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Abstract

This paper formulates some paradoxes of inductive knowledge. Two
responses in particular are explored: According to the first sort of theory,
one is able to know in advance that certain observations will not be made
unless a law exists. According to the other, this sort of knowledge is not
available until after the observations have been made. Certain natural as-
sumptions, such as the idea that the observations are just as informative
as each other, the idea that they are independent, and that they increase
your knowledge monotonically (among others) are given precise formula-
tions. Some surprising consequences of these assumptions are drawn, and
their ramifications for the two theories examined. Finally, a simple model
of inductive knowledge is offered, and independently derived from other
principles concerning the interaction of knowledge and counterfactuals.

Philosophers have long been interested in the probabilistic structure of in-
ductive inference — how the discovery that a great number of F s are Gs can
make it rational to be confident that all F s are Gs. But there is another as-
pect of inductive inference that is not so often discussed — namely, that after
making enough such discoveries we are eventually in a position to know that all
F s are Gs.1 For I take it that we know that all emeralds are green (say) and,
moreover, that this fact was first discovered on the basis of a sufficient number
of observations of green (and only green) emeralds. Although the probabilistic
and epistemic inferences are related, a theory of one sort of inference does not
obviously provide a theory of the other.

One difference is that Bayesians typically assume that whether it is rational
to be confident that all emeralds are green on the basis of your observations
does not depend on whether it is in fact a law that emeralds are green. Whether

∗Many thanks to John Hawthorne for some very helpful feedback on an earlier draft of this
paper. I would also like to thank Jeremy Goodman, an anonymous referee for this journal
and an audience at Princeton at which a version of this paper was presented.

1Here and throughout I shall use the expression ‘S is in a position to know that P ’ to
mean, roughly, that there is a way for S to form a belief that P (for the right sorts of reasons,
etc.) that would constitute knowledge. Beyond this gloss, I will not attempt to give any sort
of further analysis of this notion.
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you are in a position to know, on the other hand, presumably does depend on
whether it’s a law.2 Consider the following case:

All Green by Fluke: It is a law that emeralds are either blue or green,
but the distribution of colors is otherwise determined randomly. By chance
it happens that all the emeralds in the actual world are green.

Even if all the emeralds are green, and I observe 100 green emeralds in a row, I
take it that I am not in a position to infer that the next emerald will be green.
In All Green by Fluke (henceforth, simply Fluke) it could easily have been
the case that the next emerald is blue, and so a belief that the next emerald is
green, although true, is not safe.3

Here’s a natural (albeit somewhat idealized) model of Fluke inspired by
safety accounts of knowledge: epistemic possibilities are identified with assign-
ments of colours to emeralds, and an epistemic possibility w is consistent with
my knowledge if at most n different emeralds in that possibility have colours
that differ from their actual colours (n is a fixed number, which we shall call
the margin of error).4 After observing the first 100 emeralds to be green, and
ruling out sequences that don’t begin with 100 green emeralds, there are still
worlds that are open where some of the remaining emeralds — up to n of them
— are blue. This sort of model correctly predicts that I am not in a position to
know that all emeralds are green after learning that the first 100 are green.

Here is a second sort of case which, I take it, is more conducive to inductive
knowledge:

All Green by Law: It is a law that all emeralds are green.

Let us suppose that at the beginning of investigation both the hypothesis that
emeralds have colors randomly and the hypothesis that they’re all green by
law (henceforth, Law) are open possibilities. In particular, at the start of the
investigation it’s true, for all you know, that some of the emeralds are blue. 5

If knowledge by induction is ever possible it seems like it should be possible
in this case: there is some critical N such that after observing that the first

2Of course, if your evidence just is your knowledge (as in Williamson (2000)), and rational
confidence is guided by the degree to which it is supported by the evidence, then there is less
distance between the questions. In that case, the question concerning how we get to acquire
inductive knowledge/evidence is even more urgent.

3In what follows I assume that there’s a difference between a world where all emeralds in
the world are green by law and a world where they’re all green by fluke. This contradicts a
crude version of Humeanism about laws in which the law that all the emeralds are green, if
it is a law, holds purely in virtue of the fact that all emeralds are green. However nothing in
this paper essentially turns on this rejection of Humeanism: instead of considering the world
in which all emeralds are green by fluke — a world the crude Humean rejects — we can ,
for most purposes, just focus on worlds in which the first 100 emeralds are green by fluke, of
which the Humean in question accepts many.

4I defend this model of these sorts of cases in Bacon (2014).
5One epistemic possibility in which there are blue emeralds is one in which it’s a law that

all emeralds are blue. But if the only possibilities were ones in which it was a law either
way, we would be able to conclude the colors of all the emeralds from the color of the first
observed emerald. Thus a plausible model of our ignorance about inductive knowledge had
better include some worlds where the emeralds have different colors.
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N emeralds are green, we can knowledgeably conclude that all emeralds are
green. Because it’s a law that all emeralds are green, our true belief that all the
emeralds are green appears to be safe in the relevant respects. In worlds where
Law is true there is some N such that:6

Inductive Knowledge After observing emeralds e1...eN to be green we are in
a position to know that it is a law that all emeralds are green.

In what follows we will be concerned with trying to explain Inductive Knowledge.
The possibility of inductive knowledge, however, is undermined by a certain

sort of skeptical argument. The argument rests on two popular ideas. The first
is an intuition about ‘lottery-esque’ scenarios like Fluke: if the emeralds colors
are distributed at random, then prior to observation I’m not in a position to
know that any particular sequence of colors won’t be observed. In particular,
I’m not in a position to know that the emeralds won’t all be green by fluke.
This intuition is clearly of a piece with the popular idea that we can’t know
that a particular ticket will not win a fair lottery, even when the number of
tickets is very large. If this thought is good in Fluke, it seems it is also good in
a situation where you don’t know whether the emeralds’ colours are distributed
at random, or according to a law: if, for all you know, the colors are distributed
at random, then it seems we’re not in a position to know that any particular
random distribution won’t occur. Thus even if Law is in fact true, we should
maintain that:

Lottery Intuition Prior to making observations, I’m not in a position to know
that the emeralds won’t all be green by fluke.

The second ingredient for our skeptical puzzle follows from the following natural
idea: that if P is true for all you know, and is consistent with some evidence E,
then (ordinarily) P ought to be true for all you know after coming to learn E
and nothing else.7 In particular:

(*) If I’m not in a position to know that the emeralds won’t all be green by
fluke, I’m not in a position to know this after observing that emeralds
e1...eN are in fact green.

After all, the evidence that e1...eN are green is entirely consistent with the open
possibility that all emeralds are green by fluke. Indeed, (*) follows from a more
specific account of what we learn when we observe an emerald along with a
closure assumption. Since this principle will play a role in the rest of the paper
lets introduce it now:

6Of course, there are some who might be tempted to a sort of skepticism about inductive
knowledge. Indeed, some philosophers have raised skeptical challenges for our knowledge
about the future more generally, for non-deterministic worlds that are governed by chance
(see, for example, Hawthorne and Lasonen-Aarnio (2009)). The issue here is more pronounced,
however, since we are entertaining the idea that even when when something is in fact governed
by a law, the mere possibility of a non-lawlike world, such as an All Green by Fluke world,
is sufficient to undermine knowledge about the future from induction. Despite raising the
challenge, Hawthorne and Lasonen-Aarnio see skepticism about the future as a last resort.

7This general principle must be qualified: see section 3 for a more comprehensive discussion.
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What You See is What You Know When you observe an emerald, you get
to know that colour it is and nothing more. Your knowledge after observ-
ing the emerald is just whatever your knowledge was before observation,
plus the proposition that that emerald is green.

It is illustrative to see why (*) follows from this principle with closure. In sketch,
suppose I’m not in a position to know that the emeralds won’t all be green by
fluke. Given multipremise closure this means that the Fluke possibility is
compatible with the conjunction of what I’m in a position to know. By What
You See is What You Know and closure, after observing emeralds e1...eN , I’ll be
in a position to know the conjunction of my prior knowledge with the claim that
e1...eN are all green, which must also be compatible with the Fluke possibility.
(A less sketchy version of this argument appears in section 4.2.)

This gives rise to our first skeptical ‘paradox’:

Skeptical Puzzle 1 The Lottery Intuition and (*) are inconsistent with In-
ductive Knowledge.

Lottery Intuition is the antecedent of (*), so by modus ponens they entail that
I’m not in a position to know that all emeralds are green after observing e1...eN
to be green. Thus Lottery Intuition and (*) are inconsistent with Inductive
Knowledge, so, as a matter of logic, an anti-skeptic must deny one of these two
intuitions.

This effectively leaves us with two anti-skeptical options consistent with
closure.8 One is to reject the Lottery Intuition, and maintain that we are in
a position to rule out certain possibilities, like Fluke, prior to making any
observations. Another is reject (*): some observations confer more knowledge
than that the observed emerald is green.9 Let’s give these options names:

Prior Knowledge: Prior to observation you are in a position to know
that some sequences of colours don’t obtain if emeralds have colours at
random.

Bonus Knowledge: Some (possibly all) observations confer more knowl-
edge than the proposition that the observed emerald is green.

We will consider both sorts of theories in what follows, but it is important to
bear in mind that the dilemma between rejecting the Lottery Intuition and (*)
is forced on us once we have accepted the possibility of inductive knowledge.
The rest of the paper will be devoted to further issues pertaining to these two
responses to the paradox.

8Rejecting closure opens up other ways to respond to the paradoxes, but in this paper we
shall limit our discussion to views that accept closure.

9Note that anyone who keeps the Lottery Intuition and Inductive Knowledge must reject
(*), whether they accept closure or not. Thus all theories who accept the Lottery Intuition
must accept some version of the bonus knowledge theory below: prior to observation it’s true
for all you know that e1...eN are green by fluke, but after observing e1...eN to be green you
have the extra piece of knowledge that it wasn’t a fluke.
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In section 1 I impose some assumptions. In section 2, I outline two theories
concerning how inductive knowledge is possible, and show that any theory ac-
cepting Inductive Knowledge must conform, broadly speaking, to one of those
two sorts. In section 3 and 4, I outline some puzzles for both theories. In section
5, I highlight some inferences connecting counterfactuals and knowledge and in
section 6 apply them to some of these puzzles. In section 7, I leverage the rela-
tionship between counterfactuals and knowledge to explore a specific version of
the second sort of theory introduced in section 2.

Throughout this paper I will introduce various principles, like What You See
is What You Know, that have some plausibility in the particular cases at hand.
It would be wrong-headed, however, to read such principles as exceptionless
generalizations. The challenge is to explain how they could fail, if they indeed
fail, in these cases.

1 What is Inductive Knowledge?

Let me begin by emphasizing that not all cases of acquiring knowledge of laws
will count as inductive by my standards. At one extreme, I imagine some
knowledge of laws could in principle be made from observing a single instance
of a law. For example, if I had been told by a trustworthy person prior to
observing any emeralds that either it was a law that emeralds are blue or a law
that they’re green, I could know which by making a single observation. Indeed,
perhaps we are born with a natural sensitivity to what sorts of properties are
likely to be subject to laws. Perhaps I have innate knowledge that whether
animals lay eggs or give birth to live young is likely to be subject to a law one
way or the other. In that case, I might knowledgeably infer that it’s a law that
ducks lay eggs after observing only one duck lay an egg (since I then know which
law is in operation). The sorts of cases of inductive knowledge I am interested
in are cases where, prior to observation, I do not know whether there’s going
to be a law of some sort, or no law of that sort — in other words, cases where
knowledge from one case is not in general possible.10

I take it that these sorts of cases of inductive knowledge are pervasive, and
representative of the way that science usually proceeds. To illustrate the sort of
structure we are interested in, consider the following well-known example from
Mendelian genetics. Mendel investigated two types of pea plants, the F1 gener-
ation and the F2 generation pea plants11, and discovered that F1 generation pea
plants always had purple flowers, whereas the F2 generation pea plants either
had white flowers or purple flowers at random (with a ratio of 3 to 1 purple to
white on average).

10On these grounds, one may take exception to my choice of example: perhaps the colors of
precious stones are the sorts of things we are typically in a position to know will be subject to
laws. I entrust it to my reader to see how the remarks that follow can be applied to whatever
example of inductive knowledge they favor.

11F1 generation pea plants are obtained by interbreeding a (purebred) white flower pea
plant with a purple flower pea plant. F2 generation pea plants are obtained by self-fertilizing
a F1 generation pea plant
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On the one hand, it seems Mendel should have been in a position to know
that it was a law that the F1 generation plants are always purple flowered after
performing a sufficient number of experiments. On the other hand, it’s not
plausible that he was in a position to know, prior to investigation, that there
would be some color such that it was a law that the F1 generation plants would
that color, since it is not a law that the F2 generation plants are any particular
colors, and he had no way of knowing that the F1 generation wouldn’t be like the
F2 generation in that respect. Thus, prior to investigation there were at least
two sorts of possibilities open to Mendel: possibilities where it is a law that
the F1 generation plants are a certain colour (white or purple), and possibilities
where the F1 generation plants are white or purple flowered at random,12 and
that after observing enough purple flowered F1 generation plants he was in a
position to rule out the worlds where it was random.

In order to productively investigate the structure of inductive knowledge
we shall impose some simplifying assumptions. Firstly, we shall focus on spe-
cial cases of inductive knowledge having the structure of the example from
Mendelian genetics discussed above. Although we will tailor our discussion to
this particular sort of example, the case has an underlying structure that is
common to many instances of inductive knowledge. Thus there is also a reason-
able expectation that a detailed investigation of this idealized sort of case will
yield interesting conclusions about the structure of inductive knowledge more
generally.13

Secondly, we shall make some fairly strong idealizations about the logical
competence of the agents we shall consider. In the present context, these ideal-
izations are quite reasonable: we are, after all, interested in a form of empirical
knowledge acquisition and so it is natural to focus on the case where the agent
doesn’t lack any relevant a priori knowledge. We shall often also make the
assumption that knowledge is transmitted across single and multi-premise in-
ferences — an assumption that is contentious even when applied to logically
flawless agents.14 In the context of induction, probabilistic accounts of knowl-
edge naturally come to mind, according to which a proposition is known if it
is true and its epistemic probability exceeds some threshold. Such accounts
provide principled reasons for giving up multipremise closure, but are not nec-

12The latter possibilities include worlds where there are still laws about the proportion of
certain colors to others.

13That said, I think the anatomy of inductive knowledge of this particular is instructive in
its own right.

14According to some philosophers (see, e.g., Nozick (1981)) knowledge fails to be preserved
by competent deduction, so that even a logically omniscient agent — someone who correctly
infers and comes to believe all the relevant logical consequences of their knowledge — may
still fail to know all the logical consequences of their knowledge. Note, finally, that even
assuming a logically flawless deducer, and granting that knowledge is usually transmitted
across competent deduction, one might still want to qualify closure. For example, suppose I
believe both P and Q, but only know P . If I can deduce R from both P and Q, and by luck I
end up inferring it from P , you might think my belief in R doesn’t count as knowledge, since
I wouldn’t have known it had I inferred it from Q. These sorts of exceptions will not play an
important role in the following discussion.
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essarily plausible as theories of knowledge.15 While I in fact subscribe to a
suitably qualified version of single and multi-premise closure for knowledge, I
will not attempt a serious defense of that assumption here: one may regard this
paper rather as an exploration of the options once closure is held fixed.

The circumscribed case of inductive knowledge that will be our focus can be
described as follows. In the general setting, we assume that there is a number
of distinct objects, a1, a2, ...an, belonging to a certain kind, F . We also assume
that there is a set, S, of pairwise incompatible, natural properties (we are ruling
out properties like being grue) and that each F has exactly one property in S.
To represent the agent’s ignorance about the laws, and about whether there are
any laws, we must accommodate at least two types of world. In lawlike worlds,
all the F s possess a single member of S, and it is moreover a law that all F s
possess that member of S. In what I’ll call random worlds, there are no laws
of this sort, and different F s may be observed to have different members of S.
I do not assume that randomness is analysed in terms of objective chance: the
S-properties are assigned ‘randomly’ only in a sense that it is not a law that
they are assigned in that particular way. Crucial to our discussion is the fact
that there can be worlds where all F s do have the same natural property but it
is not a law that they do. In these cases we will say that the F s all have that
property G by fluke. Again, we are not assuming a prior notion of ‘fluke’: this
simply means that the fact that all F s are Gs is not entailed by a law that holds
at that world.

This assumption looks like it might be in conflict with the crude form of
Humeanism mentioned in footnote 3. Note, however, that to make the original
modeling assumption is not necessarily to prejudge Humeanism as a metaphys-
ical thesis: the worlds in our model are only supposed to represent epistemic
possibilities and the existence of a world in which certain patterns hold without
the corresponding laws does not necessarily mean that that world represents a
genuine metaphysical possibility. Moreover, even the Humean can accept that
it might fail to be a law that all F s are G even if all F s that could ever be
observed are G by fluke. So we can actually give our model a Humean-friendly
interpretation even if we insist that the worlds are metaphysical possibilities:
on this interpretation a1...an correspond to the emeralds that could eventually
be observed by us (e.g. the emeralds in our solar system), random worlds are
worlds where there’s at least one green and at least one blue emerald (possi-
bly unobservable) and the lawlike worlds are the worlds where all emeralds,
observable and unobservable, are a single color.

For the sake of concreteness, let’s work with a more specific example: let us
suppose that we are observing emeralds and that there are only two possible
colors an emerald can have — green or blue. (In this respect the case is exactly
parallel to the pea plants, since one could plausibly have known prior to the
experiment that the F1 generation pea plants would be either white or purple

15Or so I argue in Bacon (2014) §5, in a similar context. A more modest version of the
probabilistic account merely asserts that high probability is necessary for knowledge. Note,
however, that the mere necessity claim is silent about multipremise closure and is consistent
with its truth and its falsity.
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flowered.) Suppose also that we know that there are exactly one thousand
emeralds, and that we know which emeralds they are. If one liked one could
imagine this stipulation as the result of God having told us these facts prior to
gaining any empirical knowledge. The resulting considerations then pertain to
the effect that further observation of emeralds would have on this knowledge.
We shall write e1...e1000 to denote the 1000 emeralds, and for each i ∈ {1...1000}
we shall write Gi to denote the proposition that ei is green.

2 Two Theories of Inductive Knowledge

The upshot of Puzzle 1 was that there are, broadly speaking, only two sorts
of views that validate Inductive Knowledge: the Prior Knowledge Theory (that
gives up the Lottery Intuition) and the Bonus Knowledge Theory (that gives
up (*)). The first theory maintains that, in worlds in which it’s a law that all
emeralds are green:

Prior Knowledge Prior to observing any emeralds I am in a position to know
the falsity of All Green by Fluke: I’m in a position to know that
it’s not the case that emeralds e1...eN are all green unless it’s a law that
they’re all green.

In other words, one is in a position to know, prior to investigation, that if
emeralds e1...eN were assigned colors randomly, they wouldn’t all end up colored
green by fluke. The intuition here is similar to the intuition that if a coin is to
be flipped a thousand times, we are usually in a position to know that the coin
won’t land heads every time.16 Of course there are some very rare exceptions:
if the coin does land heads every time, or lands heads almost every time, then
the belief is either false or could easily have been false, and so in these cases
such a belief presumably won’t count as knowledge. But in statistically normal
cases this intuition seems to be in good standing.

The prior knowledge theory states that in cases where inductive knowledge
is possible we are in a position to know that the emeralds e1...eN aren’t all green
by fluke before making any observations. It does not say that this is a priori
knowledge, since there may be some worlds where we aren’t in a position to
have this knowledge prior to investigation. Much like in the coin example, in a
world where the emeralds are all green by fluke, or nearly all the emeralds are
green by fluke, our belief that it’s not the case that all the emeralds are green
unless they’re all green by law is either false or could easily have been false, and
so we are not in a position to know this.

The prior knowledge theory has a straightforward explanation of Inductive
Knowledge. Upon observing that the emeralds e1..eN are green, I get to know

16Although note that this intuition, if it is indeed an intuition, is in tension with other
intuitions sometimes raised in the context of the lottery paradox, namely: that we are not in
a position to know that any particular ticket will lose in a fair lottery. One might think that a
coin landing heads a thousand times is relevantly analogous to winning a lottery (with a very
large number of tickets). I defend the view that we can know lottery propositions like this in
Bacon (2014) by appealing, among other things, to the possibility of inductive knowledge.
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that e1...eN are all green. Given closure of knowledge under competent deduc-
tion, I can thus knowledgeably conclude, with the help of my prior knowledge,
that they are not all green by fluke. In other words: we get to know that it is
a law that they are all green. (Recall that we are using the phrase ‘e1...en are
green by fluke’ to simply mean that e1...en are all green, but the laws do not
entail this.) It follows that the prior knowledge theory can uphold the simple
theory about the effect of observation on knowledge which we introduced in the
introduction:

What You See is What You Know When I observe that the ith emerald
is green I come to know that the ith emerald is green and nothing more:
my new knowledge is just the conjunction of my old knowledge with the
proposition that the ith emerald is green.17

This principle may be recast in a simple possible worlds framework for modeling
knowledge as follows: If my knowledge before observation is represented by a
set of worlds, K — the worlds that obtain for all I know — then my knowledge
after observing that the ith emerald is green is K ∩ Gi — the set of worlds in
K in which the ith emerald is green. This possible worlds model will not be
assumed in what follows, but it is helpful for fixing ideas.

What You See is What You Know is not supposed to be a general theory
about the effects of observation on knowledge. One could imagine a sort of
reverse of our setup: that I begin with knowledge that we are in a random world,
and then by coincidence observe 100 green emeralds in a row, and come to know
that they are green. One might think that at some point my new knowledge
would undermine my initial knowledge that the emeralds have random colors.18

In that case, my knowledge would fail to always increase in the way that What
You See is What You Know predicts. Nonetheless, I submit that What You See
is What You Know provides an extremely compelling account of the effects of
observation on our knowledge in the case at hand.

It is quite hard to avoid the prior knowledge theory without giving up Induc-
tive Knowledge. If All Green by Fluke were possible prior to investigation
— i.e. if it was possible that emeralds had their colors randomly and were all
green by happenstance — then presumably it would still be a possibility after
learning that the first N emeralds are in fact green. For the new evidence —
that emeralds e1...eN are green — is completely consistent with the possibility
that they are all green by fluke, so if that was a possibility beforehand the new
evidence has done nothing to rule it out. But it then follows that we are not
in a position to know that it’s a law that emeralds are green after the first N
observations after all.

In the introduction we argued that this followed from closure and What

17As currently stated What You See is What You Know simply presupposes closure. The
anti-closure theorist, by contrast, may model my knowledge at a time by a set of propositions.
What You See is What You Know may be reformulated in that setting as the idea that my
knowledge after observation is just the result of adding the proposition that the ith emerald
is green to the set of propositions I knew before I made the observation.

18Although even this is contentious; see Lasonen-Aarnio (2010).
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You See is What You Know. To illustrate that argument, consider, again, the
simple possible worlds model of What You See is What You Know. If my initial
knowledge is represented by a set of worlds K, then by What You See is What
You Know my knowledge after making the observations is K ∩ G1 ∩ ... ∩ GN

— i.e. the set of worlds belonging to K where e1...eN are all green. But if a
world belongs to K and to Gi for each i from 1 to N , then it clearly belongs
to K ∩G1 ∩ ... ∩GN . In particular, if a world where e1...eN are green by fluke
belongs to K then it must belong to K ∩ G1 ∩ ... ∩ GN , my knowledge after
making the observations.

However there is an alternative theory, which we’ve dubbed the bonus knowl-
edge theory, that rejects prior knowledge (and consequently What You See is
What You Know or closure). According to the simplest version of this theory,
prior to investigation every consistent distribution of colors of emeralds and laws
is possible, including Fluke — the possibility that the observed emeralds are
all green by fluke. However observing that a certain number of emeralds are
green, on this view, will suffice for one to be able to rule out Fluke despite the
fact that the evidence seemingly conferred by those observations is completely
consistent with it.19

Bonus Knowledge Prior to investigation it is epistemically possible that all
N observed emeralds are green by fluke. One or more of the observations
confers more knowledge than that the observed emerald is green.

Indeed, it follows that there is some N such that after observing the Nth green
emerald one is in a position to rule out the possibility that the N observed
emeralds are green by fluke, even though this was not known before actually
performing the observation. This is, admittedly, fairly counter-intuitive. For
intuitively, all one learned upon making the Nth observation was nothing more
than that the Nth emerald is green, and this newly acquired evidence is com-
pletely consistent with the possibility that all N emeralds were green by fluke. If
this was a possibility before the observation, it seems, the new evidence cannot
be used to rule it out.

One way to make sense of this is by maintaining that a particular observation
N provides one with a stronger kind of evidence than the earlier observations.
While all I learn from the ith observation, when i 6= N , is that the ith emerald
is green, the Nth observation provides me with more knowledge: that the Nth
emerald is green and that these emeralds weren’t all green by fluke.

This model is extremely unattractive, since it breaks an apparent symmetry
between the observations: it violates the intuition that the observations are all
equally informative. This suggests that a more natural model would be one in
which each observation directly confers the same amount of extra knowledge,
and that these extra bits of knowledge, when conjoined, entail (possibly along
with some prior knowledge) that the emeralds are not green by fluke. For
example, after observing the ith emerald it’s plausible that one learns both that
the ith emerald is green and that it has been observed by you. Perhaps you’re

19Here and throughout I use ‘rules out that P ’ to just mean ‘knows that P is not the case’.
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not in a position to know that some particular emeralds, e1...eN , won’t all be
green by fluke prior to observation, but perhaps you do know that it would be
too much of a coincidence for the emeralds that you will observe to be all green
by fluke. (More generally, theories of this sort may posit that there is some
property, F , such that observing an emerald puts one in a position to know
that the emerald is green and F , and moreover one knows prior to investigation
that the emeralds wont all be green and F by fluke.)

It’s interesting to note that this theory does not differ substantially from
the prior knowledge theory when applied to slight variants of the set up. One
could imagine a variant of the present thought experiment in which the observer
knew in advance which particular emeralds were going to be observed (but not
their colours). Armed with this extra haecceitistic information about which
particular emeralds are to be observed, the impact of each observation is to
add to your knowledge only the proposition that the emerald ei is green, since
the proposition that ei is observed by you is already known. In the variant
experiment, then, the observer knows prior to observation that e1...eN won’t be
green by fluke, just as the prior knowledge theory maintains.

The question of whether this is a version of the prior knowledge or bonus
knowledge theory is not a productive question on its own, since it depends on
how we set the observations up. But given the similarities to the prior knowledge
theory it’s natural to ask whether there is anything to recommend it over the
regular version of the prior knowledge theory outlined above.

It is worth reminding ourselves that there is no causal connection between
which emeralds are observed and whether or not they are green. It is therefore
extremely surprising to think that, even though it’s open at the start of the
investigation that e1...eN are all green by chance, we can nonetheless know from
the start that these emeralds won’t all be green by chance if we observe them.
How could looking at them make a difference? This point is more dramatic when
we consider the observation of eN−1: the observation just before the observation
that puts us in a position to know that it’s a law that emeralds are green. At
this point it’s true for all you know that it’s not a law that emeralds are green
but that eN is green by chance, but you also know that it won’t be green by
chance if you look at it. Since this sort of phenomenon is not predicted by the
regular prior knowledge theory, this seems like a strong reason in favour of it.

In light of this, let’s consider a final version of the bonus knowledge theory.
According to this version, the observations all directly provide one with the same
amount of non-inferential knowledge: perhaps that the ith emerald is green (the
proposition Gi). The propositions G1...GN then jointly license the inference to
the conclusion that it’s a law that all emeralds are green, from which one can
inferentially acquire the knowledge that all emeralds are green. But one must
bear in mind that this is cannot be a logical inference since G1...GN do not entail
this conclusion even (according to this theory) in conjunction with your prior
knowledge. Moreover, it is presumably not an inference that can be legitimately
made from any proper subset of G1...GN , assuming N is the smallest number
of observations needed to provide us with inductive knowledge. This picture
upholds the symmetry intuition since, by changing which observation was made
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last, the critical observation can be shuffled so that it occurs at the observation
that ei is green, for any emerald ei. It also keeps on to some version of the idea
that all the observations are equally informative: each observation provides you
with the same non-inferential knowledge — that the ith emerald is green —
even though there will be a particular observation that tips the balance and
allows you to acquire, inferentially, the knowledge that emeralds are green as a
matter of law.20

We shall mainly focus on versions of the bonus knowledge theory in which
all sequences of colours are open prior to investigation. One could, in fact,
consider an intermediate version of the bonus knowledge theory in which some
sequences of colors are ruled out beforehand, just not sequences in which the
first 100 emeralds are green by fluke. This sort of view, however, doesn’t have
much to recommend itself: it accepts some of the unintuitive features of the
prior knowledge theory, in addition to the unintuitive features of the bonus
knowledge theory, but does not put them to any sort of use.

3 Puzzles for the Bonus Knowledge Theory

Both the positions discussed above bear at least a formal analogy with a debate
in the epistemology of perception. According to the dogmatist it is epistemically
possible, prior to any observations, that I be a handless brain in a vat and
that I have the perceptual experience of having hands. But according to these
philosophers, when I actually learn that I’m having the perceptual experience
of having hands I also get to know that I have hands, and thus get to know that
I’m not a brain in a vat.21 Just as in the inductive case, the evidence — that
I’m having the perceptual experience of having hands — is consistent, given my
prior knowledge, with the hypothesis that I’m a handless brain in a vat, but
upon receiving this evidence I’m in a position to know the skeptical scenario
doesn’t obtain. In this section I’ll draw on some of the critical literature on
dogmatism, and show that a similar set of issues arise for the bonus knowledge
theory.

First, consider the following natural principle about knowledge:

If prior to receiving the evidence E it’s true for all you know that E and
not-P , then you cannot come to know P by learning E and inferring it
from E and things you previously knew.22

20This list of versions of the bonus knowledge theory is not exhaustive. There is also a
picture that doesn’t draw on the distinction between inferential and non-inferential knowledge:
you are just in a position to know certain things at certain times, in the sense that, if you
were to believe them those beliefs would constitute knowledge (whether you believed them
on the basis of an inference or not). On this picture, after some number of observations, you
are just in a position to know that it’s a law that emeralds are green. I won’t attempt to
exhaustively characterize the different versions the theory; most of what I say is not sensitive
to which version we are concerned with.

21See Pryor (2000) and Huemer (2001).
22I have taken this principle from Dorr et al. (2014) §6. As they note, it also needs to

be qualified in various respects to be remotely plausible. For example, if prior to receiving
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This principle is implicit in What You See is What You Know. However, since
What You See is What You Know is a theory of knowledge acquisition the bonus
knowledge theory explicitly rejects, it does not follow that the bonus knowledge
theory should conform to this principle. Indeed, this principle is not consistent
with the inferential version of the bonus knowledge theory discussed in the last
section: before I receive the evidence that the emeralds e1...eN are green it’s
epistemically possible that the emeralds e1...eN are green but by fluke, yet after
learning that e1...eN are green, I knowledgeably infer that they’re green by law
not by fluke.

To dramatize why this result might be unwelcome, we might make a loose
comparison to a certain sort of Dutch-book argument used to show that if you
know your credences will end up a certain way, they should already be that
way.23 Suppose that it is in fact a law that emeralds are green, and suppose
that a bookie offers you a bet that costs $2 and pays out some sufficiently large
sum if the first N emeralds are observed to be green, but it was by fluke (e.g.
there are some blue emeralds you could have observed but didn’t). Here N
is some number known to be greater than or equal to the critical number of
observations needed to know that there’s a law that emeralds are green.24 Call
this critical number the tipping point. Since, for all you know to begin with,
the first N emeralds are green by fluke, and the sum is sufficiently large, you
should buy the bet. However, the bookie knows that anyone who has observed
N green emeralds will be in a position to know that they were green by law
not fluke (since N is known to be at least as big as the tipping point). She
also knows you’ll sell the bet back to her if you know it to be worthless. If the
bookie strategizes so as to offer to buy the bet back off you for $1 if the first 100
emeralds turn out to be green, she can know that she’ll make money off you no
matter what. For if the first 100 emeralds are not all green, she has made $2,
and if they are, she knows you will sell the ticket back for $1 (for she knows you
will know it to be worthless after observing that many green emeralds), leaving
her with a profit of $1. She will make a profit of 1 or 2 dollars either way, and
she can know this.

The principle has a certain amount of pretheoretic appeal, although it is not
out of the ordinary for some piece of common sense to be overturned in light
of these sorts of considerations. However, the bonus knowledge theory requires
an even greater departure from common sense than the above suggests. As
essentially pointed out by White (2006) in the context of the dogmatism, it also
conflicts with the weaker principle:

If you are not in a position to rule out P before receiving evidence E, and
E confirms P , then you are not in a position to rule out P after receiving

evidence E there’s hallucination gas that undermines any knowledge that would allow me
to rule out E and not-P , but the hallucination gas has dissipated by the time I make the
inference, then my inference that P may in fact constitute knowledge.

23Principles with this general form are called reflection principles; see Fraassen (1984).
24Presumably if inductive knowledge is possible, we can know it is. So presumably there is

some suitably large number — a billion say — such that we know that that many observations
of instances of the law suffices for knowledge that the law holds.
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evidence E.

Here E confirms P just in case P is more likely conditional on E than un-
conditionally, and by ‘ruling out P ’ I just mean ‘knowing not-P ’. The bonus
knowledge theory predicts failures of this principle as well. Initially we should
have very little credence that all the emeralds e1 to eN are green by fluke. (As-
suming that conditional on being random the probability of being green is 1

2 ,
and independent for each emerald, then the probability that they are all green

by fluke will be less than 1
2

N
!) But conditional on the fact that e1...eN are

all green, it should be much more likely (by orders of magnitude)25 that they
are all green by fluke than it was initially. Indeed, one would have thought
that after learning that e1...eN are green we should assign a greater amount of
confidence to the possibility that they were all green by fluke. If we were not
in a position to rule out that possibility before we received that evidence we
certainly shouldn’t be in a position to rule it out afterwards.

It is also worth noting that, assuming the bonus knowledge theory, there are
strong reasons to think that we can know that the first N emeralds won’t all be
green by fluke before investigation. If this is right then it is not obvious why we
need the bonus knowledge theory — we already have the prior knowledge needed
to explain how we achieve knowledge by induction. Let us begin with the view
that the tipping point occurs after a relatively stable number of observations:
for the sake of argument suppose it is 100. Then it seems we could be in a
position to know that 100 was the tipping point (perhaps, e.g., by studying how
long it takes others to knowledgeably conclude that it’s a law that emeralds are
green).26 To know the tipping point is 100 is just to know, before investigation,
that the following conditional is true:

If I observe e1...e100 to be green I will be in a position to know that it’s a
law that emeralds are green.

Suppose in addition you know that you’re going to observe e1...e100, so that
you know that you’ll observe ei to be green if it is in fact green (and know that
you’ll observe ei to be blue if it is in fact blue). Given closure, I can infer that
if e1...e100 are green I’ll be in a position to know it’s a law that emeralds are
green. Finally by applying the factivity of ‘in a position to know’, I’ll be able to
conclude that if e1...e100 are green it’s a law that emeralds are green; in other
words, I’ll know that e1...e100 won’t be green by fluke.27

Of course, it could be that the tipping point is very variable and that people
are rarely in a position to know when it will occur. But if we are in a world
where inductive knowledge is in practice possible after a reasonable number of

25The difference in probability itself may not be that large: the difference between, e.g.,
1
2

100
and 1

2

200
is small even though the former is billions of times bigger than the latter.

26Of course, one could be unlucky: one could inhabit a world where the first 100 emeralds
everyone observes is green, but there are nonetheless blue emeralds. In these worlds we would
not be in a position to know the tipping point (there wouldn’t be one), but these quasi-
skeptical scenarios should not undermine the possibility of our actually knowing where the
tipping point is.

27Again, the problem here mirrors a similar worry for the dogmatist; see Wedgwood (2013).
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observations then it seems we ought to be in a position to know that inductive
knowledge is in practice possible. Thus there ought to be a not too large number,
N , possibly greater than the tipping point, such that we know that we’ll be in
position to know that emeralds are green after observing that many emeralds.
Thus, as above, we will be in a position, prior to investigation to know that a
certain sequence of emeralds will not be all green by fluke.

An initially attractive feature of the bonus knowledge theory — one of the
strongest reasons to prefer it to the prior knowledge theory — is that it ap-
pears to avoid the postulation of this mysterious sort of knowledge that can be
obtained prior to an empirical investigation. If the forgoing considerations are
correct, then the bonus knowledge theory is actually not in as good a position
as it seems.

The bonus knowledge theorist might at this point insist that we cannot
know when the tipping point will occur until we’ve actually reached the tipping
point.28 They could maintain that, since for all we know we are in the bad case
where it is not a law but e1...e100 are green by fluke, we couldn’t possibly know
that if we made those observations we would be be in a position to know that it
was a law. The most we can know is that in the good cases, where it is in fact
a law that emeralds are green, we can know that emeralds are green by law on
the basis of observing e1...e100 to be green. That is, we can know the weaker
conditional:

If it is in fact a law that emeralds are green, and we observe that emeralds
e1...e100 are green, we will be in a position to know that it’s a law that
emeralds are green.

The picture seems to be one in which we cannot know that inductive knowledge
is actually possible until we’ve achieved it. Of course, the weaker conditional
tells us that we can know that in the good cases where it is a law that emeralds
are green we can achieve knowledge by induction, but this is silent on the actual
status of inductive knowledge. But why is it that we can’t know the original
stronger conditional before looking at any emeralds? It is hard to see why we
need to observe any emeralds to acquire knowledge of the conditional; it seems
to be something one could plausibly know in a myriad of different ways. Perhaps
we just know it innately, or we know it by ‘metainduction’: i.e. by observing
that previous inductive inferences produce knowledge (not merely that they
produce knowledge in the good cases).

4 Puzzles for the Prior Knowledge Theory

We just observed that, under certain assumptions, the bonus knowledge theory
collapses into some form of the prior knowledge theory. In this section we
shall raise some puzzles for the prior knowledge theory. We show first that it
conflicts with a natural independence idea, which roughly says: if it’s consistent

28Thanks to an anonymous referee for pushing me on this point.
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with your knowledge that some emeralds are green by fluke, and that some other
emeralds are green by fluke, then it should be consistent that they are all green
by fluke. Then we show, assuming multi-premise closure, that it generates
problems when combined with a natural idea which I’ll refer to as ‘emerald
anonymity’29: roughly, the idea that observing that a particular emerald is
green should be as informative as observing that any other emerald is green.

4.1 Epistemic Independence

Suppose that after observing that all the emeralds in a given set, X, are green,
Alice is still not in a position to know whether it’s a law that emeralds are green.
She then boldly makes the following assertion:

(A) If it’s not a law that emeralds are green, then the next emerald will be
blue.30

This seems like a risky assertion. It would be very perplexing if Alice were indeed
in a position to know (A): how could she possibly know that if the emerald’s
colors are determined by chance, the next emerald is going to be blue?

In order to rule out knowledge of (A) in this circumstance we must thus
accept:

Epistemic Independence 1 If, prior to investigation, it was epistemically
possible that the emeralds in X are all green by fluke, then it is epis-
temically possible that the emeralds in X and e are green by fluke, where
e is any emerald not already in X.

For suppose that Epistemic Independence 1 has a false instance. That is to
say: suppose that prior to investigation it were epistemically possible that the
X emeralds are all green by fluke, but not epistemically possible that the X
emeralds and the ith emerald are green by fluke. Then the claim that the X-
emeralds are green and the prior knowledge entail that either we are in a flukey
world and the ith emerald is blue, or we are in a lawlike world and all emeralds
are green. So if Alice learns that the emeralds in X are all green, she should be
in a position to know, and thus assert (A), contrary to our intuitions otherwise.

I take it that the following parallel inference is equally perplexing. After
observing the elements of a set Y to all be green, Bob is still not in a position
to know that it’s a law that emeralds are green. But nonetheless he asserts:

(B) If it’s not a law that all emeralds are green then the next emerald will be
green by fluke.

Again, this assertion seems bad because Bob does not seem to be in a position to
know (B).31 To rule out this sort of knowledge, we need to accept the following

29Thanks to Shyam Nair for suggesting this terminology
30This is to be understood as material conditional, so it is equivalently: either it’s a law

that all emeralds are green or it’s not a law and the next emerald will be blue.
31Note that (A) and (B) are not inconsistent: they are both material conditionals with false

antecedents. Note also that, since X and Y are different sets of emeralds, we have no reason
to think anyone is will be in a position to know both conditionals at once.
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principle:

Epistemic Independence 2 If, prior to investigation, it’s epistemically pos-
sible that the emeralds in X are all green by fluke, then it is epistemically
possible that these emeralds are green, and that e is blue by fluke, where
e is any emerald not already in X.

Epistemic Independence 1 sounds eminently plausible. Moreover, (A) —
whose assertability is a consequence of its failure — sounds particularly bad.
If I don’t know yet whether it’s a law that emeralds are green, it seems quite
absurd to think that I’d be in a position to know what colour the next emerald
will be if it’s not a law that emeralds are green.

This makes the following somewhat puzzling for the prior knowledge theory:

Skeptical Puzzle 2 The following are inconsistent

1. Prior to investigation it’s true for all I know that e1 is green even
though there is not a general law that emeralds are green.

2. It is known, prior to investigation, that e1...eN are not all green by
fluke.

3. Epistemic Independence 1

We shall show that 1 and 3 entail that it’s epistemically open prior to investi-
gation that the emeralds are all green by fluke, meaning that the explanation of
inductive knowledge proposed by the prior knowledge theory cannot be right.
Since, prior to investigation, it is open to me that the first emerald is green but
it’s not a law that emeralds are green, it follows by Epistemic Independence 1
that it’s epistemically possible the first two emeralds are green by fluke. By
Epistemic Independence 1 again I can infer that it’s open to me that the first
three emeralds are green by fluke, and by repeating this N times I can infer
that it’s epistemically open prior to investigation that all N observed emeralds
are green by fluke, directly contradicting prior knowledge.

As far as I can tell, there is no straightforward argument against Epistemic
Independence 2 from prior knowledge. However the specific versions of the prior
knowledge theory considered later involve failures of Epistemic Independence 2
as well. Since Epistemic Independence 1 must already be rejected given the
prior knowledge theory of induction, it is hard to see what motivation one could
have for insisting on Epistemic Independence 2.

It’s worth mentioning that Dorr et al. (2014) argue for similar puzzles with-
out invoking any premises about the correct theory of induction. Given that
Epistemic Independence 1 and 2 follow from more general independence intu-
itions that are false, we should be cautious about concluding much from the fact
that a theory entails failures of Independence.

4.2 Emerald Anonymity

To motivate the next principle it’s easiest to illustrate it with an example.
Suppose that 100 emeralds are laid out on a table and that after observing each

17



one to be green you are in a position to know that it’s a law that emeralds
are green. Here’s a very natural intuition: if prior to observation, someone
had switched each emerald on the table for a different emerald, and that the
observations had otherwise proceeded exactly as before, you would still be in
a position to know that it’s a law that emeralds are green after making those
observations.

The principal guiding the intuition here is that it shouldn’t matter which
particular emeralds you observe; the observations should have the same eviden-
tial impact. Other things being equal, the fact that one emerald is green is
just as informative to you as the fact that any other emerald is. Let’s give this
principle a name.

Emerald Anonymity If you’re in a position to know that it’s a law that all
emeralds are green after observing that emeralds e1...en are all green, one
should also be in a position to know this after observing πe1...πen to be
green, where π is any permutation of the 1000 emeralds.

This principle has some initial plausibility, but one must be diligent about when
it is and isn’t applicable. For example, suppose, prior to investigation, you have
been told by a reliable person that either the 23rd emerald is not green or it’s a
law that emeralds are green. Then it’s clear that not all sets of emeralds of the
same size are on a par in the way that Emerald Anonymity demands. If you
observe a collection of three emeralds to be green you will be in a position to
know that it’s a law that emeralds are green if it includes the 23rd emerald, but
not otherwise. The principle is not supposed to apply to cases like this, where
someone has specific knowledge about the emeralds.

Given Emerald Anonymity it follows that, for each agent, there is a magic
number of observations sufficient for inductive knowledge: the smallest number
of emeralds they need to observe to be green in order to conclude that it’s a
law that emeralds are green. This number will not depend on which emeralds
are observed. For if I can know that it’s a law that emeralds are green after
observing n distinct emeralds e1...en, then I must also be in a position to know
this after observing any other series of n distinct emeralds e′1...e

′
n by applying

Emerald Anonymity to a permutation that maps ei to e′i.
Let me finally mention another plausible idea. Clearly we cannot know,

before looking at any emeralds, that it’s a law that emeralds are green. Nor can
we know, before looking at any emeralds, that if it’s not a law that emeralds
are green, then 90% of the emeralds will be blue. Thus we may state our third
skeptical puzzle. Suppose that 100 is the magic number for some particular
agent. Recall also that in the present set up there are a total of 1000 emeralds,
and that this is known.

Skeptical Puzzle 3 Inductive Knowledge, Multipremise Closure, What You
See is What You Know, and Emerald Anonymity entail Too Much Prior
Knowledge.

For convenience, here are the relevant principles restated:
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Inductive Knowledge After observing e1...e100 to be green we are in a
position to know that it is a law that all emeralds are green.

Multipremise Closure: If you know p1...pn individually, and they jointly
entail q, then your are in a position to knowledgeably infer q.32

What You See is What You Know: Your knowledge after looking at
emerald ek is just whatever your knowledge was before plus the proposition
that ek is green.

Emerald Anonymity: If π is a permutation of all 1000 emeralds, then
if you’re in a position to know that it’s a law that emeralds are green
after learning e1...en, you are in a position to know this after observing
πe1...πen.

Too Much Prior Knowledge: Prior to observing any emeralds you are
in a position to know the material conditional that if it’s not a law that
all emeralds are green, then at least 90% of the emeralds are blue.33

We shall break this argument up into three steps. Firstly we use Inductive
Knowledge, Closure and What You See is What You Know to show:

Prior to observation you know the material conditional that if e1...e100 are
green then it’s a law that emeralds are green.

In fact we have already sketched an argument for this in the introduction, but
here we set out the argument more carefully.

We may argue by contradiction. Suppose that you do not know this condi-
tional prior to observation: it’s true for all you know that e1...e100 are green,
and it’s not a law that emeralds are green. By closure this means that this
conditional does not logically follow from things you know prior to observation.
By What You See is What You Know and Closure, you’re in a position to know
a proposition after making the observations if it can be logically deduced from
propositions you knew initially along with the new knowledge consisting of the
propositions that e1...e100 are green. But if a conditional (P1 ∧ ... ∧ Pk) → Q
cannot be logically deduced from a set of propositions S, then Q cannot be
logically deduced from S ∪ {P1, ..., Pk}.34 In particular, if you can’t deduce the
conditional if e1...e100 are green then it’s a law that emeralds are green from
propositions you know initially, then you cannot deduce the consequent it’s a
law that emeralds are green from propositions you know after making the ob-
servations. Thus you do not know that it’s a law that emeralds are green after
making the observations. This contradicts Inductive Knowledge.

Secondly, using Emerald Anonymity, the above argument can be repeated
to establish that prior to observation you know the material conditional that if

32Note that the special case of this with 0 premises implies that the agent knows every
logical truth.

33Equivalently: you are in a position to know, prior to investigation, that either it’s a law
that all emeralds are green or 90% of the emeralds will be blue.

34This is just a version of the deduction theorem.
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πe1...πe100 are green then it’s a law that emeralds are green, for any permutation
π of e1...e1000. This is clearly equivalent to:

Prior to observation you know the material conditional that if ei1 ...ei100
are green then it’s a law that emeralds are green.

for any distinct emeralds ei1 ...ei100 (simply consider a permutation that maps k
to ik for 1 ≤ k ≤ 100).

Finally, by Multipremise Closure, we know the conjunction of these condi-
tionals. A conjunction of conditionals (P1 → Q) ∧ ... ∧ (Pk → Q) is equivalent
to ((P1 ∨ ... ∨ Pk) → Q). In the present case: if either ei1 ...ei100 are green,
or ei′1 ...ei′100 are green or ... then it’s a law that all emeralds are green (where
(ik), (i′k) etc range over all sequences of length 100 consisting of numbers be-
tween 1 and 1000 without repetitions). Recall that our background knowledge
included the fact that e1...e1000 where all and only the emeralds in existence.
Thus this long disjunction in the antecedent is fairly obviously equivalent, given
the background knowledge, to the claim: if 100 or more emeralds are green then
it’s a law that emeralds are green. Or equivalently (again, given the background
knowledge): if 10% of the emeralds are green then it’s a law that emeralds are
green. By closure, then, we know this conditional. And by closure again, we
also know its contrapositive:

Prior to observation you know the material conditional that if it’s not a
law that emeralds are green, 90% of the emeralds are blue.

(We may again illustrate the result in a simple possible worlds model of
knowledge, in which one’s knowledge at a time is represented by a set of worlds
and a proposition is known if it is a superset of that set. Suppose, for contra-
diction, that a set of worlds K represents my prior knowledge, and that there
is a world w ∈ K in which less than 90% of the emeralds are blue but also it’s
not a law that emeralds are green or blue. Thus in w, some sequence ei1 ...ei100
of 100 (possibly more) distinct emeralds are green and it is moreover not a
law that emeralds are green in this world: w ∈ Gei1

, ..., Gei100
and w 6∈ LAW

where LAW is the set of worlds in which it’s a law that emeralds are green
and Gi is the set of worlds where ei is green. It follows by Inductive Knowl-
edge, that K ′ ⊆ LAW where K ′ is my knowledge after observing e1...e100.
Then, by Emerald Anonymity, we are in a position to know that it’s a law
that all emeralds are green after observing the emeralds ei1 ...ei100 (consider the
permutation that maps 1 to i1, etc): if K ′′ is my knowledge after observing
ei1 ...ei100 then K ′′ ⊆ LAW . But given What You See is What You Know,
K ′′ = K ∩ Gei1

∩ ... ∩ Gei100
. So K ∩ Gei1

∩ ... ∩ Gei100
⊆ LAW . This is a

contradiction since w ∈ K and w ∈ Gei1
, ..., Gei100

, but w 6∈ LAW .)
The numbers 100 and 1000 were chosen for the sake of illustration: whatever

the magic number is, one could imagine a world where there are known to be
ten times that many emeralds and arrive at the same conclusion.

One might try to reject the previous argument by maintaining that an agent’s
magic number depends on how many emeralds there are. One might maintain,
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for example, that the magic number is always 60% of the total number of emer-
alds. Since it is statistically abnormal for there to be less than 40% blue emeralds
(assuming blue and green is equally likely for each emerald) perhaps we have
a good claim to knowing, at least in the good, statistically normal cases, that
if it’s not a law, then at least 40% will be blue. In this case, the conclusion
seems to be less obviously absurd. However even though this view is consistent
with the letter of Inductive Knowledge, it doesn’t seem particularly friendly to
actual inductive knowledge, since it turns out one has to have observed most of
the emeralds (over 60% of them) before one can get obtain knowledge. This is
just not good enough for science: compare, for example, the number of observed
electrons to the number of electrons in the universe simpliciter — if laws about
electrons can be known by induction it has to be based on observations of a tiny
fraction of the total number of electrons.

The conclusion we have arrived at seems to be obviously false: that one can
know prior to investigation that most emeralds will not be green, if it’s not a
law that they’re green. One might hope to lessen the force of the objection by
noting that I can’t learn that it’s not a law that all emeralds are green (because
it is in fact a law, and knowledge is factive), and thus I will never be in a
position to infer, before observation, that 90% of the emeralds will be blue from
the conditional. But this seems to me to be just to point out that we can avoid
an even more absurd conclusion; knowledge of the conditional should strike us
as bad enough.

In light of this, I think the best option for the prior knowledge theorist is to
reject Emerald Anonymity. The challenge, then, is to make this rejection seem
motivated: there is an appearance of symmetry between the different emeralds
— if we are to maintain that this symmetry is broken, we must identify an
epistemically significant difference between the emeralds that could ground that
failure of symmetry.

Before we move on, it’s worth remarking that there is no parallel argu-
ment that the bonus knowledge theory must reject the analogue of Emerald
Anonymity: for all we’ve said, it could just be that the tipping point is reached
at 100 emeralds no matter which particular emeralds are observed.

5 Counterfactuals

There is a large body of theory on the purported relation between counterfac-
tuals and knowledge. Here I will draw on a connection that has been mostly
been discussed in the literature on safety.

At a rough gloss, a belief is safe if there is no nearby world at which it is
had falsely, for the same reasons it is actually had. We will follow the literature
in using the locution it could easily have been the case that P when there is a
nearby P world. According to a very compelling thought, safety is a necessary
condition for knowledge. If you could easily have had the belief that P for the
same reason you actually had it, while P is false, then it seems that even if P is
in fact true, your belief that P couldn’t count as knowledge: even though you
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were right, you were just too lucky to count as having known.
This appeal to nearby worlds is essentially just a helpful heuristic: the notion

of being nearby is ultimately to be understood, at least partly, in epistemic
terms, and cannot obviously be given an independent analysis.35 What could
easily have been the case for me at t may differ from what could easily be
the case for you at t, and may differ from what could easily be the case for
me at other times; these differences depend on what can only be described as
epistemic features of the situations.36 Nonetheless, there may be connections
between this concept and other non-epistemic concepts that help pin down its
conceptual role. Here is one inference that, when suitably qualified, I find
particularly compelling:

1. It could easily have been the case that P .

2. If P were the case then Q would be the case.

3. Therefore, it could easily have been the case that P and Q.

I take it that counterfactuals are context sensitive, and as noted above, that
what could easily be the case for an agent at a time can depend on what that
agent is already able to rule out at that time. Given this fact we should not
expect this inference to hold in all contexts for what could easily have been the
case for all agents and times.37 That said, it’s natural to think that there are
certain contexts in which the inference is a good one, and in these contexts the
English counterfactual will express a special sort of connective that is sensitive
to safety theoretic concerns of the agent and time in question.

One way to motivate the inference 1-3 is through the Lewis-Stalnaker style
of semantics for counterfactuals, in which a counterfactual is true iff the near-
est antecedent world to actuality is a consequent world.38 Here the notion of
nearness is context sensitive, but in certain contexts the notion of nearness will
align with the safety theoretic notion of nearness invoked in 1 and 3. Suppose
there’s a nearby world, w, in which P is true, and also that the nearest P world,
w′, is a Q world. It follows that w′ is at least as near as w, and so w′ certainly
also counts as nearby if w does. Thus there is a nearby P and Q world.

35See Williamson (2009). There is a spectrum of positions here: Williamson’s view seems to
be that the utility of the safety model of knowledge lies primarily in the structural constraints
it imposes on the concept of knowledge, and that there is no definition of nearness in non-
epistemic terms. Others attempt to explain it in terms of counterfactual nearness (see Sosa
(1999)), and there are intermediate positions too. I needn’t take a position on this in what
follows.

36‘It could easily be the case P ’ therefore could mean different things depending on the
agent or the time; we will use context to disambiguate in what follows.

37Given that knowledge ascriptions are plausibly context sensitive, it is perhaps also true
that the notion of ‘being nearby’ is context sensitive. One could thus maintain that meanings
of counterfactual and nearness locutions vary from context to context in tandem, preserving
the truth of the inference. But I am suspicious of this further claim, so will leave it aside in
what follows.

38I am working with Stalnaker’s version of the theory. Lewis has some tweaks to deal with
cases in which there is more than one nearest antecedent world, or no nearest antecedent
world (Stalnaker rules out such cases by fiat).
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That said, even if one does not accept the Lewis-Stalnaker semantics, the
principle seems independently quite compelling. To illustrate, suppose that I
correctly believe that Fiona is happy. Unbeknownst to me, she has had a rotten
week but she’s just learned that she has won the lottery and so, as it happens, is
happy. It seems as though my true belief that Fiona is happy was too lucky to
count as knowledge: it could easily have been false. I take it we can substantiate
this conclusion as follows: the lottery numbers could have easily been different,
and if they had been different Fiona would not have been happy. Thus my belief
that Fiona is happy could easily have been false.

We must also be cautious about applying the inference, as it is quite easy
to get into contexts where the inference does not sound so good. Suppose that
you have two buttons before you, and I know the following: (i) that one of the
buttons, I don’t know which, will kill me, (ii) that you have to press a button,
know which button does what, and do not want to kill me. Given that I know
you won’t kill me, I know:

If you were to press button 1, I wouldn’t die.

According to the epistemic reading of the counterfactual, the above counterfac-
tual should be true, as it indeed seems to be in this context. But of course, the
buttons may in fact have been wired so that pressing button 1 would kill me. In
a context where this fact is emphasized, it’s tempting to want to assert instead
that:

If you were to press button 1, I would die.

In this context the inference is bad: For all I know, you’ll press button 1. As
it happens, if you were to push button 1 I would die. However, contrary to our
inference, it’s not the case that for all I know you’ll kill me by pressing button
1. There is often a strong prejudice to keep the functioning of mechanisms,
like buttons, fixed when evaluating which worlds are relevant to the truth of
a counterfactual.39 But in this case, this default constraint conflicts with the
epistemic understanding of the counterfactual: the epistemically nearest world
where button 1 is pushed is one where button 1 is wired differently, and is the
button that spares me.40

6 Counterfactuals and Inductive Knowledge

As a warm up to our discussion of induction, let us apply these ideas to a couple
of more quotidian cases. Suppose that I know that my keys are either in the
house or in the car. As it happens they are in the car. Now I take it that one
does not usually need to have checked every cubic centimeter of the house in

39More generally, there’s a prejudice to keep the laws of physics held fixed, although it’s
widely believed that this cannot hold in full generality. The idea is especially problematic if
those laws are deterministic, so that any deviation from reality at a time would result in a
deviation at all times, future and past, unless the laws were broken.

40Thanks to John Hawthorne for this example.
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order to be able to know that the keys are in the car. In good cases, we can
acquire knowledge by this method:

Lost Keys (Good Case) My keys would have been on the mantlepiece or the
table (as usual) if they had been in the house. After checking a few of
the obvious places, including the mantlepiece and table, I get to know the
keys are in the car.

I think the analogy with inductive knowledge here should be evident: I do not
have to observe every emerald in order to know that all emeralds are green, just
as I do not need to search the whole house in order to know that my keys are in
the car. But there are also cases where this way of acquiring knowledge doesn’t
work:

Lost Keys (Bad Case) My daughter has developed a fascination with my
keys, and likes to throw them down the back of the sofa. My keys would
have been behind the sofa had they been in the house.

In this case, I take it, I do not get to know that my keys are in the car after
checking the table, mantlepiece and other obvious places. The reason is that
my keys wouldn’t have been in those places if they hadn’t been in the car: they
would have been behind the sofa. One can substantiate this conclusion with
the inference 1-3 as follows. It is certainly true, prior to searching, that the
keys could easily have been in the house.41 Moreover, by stipulation, if the
keys had been in the house, they would have been behind the sofa. Thus by
the counterfactual inference, the keys could easily have been behind the sofa.
On the other hand, if I had checked behind the sofa, and perhaps other similar
places my daughter might have placed them had the keys been in the house,
then it seems that I could be in a position to know.

To connect this to the literature on dogmatism, we might also consider a
perceptual case. Suppose that at a flip of a coin you will either be shown a red
ball or a white ball. You are shown a ball that looks red, and is in fact red. We
assume that the experiment is set up so that you would have been shown the
white ball in ordinary lighting, had the white ball been shown instead.

Perception (Good Case) You get to know that the ball is red. For had the
ball been white, it wouldn’t have looked red, it would have looked white.

But there is also a version of the experiment where you see a ball that looks red
and is red, but you intuitively don’t get to know that it’s red:

Perception (Bad Case) The set up is changed so that had you been shown
the white ball, it would have been under red lighting. Even though the
ball seems red, and is red, intuitively we don’t know.

41It’s worth noting that this intuition, and the ones that follow, could also be underwritten
by a sensitivity account of knowledge. Suppose that in order for me to know a proposition P
by a method M the following counterfactual must be true: had P been false, I wouldn’t have
believed P by the method M . Then I do not know that the keys are in the car by checking
the table and mantlepiece: for had the keys not been in the car, I would still have believed
they were in the car by the method of checking the table and mantlepiece. By contrast, the
method of checking the behind the sofa does much better in this regard.
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The reason we don’t know, I submit, is that if the ball had been white it would
have looked the same as the red ball.42 Again, this verdict is underwritten by
the inference 1-3: since prior to observation, the ball I was shown could easily
have been white, and had it been white, it would have looked red, it follows
that it could easily have been white and looked red.

These sorts of examples reveal a source of counterexamples to Emerald
Anonymity, a principle which played an important role in the puzzle we dis-
cussed in section 4.2.43 Suppose that millions of years ago, a team of alien
scientists landed in New Mexico and performed a number of geological exper-
iments. In the course of these experiments, they ran a test which vaporized
all mineral crystals in New Mexico except those that are green in color. Now
imagine two modern day scientists, Anna and Beth, and suppose that Anna
is based in California while Beth is based in New Mexico. It is in fact a law
that emeralds are green, and both Anna and Beth go about observing emeralds
in their respective locations and discover that every emerald they observe is
green: Anna observes 100 Californian emeralds to be green, call these e1...e100,
and Beth observes 100 green New Mexican emeralds, e′1...e

′
100. Even though

neither Anna nor Beth know about the alien landing, there appears to be an
epistemic asymmetry between the cases: it seems like Anna should be in a posi-
tion to know that it’s a law that emeralds are green (assuming 100 is a sufficient
number of observations), whereas Beth intuitively is not, since she would have
observed those emeralds to be green even if it hadn’t been a law.

Californian Emeralds (Good Case) On the basis of observing emeralds e1...e100
(the Californian emeralds) to be green, one is in a position to know that
emeralds are green by law.

New Mexican Emeralds (Bad Case) On the basis of observing emeralds
e′1...e

′
100 (the New Mexican emeralds) to be green, one is not in a position

to know that emeralds are green by law, since even if it hadn’t been a law,
e′1...e

′
100 would have been green anyway.

Clearly, there’s a symmetry between Anna’s evidence about e1...e100 and Beth’s
evidence about e′1...e

′
100 (neither know about the alien landing). So this appears

to be a counterexample to Emerald Anonymity.
If this is right, that means straightforwardly probabilistic accounts of the

tipping point are not on the table. For example, the theory that you are in

42It should be noted that certain externalists might seek to maintain that when we look at
the red ball, even if there would have been trick lighting had the ball been white, we still get
to know that the ball is red. The anti-dogmatist version of this view maintains that if you’re
going to be shown the red ball, then prior to the showing you know the material conditional: if
the ball looks red, it is red. But this material conditional entails, given the setup, the outcome
of an unknown coin toss (since the choice between being shown a red ball or white ball in
trick lighting was determined by a coin toss). Thus (given closure) one could knowledgeably
conclude how the coin landed, which strikes me as absurd. The dogmatist version of the view,
where you get to infer the outcome of the coin toss upon seeing a ball that looks red seems
to me to be only marginally better.

43Thanks to an anonymous referee for suggesting a similar sort of example.
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a position to know something when it becomes sufficiently probable on your
evidence (i.e. its probability exceeds some threshold) is a version of the bonus
knowledge theory, since the observation that eN is green can bring other previ-
ously unknown propositions over the threshold (including the proposition that
it’s a law that emeralds are green). But because the tipping point does not
depend on what counterfactuals are true on this theory it will not predict the
variance across worlds we have demonstrated above.44

Another moral to draw from our considerations about counterfactuals is that
the point at which we get to know that emeralds are green by law can depend on
which emeralds we observe, revealing a source of counterexamples to Emerald
Anonymity. This phenomenon is brought out in our above example. If that
intuition is correct, Californian emeralds are more informative that New Mexi-
can emeralds: if the emeralds you are observing contain a large number of New
Mexican emeralds you need to make more observations than you would other-
wise (and if they are solely New Mexican emeralds, no amount of observations
will do).

However, while our example illustrates a somewhat exotic exception to Emer-
ald Anonymity, it is not obvious that it does anything to deflate the paradox
of section 4.2. For while it is clear what grounds the asymmetry between Cal-
ifornian and New Mexican emeralds in the strange world described earlier, the
upshot of the puzzle of section 4.2 was that Emerald Anonymity must have ac-
tual failures. However, it is completely unclear what could ground the difference
between one collection of emeralds and another of the same size, given that we
have not in fact been visited by aliens nor, we may assume, has anything similar
happened to force the counterfactual facts to be one way or another.

The way this sort of worry is often formulated makes the illicit assumption
that when some symmetry is broken, there has to be some ‘tangible’ fact that
grounds the breaking of that symmetry. But there are theories of counterfactuals
in which counterfactuals like (*) below could just be true by chance (even though
it is incredibly improbable):

(*) If it hadn’t been a law that emeralds are green, emeralds e1...e100 would
have been green anyway.

Indeed, this could happen even while the counterpart counterfactual (**) is false
(again by chance):

(**) If it hadn’t been a law that emeralds are green, emeralds e101...e200 would
have been green anyway.

This, of course, in itself breaks a symmetry between the emeralds e1...e100 and
the emeralds e101...e200. It is, moreover, a fallacy, according to these sorts of

44This argument assumes that what your evidence consists in is not sensitive to counterfac-
tuals in the same way that knowledge is. If one assumes, along with Williamson (2000), that
your evidence is your knowledge, and you also think that your knowledge is sensitive to what
counterfactuals are true then one could resist this argument. I have argued elsewhere against
Williamson’s theory of evidence; see Bacon (2014).
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theories, to think that there must some non-counterfactual, categorical fact that
distinguishes the first collection of a hundred emeralds from the second.

Note, however, that regardless of whether (*) is true by chance or because of
alien interference: if it is indeed true, then we can infer (using (1)-(3)) that we
are not in a position to know that emerald e1...e100 aren’t green by fluke prior to
observation. For if, prior to investigation, we’re not in a position to know that
it’s a law that emeralds are green — a belief in this proposition could easily have
been false — then it follows from (*) and the counterfactual inference (1)-(3)
that it could easily have been the case that the first 100 emeralds are all green
by fluke. (More precisely: it follows that it could easily have been the case that
e1...e100 all green, and that it is not a law that they are all green).

Note, on the other hand, that if (**) is false, there is no analogous sound
argument that we are not in a position to know that e101...e200 will all be green
by fluke. Now one can see how the asymmetries predicted by failures of Emerald
Anonymity can be predicted by the asymmetries concerning what colours the
emeralds would have had had it not been a law that emeralds are green.

This answers our puzzle. What is breaking the apparent epistemic symmetry
between the observations of e1...e100 and the observations of e101...e200 is a
difference in the counterfactual facts: by facts about what the emeralds colours
would have been, had the laws been different. These differences are, admittedly,
invisible: you can’t tell by looking at an emerald what colour it would have
been had the laws been different, you can only tell what its actual colour is.
But presumably it is the invisibility of the differences between the emeralds
that makes the intuition that there is no relevant epistemic difference, and
consequently the intuition for Emerald Anonymity, so inviting.45

It’s worth noting that the same could be said about the lost keys case.
There’s an ‘invisible’ difference between places: the mantlepiece and table are
better places to look in the first scenario, whereas the back of the sofa is a better
place to look in the latter. What grounds these differences isn’t some visible
difference between the sofa and the table and mantlepiece; it is the counterfac-
tual facts that single out the sofa as a better (more knowledge conducive) place
to look in the latter situation, than elsewhere. So we shouldn’t be too surprised
that epistemic differences like this can be grounded by counterfactuals. What’s
surprising about the induction case is it’s unclear what grounds the differences
in the counterfactual facts: in the key case, at least, the relevant counterfactuals
are grounded by my daughter’s fascination with hiding shiny objects. There is
nothing analogous grounding the counterfactual ‘if it hadn’t been a law, emer-
ald e would have been green’ (at least, assuming that we have not been visited
by aliens, or what have you). It is a bit like asking what grounds the true
disjunct of the disjunction ‘the coin either would have landed heads if it had

45It’s also important to emphasize that questions like ‘what colour would this have been had
the laws been different?’ are incredibly context sensitive and vague. Note however, that we
are constraining the context sensitivity by requiring the counterfactual be a ‘safety-theoretic’
counterfactual. And even if the question is vague, vague questions still have answers. For,
assuming classical logic, either this emerald would have had a particular colour, had the laws
been different, or it wouldn’t.
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been flipped, or it would have landed tails’ said of an unflipped coin. When the
counterfactuals in question are chancy or indeterminate — as they plausibly are
in these cases — it is a mistake to think that they must be grounded by some
identifiable non-counterfactual fact.

The morals we drew above rested on the assumption that there were worlds
in which counterfactuals like (*) are true by chance. According to one picture,
worlds in which the relevant counterfactuals are true are relatively easy to come
by. This is a view which maintains the principle of conditional excluded middle
is valid for counterfactuals. According to that view the counterfactual if P were
the case then Q or R would be the case entails the disjunction either Q would
be the case if P or R would be the case if P . In symbols: P2→ (Q∨R) ` (P2→
Q) ∨ (P2→ R). It follows, given our setup, that for any 1 ≤ i ≤ 100:46

Either ei would be green, if it weren’t a law that emeralds were green, or
it would be blue if it weren’t a law that emeralds are green.

Given the symmetry between the two disjuncts, it’s natural to think that roughly
one in two worlds are worlds where ei would have been green, and the other one
of those two worlds is a world where it would have been blue. Worlds where
e1...e100 would all have been green, had there not been a law, are presumably
much more rare, but exist by similar sorts of considerations.47 The validity of
conditional excluded middle is a vexed topic that I do not wish to get into. But
even without it, the point that the possibility of inductive knowledge depends on
a hospitable environment of counterfactual facts still remains. There are many
theories concerning what it takes to make a counterfactual true; a particularly
demanding account requires that the laws along with the antecedent entail the
consequent. But the most plausible accounts of counterfactuals are not this
demanding, and it’s not unreasonable to think that on these more liberal sorts
of theories one could concoct cases where things are aligned in the correct way
so as to make the counterfactual if it hadn’t been a law that emeralds are green,
e1...e100 would have been green anyway true.

One might wonder how commonplace worlds which are inhospitable to in-
ductive knowledge are. If they are ubiquitous then we should be worried about
whether the actual world is one in which inductive knowledge is possible. Ex-
tending the informal reasoning we gave above, it’s natural to think that one
in 2100 worlds are worlds where e1...e100 would have been green if it hadn’t
been a law that emeralds are green. For given conditional excluded middle type
reasoning, at every world there is some assignment of colours to e1...e100 that

46This is a consequence given our assumption that if it weren’t a law that emeralds are
green, then emeralds can either be green or blue. A longer (potentially infinite) disjunction
would be necessary if this assumption weren’t made, but the point would be essentially the
same.

47It follows from the set up that if it hadn’t been a law that emeralds are green, then either
e1...e100 would have distribution d1, or d2 or d3 or ... where d1, d2... range over the 2100

possible distributions of colours e1...e100 could have. One can then infer from this a disjunction
of counterfactuals that has 2100 disjuncts, each disjunct of which is presumably true in some
worlds.
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represents the colours they would have had, had it not been a law that emer-
alds are green. There are, moreover, 2100 assignments. Absent any reason to
think certain counterfactual assignments are more common we should assume
that any particular counterfactual assignment occurs infrequently.48 Thus even
though there are worlds where induction is not possible, they are sufficiently
rare that we might treat them as quasi-skeptical scenarios: although there are
unlucky people who fail to get knowledge from the same observations we make,
these people are in the same boat as brains-in-vats who fail to get knowledge by
perception — these scenarios have no bearing on the actual efficacy of induction
or perception. (A perhaps closer analogy: although there are worlds where my
bank account has been hacked by someone who has correctly guessed my ten
digit PIN, it is tempting to think that I am in fact in a position to know that my
account is secure from attacks by lucky PIN-guessers, and that the envisioned
scenario is also a quasi-skeptical scenario.)

It’s worth stressing that when we talk about some worlds being ‘unlucky’
in the sense that the counterfactuals are inhospitable to inductive knowledge,
we mean that we are unlucky holding fixed the fact that e1...e100 are being
observed first. In most worlds, roughly half the emeralds would have been
green if it hadn’t been a law that emeralds are green. So if, by improbable
coincidence, the first observed emeralds where in that ‘would have been green’
half we are also in an unlucky world (but there is a very small chance of this
happening as well).

7 A Counterfactual Model of Inductive Knowl-
edge

According to the prior knowledge theory, in the good cases, we are in a position
to rule out some hypotheses about the emeralds colours prior to investigation.
If e1...e100 are the first emeralds we will observe and they suffice for us to be
able to acquire inductive knowledge, we should, at minimum, be able to rule out
the possibility that e1...e100 will all be green by fluke. However it is prima facie
unlikely that this is the only possibility we could rule out prior to investigation.
For if it were only the fluke sequence of e1...e100 being green that I could rule
out, and had I instead observed emeralds e2...e101, I would not be in a position
to know that it’s a law that emeralds are green after making those observations.
It should strike us as too much of a coincidence that the exact possibility I in
fact need to rule out to make my inductive inference is available to me, and
nothing more. At the other extreme, we have the view that observing any 100
emeralds would have been sufficient to knowledgeably conclude that it’s a law
that emeralds are green. This view runs afoul of our third skeptical puzzle.

48This informal idea can be made precise probabilistically. This involves another vexed
topic in the philosophy of conditionals concerning the probabilities of conditionals, which I
am sidestepping for now. I treat the matter more fully, in a way that is consistent with the
above reasoning, in Bacon (2015).
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What we would like is a model of what we are in a position to rule out prior
to investigation. An adequate model ought to predict that, in most worlds,
inductive knowledge is possible from a relatively small number of observations,
and ought also to predict that when the counterfactuals don’t cooperate, induc-
tive knowledge isn’t possible. In the rest of the paper we will explore a simple
model of inductive knowledge that has these features, drawing on our prior dis-
cussion of counterfactuals. Let us suppose that there is a particular sequence of
colours — the distribution of colours the emeralds would have had if it hadn’t
been a law that emeralds are green — which we shall call s. Our model is a
possible worlds model:49

The Simple Model: The worlds open to you prior to investigation are
(i) the lawlike worlds, (ii) the random worlds that differ from s about the
colours of emeralds in at most k places.

Roughly, if we can determine that the number of differences between s and
actuality exceeds some margin, k, we can knowledgeably conclude that the
emeralds aren’t random. (We are in a position to know that the differences
between actuality and the distribution that would have been the case, had it
not been a law that emeralds are green, does not exceed k.)

The counterfactual appealed to in the above is subject to the same sorts
of qualifications we imposed in section 5: it must in particular be the sort of
counterfactual expressed when the safety-theoretic notion of nearness is salient.
In what follows, I will focus on the prior knowledge theory. However, a similar
model can also be applied to the bonus knowledge theory: it could be that we
are able to make the non-logical inference to the conclusion that it’s a law that
emeralds are green only when we have made enough observations to determine
that differences between actuality and s exceed the margin.

To get a rough intuition for why this model might be appropriate, recall
our example involving the lost keys. In the bad case, I don’t get to know that
my keys are in the car after searching the table and the mantlepiece. This is
because, had they been in the house rather than the car, they would have been
down the back of the sofa. But if I check the back of the sofa, and other similar
places that the keys might have been had they been in the house, I presumably
am in a position to know. The underlying thought is that I have to rule out the
places where the keys would (or might) have been, had they been in the house
before I get to know they’re not in the house. Similarly, to know that it’s a law
that emeralds are green, I have to first rule out the sequences that would (or
might) have obtained had it not been a law that emeralds are green.

The version of the theory I explore here assumes the outlook of conditional
excluded middle discussed in the last section — that there is a unique world

49This means that ones total knowledge at a world w can be represented by a set of worlds,
K(w). A proposition modeled by a set of worlds, and a proposition p is known at a world
w iff K(w) ⊆ p. Such models have some strong closure assumptions hardwired into them: if
propositions p1, ..., pn are individually known at a world w then every consequence of them
(i.e. any superset of p1 ∩ ...∩ pn) is also known at w. We will continue to use the terminology
of worlds being open or ruled for an agent at a world w, which just means that the world in
question either is or isn’t in K(w) respectively.
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that would have obtained if it hadn’t been a law that emeralds are green. In
order to know that it’s a law that emeralds are green you must rule out the
sequence that would have obtained, had it not been a law, and those sequences
that are relevantly similar (which I’ve represented here by saying that they do
not differ from it by more than k places).

A fairly trivial variant of this model, that doesn’t rest on conditional ex-
cluded middle, would instead pick a set of worlds that represent the worlds that
might have obtained if it hadn’t been a law that emeralds are green.50 Again,
the results would be similar: on the assumption that the worlds that might
have obtained are all similar — say, differ by no more than some fixed number
of places — we get a variant of our theory. Many of the general sorts of results
that we obtain for the theory we explore here will have obvious analogues in this
variant theory; we won’t pursue them in the interest of keeping our discussion
short.

More formally, a model is specified by the following data:

1. A set of worlds, W , with a designated world @ ∈W .

2. A function | · | that associates each w ∈W with an assignment of colours
to e1...e1000, |w|. (So |w| is a sequence whose elements are either GREEN
or BLUE of length 1000).

3. A selection function f : (P (W )\{∅})×W →W such that (i) f(A,w) ∈ A
and (ii) if w ∈ A, f(A,w) = w.

4. A distinguished subset L ⊆W of lawlike worlds, subject to the constraint
that if w ∈ L then |w| is a constant assignment (every emerald is green or
every emerald is blue).

5. A function K : W → P (W ) such that w ∈ K(w) for all w ∈W .

K(w) represents the agents total knowledge at w. |w| represents the sequence
of colours that e1...e1000 have at w. f is the counterfactual selection function.
For example, on a similarity theoretic analysis of counterfactuals, f(A, x) may
be understood as the closest world to x where A is true. In what follows we
are mainly interested in K(@) where @ is the actual world. We shall continue
to write s for |f(¬L,@)|. (On the variant model which is friendly to failures
of CEM, f(A,w) picks out a set of worlds: the set of worlds that might have
obtained had A obtained at w.)

50The choice over whether to formulate our principles in terms of ‘would’ or ‘might’ counter-
factuals does not really matter if we are assuming CEM. Given CEM, the distinction between
‘would’ and ‘might’ conditionals is destroyed, assuming that ‘would’ and ‘might’ counterfac-
tuals are duals. That they are duals just means that p�→ q = ¬(p2→ ¬q). If this holds then
(p�→ q) = ¬(p2→ ¬q) implies p2→ q by CEM. Conversely, if p is counterfactually consistent
(i.e. ¬(p2→ ⊥)) then p2→ q entails ¬(p2→ ¬q) = (p�→ q). Thus the only time would
and might counterfactuals come apart is when the antecedent is counterfactually inconsistent.
On the other hand, given the anti-CEM picture it’s important to use might-counterfactuals:
there could be no sequence of colours that would have obtained if it hadn’t been a law that
emeralds are green, but many that might have obtained had this not been a law.
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Our models are characterized by the following constraint, the latter of which
is just part of our description of the set up:

K(x) = L ∪ {w ∈ (W \ L) | the number of differences between |f(¬L, x)|
and |w| does not exceed k}.

@ ∈ L and |@| maps every emerald to GREEN

A word of warning is in order. The above is supposed to model what one
is in a position to know, not what agents typically in fact know. The latter is
subject to all sorts of idiosyncrasies relating to the agent’s psychology. What a
person is in a position to know, by contrast, is more objective and is in principle
available to anyone in the same situation who forms the relevant belief for the
right sorts of reasons.

This model predicts the two things I argued it should predict. Firstly, that
inductive knowledge is possible in most worlds. A sequence of colors is assigned
to a lawlike world if it is the distribution of colors the emeralds would have had if
it hadn’t been a law that emeralds are green at that world.51 Assume that these
sequences are distributed evenly over lawlike worlds: that the same number of
worlds get counterfactually assigned a given sequence for any sequence. In the
model this means that the number of x such that |f(¬L, x)| = t is non-zero and
the same as the number of x such that |f(¬L, x)| = t′ for any two sequences
t and t′.52 Assume, moreover, that the margin k is significantly less than 100:
let’s say it’s 10. Then most lawlike worlds will be worlds in which there are k
non-green emeralds among e1...e100 according to the counterfactual distribution
of colors assigned to that world. (I.e. most lawlike worlds x are such that the
sequence |f(¬L, x)| contains 10 or more non-green emeralds.) Since blue and
green are the only possible colors, the proportion of worlds where there are less
than k green emeralds in s is one in

∑
i≤k

100!
i!(100−i)! when W is finite. This is

extremely small when k = 10 (if there are more possible colors that green and
blue, it gets even smaller). It follows, then that in most worlds in which it’s a
law that emeralds are green, we can come to know this by observing e1...e100
to be green. For in most lawlike worlds, s will assign k or more non-green
colours to e1...e100, so observing that in fact e1...e100 are all green will allow
us to determine that the number of differences from s exceeds k. Secondly,
our model predicts bad cases where the counterfactual facts are inhospitable
to inductive knowledge. In the rare cases where e1...e100 are mostly green in
the counterfactually selected world (i.e. there are no more than k non-green
members), we will not be able to determine that the differences between s and
actuality exceed k.

51Note that at worlds where it isn’t a law, this sequence is just the distribution of colors
over worlds.

52We could also make these quantity claims using chances; the overall thrust of the argument
would be similar.
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7.1 Symmetry

Although this model is simple and predictive, I do not claim that it is primitively
compelling or obvious. In this section and the next I will derive the main features
of the model from two other attractive principles, lending it some independent
plausibility.

The first is a very general sort of symmetry principle concerning the emer-
alds. Say that a distribution of colours over ei1 ...ein is consistent with a complete
sequence of colours for all emeralds if ei1 ...ein have that distribution of colours
in the sequence. That is to say, if d is an assignment of colours to ei1 ...ein , it
is consistent with the assignment d+, assigning colours to every emerald, iff d+

is an extension of the assignment d to all emeralds. Here i1...in and j1...jn are
two sequences of n different indices:

Symmetry If there is a distribution of colours over ei1 ...ein that is consistent
with exactly N epistemically open sequences, then there is a distribution
of colours over ej1 ...ejn that is consistent with exactly N epistemically
open sequences.

A sequence, t, is epistemically open iff there is a w ∈ K(@) such that |w| = t.
When n = 1 the principle encodes a sense in which the emeralds are all on a
par with each other: we don’t have more information about certain emeralds
than others prior to investigation. If it were false there would be hypotheses
about the colour of emerald ei that rule out more sequences of colours than
any hypothesis about the colour of ej . Similar thoughts hold when n > 1: any
two collections of n emeralds are on a par, prior to learning anything about the
emeralds.

However we must proceed with extreme caution, since we have already seen
that some symmetry intuitions are unreliable. Most saliently: the principle
Emerald Anonymity discussed in section 4.2. Emerald Anonymity is in fact a
special case of the following more general principle that has a similar form to
Symmetry:

If the claim that ei1 ...ein are all green is consistent with exactly N epis-
temically open sequences, then the claim that ej1 ...ejn are all green is
consistent with exactly N epistemically open sequences.

Emerald Anonymity is effectively the special case where N = 1.53 Emerald
Anonymity, when n = 1 does not directly encode the symmetry of the emeralds,
rather it encodes a symmetry about certain emerald-colour pairings. Namely,
the hypothesis that ei is green is just as informative as the hypothesis that ej is
green: learning either would allow one to rule out the same number of worlds.
But if ei would have been green, and if ej would not have been green, had it

53For if there is exactly one epistemically open world consistent with ei1 ...ein being green,
and since the actual lawlike world is open (since knowledge is factive), then we know enough
to conclude that all emeralds are green by law. Thus the N = 1 version of the principle is
Emerald Anonymity.
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not been a law that emeralds are green, it’s not at all obvious that we should
treat these pairs symmetrically given the considerations of the last section.

The emerald-colour pairings are not symmetric, rather the emeralds alone
should play symmetric roles, and this is exactly what Symmetry says in the
n = 1 case. If some hypothesis about eis color rules out a certain number of
worlds then some hypothesis about ejs colour also rules out that number of
worlds.

I find it very hard to see how Symmetry could fail. However one might have
the attitude that, given the failure of Emerald Anonymity we shouldn’t rely
on any symmetry intuitions at all: once bitten, twice shy. I think this is too
sweeping a moral to draw. We have provided concrete mechanisms by which
symmetry can be broken between emerald-colour hypotheses, but we have no
such mechanisms for breaking symmetries between the emeralds themselves.
Moreover, we have a compelling diagnosis of why we are inclined to be mis-
led by Emerald Anonymity: a related principle in the vicinity is true, namely
Symmetry, which is easily conflated with Emerald Anonymity.

7.2 Counterfactual Independence

Just as our first principle is in the vicinity of Emerald Anonymity, the second
principle is in the vicinity of the principle Epistemic Independence discussed in
section 4.1.

Counterfactual Independence If it’s epistemically open that ei1 ...ein have
a certain distribution of colors by fluke, and ein+1

would have been green
(blue) had it not been a law that emeralds are green, then it’s epistemically
open that ei1 ...ein has that distribution and that ein+1

be green (blue).

Here in+1 is distinct from i1...in, and as before the counterfactual is subject to
the same qualifications made above.

In what follows t, t′, t′′ etc. range over complete assignments of colours to
emeralds, d, d′ etc. over partial assignments, and we’ll say that t (or d) is
epistemically open if there’s a (non-lawlike) world w that’s epistemically open
where the emeralds have that assignment of colours (i.e. t = |w|). Say that t
is at least as close to s (which, recall, is |f(¬L,@)|) as another t′ iff whenever
t′ agrees with s about an emerald, so does t. Counterfactual Independence
implies that if t is epistemically open, and t′ is at least as close to s as t, then t′

is epistemically open. For suppose t is epistemically open, and that t′ is as close
or closer to s than t. Consider X, the union of the set of emeralds that t and s
agree about with the set of emeralds that t′ and s disagree about. And consider
the distribution d on X determined by t: this distribution on X is epistemically
open because t is. Let e1...er be the remaining emeralds not in X. Without
loss of generality, suppose e1 is blue in s. It follows that the distribution d on
X, augmented with e1 being blue is also epistemically possible, so there is an
epistemically open world w′′ that has this distribution on X ∪ {e1} (a similar
conclusion can be reached if e1 is green in s). Since t′ is closer to s than |w′′|,
we can repeat the above reasoning for e2...er and conclude that the distribution
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that agrees with t′ on X and agrees with t′ on e1...er is epistemically open.
Since X and e1...er accounts for all emeralds this means that t′ is possible.

7.3 Deriving the Model

Given these two principles we are in a position to derive the main features
of our model. That is, these principles together entail that for some k, the
epistemically open worlds prior to investigation consist in (i) some worlds in
which it’s a law that all emeralds are green (and some worlds where it’s a law
that all emeralds are blue), and (ii) some non-lawlike worlds that differ from
s = |f(¬L,@)| about the colors of j emeralds for each j with 0 ≤ j ≤ k.

Let’s say that the rank of a sequence is the number of differences between it
and s.54 To show our claim it suffices to show that

(†) If t is epistemically open and t′ has the same rank as t, then t′ is epistem-
ically open.

To see why this suffices, let k be the largest rank that an epistemically open
non-lawlike world has. Any sequence t that differs from s by at most k places
can be extended to a sequence t′ that differs from s by exactly k places in such a
way that t is closer to s than t′ (this can be done just by making changes to t at
places where t and s agree). It follows, by Counterfactual Independence, that t is
possible if t′ is. Finally, t′ has the same rank as an epistemically open world (the
world with the highest rank), so by (†), t′ is epistemically open. This secures
(ii). Since it’s actually a law that emeralds are green, this is an epistemically
open world. The parenthetical part of (i) — that it’s epistemically open that
emeralds are blue by law before making observations — does not follow, but is
independently plausible given the way we have set the experiment up.

It suffices, then, to show (†). Suppose that t ∈ K is epistemically open
and that r(t) = r(t′) where these are the ranks of t and t′ respectively. Now
consider the emeralds ei1 ...ein on which t and s agree. If d is the distribution
that t and s determine over ei1 ...ein , then there are exactly 2r(t) open sequences
consistent with d on ei1 ...ein , not counting the actual sequence of all greens
where the law is in place. Reason: t is one such distribution, and moreover
(by Counterfactual Independence) every distribution closer to s than t is also
epistemically possible, of which there are 2r(t). These are moreover all and only
the distributions that are consistent with d: any open sequence that agrees with
t on ei1 ...ein can only differ from t by agreeing with s at places where t does not,
since the only emeralds not among ei1 ...ein are emeralds which t and s disagree
about. Now let ej1 ...ejn be the n emeralds on which t′ and s agree (there are
also n of these, since t′ and t have the same rank — i.e. number of differences
from s). By Symmetry it follows that there is a distribution d′ over ej1 ...ejn
that is consistent with exactly 2r(t) = 2r(t

′) sequences, not including the actual
sequence. It follows that every distribution that extends d′ is epistemically open,

54We assume that ranks are assigned only to worlds where there are no laws about the
colours of emeralds — we shall not assign a rank to the actual world.
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since there are 2r(t
′) sequences over the remaining emeralds in total (whether

epistemically open or not). In particular the distribution t′′ that extends d′ by
using t′s assignment of colours to the remaining emeralds is epistemically open.
Finally, since t′ is closer to s than t′′ it follows that if t′′ is open, so is t′.

This shows that the worlds epistemically open prior to investigation have the
right sort of structure. However there is a degenerate case to consider, in which
s not open, and the only open worlds are lawlike. If any non-lawlike world is
open, however, s is open because by Counterfactual Independence, if anything
closer to s than an open world is also open, and so in particular if there’s any
non-lawlike open world s is open.

8 Conclusion

According to the prior knowledge theory, one must be in a position to know,
prior to observation, that certain hypotheses about the colors of emeralds do
not obtain. If this is correct, then there is a responsibility to say something a
bit more systematic: if some hypotheses are ruled out and others aren’t, it’s
natural to want to know which features determine which hypotheses are ruled
out, and to explain how these features could be epistemically relevant. The
challenge is significant because there is a tight symmetry between the possible
distributions of colors over emeralds in non-law like worlds, analogous to the
symmetries between possibilities in the lottery paradox.55 It is hard to imagine
what sorts of features could distinguish some sequences from others whilst also
having a plausible claim to governing what one is in a position to know.

The counterfactual theory explored in the last section breaks these symme-
tries by drawing on the familiar connections between knowledge and counterfac-
tuals. Of course, when some property separates things related by a symmetry,
it often feels like an arbitrary line has been drawn. The counterfactual facts,
on our picture, pick out a special distribution of colors over emeralds.56 One
might argue that this only shifts the bump in the rug: counterfactuals might
explain why the distributions are not all epistemically on a par, but we have
not provided a theory of why certain distributions are promoted over others by
the counterfactual facts. Even so, we have reduced one sort of arbitrariness, to
another more familiar sort. And perhaps it is unreasonable to ask for more from
a theory of inductive knowledge: the question of what makes counterfactuals
true is vexed, and is not something that necessarily needs to be settled before
we can avail ourselves of a counterfactual theory of inductive knowledge.
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