of deductive “inferences starting from known theorems, axioms, 

postulates or definitions and terminating with the theorem in question” (Frege 

1984, 204). In the same vein, Gowers states that what mathematicians do is that 

they “start by writing down some axioms and deduce from them a theorem” 

(Gowers 2006, 183). So, it is the deductive character of mathematical 

demonstrations that confers its characteristic certainty to mathematical knowledge, 

since demonstrative “reasoning is safe, beyond controversy, and final” (Pólya 

1954, I, v), precisely because it is deductive in character. In this view, “deductive 

proof is almost the defining feature of mathematics” (Auslander 2008, 62).  

If the method of mathematics is the axiomatic method, mathematics mainly 

consists in deductive chains from given axioms. So, in order to claim that 

mathematical knowledge is certain, we have to know that those axioms are ‘true’, 

where ‘true’ is usually intended as ‘consistent with each other’.  
As well as the consistency of axioms, the problem of justifying our reliability 

about mathematics is also related to the problem of justifying our reliability about 

logic. Indeed, if we think that the method of mathematics is the axiomatic method, 

                                                 
2 Cf. Baker 2016, sec. 1: “it seems fair to say that there is a philosophically established 

received view of the basic methodology of mathematics. Roughly, it is that 

mathematicians aim to prove mathematical claims [...], and that proof consists of the 

logical derivation of a given claim from axioms.” 
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proving the reliability of deductive inferences is essential for claiming for the 

certainty of mathematical knowledge. For example, Franks states that in 

mathematics “deductive logic is the only arbiter of truth” (Franks 1989, 68).  

Thus, there are two statements that we should be able to prove in order to safely 

claim that mathematical knowledge is certain: 1) axioms are consistent; 2) 

deduction is truth-preserving. Indeed, a deductive proof “yields categorical 

knowledge [i.e. knowledge independent of any particular assumption] only if it 

proceeds from a secure starting point and if the rules of inference are truth-

preserving” (Baker 2016, sec. 2.2). 

Now, while whether it is possible to deductively prove 2) is at least 

controversial (see e.g. Haack 1976; Cellucci 2006), it is uncontroversial that it is 

generally impossible to mathematically prove 1), i.e. that axioms are consistent, 

because of Gödel’s results.3 Indeed, by Gödel’s second incompleteness theorem, 

for any consistent, sufficiently strong deductive theory T, the sentence expressing 

the consistency of T is undemonstrable in T. Usually, those authors that despite this 

result maintain that mathematical knowledge is certain, make reference to a sort of 

faculty that we are supposed to possess, and that would allow us to ‘see’ that 

axioms are consistent. For example, Brown states that we “can intuit mathematical 

objects and grasp mathematical truths. Mathematical entities can be ‘perceived’ or 

‘grasped’ with the mind’s eye” (Brown 2012, 45).  

This view has been advocated by many great mathematicians and philosophers. 

Detlefsen describes the two main claims of this view as follows: 1) 

“mathematicians are commonly convinced that their reasoning is part of a process 

of discovery, and not mere invention;” 2) “mathematical entities exist in a noetic 

realm to which the human mind has access,” (Detlefsen 2011, 73). With respect to 

the ability of grasping mathematical truths, i.e. accessing the mathematical realm, 

this view traditionally assumes “a type of apprehension, noēsis, which is 

characterized by its distinctly ‘intellectual’ nature. This has generally been 

contrasted to forms of aisthēsis, which is broadly sensuous or ‘experiential’ 

cognition [...].” (Ibidem, 73). For example, Gödel states that “despite their 

remoteness from sense experience we do have something like a perception also of 

the objects of set theory, as is seen from the fact that the axioms force themselves 

upon us as being true” (Gödel 1947: 1990, 268). 

The problem is that this view is commonly supported by authors that are anti-

naturalists.4 Hence, they do not take care of articulating a scientifically plausible 

account of how such ‘intuition’ may work or may have evolved. The following 

question then arises: Is it possible to naturalize the human ability to grasp 

mathematics and logic, and maintain the traditional view of mathematical 

knowledge, i.e. that mathematical knowledge is certain and the method of 

mathematics is the axiomatic method? In other words, how can we account for the 

reliability of mathematics and logic, if we accept the idea that they are both 

                                                 
3 Cf. Baker 2016, sec. 2.3: “Although these results apply only to mathematical theories 

strong enough to embed arithmetic, the centrality of the natural numbers (and their 

extensions into the rationals, reals, complexes, etc.) as a focus of mathematical activity 

means that the implications are widespread.” 
4 On the anti-naturalism of many of the supporters of this view, cf. e.g. Gödel 1951: 

1995, 323: “There exists [...] an entire world consisting of the totality of mathematical 

truths, which is accessible to us only through our intelligence, just as there exists the 

world of physical realities; each one is independent of us, both of them divinely 

created.” 
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produced by humans and humans are evolved organisms (Schechter 2013; Smith 

2012)?  

There is no clear answer to this question. Some authors have tried to naturalize 

mathematics and logic relying on evolutionism (see De Cruz 2006; Krebs 2011; 

Woleński 2012). The main difficulties afflicting these approaches derive from the 

fact that they try to naturalize mathematics in a way that allow them to avoid the 

risk of being excessively revisionary on what we take mathematical knowledge to 

be. In other words, they try to show that mathematics rests on some evolved 

cognitive abilities, and that this evolutionary ground confers a degree of epistemic 

justification to the mathematics we actually do which is able to secure our 

convictions on what mathematical knowledge is.5  

The fact is that it is not easy to defend the claim that evolution may provide the 

degree of justification needed to maintain the traditional view of mathematics as 

the paradigm of certain knowledge. Briefly, in order to claim that natural selection 

gave us the ability at attaining the truth with regard to mathematics, we should 

demonstrate that natural selection is an aimed-at-truth process. For example, 

Wilkins and Griffiths state that to “defeat evolutionary skepticism, true belief must 

be linked to evolutionary success in such a way that selection will favour 

organisms which have true beliefs” (Wilkins, Griffiths 2013, 134). The problem is 

exactly how to justify such a link, and the issue is at least controversial (Vlerick, 

Broadbent 2015; Sage 2004). 

Consider our confidence in the fact that deduction is truth-preserving. Kyburg 

states that “our justification of deductive rules must ultimately rest, in part, on an 

element of deductive intuition: we see that M[odus] P[onens] is truth-preserving − 

this is simply the same as to reflect on it and fail to see how it can lead us astray” 

(Kyburg 1965, 276). The problem is that our failing to conceive an alternative can 

justify the reliability of the deductive rules only if our ability to conceive 

alternatives could be shown to reliably exhaust the space of all the possible 

alternatives. But such a demonstration of the reliability of our ability to conceive 

alternatives doesn’t exist, and we can rely only on our ‘intuition’ (i.e. on our failing 

in finding any counter-example) to convince ourselves that MP cannot lead us 

astray, and on the fact that such ‘intuition’ appears self-evident to us.6 The mere 

fact that some statements appear to us as self-evidently true it is not by itself a 

guarantee of their truth, if our ability in evaluating the self-evident truth of a 

statement is an evolved capacity. Our ‘sense’ of the self-evident may be not only 

oriented towards contingent connections which were useful in the past and that do 

not reflect necessary and eternal truths, but given that we are not able to 

                                                 
5 Other proposals devoted to naturalize mathematics by considering our evolved 

cognitive abilities have been put forward by Núñez (2008; 2009) and Ye (2011). These 

interesting proposals cannot be discussed here for reason of space. What is nevertheless 

worth underlining here is that even if both these proposals, despite their full-blooded 

naturalism, seem to leave untouched the idea that the method of mathematics is the 

axiomatic method, they both explicitly claim that Mathematical Platonism is 

incompatible with a naturalist stance, because it is scientifically untenable. So, they 

cannot be regarded as naturalized versions of the traditional view. 
6 Sklar (1981) argues that in fact we are unable to exhaustively explore the space of 

possible alternatives, given that in the past, as history of science teaches us, we 

routinely failed in exploring the space of the conceivable alternatives to a given 

scientific hypothesis. More recently, Stanford (2006) has further developed Sklar’s 

insight to defend his instrumentalist view of science. 
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demonstrate that only true beliefs may lead us to successfully dealing with the 

world,7 we cannot even eliminate the possibility that an ability in perceiving some 

falsities as self-evident has been selected, because perceiving such falsities as self-

evident truths was adaptively useful (Nozick 2001; see also Vaidya 2016). 

It is worth noticing that, if we want to maintain that mathematical knowledge is 

certain, and we want to naturalize mathematical knowledge, the evolved cognitive 

ability to grasp whether axioms are consistent, cannot be supposed to be fallible.  

Indeed, if this faculty is fallible, and we are not able to correctly determine 

whether axioms are true in all the cases we examine, then we will be generally 

unable to claim that our mathematical knowledge is certain in any particular case. 

Indeed, as we have seen, a mathematical result is true and certain if the axioms 

from which it is derived are ‘true’ (in the sense of consistent), and deduction is 

truth-preserving. If naturalizing mathematics implies that our evolved ability in 

assessing the truth of the axioms is fallible, and we have no other way to verify our 

verdict, we find ourselves in a situation in which we may have erred and we are 

unable to detect whether we erred. Thus, we would be unable to claim that we 

judged correctly, and so that our mathematical knowledge is certain. So, if the 

justification of our mathematical knowledge rests on some fallible faculty, then the 

attempt to naturalize mathematics cannot maintain the traditional view of 

mathematics.8  

 

 

3. Mathematics and Naturalism 

 

As to how to understand ‘naturalism’, we are not concerned here with any specific 

view of naturalism, nor we will survey the many criticisms that have been moved 

to this (family of) view(s) (for a survey, see Clark 2016; Papineau 2016; Rosenberg 

1996). For the purpose of this article, ‘naturalism’ can just be understood as the 

claim that we should refuse accounts or explanations that appeal to non-natural 

entities, faculties or events, where ‘non-natural’ has to be understood as indicating 

that those entities, faculties or events cannot in principle be investigated, tested and 

accounted for in the way we usually do in science. In other words, non-natural 

                                                 
7 Cf. McKay, Dennett 2009, 507: “In many cases (perhaps most), beliefs will be adaptive 

by virtue of their veridicality. The adaptiveness of such beliefs is not independent of 

their truth or falsity. On the other hand, the adaptiveness [...] of some beliefs is quite 

independent of their truth or falsity.” 
8 For an opposite view see McEvoy (2004), who argues for the compatibility of 

reliabilism and mathematical realism. According to him, mathematical intuition may be 

at the same time an a priori, reliable, and fallible faculty of reason. In a similar vein, 

Brown (2012) maintains that Platonism and fallibilism can be combined. But, even if 

we concede that fallibilism in epistemology is compatible with Platonism in ontology, 

this view seems not compatible with a naturalist stance, since it is not able to give a 

naturalist account of how intuition can provide mathematical knowledge that is certain. 

This view has to face the same difficulties discussed above with regard to the 

justification of the claim that deduction is truth-preserving: when evolution enters the 

picture, it is not easy to justify the claim that we are able to correctly assess what is 

possible or impossible through reasoning alone. This impinges on the possibility of 

claiming that our mathematical beliefs are certainly true. So, any kind of evolutionary 

reliabilism seems not really able to provide a naturalist way of supporting the traditional 

view of mathematics, since it is not able to secure the certainty of our mathematical 

knowledge (Sage 2004). 
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entities, faculties or events are those that are characterized and defined precisely by 

their inaccessibility, by the impossibility of being assessed, empirically confirmed, 

or even made compatible with what we consider genuine scientific knowledge in 

the same or in some close domain of investigation. In all those cases we have to 

face a problem of access9 and a claim of exceptionality that usually lacks 

sufficiently strong reasons to be conceded. 

So, in this article we will exclusively be concerned with those strategies aimed 

at naturalizing a domain D, which has traditionally been considered to be affected 

by an ‘access problem’ (e.g. mathematics, morality, modality, etc.), by providing a 

plausible evolutionary account of some cognitive abilities that would make our 

knowledge of some D-truths a natural fact. As an example, consider Timothy 

Williamson’s approach to modality. He firstly reduces the problem of explaining 

modal knowledge to the problem of explaining our capacity to correctly perform 

counterfactual reasoning. Then, he gives some reasons to think that an evolutionary 

account of the emergence of this capacity may be plausible (Williamson 2000).  

In this context, a naturalistic account of mathematics has to assume the 

hypothesis that the human mathematician is “a thoroughly natural being situated in 

the physical universe,” and that therefore “any faculty that the knower has and can 

invoke in pursuit of knowledge must involve only natural processes amenable to 

ordinary scientific scrutiny” (Shapiro 1997, 110). 

Recently, Helen De Cruz argued that an evolutionary account of mathematics 

may well be compatible with a realist view of mathematics. According to her, 

“animals make representations of magnitude in the way they do because they are 

tracking structural (or other realist) properties of numbers” (De Cruz 2016, 7). In 

this view, “realism about numbers could be true, given what we know about 

evolved numerical cognition” (Ibidem, 2). Indeed, “it seems plausible that 

numerical cognition has an evolved, adaptive function,” and it has been 

                                                 
9 See Benacerraf (1973). Benacerraf’s famous epistemological challenge to Mathematical 

Platonism has been criticized because it assumes the causal theory of knowledge, which 

nowadays is discredited among epistemologists. But Benacerraf’s argument may be 

raised against Platonism without assuming the causal theory of knowledge, as Field 

maintains (Field 1989). On this issue cf. Baron 2015, 152: “Field’s version of the access 

problem focuses on mathematicians’ mathematical beliefs. The mathematical 

propositions that mathematicians believe tend to be true. If platonism is correct, 

however, then these propositions are about mathematical objects. So, the mathematical 

beliefs held by mathematicians [...] are reliably correlated with facts about such objects. 

The challenge facing the platonist, then, is to provide an account of this reliable 

correlation.” It may be objected that this formulation implicitly assumes the 

correspondence view of truth, and that this view of truth has not to be necessarily held 

by platonists. But, even if accepting that view of truth is not strictly mandatory for a 

realist, the correspondence view is in fact the view of truth usually adopted by realists 

of all stripes. And according to many authors, one of the major 

arguments “for mathematical realism appeals to a desire for a uniform semantics 

for all discourse: mathematical and non-mathematical alike [...]. Mathematical realism, 

of course, meets this challenge easily, since it explains the truth of mathematical 

statements in exactly the same way as in other domains” (Colyvan 2015, sec. 5), i.e. by 

assuming that there is a correspondence between the realm of mathematical objects and 

our mathematical knowledge. So, if platonists try to avoid Benacerraf’s challenge by 

rejecting the correspondence view of truth, they risk dismissing one of the most 

convincing reasons for adopting Platonism in the first place. 
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demonstrated that numerical cognition “plays a critical role in our ability to engage 

in formal arithmetic” (De Cruz 2016, 4).  

The main problem with this line of reasoning is the following: if we try to 

naturalize mathematics and maintain the traditional view, i.e. the view according to 

which the method of mathematics is the axiomatic method and mathematical 

knowledge is certain, then our naturalized account of mathematics risks to become 

incompatible with Gödel’s results. Indeed, in this view, as we have already noted, 

in order to justify mathematical knowledge, at least two requirements have to be 

fulfilled: axioms have to be shown to be consistent, and deduction has to be shown 

to be truth-preserving.  

Let’s focus on the first requirement. If we maintain that evolution is able to 

justify the traditional view of mathematics, this amounts to claim that evolution, in 

some way, gave us an ability to know with certainty whether axioms are true, at 

least in the sense that they are consistent. Let’s name the ‘result’ that we obtain 

thanks to such evolved ability, i.e. “the axioms of the axiomatic system we are 

considering are consistent”, T.  

The problem is that, by Gödel’s second incompleteness theorem, it is 

impossible to demonstrate in any sufficiently powerful axiomatic system that the 

axioms of such system are consistent. Let’s name this result G.  

Now, if the method of mathematics really is the axiomatic method, how could 

we accept that T holds? Or, to put it slightly differently, should we consider T be 

part of our mathematical knowledge?  

If T is part of our mathematical knowledge, then the axiomatic method is not 

really the unique method of mathematics, since a crucial result as T is not obtained 

by this method, and so the method by which T has been obtained has to be added to 

the list of the legitimate methods of mathematics. This would render G almost 

irrelevant. Indeed, if the axiomatic method is not the only acceptable method in 

mathematics, and if we can know that a set of axioms is consistent thanks to some 

evolved faculty, then that in some axiomatic systems we cannot prove whether a 

set of axioms is consistent is irrelevant to us. The fact that the axioms are 

consistent could be taken to be established by our evolved faculty. 

But the majority of mathematicians, even of platonist mathematicians, would be 

unwilling to consider Gödel’s contributions as irrelevant, and the consistency of 

axioms establishable by merely relying on an evolved sort of intuition. Precisely 

because they do believe the axiomatic method to be the method of mathematics, 

they tend to confer a higher degree of certainty to Gödel’s results, which have been 

established according to such method, than to the intuitions of an evolved faculty, 

the reliability of which cannot be proved by the same method. Indeed, in a 

naturalist framework, our evolved intuitions may be shown to be reliable only 

through some inductive method, which is peculiar of natural science. If we concede 

that the method of mathematics is distinct from the method of natural science, as 

the traditional view holds, and that the method of mathematics is the axiomatic 

method, then we will be unable to sufficiently justify the belief that our evolved 

intuition is reliable up to a degree which is comparable with the confidence that the 

axiomatic method is supposed to confer to mathematical results. Thus, even if our 

evolved intuition were in fact reliable and infallible, we would be unable to 

demonstrate its infallibility with the same degree of certainty with which Gödel’s 

results can be proven, given that they are mathematical results.  

If, on the other hand, we take T not to be part of our mathematical knowledge, 

and protest that T is not really a ‘mathematical result’, we will nevertheless find 
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ourselves in an uncomfortable position: we should maintain that we possess some 

knowledge about some mathematical issue which is not part of our mathematical 

knowledge. It is not easy to accommodate this claim by the usual epistemological 

standards. Since knowledge requires (at least) truth and justification, if we take T to 

be knowledge, T is true and justified. If T expresses something true about some 

mathematical issue, then we can affirm that T expresses a mathematical truth. But 

if we refuse to consider T as a part of our mathematical knowledge, and we are not 

able to express the same mathematical truth that T expresses by the means of what 

we take to constitute our current mathematical knowledge, then T would be able to 

express a mathematical truth that our mathematical knowledge would be unable to 

express. 

It may be objected that T expresses a mathematical truth that cannot be 

expressed on the basis of our mathematical knowledge, because the justification 

requirement that a true belief needs to fulfill in order to become mathematical 

knowledge is stricter than the justification requirement that has to be fulfilled in 

other domains. Let’s concede, for argument’s sake at least, such claim on the 

justification requirement for mathematics.10 If this is the case, T could well be able 

to express a truth about some mathematical issue, but this truth may nevertheless 

be insufficiently justified in order to become part of our mathematical knowledge. 

And this would explain the fact that T is able to express a truth on a mathematical 

issue, and that this truth does not figure among our known mathematical truths. But 

this would amount saying that our mathematical knowledge is a kind of knowledge 

with a higher degree of certainty than T, since the true beliefs that constitute our 

mathematical knowledge are supposed to display a higher degree of justification.  

But if we try to naturalize mathematics in the way here we are dealing with, 

things should go the other way round. Since T, in order to be able to justify the 

traditional view of mathematics has to be certain, T has to be knowledge with the 

highest degree of certainty. Thus, the degree of certainty that our mathematical 

knowledge may display is in some sense subordinated to T, since its certainty is 

dependent on the certainty of T. Mathematical knowledge would be in this way a 

kind of knowledge with a less high degree of certainty than T. Thus, it cannot be 

the case that the mathematical truth expressed by T is not an instance of 

mathematical knowledge because it is insufficiently justified. So, this objection is 

inadequate.  

Since in both cases, i.e. either we take T to be part of mathematical knowledge 

or not, we end with implausible scenarios, the supporters of the traditional view 

seem unable to really find an adequate way of naturalistically justifying the claim 

that mathematics is the paradigm of certain knowledge.  

 

 

4. The Analytic Method 

 

We will now present the analytic view of method in some detail and try to 

underline the reasons why it may be of use to those interested in the attempt of 

naturalizing mathematics. There are three main claims that characterize the analytic 

                                                 
10 Cf. e.g. Kitcher 1988, 297: “The obvious way to distinguish mathematical knowledge 

from mere true belief is to suggest that a person only knows a mathematical statement 

when that person has evidence for the truth of the statement—typically, though not 

invariably, what mathematicians count as a proof.” 
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view of method: 1) the method of mathematics is the analytic method, and not the 

axiomatic method; 2) the concept of truth proved to be inadequate to account for 

the method of mathematics, natural sciences, and philosophy, and thus has to be 

replaced with the concept of ‘plausibility’; 3) since mathematics, natural sciences, 

and philosophy all aim at acquiring new knowledge, they all share the very same 

method, i.e. the analytic method, which is the method through which knowledge 

can be ampliated.  

Let’s start with 1), the claim that the analytic method is the method of 

mathematics. The analytic method may be defined as the method according to 

which: 

 
to solve a problem, one looks for some hypothesis that is a sufficient 

condition for solving it. The hypothesis is obtained from the problem, and 

possibly other data already available, by some non-deductive rule, and must 

be plausible […]. But the hypothesis is in its turn a problem that must be 

solved, and is solved in the same way [...]. And so on, ad infinitum. Thus 

solving a problem is a potentially infinite process (Cellucci 2013, 55). 

 

The origin of the analytic method may be traced back to the works of the 

mathematician Hippocrates of Chios and the physician Hippocrates of Cos, and 

was firstly explicitly formulated by Plato in Meno, Phaedo and the Republic. As an 

example of the analytic method, consider the solution to the problem of the 

quadrature of certain lunules provided by Hippocrates of Chios: 

 
Show that, if PQR is a right isosceles triangle and PRQ, PTR are semicircles 

on PQ, PR, respectively, then the lunule PTRU is equal to the right isosceles 

triangle PRS. 

 

 
 

To solve this problem, Hippocrates of Chios states the following hypothesis: 

 

(B) Circles are as the squares on their diameters. 

 

Hypothesis (B) is a sufficient condition for solving the problem. For, by the 

Pythagorean theorem, the square on PQ is twice the square on PR. Then, by 

(B), the semicircle on PQ, that is, PRQ, is twice the semicircle on PR, that is, 

PTR, and hence the quarter of circle PRS is equal to the semicircle PTR. 

Subtracting the same circular segment, PUR, from both the quarter of circle 

PRS and the semicircle PTR, we obtain the lunule PTRU and the triangle 

PRS, respectively. Therefore, “the lunule” PTRU “is equal to the triangle.” 

[Simplicius, In Aristotelis Physicorum libros Commentaria, A 2, 61]. This 

solves the problem. But hypothesis (B) is in its turn a problem that must be 

solved. (Cellucci 2013, 61). 
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And in fact, this new problem was solved, presumably by Eudoxus, proposing 

the following hypothesis: (B') Similar regular polygons inscribed in circles are as 

the squares on their diameters. Hypothesis (B') is a sufficient condition for solving 

the problem, i.e. hypothesis (B), but hypothesis (B') is in its turn a problem that 

must be solved. And so on, ad infinitum.  

The analytic method is the method that from antiquity has been used to advance 

mathematical knowledge, to acquire new knowledge. On the contrary, the 

axiomatic method has been developed, and was probably already used by 

mathematicians at Plato’s time, mainly as a didactic tool, in order to teach already 

acquired knowledge: 

 
Aristotle states that, in order to present, justify, and teach an already acquired 

proposition, we must start from the principles proper to the subject matter of 

the proposition, and deduce the proposition from them, since “didactic 

arguments are those that deduce” propositions “from the principles proper to 

each subject matter” (Aristotle, De Sophisticis Elenchis, 2, 165 b 1-2). 

(Cellucci forthcoming, sec. 12.9). 

 

According to Aristotle, who firstly explicitly formulated the axiomatic method 

in Posterior Analytics, the “mathematical sciences are learned in this way, and so is 

each of the other arts” (Aristotle, Analytica Posteriora, A 1, 71 a 3-4). The merely 

didactic nature of the axiomatic method clearly emerges from the fact that Aristotle 

distinguishes between the analytic-synthetic method, which according to him is the 

method of research, and the axiomatic method, which is the method to present 

results already acquired.  

In the last century, the dominance of a foundationalist perspective on scientific 

and mathematical knowledge, the influence of Hilbert’s thought, and the diffusion 

of the idea that a logic of discovery cannot exist, led to the widespread conviction 

that the method of mathematics and science is (or should be) the axiomatic 

method,11 according to which, to demonstrate a statement, one starts from some 

given premises, which are supposed to be true, and deduces the statement from 

them. Analysis has been overlooked or neglected (Schickore 2014; Cellucci 2013). 

For example, the hypothetico-deductive model of science, which is still 

dominant although it has been severely criticized,12 is based on the axiomatic 

method. According to the hypothetico-deductive view of science, building “a 

scientific theory is a matter of choosing certain hypotheses, deducing consequences 

from them, and comparing consequences with the observation data” (Cellucci 

forthcoming, sec. 13.5). In this perspective, the process of knowledge ampliation is 

accounted for in terms of deductive reasoning. The problem is that the 

“propositions deduced from the hypotheses contain nothing essentially new with 

respect to the hypotheses,” because deduction is non-ampliative, “it simply makes 

explicit what is implicitly contained in the hypotheses” (Ibidem, sec. 13.6).13  

                                                 
11 For a historical survey of the main conceptions of scientific and mathematical method 

that have been put forward so far, see Cellucci (2016, 2013). On the analytic method, 

see also Hintikka, Remes (1974), and Lakatos (1978), vol. 2, chap. 5. On Plato’s 

formulation of the analytic method, see Menn (2002). For a historical survey of the 

axiomatic method, and the relevance of Hilbert’s view, see Rodin (2014), part I. 
12 See Schickore (2014) for a survey.  
13 The characterization of deduction as non-ampliative has been questioned, e.g., by Haack 

(1996). For a rejoinder, see Cellucci (2006).  
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Thus, the axiomatic method may illustrate how to derive a result from certain 

premises, but it does not explain how we got there. This is the reason why, 

according to the analytic view of method, the axiomatic method is inadequate to 

support a naturalist perspective on mathematics and science. Indeed, the axiomatic 

method does not account for the process of hypotheses production, and so it is not 

able to show the path that mathematicians and scientists follow to reach a result 

and solve a problem. Thus, the axiomatic method cannot improve our 

understanding of how we produce knowledge. From a naturalist perspective, it is 

unsatisfying that the alleged method of mathematics is unable to say anything 

relevant on how mathematical knowledge is acquired. If knowledge ampliation 

remains a mystery, naturalists cannot adequately counter those anti-naturalists who 

maintain that it is necessary to take into consideration some non-natural element in 

order to explain our ability to produce mathematical knowledge. 

On the contrary, in the analytic view the path that has been followed to reach a 

result and solve a problem is not occulted, since in this view the context of 

discovery is not divorced from the context of justification. Indeed, an analytic 

demonstration consists in a non-deductive derivation of a hypothesis from a 

problem and possibly other data, where the hypothesis is a sufficient condition for 

the solution of the problem, and is plausible (Ibidem, chap. 21). 

It is important to underline that the analytic method involves both deductive and 

non-deductive reasoning. Indeed, to find a hypothesis we proceed from the 

problem in an ampliative (i.e. non-deductive) way performing ampliative 

inferences, and then in order to assess the plausibility of such hypothesis we 

deduce conclusions from it. But the role that deduction plays in the analytic view is 

not the crucial role that deduction is supposed to play in the ‘received view’, i.e. 

the axiomatic method, which can be considered as a variant of the analytic-

synthetic method. According to the analytic view, axioms are not the source of 

mathematical knowledge, and we shouldn’t overestimate their role, which is 

limited to giving us the possibility of presenting, for didactic or rhetorical 

purposes,14 some body of already acquired knowledge in deductive form. Axioms 

do not enjoy any temporal or conceptual priority in the development of 

mathematical knowledge, nor they play any special epistemological role. As 

Hamming states, if “the Pythagorean theorem were found to not follow from 

postulates, we would again search for a way to alter the postulates until it was true. 

Euclid’s postulates came from the Pythagorean theorem, not the other way” 

(Hamming 1980, 87).  

In order to avoid misunderstanding, it has to be underlined that the analytic 

method has not to be confused with the analytic-synthetic method. Indeed, it may 

be objected that when we stop, since it seems that we have to, the place where we 

stop can be regarded as an ‘axiom’, and so we are back in the axiomatic method. 

But it is not so. This objection derives precisely from confusing the analytic 

method with the analytic-synthetic method. According to the analytic-synthetic 

method, as stated by Aristotle, the search for a solution to a problem is a finite 

process, “so the ascending sequence of the premises must terminate,” and once the 

                                                 
14 Cf. Cellucci forthcoming, sec. 22.7: “the purpose of axiomatic demonstration is to 

justify and teach an already acquired proposition. This serves to convince the audience 

– readers of research papers or textbooks, conference audiences or students in the 

classroom – that the proposition should be accepted. Therefore, several people have 

asserted that axiomatic demonstration has a rhetorical role.” 
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prime premises have been found, “the only role which remains for analysis is to 

find deductions of given conclusions from prime premises,” therefore the analytic-

synthetic method “is primarily a method [...] for finding demonstrations in given 

axiomatic systems” (Cellucci 2013, 75). In this view, once the process of discovery 

ends, there is no more a relevant role for the analytic method. 

On the contrary, according to the analytic method, the process of discovery is a 

potentially infinite process. So, since the process of discovery never really ends, 

there is no relevant role for the axiomatic method in this view. Indeed, even if we 

provisionally stop, we know that we will have to go further in order solve the 

problem of justifying the hypothesis where we stopped.15 

 

 

4.1. Plausibility in Place of Truth 

 

Let’s examine the second qualifying claim of the analytic view, which states that 

we should replace the concept of truth with the concept of ‘plausibility’ (see above, 

sec. 4). The (‘Kantian’) reasons for adopting plausibility in place of truth in order 

to account for human knowledge, may be briefly summarized as follows: since the 

main definitions of truth that have been proposed so far proved unable to give us a 

workable criterion of truth, i.e. a nonalgorithmic means to decide whether a given 

statement is true, they cannot avoid the sceptical argument of the criterion (see 

Cellucci 2014a).16 In other words, if we maintain that knowledge requires truth, 

and adopt one of the traditional definitions of truth, since our conception of truth 

cannot face the sceptical challenge of the criterion, we would never be able to 

assess whether we really reached some truth, and so whether our knowledge is 

genuine knowledge. So, if knowledge requires truth, knowledge is epistemically 

unattainable by humans. But if knowledge is epistemically unattainable, we will 

never be able to account for our having knowledge, let alone to account for our 

having knowledge naturalistically. Since truth is such an unrealistic aim for our 

human epistemic activities, we should instead take plausibility to be the central 

concept of epistemology:17 

                                                 
15 It may be objected that, if solving a problem is a potentially infinite process, we could 

be unable to assess whether we were really able to solve a given problem or not. This 

objection seems to rest on the idea that a genuine solution to a given problem has to be a 

definite solution, i.e. a solution that will never be altered, or overcome by a better 

solution. In this view, once a problem is solved, we should not keep trying to solve it. 

But there is no compelling reason why a solution to a problem should not be thought to 

be a genuine solution, unless it can be proved that it is a definite solution. Think to 

mathematics. In mathematics, solutions are routinely searched also for those problems 

for which a solution has already been found. And solutions that once were regarded as 

adequate, have often successively been regarded as inadequate. As Poincaré states, in 

mathematics there are not “solved problems and others which are not; there are only 

problems more or less solved,” where “it often happens however that an imperfect 

solution guides us toward a better one” (Poincaré 2015, 377-378). 
16 The problem of the criterion of truth is the ancient sceptical paradox of the wheel: “in 

order to know any proposition we must first know a criterion, but in order to know a 

criterion we must already know some proposition” (Cling 1997, 109). For a survey, see 

Amico (1993). 
17 This argument can be called ‘Kantian’, since it is analogous to the ‘Kantian’ argument 

against metaphysical realism. David summarizes this argument as follows: “We cannot 
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the goal of science is plausibility. Scientific theories do not deal with the 

essence of natural substances, but only with some of their phenomenal 

properties, and deal with them on the basis of plausible hypotheses. Then a 

scientific theory is not a set of truths but rather a set of plausible hypotheses. 

Thus the goal of science is plausibility rather than truth (Cellucci 2013, 154). 

 

But how should we conceive of plausibility? The plausibility of a hypothesis is 

assessed by a careful examination of the arguments for and against it. According to 

Cellucci, in order to judge over the plausibility of a hypothesis, the following 

‘plausibility test procedure’ has to be performed: 

 
(1)  Deduce conclusions from the hypothesis. 

 

(2)  Compare the conclusions with each other, in order to see that the 

hypothesis does not lead to contradictions. 

 

(3)  Compare the conclusions with other hypotheses already known to be 

plausible, and with results of observations or experiments, in order to 

see that the arguments for the hypothesis are stronger than those 

against it on the basis of experience (Ibidem, 56). 

  

If a hypothesis passes the plausibility test procedure, it can be temporarily 

accepted. If, on the contrary, a hypothesis does not pass the plausibility test, it is 

put on a ‘waiting list’, since new data may emerge, and a discarded hypothesis may 

successively be re-evaluated.  

Thus, according to the analytic view of method, what in ultimate analysis we 

really do, and are able to do, in the process of knowledge ampliation, is non-

deductively producing hypotheses, assessing the arguments for and the arguments 

against each hypothesis, and provisionally accept or refuse such hypotheses.18 

 

 

4.2. The Analytic Method and The Biological Role of Knowledge 

 

                                                                                                                            
step outside our own minds to compare our thoughts with mind-independent reality. 

Yet, on the realist correspondence view of truth, this is what we would have to do to 

gain knowledge of the world. We would have to access reality as it is in itself, to 

determine whether our thoughts correspond to it. Since all our access to the world is 

mediated by our cognition, this is impossible. Hence, on realism, knowledge of the 

world would be impossible. Since knowledge of the world is possible, realism must be 

wrong” (David 2016, 173).  
18 This conception of ‘plausible hypotheses’ is similar, but not identical, to Aristotle’s 

definition of endoxa. Cf. Cellucci forthcoming, sec. 9.5: “endoxa are things which seem 

acceptable to everyone, or to the great majority, or to the wise, etc., on the basis of an 

examination of the arguments for and against them, from which the former turn out to 

be stronger than the latter. [...]. However, that plausibility is to a certain extent related to 

Aristotle’s endoxa does not mean that plausibility and endoxa are identical. For 

Aristotle, endoxa are continuous with truth. Indeed, he states that ‘an ability to aim at 

endoxa is a characteristic of one who also has a similar ability in regard to the truth’. 

(Aristotle, Rhetorica, 1355 a 17–18). Conversely, plausibility [...] is an alternative to 

truth. Therefore, plausibility and endoxa are not identical.” 
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To better understand the third qualifying claim of the analytic view listed above 

(sec. 4), according to which mathematics, natural sciences, and philosophy share 

the same method, i.e. the analytic method, we have to focus on the biological role 

of knowledge. In this view, the main consequence of considering the biological 

role of knowledge is that knowledge cannot be related to the concept of truth.19 

Indeed, if knowledge is related to our biological make-up, and the latter is related 

to evolution, then in order to account for what knowledge is, it is better to abandon 

the concept of truth for at least three reasons, which can be briefly described as 

follows: 1) evolution is not an aimed-at-truth process, or, at least, the claim that 

natural selection leads to truth is so debated and controversial that it cannot 

represent a firm ground on which one can develop a satisfying account of 

knowledge;20 2) if knowledge is something that biological entities produce in order 

to deal with their environment, then it cannot be independent from the subject’s 

biological make-up. Thus, if truth has to be intended, as many realists say, as a 

non-epistemic concept, i.e. as unrelated to the subject who knows, then human 

knowledge cannot be related to truth;21 3) if knowledge is related to truth, and truth 

is not attainable by humans, because its epistemic standard is so elevated that 

cannot be met by humans, then knowledge would be impossible. Since knowledge 

is not only possible, but it is necessary for the survival, knowledge cannot be 

related to truth (Cellucci 2013). For those reasons, the analytic view considers 

‘truth’ an unuseful concept in order to naturalistically account for knowledge, i.e. 

to see knowledge as a human activity that is made possible by our evolved abilities 

and which is indispensable for the survival.  

A brief clarification is in order. Since the reference to the concept of truth is 

usually seen as a characterizing feature of realism, someone may deem the analytic 

view an ‘antirealist’ position. Obviously, it is undeniable that the analytic view 

gives up any reference to the notion of ‘truth’. But the analytic view must not be 

confused with other views, which can be regarded, broadly speaking, as 

‘antirealists’. For instance, the analytic view has not to be confused with idealism. 

Indeed, the analytic view does not deny the existence, nor the independence of the 

external reality. It is not a form of metaphysical antirealism. Nor should the 

analytic view be confused with scepticism. Indeed, the analytic view does not deny 

the possibility of knowledge. It claims that knowledge is possible and that we do 

have knowledge, but it denies that knowledge needs to be true, simply because it 

denies that the concept of truth is necessary to define knowledge. 

Turning to the issue at stake, as already noted, the analytic view considers 

knowledge to be necessary for the survival. Now, since “in order to survive, all 

organisms must acquire knowledge about the environment,” this means that 

“knowledge is a natural phenomenon that occurs in all organisms” (Cellucci 2013, 

250). Since knowledge is necessary for the survival, and the analytic view sees 

knowledge as the result of solving problems by the analytic method, this means 

that knowledge is essentially a problem-solving process that is homogeneous 

throughout the biological realm. 

                                                 
19 This is one of the main differences between the analytic view and the attempts aimed at 

naturalizing knowledge made by Kornblith (2002) and Plotkin (1997), since both 

Kornblith and Plotkin maintain that knowledge is related to truth. 
20 On the difficulty of supporting the claim that evolution leads to truth, see Sage (2004). 
21 Cf. Sankey 2008, 112: “The realist conception of truth is a non-epistemic conception of 

truth, which enforces a sharp divide between truth and rational justification.” 
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Moving along this line, the analytic view supports the naturalist claim that 

mathematics, philosophy and science are continuous. Indeed, mathematics, 

philosophy and science are human attempts to acquire knowledge, knowledge is 

essentially problem solving, and problems are solved throughout the biological 

realm by the analytic method. So, mathematics, philosophy and science are 

continuous because their method is the very same method.22 Moreover, in this 

perspective, mathematics, philosophy and science may be accounted for in 

naturalistic terms, because they solve human problems in the same way in which 

problems are solved in the rest of the biological realm, i.e. through the analytic 

method. 

 

 

4.3. The Analytic Method and Fallibilism 

 

As we have seen, the analytic view of method takes knowledge acquisition to be a 

potentially infinite process, and knowledge to be always hypothetical and 

provisional: 

 
Solving problems by the analytic method, when successful, produces 

knowledge, though knowledge that, being based on hypotheses that are only 

plausible, is not absolutely certain. [...] there is a strict connection between 

knowledge and the analytic method: knowledge arises from solving problems 

by the analytic method. (Cellucci 2015, 224-225). 

 

Since the analytic method is the method of mathematics, this means that 

according to this view, mathematical knowledge cannot be said to be certain. And 

that the only mathematical knowledge we can have is knowledge which is 

plausible. This view may certainly appear prima facie extremely revisionary with 

respect to traditional epistemology and philosophy of mathematics. But it 

nevertheless displays some vantages, the most important of which is that it is 

compatible with both our current mathematical and scientific knowledge.  

Indeed, the claim that mathematical knowledge is plausible is compatible with 

Gödel’s results. A proposition cannot be more justified than the axioms from which 

it is deduced, and, by Gödel’s second incompleteness theorem, no absolutely 

reliable justification for the axioms is generally possible. Thus, if we claim that our 

mathematical knowledge is certain, while the axioms from which this mathematical 

knowledge is derived cannot be justified up to certainty, this claim would be 

incompatible with an established mathematical result. While, if we claim, 

following the analytic view, that our mathematical knowledge is plausible, this 

claim is not in contrast with any established mathematical result, since axioms as 

well as the propositions that we deduce from them may safely be deemed to be 

plausible.  

Moreover, that mathematical knowledge is plausible is also compatible with our 

current scientific knowledge, according to which there is no evidence that we 

humans possess such a special cognitive faculty as the ‘intuition’ that we should 

assume to possess in order to guarantee that the axioms from which we derive our 

mathematical knowledge are true. Thus, if we claim that mathematical knowledge 

is certain, and there is no mathematical way to justify up to certainty the axioms 

                                                 
22 On the difference between science and philosophy, see Cellucci (2014b). On the method 

of science and the ‘models of science’, see also Cellucci (2016). 
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from which we derive our mathematical theories, then we have to subscribe to the 

view according to which we can say that our axioms are true because our 

‘intuition’ is in some way able to know that they are true with certainty. Now, there 

are no cues that such ‘intuition’ may exist, nor any scientifically plausible account 

of how exactly it may work has been provided, nor any plausible account of how it 

could have evolved has been provided. On the opposite, cognitive science and 

evolutionary biology give us good reasons to think that such a faculty does not 

exist, and that perhaps it cannot even exist. So, if we claim that mathematical 

knowledge is certain, this claim is incompatible with our current scientific 

knowledge. While, if we claim, following the analytic view, that our mathematical 

knowledge is plausible, this claim is not incompatible with our current scientific 

knowledge, since in order to claim for the plausibility of our mathematical 

knowledge there is no need to postulate the existence of any extravagant faculty. 

From what we have seen, it is clear that the analytic view may be deemed, 

broadly speaking, a fallibilist epistemological approach. Therefore, it may be worth 

briefly stressing some of the differences that exist between the analytic view and 

other fallibilist perspectives, namely ‘Popperian’ and ‘Lakatosian’ approaches, 

which certainly have been very influential in the development of the analytic view. 

First of all, the analytic view shares with Popper the idea that knowledge is 

essentially problem solving, but, unlike Popper, it does not separate the context of 

discovery from that of justification, nor it denies the relevance of the context of 

discovery. And being especially focused on the context of discovery makes the 

analytic view well suited to figure as a component of a naturalist account of the 

process of knowledge ampliation, because it does not make of this crucial aspect of 

knowledge acquisition a mystery.23 

Secondly, according to the analytic view, in order to solve problems, 

hypotheses are produced by non-deductive inferences, so logic is essentially a logic 

of discovery. Thus, in this perspective, contrary to Popper’s view, logic has not to 

be intended as a merely deductive enterprise, and the non-deductive ampliative 

rules are considered to be legitimate parts of logic as well as the deductive and 

non-ampliative ones.24 Indeed, the analytic method “is a logical method” and from 

the fact that “knowledge is the result of solving problems by the analytic method, it 

follows that logic provides means to acquire knowledge” (Cellucci 2013, 284).  

It is worth noticing that claiming that the analytic method is a logic of discovery 

does not mean to deny the relevance of unconscious processes in scientific 

discovery. Indeed, “in the analytic method, some non-deductive inferences by 

which hypotheses are obtained may be unconscious” (Ibidem, 235). So, according 

to the analytic view, unconsciously formulated hypotheses should not be 

considered irrational. Moreover, the analytic view denies that a logic of discovery 

cannot exist because the processes involved in the discovery are purely subjective 

and psychological. Indeed, in this view, the non-deductive rules by which the 

                                                 
23 Cf. e.g. Lakatos 1978, vol. 1, 140: “for Popper the logic of discovery [...] consists 

merely of a set of [...] rules for the appraisal of ready articulated theories.” 
24 On the fact that, since there is no non-circular justification of the validity of deductive 

inferences rules, nor there is an adequate justification of the acceptability of circular 

justifications, non-deductive rules and deductive rules are on a par with respect to the 

issue of the justification of their validity, see Cellucci (2006). See also Haack (1976), 

and Carroll (1895). 
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analytic method “is implemented [...] are as objective as the deductive rules of a 

logic of justification” (Ibidem, 289). 

Coming to ‘Lakatosian’ approaches, although these approaches and the analytic 

view both stress the role of heuristic in the ampliation of knowledge and strongly 

criticize the axiomatic view,25 they are distinct positions. The main difference 

between those positions can probably be identified by analyzing their views on the 

issue of truth: while Lakatos maintains that the aim of science is truth, and truth is 

correspondence,26 the analytic view replaces truth with plausibility for the reasons 

outlined above.27 

 

 

4.4. The Analytic Method and Infinitism 

 

The analytic view aims at avoiding both a) scepticism, since, as we have already 

stressed above, it takes knowledge not only to be possible, but even necessary to 

the survival, and b) foundationalism, given that it takes knowledge to be a 

potentially infinite process. To better clarify this point, it may be useful to point out 

some of the differences between the analytic view and infinitism, an 

epistemological position that is usually credited by its supporters to be similarly 

able to avoid both scepticism and foundationalism (Turri, Klein 2014). 

The analytic view and infinitism agree that the fact that knowledge acquisition 

may be a potential infinite process does not prevent us to consider genuine 

knowledge the portion of knowledge we reached so far. Nevertheless, they are 

distinct positions. Infinitism usually retains the relation between the concept of 

knowledge and the concept of truth, and thus have to face several difficulties. For 

example, Cling (2004) underlines that if knowledge has to be related to truth, it is 

not sufficient to consider infinite patterns of reasons as acceptable in order to claim 

that we have knowledge, we should also be able to distinguish those infinite 

patterns that allow us to reach the truth from those which don’t. But to do that, we 

should be able to identify some properties which characterize true reasons. This 

would amount to already have a criterion of truth, and would undermine the 

infinitist attempt to avoid the challenge of the criterion of truth exactly by allowing 

the infinite regress of reasons. Thus, infinitism per se seems unable to solve the 

sceptical problem of the criterion and the related problem of the infinite regress. 

On the contrary, the analytic view can safely maintain that knowledge 

acquisition is a potentially infinite process and that the portion of knowledge we 

have produced so far is genuine knowledge, since the analytic view conceives of 

knowledge as plausible and provisional: 

 
if the series of the premisses is infinite, there will be no immediately justified 

premisses, so no knowledge will be definitive. But this does not mean that 

there will be no knowledge. There would be no knowledge only if the 

premisses, or hypotheses, occurring in the infinite series were arbitrary. But 

                                                 
25 Lakatos is considered to be the initiator of the ‘maverick’ tradition in the philosophy of 

mathematics (Kitcher, Aspray 1988, 17). Relying on the work of Pólya, he strongly 

criticized the occultation of the heuristic elements that proved crucial in developing 

mathematics. See Lakatos (1976). 
26 See Lakatos (1978). 
27 There are several other differences between Lakatos’ and Cellucci’s view of heuristic 

which cannot be discussed here for reason of space. See Cellucci (forthcoming, 2013). 
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they need not be arbitrary [...] they must be plausible, namely the arguments 

for them must be stronger than the arguments against them, on the basis of 

the existing knowledge. If the hypotheses are plausible, then there will be 

knowledge, albeit provisional knowledge [...] since new data may always 

emerge. (Cellucci forthcoming, sec. 3.2). 

 

It is worth underlining here that ‘plausibility’ has not to be confused with 

‘probability’. Indeed, as Kant points out, “plausibility is concerned with whether, 

in the cognition, there are more grounds for the thing than against it” (Kant 1992, 

331), while probability measures the relation between the winning cases and 

possible cases. Plausibility involves a comparison between the arguments for and 

the arguments against, so it is not a mathematical concept. Conversely, probability 

is a mathematical concept. 

 

 

5. Conclusion 

 

This article tried to suggest that, since it seems that the traditional view of 

mathematics cannot be naturalized, if we wish to maintain a naturalist stance, a 

promising way to account for mathematics and mathematical knowledge may be to 

take the method of mathematics to be the analytic method.  

It has been argued that it is impossible to naturalize mathematics without 

challenging at least some crucial aspects of the traditional view. Nor it seems 

possible to keep maintaining that the method of mathematics is the axiomatic 

method and mathematical knowledge is certain, if we dismiss that view.  

The analytic view has been illustrated in some detail. To make the proposal of 

taking the method of mathematics, natural science, and philosophy to be the 

analytic method more intelligible, the differences between the analytic view and 

some related epistemological positions have been pointed out.  

Certainly, the analytic view comes with a cost: it forces us to rethink the 

‘traditional image’ of mathematics. Indeed, if we take the method of mathematics 

to be the analytic method, mathematical knowledge cannot be said to be certain, 

and the only kind of mathematical knowledge that we can have is knowledge 

which is plausible. But also the alternative option of maintaining the traditional 

view comes with a cost for the naturalist: she is unable to scientifically account for 

mathematics, while she maintains the primacy of a thorough mathematized science 

in her world view. We think that the analytic view may represent a promising route 

to take for the naturalist, and we tried to show that it is worth of further 

investigations. 
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