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Abstract

The principle that rational agents should maximize expected utility or choicewor-
thiness is intuitively plausible in many ordinary cases of decision-making under uncer-
tainty. But it is less plausible in cases of extreme, low-probability risk (like Pascal’s
Mugging), and intolerably paradoxical in cases like the St. Petersburg and Pasadena
games. In this paper I show that, under certain conditions, stochastic dominance rea-
soning can capture most of the plausible implications of expectational reasoning while
avoiding most of its pitfalls. Specifically, given sufficient background uncertainty about
the choiceworthiness of one’s options, many expectation-maximizing gambles that do
not stochastically dominate their alternatives “in a vacuum” become stochastically
dominant in virtue of that background uncertainty. But, even under these conditions,
stochastic dominance will not require agents to accept options whose expectational
superiority depends on sufficiently small probabilities of extreme payoffs. The sort of
background uncertainty on which these results depend looks unavoidable for any agent
who measures the choiceworthiness of her options in part by the total amount of value
in the resulting world. At least for such agents, then, stochastic dominance offers a
plausible general principle of choice under uncertainty that can explain more of the
apparent rational constraints on such choices than has previously been recognized.

1 Introduction

Given our epistemic limitations, every choice you or I will ever make involves some degree
of risk. Whatever we do, it might turn out that we would have done better to do something
else. If our choices are to be more than mere leaps in the dark, therefore, we need principles
that tell us how to evaluate and compare risky options.

The standard view in normative decision theory holds that we should rank options by
their expectations. That is, an agent should represent the various possibilities over which
she’s uncertain as each assigning cardinal degrees of utility or choiceworthiness to each
of her options, and evaluate each option by taking a probability-weighted sum of these
values (an expectation). Call this view expectationalism.

Expectational reasoning provides seemingly indispensable practical guidance in many
ordinary cases of decision-making under uncertainty.1 But it encounters serious difficulties

∗Global Priorities Institute, Faculty of Philosophy, University of Oxford
1Throughout the paper, I assume that agents can assign precise probabilities to all decision-relevant

possibilities. Since there is little possibility of confusion, therefore, I use “risk” and “uncertainty” in-
terchangeably, setting aside the familiar distinction due to Knight (1921). I default to “uncertainty”
(and, in particular, speak of “background uncertainty” rather than “background risk”) partly to avoid the
misleading connotation of “risk” as something exclusively negative.
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in many cases involving extremely large finite or infinite payoffs, where it yields conclusions
that are either implausible, unhelpful, or both. For instance, expectationalism implies
that: (i) Any positive probability of an infinite positive or negative payoff, no matter how
minuscule, takes precedence over all finitary considerations (Pascal, 1669). (ii) When two
options carry positive probabilities of infinite payoffs of the same sign (i.e., both positive
or both negative), and zero probability of infinite payoffs of the opposite sign, the two
options are equivalent, even if one offers a much greater probability of that infinite payoff
than the other (Hájek, 2003). (iii) When an option carries any positive probabilities of
both infinite positive and infinite negative payoffs, it is simply incomparable with any
other option (Bostrom, 2011). (iv) Certain probability distributions over finite payoffs
yield expectations that are infinite (as in the St. Petersburg game (Bernoulli, 1738)) or
undefined (as in the Pasadena game (Nover and Hájek, 2004)), so that options with these
prospects are better than or incomparable with any guaranteed finite payoff.2 (v) Agents
can be rationally required to prefer minuscule probabilities of astronomically large finite
payoffs over certainty of a more modest payoff, in cases where that preference seems at
best rationally optional (as in “Pascal’s mugging” (Bostrom, 2009)).

The last of these problem cases, though theoretically the most straightforward, has
particular practical significance. Real-world agents who want to do the most good when
they choose a career or donate to charity often face choices between options that are fairly
likely to do a moderately large amount of good (e.g., supporting public health initiatives
in the developing world or promoting farm animal welfare) and options that carry much
smaller probabilities of doing much larger amounts of good (e.g., reducing existential risks
to human civilization (Bostrom, 2013) or trying to bring about very long-term “trajectory
changes” (Beckstead, 2013)). Often, näıve application of expectational reasoning suggests
that we are rationally required to choose the latter sort of project, even if the probability
of having any positive impact whatsoever is vanishingly small. For instance, based on
an estimate that future Earth-originating civilization might support the equivalent of 1052

human lives, Nick Bostrom concludes that, “[e]ven if we give this allegedly lower bound...a
mere 1 per cent chance of being correct...the expected value of reducing existential risk
by a mere one billionth of one billionth of one percentage point is worth a hundred billion
times as much as a billion human lives” (Bostrom, 2013, p. 19). This suggests that we
should pass up opportunities to do enormous amounts of good in the present, to maximize
the probability of an astronomical long-term payoff, even if the probability of success is
on the order of, say, 10−30—meaning, for all intents and purposes, no matter how small
the probability.

Even hardened utilitarians who think that we should normally do what maximizes
expected welfare may find this conclusion troubling and counterintuitive. We intuit (or so
I take it) not that the expectationally superior long-shot option is irrational, but simply
that it is rationally optional : We are not rationally required to forego a high probability of
doing a significant amount of good for a vanishingly small probability of doing astronomical
amounts of good. And we would like decision theory to vindicate this judgment.

The aim of this paper is to set out an alternative to expectational decision theory that
outperforms it in the various problem cases just described—but in particular, with respect
to tiny probabilities of astronomical payoffs. Specifically, I will argue that under plausible
epistemic conditions, stochastic dominance reasoning can capture most of the ordinary,

2As is common in discussions of the St. Petersburg paradox, I assume we can extend the strict notion of
an expectation to allow that, when the probability-weighted sum of possible payoffs diverges uncondition-
ally to +/−∞, the resulting expectation is infinite rather than undefined. Nothing essential will depend
on this assumption.
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attractive implications of expectational decision theory—far more than has previously
been recognized—while avoiding its pitfalls in the problem cases described above, and
in particular, while permitting us to decline expectationally superior options in extreme,
“Pascalian” choice situations.

Stochastic dominance is, on its face, an extremely modest principle of rational choice,
simply formalizing the idea that one ought to prefer a given probability of a better payoff
to the same probability of a worse payoff, all else being equal. The claim that we are
rationally required to reject stochastically dominated options is therefore on a strong a
priori footing (considerably stronger, I will argue, than expectationalism). But precisely
because it is so modest, stochastic dominance seems too weak to serve as a final principle
of decision-making under uncertainty: It appears to place no constraints on an agent’s
risk attitudes, allowing intuitively irrational extremes of risk-seeking and risk-aversion.

But in fact, stochastic dominance has a hidden capacity to effectively constrain risk
attitudes: When an agent is in a state of sufficient “background uncertainty” about the
choiceworthiness of her options, expectationally superior options that would not stochas-
tically dominate their alternatives in the absence of background uncertainty can become
stochastically dominant in virtue of that background uncertainty. It is significantly harder
for this to happen, however, in situations where the balance of expectations is determined
by inuscule probabilities of astronomical positive or negative payoffs. Stochastic domi-
nance thereby draws a principled line between “ordinary” and “Pascalian” choice situ-
ations, and vindicates our intuition that we are often permitted to decline gambles like
Pascal’s Mugging or the St. Petersburg game, even when they are expectationally best.
Since it avoids these and other pitfalls of expectational reasoning, if stochastic dominance
can also place plausible constraints on our risk attitudes and thereby recover the attrac-
tive implications of expectationalism, it may provide a more attractive general theory of
rational choice under uncertainty.

I begin in §2 by introducing some conceptual and formal apparatus. In §3, I say a
little more about standard expectational decision theory, as motivation and point of de-
parture for my main line of argument. §4 introduces stochastic dominance and describes
the standard arguments for rejecting stochastically dominated options as a necessary but
insufficient condition of rationality. In §5, I establish two central results: (i) a sufficient
condition for stochastic dominance which implies, among other things, that whenever Oi is
expectationally superior to Oj , it will come to stochastically dominate Oj given sufficient
background uncertainty; and (ii) a necessary condition for stochastic dominance which im-
plies, among other things, that it is harder for expectationally superior options to become
stochastically dominant under background uncertainty when their expectational superior-
ity depends on smaller probabilities of more extreme payoffs. In §6, I argue that the sort
of background uncertainty on which these results depend is rationally appropriate at least
for any agent who assign normative weight to aggregative consequentialist considerations,
i.e., who measure the choiceworthiness of her options at least in part by the total amount
of value in the resulting world. §7 offers an intuitive defense of the initially implausible
conclusion that an agent’s background uncertainty can make a difference to what she is
rationally required to do. §8 describes two modest conclusions we might draw from the
preceding arguments, short of embracing stochastic dominance as a general decision the-
ory. In §9, however, I survey some additional advantages of stochastic dominance over
expectational reasoning and argue that, insofar as stochastic dominance can recover plau-
sible constraints on risk attitudes and hence capture the intuitively desirable implications
of expectationalism, we have substantial reason to prefer it as a general theory of rational
choice under uncertainty. §10 is the conclusion.
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2 Preliminaries

Practical rationality (hereafter, “rationality”) involves responding correctly to one’s be-
liefs about practical reasons.3 Following others in the recent literature (e.g. Wedgwood
(2013, 2017), Lazar (2017b), MacAskill and Ord (forthcoming)), I will speak of the total,
all-things-considered strength of an agent’s reasons for or against choosing a particu-
lar option as the choiceworthiness of that option. Reasons and choiceworthiness, in the
sense we’re concerned with, are objective in the sense of being “fact-relative” rather than
“belief-relative” (Parfit, 2011)—e.g., the fact that my glass is poisoned gives me a rea-
son against drinking from it, and thereby makes the option of drinking less choiceworthy,
even if I neither believe nor have any evidence that it is poisoned. I take no stance on
whether an option’s choiceworthiness depends on the agent’s motivational states (desires,
preferences, etc.), on acts of will (e.g. willing certain ends for herself), or on external nor-
mative/evaluative features of the world (e.g. universal moral obligations). In other words,
choiceworthiness is objective in the sense of being belief -independent, but may or may not
be objective in the sense of being desire- or preference-independent.4

Any expectational decision theory must assume that degrees of choiceworthiness can
be represented on an interval scale (i.e., can be given a real-valued representation that is
unique up to positive affine transformation), and I will adopt this assumption as well (ex-
cept briefly in §9): Although stochastic dominance itself depends only on ordinal choice-
worthiness relations, the main line of argument I advance in this paper assumes that
choiceworthiness is amenable to a certain kind of cardinal representation (as explained
below). I remain neutral, though, on whether cardinal choiceworthiness should be under-
stood as primitive or as a representation of an underlying ordinal relation.

Let’s now introduce some formal apparatus. A choice situation is an ordered triple
S = 〈A,O, β〉, where A is an agent, O is a set of options {O1, O2, ..., Om}, and β is
a probability density function (PDF) over the real numbers that represents the agent’s
background uncertainty in S. We identify each option Oi ∈ O with its simple prospect, a
finite set of ordered pairs Oi = {〈vi1, pi1〉, 〈vi2, pi2〉, ..., 〈vin, pin〉}, where vij ∈ R is a possible

simple payoff and pij ∈ (0, 1] is the probability of obtaining that simple payoff associated
with Oi. (I will generally omit the superscripts on payoffs and probabilities, where there is
no risk of confusion.) The pj are all positive (i.e., we ignore simple payoffs with probability
0) and sum to 1.

I remain neutral on the interpretation of these probabilities, in two ways. First, I
leave it unspecified whether pij represents the causal probability Pr(Oi �→ vij) or the

conditional probability Pr(vij |Oi), and hence remain neutral between causal and evidential
decision theory. Second, I leave it unspecified whether these probabilities are subjective
or epistemic.

Intuitively, the simple payoff of an option is what the option itself yields. The crucial
assumption of this paper, however, is that an option’s overall payoff depends not just on
its simple payoff, but also on what I will call a background payoff. A background payoff
is, roughly, what the agent starts off with, or the component of the overall outcome/payoff

3I don’t claim that this is all there is to practical rationality—some rational requirements, like the
requirement against forming inconsistent intentions, may have a different source. But the decision-theoretic
aspect of practical rationality with which this paper is concerned does, I assume, consist in responding
correctly to reason-beliefs.

4I use the term “choiceworthiness” rather than “value” or “utility” to avoid two possible confusions:
(i) “Value” suggest an evaluative rather than a normative property of options. (ii) “Utility” is often
understood as a measure of preference satisfaction, while I wish to remain neutral on whether or to what
extent an agent’s reasons depend on her preferences.
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that does not depend on her choice. As a mundane illustration: Suppose that a young
person is deciding how to invest some money in her retirement account, and that her only
concern in this context is her net worth when she retires at age 65. Her options are various
funds that she might invest in. The simple payoff of buying some shares in fund Fi (call
this option Oi) is the value those shares will have when she retires. But the overall payoff
of Oi—the thing she ultimately cares about—is her total net worth at retirement, if she
now invests in Fi. This overall payoff is the sum of her simple payoff (the future value of
her Fi shares) plus a background payoff (the value of all her other assets).

Just as an agent may be uncertain about an option’s simple payoff, she may be uncer-
tain about her background payoff. This is what I will call background uncertainty. The
defining feature of background uncertainty is its independence from other features of the
choice situation: In particular, A’s background payoff in S is probabilistically independent
of (i) which option she chooses and (ii) which simple payoff she receives from her chosen
option. Thus, A’s background uncertainty captures uncertainties that apply to all the
options in situation S, rather than uncertainties about any one option in particular. We
will describe A’s background uncertainty by means of a continuous random variable—her
background prospect—with probability density function β, such that the probability of a
background payoff in the interval [n,m] is given by

∫m
n β(x) dx.5

I have already mentioned one possible source of background uncertainty (concerning
financial decisions), but my primary focus will be on a different source: I will assume
that agents should assign at least some normative weight to aggregative consequentialist
considerations, i.e., they should measure the choiceworthiness of an option at least in part
by the total amount of value in the resulting world. Such agents will be in a state of
background uncertainty because they are uncertain how much value there is in the world
to begin with, independent of their present choice. In this case, we can understand β
as giving the probability that, excluding the outcome of A’s present choice, the world
contains value equivalent to between n and m units of choiceworthiness, via

∫m
n β(x)dx.

It might seem that background uncertainty has no bearing on what an agent ought to
do, since it does not affect the relative choiceworthiness of her options. In what follows,
however, I will make the case that background uncertainty can have a great deal of practical
significance, and so needs to be included in our representation of choice situations.

The payoff of option is simply its overall degree of objective choiceworthiness, as
determined by the combination of its simple and background payoffs. Specifically, I will
assume that an option’s payoff can be represented as the sum of its constituent simple and
background payoffs—i.e., that there is some way of assigning real numbers to simple and
background payoffs such that one overall payoff is at least as good as another if and only
if the sum of the real numbers assigned to its constituent simple and background payoffs
is at least as great. Call this additive separability between simple and background payoffs.

Additive separability is not as strong an assumption as it might sound: In particular, it
does not require us to assume that payoffs have any primitive cardinal structure. Suppose
there is a set S of possible simple payoffs and a set B of possible background payoffs, and
that the set of possible overall payoffs S ×B is totally preordered by a relation <p. Then
additive separability amounts to the assumption that 〈S,B,<p〉 forms an additive conjoint
structure. This involves satisfying a number of purely ordinal axioms, the most important
of which is an ordinal separability condition to the effect that, if we know that two overall

5Again, these probabilities can be interpreted as either causal or conditional, and as either subjective
or epistemic. The stipulation that background payoffs are independent of which option the agent chooses
and of what simple payoff it yields means that they are probabilisticalaly independent in terms of the
decision-relevant probabilities, whatever those may be.
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payoffs pi and pj have one component in common (i.e., involve the same simple background
payoff or the same background payoff), we can learn whether pi <p pj by learning the
distinctive component of each payoff.6 If an additively separable representation of payoffs
exists, then it is relevantly unique (unique up to choice of zero elements in S and B
and a unit element in either S or B). Thus, the real numbers used to designate simple,
background, and overall payoffs can be understood either as given independently (e.g., by
purely ethical considerations) or as representing an underlying ordinal relation on overall
payoffs, construed as ordered pairs of simple and background payoffs.

The prospect of Oi is the probability distribution it yields over payoffs. Given the as-
sumptions of independence and additive separability, we can express prospects as follows:
Where Oi = {〈v1, p1〉, 〈v2, p2〉, ..., 〈vn, pn〉} and A’s background uncertainty is described by
β, the prospect of Oi is described by βi(x) = p1β(x− v1) + p2β(x− v2) + ...+ pnβ(x− vn).
Formally, βi(x) is a mixture distribution, a convex combination of n copies of the back-
ground prospect β, each corresponding to a possible simple payoff 〈vi, pi〉, and therefore
translated along the x axis by the value of that simple payoff (vi) and weighted by the
probability of receiving that simple payoff (pi). Since the pi sum to 1, βi is a probability
density function.

3 Expectationalism

3.1 Two kinds of expectationalism

Before embarking on the main line of argument, we should say a bit more about ex-
pectationalism, which will serve as its foil. First, we should distinguish two versions of
expectationalism. One view, which I will call primitive expectationalism, holds that car-
dinal degrees of choiceworthiness are specified independently of any ranking of prospects
or options under uncertainty—e.g., by purely ethical criteria.7 Primitive expectationalism
then holds that agents should maximize the expectation of these independently specified
values. Another view, which I will call axiomatic expectationalism, holds that cardinal
choiceworthiness is simply a representation of some ranking of uncertain prospects—e.g.,
an agent’s preference ordering. This ranking is required to satisfy a set of axioms which
guarantee that it can be represented as maximizing the expectation of some assignment
of cardinal values to outcomes or options under certainty.

3.2 Arguments for expectationalism

There are two standard arguments for expectationalism, corresponding to primitive and
axiomatic expectationalism respectively: long-run arguments and representation theorems.

Long-run arguments invoke the law of large numbers which implies that, as the length
of a series of probabilistically independent risky choices goes to infinity, the probability that
an expectation-maximizing decision rule will outperform any given alternative converges

6The other axioms that characterize additive conjoint structures are mainly technical—e.g. (i) requiring
that the sets S and B are sufficiently rich that for any si, sj ∈ S, bk ∈ B there is a bl ∈ B such that
〈si, bk〉 ∼p 〈sj , bl〉, and (ii) requiring that no payoff is infinitely better than another, in the sense that we
can always “get from” one payoff to another by repeatedly substituting a more preferred component for a
less preferred component (e.g., repeatedly substituting si for sj , where ∀b ∈ B(〈si, b〉 �p 〈sj , b〉), to create
an ascending series of overall payoffs), in a finite number of steps. For a full characterization of additive
conjoint structures and a proof that all such structures have an additively separable representation, see
Krantz et al. (1971, pp. 245-266).

7For defense of this “cardinalist” approach, see for instance Ng (1997). For one illustration of how car-
dinal values can be specified independent of a ranking of prospects, see Skyrms and Narens (forthcoming).

6



to certainty (Feller, 1968). If successful, long-run arguments justify a version of primitive
expectationalism: Their conclusion is that the agent should maximize the expectation
of a cardinal choiceworthiness function whose values to not represent or depend on the
agent’s antecedently specified preferences toward risky prospects. There is an extensive
literature on long-run arguments, but the general consensus is that they are unsuccessful.8

Among other objections, it’s unclear what force long-run arguments have for agents who
don’t in fact face the relevant sort of long run. And since the standard long-run arguments
presuppose an infinitely long run of independent gambles, it’s therefore unclear what force
they have for any actual agent, who will face only a finite series of choices in her lifetime.

Thus, the standard defense of expectationalism in contemporary decision theory ap-
peals instead to representation theorems. Representation theorems in decision theory show
that, if an agent’s preferences satisfy certain putative consistency constraints, then there
is some assignment of cardinal values to outcomes (a utility function) such that the agent
can be accurately represented as maximizing its expectation. The two best-known such
theorems are due to von Neumann and Morgenstern (1947) and Savage (1954). The axioms
that figure in these theorems are subject to ongoing debate, but the axiomatic approach
nevertheless retains the status of decision-theoretic orthodoxy.9

3.3 Expectationalism and risk attitudes toward objective value

My main interest in this paper is in what risk attitudes we should should adopt toward
objective goods that have some natural cardinal structure—e.g., lives saved or lost. And
the two versions of expectationalism have very different things to say about this question.
Primitive expectationalism implies that, insofar as an option’s choiceworthiness increases
linearly with the quantity of objective value it produces, we should be exactly risk-neutral
toward objective goods. But axiomatic expectationalism and the representation theorems
that are its foundation do not have this implication.

For instance, suppose you are in a situation where many lives are at risk. Suppose
that (i) the only thing you care about in this situation is saving lives, (ii) you always
prefer saving more lives to saving fewer, and (iii) you value all the lives at stake equally,
in the sense that all else being equal, you are always indifferent between saving one life
or another. But you do not yet know how to compare risky prospects. If you accept
primitive expectationalism, you might infer that your options in this situation have degrees
of cardinal choiceworthiness that increase linearly with the number of lives saved (though
this is not a logical consequence of (i)–(iii)), in which case primitive expectationalism
implies that you should simply maximize the expected number of lives saved—in other
words, you should be risk-neutral with respect to lives saved.

But suppose instead you merely believe that you should rank prospects in a way that
satisfies, say, the on Neumann-Morgenstern (VNM) axioms. Even given (i)–(iii), and even
given the assumption that the value of saving n lives increases linearly with n, the VNM
axioms do not imply that you should maximize the expected number of lives saved. Rather,
they merely imply that you should maximize the expectation of some increasing function
of lives saved. This function can be arbitrarily concave or convex, meaning that you can be
arbitrarily risk-averse or risk-seeking with respect to lives saved.10 More generally, given
any antecedently specified ranking or assignment of cardinal choiceworthiness to options

8For recent critical treatments, see Buchak (2013, pp. 212–8) and Easwaran (2014, pp. 3–4).
9For a survey of axiomatic approaches and objections to the standard axioms, see Briggs (2017). For

criticism of the axiomatic approach more generally, see Meacham and Weisberg (2011).
10I am here referring to what are sometimes called “actuarial” risk attitudes, as opposed to the sort of

risk attitudes that figure in generalized expected utility theories like Buchak’s (2013) REU.
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under certainty, VNM and the other standard axiom systems merely imply that you should
maximize the expectation of some increasing function of that ranking or assignment.

This permissiveness has its advantages. For instance, consider the “Pascalian” conclu-
sion imputed to expectationalism in the §1 that, if there is even a one percent chance of
a future in which Earth-originating civilization supports 1052 happy lives, then the “the
expected value of reducing existential risk by a mere one billionth of one percentage point
is worth a hundred billion times as much as a billion human lives” (Bostrom, 2013, p. 19).
Primitive expectationalism supports this kind of reasoning. Axiomatic expectationalism,
on the other hand, can disclaim this reasoning and the seemingly-fanatical conclusions it
entails—but only because it places no constraints at all on our risk attitudes toward goods
like happy lives. And in more ordinary cases, this looks like a drawback. For instance,
axiomatic expectationalism cannot tell you that you should save ten lives with probability
.5 rather than one life for sure. Pushing the point to more counterintuitive extremes, it
cannot tell you that you should save 1000 lives with probability .5 rather than 10 lives
with probability .51; nor that you should save 1000 lives for sure rather than 1001 lives
with probability .01.

Is this a defect in standard axiomatic decision theory? It’s not obvious. Some decision
theorists will say that it is not the job of decision theory to tell you what your risk attitudes
should be toward objective goods like lives saved—rather, that’s a job for ethics, or some
other branch of normative philosophy. But it’s pretty clearly a job for someone, wherever
we place it on the disciplinary org chart: The complete normative theory of choice under
uncertainty should tell us that, in a situation where all that matters is saving lives and all
the lives at stake have equal value, one should prefer to save 1000 lives with probability
.5 rather than 10 lives with probability .51. So even if these questions are beyond its
intended remit, axiomatic expectationalism seems to be incomplete as a normative theory
of decision-making under uncertainty.

In summary, there are two problems for expectationalism that I am hoping to remedy:
First, neither version of expectationalism offers a compelling justification for choosing the
option that maximizes the expectation of objective values in ordinary cases where it seems
clear that this is what we should do. Primitive expectationalism relies on the dubious
appeal to hypothetical long runs, while axiomatic expectationalism does not attempt to
justify this conclusion in the first place. Second, insofar as expectationalism does offer
a justification for maximizing expected objective value, it goes too far, committing us to
Pascalian fanaticism in cases involving minuscule probabilities of astronomical payoffs.11

I aim both to provide a stronger justification for choosing options that maximize expected
objective value in ordinary cases, and in so doing to draw a principled line between those
ordinary cases and extreme, Pascalian cases.

It is important to note, however, that the arguments I advance below will interact
very differently with primitive and axiomatic expectationalism. Specifically: I will propose
that first-order stochastic dominance can provide a sufficient criterion of rational choice
under uncertainty. This view is a rival to both primitive and axiomatic expectationalism.
The primary motivation for this view will be the results in §5. And while the primitive
expectationalist cannot take any advantage of these results, the axiomatic expectationalist
can: As we will see in §8.2, those who accept the standard axioms can interpret these
results as furnishing a friendly “add-on” to standard axiomatic decision theory. The main
advantages of my proposed view over axiomatic expectationalism will be that it can recover

11This is true of primitive expectationalism, and also of the most natural strategy for placing con-
straints on risk attitudes toward objective value within the axiomatic framework—namely, an appeal to
“aggregation theorems” like that of Harsanyi (1955).
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strong practical conclusions about choice under uncertainty from something much weaker
and less controversial than the standard axiom systems, and that it better handles the
range of problem cases surveyed in §1.

4 Stochastic dominance

Option O first-order stochastically dominates option P if and only if

1. For any payoff x, the probability that O yields a payoff at least as good as x is equal
to or greater than the probability that P yields a payoff at least as good as x, and

2. For some payoff x, the probability that O yields a payoff at least as good a x is
strictly greater than the probability that P yields a payoff at least as good as x.

In notation: O �sd P ↔ ∀x(
∫∞
x βo(y)dy ≥

∫∞
x βp(y))dy∧∃x(

∫∞
x βo(y)dy >

∫∞
x βp(y))dy.

There are also second- and higher-order stochastic dominance relations, which are less
demanding than first-order stochastic dominance. (For a survey of these higher-order
relations, see Ch. 3 of Levy (2016).) But since we will only be concerned with the first-
order relation, I will henceforth omit the qualifier use “stochastic dominance” to mean
“first-order stochastic dominance”.

Stochastic dominance is a generalization of the familiar statewise dominance relation
that holds between O and P whenever O yields at least as good a payoff as P in every
possible state, and a strictly better payoff in some state. To illustrate: Suppose that I
am going to flip a fair coin, and I offer you a choice of two tickets. The Heads ticket
will pay $1 for heads and nothing for tails, while the Tails ticket will pay $2 for tails and
nothing for heads. The Tails ticket does not statewise dominate the Heads ticket because,
if the coin lands Heads, the Heads ticket yields a better payoff. But the Tails ticket does
stochastically dominate the Heads ticket. There are three possible payoffs: winning $0,
winning $1, and winning $2. The two tickets offer the same probability of a payoff at least
as good as $0, namely 1. And they offer the same probability of an payoff at least as good
as $1, namely .5. But the Tails ticket offers a greater probability of a payoff at least as
good as $2, namely .5 rather than 0.

Stochastic dominance is generally seen giving as a necessary condition for rational
choice:

Stochastic Dominance Principle (SDP) An option O is rationally permissible in sit-
uation S only if it is not stochastically dominated by any other option in S.

This principle is on a strong a priori footing. Various formal arguments can be made in
its favor. For instance, if O stochastically dominates P , then O can be made to statewise
dominate P by an appropriate permutation of equiprobable states in a sufficiently fine-
grained partition of the state space (Easwaran, 2014; Bader, 2018). So if one is rationally
required to reject statewise dominated options, and if the rational permissibility of an
option depends only on its prospect and not on which payoffs are associated with which
states, then one is rationally required to reject stochastically dominated options as well.
The claim that an option’s rational permissibility depends only on its prospect reflects
the idea that all normatively significant features of an outcome are captured by the payoff
value assigned to that outcome, so that as a conceptual matter an agent must be indifferent
between receiving a given payoff in one state or another. If, say, you prefer winning $0
with a Heads ticket to winning $0 with a Tails ticket, then this should be reflected in the
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values assigned to the payoffs, in which case the Tails ticket would no longer stochastically
dominate the Heads ticket.

More informally, it is unclear how one could ever reason one’s way to choosing a
stochastically dominated option P over the option O that dominates it. For any feature of
P that one might point to as grounds for choosing it, there is a persuasive reply: However
choiceworthy P might be in virtue of possessing that feature, O is equally or more likely
to be at least that choiceworthy. And conversely, for any feature of O one might point to
as grounds for rejecting it, there is a persuasive reply: However unchoiceworthy O might
be in virtue of possessing that feature, P is equally or more likely to be at least that
unchoiceworthy. To say that O stochastically dominates P is in effect to say that there is
no feature of P that can provide a unique justification for choosing it over O.

For reasons like these, SDP is almost entirely uncontroversial in normative decision
theory. In particular, it is much less controversial than the standard axioms of expected
utility theory: The most widely discussed alternatives to and generalizations of axiomatic
expectationalism, which give up one or more of those axioms (e.g., rank-dependent ex-
pected utility (Quiggin, 1982) and risk-weighted expected utility (Buchak, 2013)) all satisfy
stochastic dominance. In fact, to my knowledge, no normative decision theories that has
been widely discussed in philosophy or economics violates stochastic dominance.12

My aim, however, is to defend stochastic dominance as not just a necessary but also
a sufficient criterion for rational permissibility. Let’s call this the stochastic dominance
theory of rational choice.

Stochastic Dominance Theory of Rational Choice (SDTR) An option O is ratio-
nally permissible in situation S if and only if it is not stochastically dominated by
any other option in S.

What is the relationship between SDTR and expectationalism? In a broad range of
cases, stochastic dominance is simply a weakening of expectational reasoning: In particu-
lar, whenever the expected choiceworthiness of all options is finite (i.e., neither infinite nor
undefined), O stochastically dominates P only if it has greater expected choiceworthiness.
So in these cases, SDTR is more permissive than expectationalism. But as we will see in
§9, there are other cases where SDTR can deliver guidance that expectational reasoning
cannot, and is therefore less permissive.

Like axiomatic expectationalism, SDTR does not constrain an agent’s risk attitudes
toward objective goods (in the absence of background uncertainty): In a situation where
all that matters is saving lives, saving more lives is always better than saving fewer, and
all the lives at stake have equal value, stochastic dominance does not require you to save
three lives with probability .5 rather than one life for sure, or even to save 1000 lives
with probability .5 rather than 10 lives with probability .51.13 This means that primitive
expectationalism has an apparent advantage over both axiomatic expectationalism and

12In descriptive decision theory, the original version of prospect theory allowed stochastic dominance vio-
lations, and largely for that reason was superseded by cumulative prospect theory (Tversky and Kahneman,
1992), which satisfies stochastic dominance.

It is worth reiterating that we have not specified whether the decision-relevant probabilities are causal
or conditional. In Newcomb-like cases, causal decision theories tell you to choose an option that is stochas-
tically dominated in terms of your conditional probabilities, and evidential decision theories tell you to
choose an option that is stochastically dominated in terms of your causal probabilities. But both views
agree that you should reject options that are stochastically dominated in terms of the decision-relevant
probabilities, whatever kind of probabilities those are.

13In fact, in this sort of case, SDTR and axiomatic expectationalism are very closely related: Given a
fixed ordering of payoffs, it is possible to prefer O to P while satisfying the VNM axioms iff P does not
stochastically dominate O (i.e., iff SDTR permits you to choose O over P ). The difference is that axiomatic
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SDTR: It can explain why, in ordinary cases, you ought to maximize the expectation of
objective goods like lives saved.

But, I will argue, this advantage is only apparent, for once account for background un-
certainty, things change dramatically: Given sufficiently background uncertainty, SDTR
can effectively constrain an agent’s risk attitudes, recovering many of the attractive prac-
tical implications of primitive expectationalism—while still avoiding its fanatical implica-
tions in Pascalian cases. In the next section, we will see how this can happen.

5 Stochastic dominance under background uncertainty

This section describes the general phenomenon of background uncertainty generating new
stochastic dominance relations among options, and states two central results. The first,
which I call the Upper Bound Theorem, gives a sufficient condition for stochastic domi-
nance in the presence of background uncertainty: In effect, for any option O, it establishes
an upper bound in the partial ordering �sd on the set of options to which O may be
permissibly preferred (i.e., the set of options that do not stochastically dominate O). The
second result, which I call the Lower Bound Theorem, gives a necessary condition for
stochastic dominance: It establishes a lower bound in �sd on the the set of options that
stochastically dominate O. The first result shows that, under sufficient background un-
certainty, options whose simple prospects are expectationally best will eventually come
to stochastically dominate their alternatives. The second result shows that, when the
expectational superiority of an option depends on minuscule probabilities of astronomical
payoffs, it requires much more background uncertainty to achieve stochastic dominance,
so that SDTR is more permissive in more Pascalian choice situations.

First, we should define more precisely the phenomenon to be investigated, which I
have described as “background uncertainty generating new stochastic dominance rela-
tions among options”. What this means, more precisely, is that sufficient background
uncertainty can make it the case that the prospect of O stochastically dominates the
prospect of P , even though the simple prospect of O does not stochastically dominate
the simple prospect of P .14 Similarly, when I say that SDTR “constrains an agent’s risk
attitudes” under background uncertainty, I mean that it constrains her risk attitudes to-
ward simple prospects: That is, under sufficient background uncertainty, an agent who
satisfies stochastic dominance must rank options in a way that closely approximates the
risk-neutral expectational ranking of their simple prospects.

The crucial condition for this phenomenon—and therefore, the condition under which
the results below become interesting—is that the agent’s background prospect must have
exponential or heavier tails. I will abbreviate this to large tails.15 I define this condition
in a slightly unorthodox way, the utility of which will become apparent: Let us say that β

has exponential or heavier tails iff its decay rate |β
′(x)|
β(x) is bounded above by the decay rate

of some member of the Laplace (or double-exponential) family of distributions. Laplace

distributions have PDFs of the form 1
2ρe
− |x−µ|

ρ , where µ is a location parameter that
determines where the distribution is centered, and ρ is a scale parameter that determines

expectationalism imposes global coherence requirements on an agent’s preferences (e.g., Independence and
Continuity) that SDTR does not.

14This general phenomenon has been noticed independently, under a slightly different description, by
Pomatto et al. (2018). To my knowledge, it has not been noted or discussed elsewhere.

15To my knowledge, there is no standard term for distributions with exponential or heavier tails. It is
more common to distinguish heavy-tailed distributions, whose tails are heavier-than-exponential. Large-
tailed distributions, then, are either exponential-tailed or heavy-tailed.
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the rate of tail decay. Since Laplace distributions have a constant decay rate equal to
1
ρ , requiring that the decay rate be bounded above by that of a Laplace distribution is
equivalent to requiring that it be bounded above by a finite constant. Thus, β has large

tails iff ∃r∀x( |β
′(x)|
β(x) ≤ r).

Large tails are not strictly a necessary condition for background uncertainty to generate
stochastic dominance. (In particular, local violations of the large tails condition, e.g. by
a vertical asymptote in β, do not always substantially weaken the stochastic dominance
constraints that β imposes.) But it is a very good approximate criterion (as far as I
have been able to discover, anyway) for the circumstances in which stochastic dominance
can strongly constrain risk attitudes toward simple prospects, and as we will see, has an
important connection with the sufficient condition for stochastic dominance identified by
the Upper Bound Theorem below. It is therefore a natural condition on which to focus.

While large tails are a sufficient condition for background uncertainty to generate
some new stochastic dominance relations among options, the strength of the constraints
it imposes on an agent’s risk attitudes also depends on the scale of β. As we will see,
given a large-tailed β, stochastic dominance approximates the ranking of options by the
expectations of their simple prospects ever more closely under increasing rescalings of β. A
rescaling of β is a transformation of the form βs(x) = 1

sβ(x−as ), for some constants a and s.
By increasing s, we “stretch” β horizontally along the x axis, while otherwise preserving its
shape. So that we can talk in a general way about the scale of distributions with various
shapes, let us say that the scale factor of a distribution is its 50% confidence interval
(that is, the length of the shortest interval [x1, x2] such that

∫ x2

x1
β(x) dx = .5). (This

should not be confused the with scale parameter in a parameterized family of distributions
like the Laplace family.) “Increasing the scale factor of β” means transforming it to
βs(x) = 1

sβ(x−as ) for s > 1 (which increases the scale factor of β by a factor of s). In §6, I
will argue that large-tailed β with a large scale factor is rationally warranted, in particular
for agents who assign normative weight to aggregative consequentialist considerations. For
now, I take it for granted.16

I begin in §5.1 with an intuitive description of the target phenomena: how background
uncertainty generates new stochastic dominance relations. In §§5.2–5.3, I state the Upper
and Lower Bound Theorems respectively and draw out their implications. Finally, in §5.4,
I give a toy example that shows how tightly SDTR constrains our risk attitudes with
respect to ordinary gambles in the presence of moderate background uncertainty, and how
much looser those constraints become for more Pascalian gambles.

5.1 How background uncertainty generates stochastic dominance

Suppose you face a risky option that will either save two lives (with probability .5) or
cause one death (with probability .5). Suppose that the lives at stake all have equal value
and there are no other normatively relevant considerations (e.g., deontological constraints)
that should influence your choice besides maximizing the number of lives saved. Call this
option the Basic Gamble.

Basic Gamble (G) {〈−1, .5〉, 〈2, .5〉}

Suppose that your only other option is what we will call the Null Option.

Null Option (N ) {〈0, 1〉}
16As we will see in §5.4, though, the scale factor of β need not be particularly large to generate fairly

strong constraints.
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Intuitively, the Null Option can be thought of as the option of “doing nothing”, and simply
accepting your background payoff as your overall payoff.

In the absence of background uncertainty, neither of these options is stochastically
dominant: G gives a greater probability of a payoff ≥ 2, but N gives a greater probability
of a payoff ≥ 0. But suppose you are in a state of background uncertainty, described by
a PDF β. N ’s prospect, then, is simply given by βN (x) = β(x). G’s prospect is given by
βG(x) = .5β(x − 2) + .5β(x + 1). Visually, we can think of G’s prospect as follows (Fig.
1): We make two half-sized copies of β, corresponding to the two possible outcomes of G,
each of which has probability .5. We then translate one of those copies two units to the
right (representing a gain of 2, relative to the background payoff) and the other one unit
to the left (representing a loss of 1, relative to the background payoff). Finally, we add
these two half-PDFs together, obtaining the new PDF βG(x).

This means that, for each possible payoff x, choosing G rather than N makes both a
positive contribution and a negative contribution to the probability of a payoff ≥ x.

• Positive contribution: If β yields a background payoff in the interval [x − 2, x) and
G yields the simple payoff +2, then G results in a payoff ≥ x where N would have
resulted in a payoff < x. The probability of a background payoff in the interval
[x− 2, x) is given by

∫ x
x−2 β(y)dy, and the probability that G yields a simple payoff

of +2 is .5. Since these probabilities are independent, we can multiply them. So the
possibility of a positive simple payoff from G increases the probability of an overall
payoff ≥ x by .5

∫ x
x−2 β(y)dy.

• Negative contribution: If β yields a background payoff in the interval [x, x− 1) and
G yields the simple payoff −1, then G results in a payoff < x where N would have
resulted in a payoff ≥ x. The probability of a background payoff in the interval
[x, x+ 1) is given by

∫ x+1
x β(y)dy, and the probability that G yields a simple payoff

of −1 is .5. So the possibility of a negative simple payoff from G decreases the
probability of an overall payoff ≥ x by .5

∫ x+1
x β(y)dy.

Thus, G offers a greater probability than N of a payoff ≥ x iff .5
∫ x
x−2 β(y) dy >

.5
∫ x+1
x β(y) dy. If this inequality holds for every x, then G stochastically dominates N

(see Fig. 2). Formally:

∀x
(
.5

∫ x

x−2
β (y) dy > .5

∫ x+1

x
β(y) dy

)
→ G �sd N

If β is unimodal (i.e., strictly decreasing in either direction away from a central peak),
then this condition will be trivially satisfied for values of x in the right tail: Since β is
decreasing in the right tail,

∫ x
x−2 β(y) dy will clearly be greater than

∫ x+1
x β(y) dy, being

both “wider” and “taller”. The interesting question is whether it holds in the left tail. A
sufficient condition for it to do so is that the value of β never decreases by more than a
factor of 2 in an interval of length 3: In this case,

∫ x
x−2 β(y) dy is everywhere greater than∫ x+1

x β(y) dy, since it is twice as “wide” (i.e., the interval [x− 2, x] is twice as long as the
interval [x, x+ 1]) and everywhere at least half as “tall” (i.e., the maximum value of β on
the interval [x−2, x+ 1] is no more than twice the minimum value). This guarantees that
by choosing G, at every point x on the horizontal axis, you move more probability mass
from the left of that point to the right (increasing the probability of a payoff ≥ x) than
from the right to the left (decreasing the probability of a payoff ≥ x), which means that
G stochastically dominates N .
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Figure 1: PDFs representing the prospects of the Null Option (blue) and the Basic Gamble
(red), given a background prospect described by a Cauchy distribution with a location
parameter of 0 and a scale parameter of 10. Purple and orange curves are “half PDFs”
representing the two possible outcomes of the Basic Gamble: They are obtained from the
background distribution β by multiplying by .5 (representing the .5 probabilities of each
simple payoff), then translating by +2 and −1 respectively (representing the magnitudes
of the simple payoffs). The prospect of the Basic Gamble is then obtained by summing

the orange and purple curves. [Blue: β(x) = βN (x) =
(
10π(1 + ( x10)2)

)−1
. Purple:

βG1 (x) = .5β(x+ 1). Orange: βG2 (x) = .5β(x− 2). Red: βG(x) = βG1 (x) + βG2 (x).]

Figure 2: G stochastically dominates N if for every x, .5
∫ x
x−2 β(y) dy (red area, corre-

sponding to the possibility of a simple payoff of +2 and a background payoff in [x− 2, x))
is greater than .5

∫ x+1
x β(y) dy (blue area, corresponding to the possibility of a simple

payoff of −1 and a background payoff in the interval [x, x+ 1)).
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Figure 3: CCDFs (and “half CCDFs”) corresponding to the PDFs (and “half PDFs”)
in Fig. 1. The blue curve gives the probability that the Null Option will yield a payoff
≥ x. The red curve gives the probability that the Basic Gamble will yield a payoff ≥ x.
Purple and orange curves again represent the two possible simple payoffs of the gamble.
B̄G (red) is everywhere slightly greater than B̄ (blue), indicating that the Basic Gamble
yields a greater probability of a payoff ≥ x than the Null Option for every x, and hence is
stochastically dominant. [Blue: B̄(x) = 1

π tan
−1
(
x
10

)
+ .5. Purple: B̄G

1 (x) = .5B̄(x + 1).
Orange: B̄G

2 (x) = .5B̄(x− 2). Red: B̄G(x) = B̄G
1 (x) + B̄G

2 (x).]

In other words:

∀x∀y
(
|x− y| ≤ 3→ β(x)

β(y)
≤ 2

)
implies that...

∀x
(
.5

∫ x

x−2
β(y) dy > .5

∫ x+1

x
β(y) dy

)
which in turn implies that...

G �sd N

For β to never decrease by more than a factor of 2 within an interval of length 3, it is
sufficient that β has large tails and a large enough scale factor: If a distribution has large
tails, then for any finite l, there is some finite r such that β never decreases by more than
a factor of r within an interval of length l. And if for l = 3 this factor is greater than
2, we can decrease it by “stretching” β (increasingly rescaling it), so that its tails decay
more slowly.

The implication of stochastic dominance can be made more visually perspicuous by
representing each prospect not by its probability density function, but by the correspond-
ing complementary cumulative distribution function (CCDF). The cumulative distribu-
tion function (CDF) of a prospect gives the probability of it taking a value less than or
equal to x: Bi(x) =

∫ x
−∞ βi(y) dy. The CCDF, B̄(x), is the complement of the CDF:

B̄(x) = 1−B(x). When prospects are continuous (as we have assumed), the CCDF gives
the probability of a payoff ≥ x. Thus, the Basic Gamble stochastically dominates the Null
Option iff its CCDF is everywhere greater (Fig. 3).
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5.2 Upper Bound Theorem

We have now seen how background uncertainty can generate stochastic dominance. But
how general is this phenomenon—does it depend on special and improbable conditions?
In this section, we will partially answer that question by identifying a sufficient condition
for Oi to stochastically dominate Oj under background uncertainty, that depends only on
(i) a measure of the expectational superiority of Oi to Oj and (ii) the rate at which the
tails of β decay, relative to the range of possible simple payoffs from Oi and Oj .

To state the result, we need to introduce some new expressions. First, we introduce a
function that, for options Oi and Oj , gives the difference between the probability that Oi
yields a simple payoff ≥ x and the probability that Oj yields a simple payoff ≥ x.

∆ij(x) := Pr(Oi ≥ x)− Pr(Oj ≥ x)

∆ij can be understood as the difference of the CCDFs of the simple prospects of Oi and
Oj (Fig. 4). We also define the positive and negative parts of ∆ij :

∆+
ij(x) := max(∆ij(x), 0)

∆−ij(x) := max(−∆ij(x), 0)

The integral of ∆ij gives the difference in expected choiceworthiness between Oi and
Oj . If ∆ij is nowhere negative and somewhere positive, then the simple prospect of Oi
stochastically dominates that of Oj , which guarantees that Oi will stochastically dominate
Oj in any state of background uncertainty (Pomatto et al., 2018, pp. 2–3). On the other
hand, if the simple prospect of Oj has a greater expectation than that of Oi, then it is
impossible for Oi to stochastically dominate Oj in any state of background uncertainty
(Pomatto et al., 2018, p. 3). Thus, the cases of interest to us are those where ∆ij is
somewhere positive and somewhere negative, and where the integral of ∆ij is positive.

Second, we introduce a function rate(Oi, Oj , β) that gives the maximum ratio between
values of β, for arguments that differ by no more than the range of the support of ∆ij ,
denoted | supp(∆ij)| = max(supp(∆ij))−min(supp(∆ij)). (In general, | supp(∆ij)| is the
difference between the best and worst possible simple payoffs in Oi and Oj .)

rate(Oi, Oj , β) := max
x,y:|y|<| supp(∆ij)|

β(x+ y)

β(x)

This notation in hand, we can now state the first result.

Theorem 1 (Upper Bound Theorem). For any options Oi, Oj and background prospect
β, ∫∞

−∞∆+
ij(x) dx∫∞

−∞∆−ij(x) dx
> rate(Oi, Oj , β)→ Oi �sd Oj

The proof has been consigned to the appendix. But as an intuitive sketch: Consider
a possible payoff p and an option Oi. Given a background payoff p− x, Oi yields a payoff
≥ p if and only if its simple payoff is ≥ x. We could therefore calculate the probability
that Oi yields a payoff ≥ p as

∫∞
−∞ β(x) × Pr(Oi ≥ p − x) dx. And this means that for

rival options Oi and Oj , we could calculate difference between Oi’s and Oj ’s probabilities
of a payoff ≥ p as

∫∞
−∞ β(x)× (Pr(Oi ≥ p− x)− Pr(Oj ≥ p− x)) dx—or in other words,∫∞

−∞ β(x)×∆ij(p−x) dx. If β were uniform on the relevant interval around p (specifically,
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Figure 4: The CCDFs of the simple prospects of the Basic Gamble G (top) and
the Null Option N (middle), and the difference ∆GN of the two CCDFs (bottom).∫∞
−∞∆GN (x) dx =

∫∞
−∞∆+

GN (x) dx −
∫∞
−∞∆−GN (x) dx gives the difference in expected

choiceworthiness between G and N .
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[p+mink(v
i/j
k ), p+maxk(v

i/j
k )]), then choosing Oi over Oj would change the probability of a

payoff ≥ p by an amount proportionate to
∫∞
−∞∆ij(x) dx = ∆+

ij(x) dx−
∫∞
−∞∆−ij(x) dx, and

Oi would offer a better probability than Oj of a payoff ≥ p iff ∆+
ij(x) dx >

∫∞
−∞∆−ij(x) dx.

Given that β is not uniform, it imposes a “discount” on some parts of ∆ij relative to
others. But if the ratio between values of β within intervals of size | supp(∆ij)| is never
greater than some finite r, then this discount factor can never be greater than r. And so

if
∫∞
−∞∆+

ij(x) dx∫∞
−∞∆−ij(x) dx

> r, it is guaranteed that for any arbitrary p we consider, Oi will yield a

greater overall probability than Oj of a payoff ≥ p.
If β has large tails, then for any Oi, Oj , rate(Oi, Oj , β) will be finite.17 Moreover, if

we “stretch” β along the x-axis (i.e., increasingly rescale it), rate(Oi, Oj , β) converges to 1
(for any Oi, Oj , ).18 So if β has large tails and the simple prospect of Oi is expectationally

superior to that of Oj (so that
∫∞
−∞∆+

ij(x) dx∫∞
−∞∆−ij(x) dx

> 1), Oi will stochastically dominate Oj given

only that β has a large enough scale factor. This means that, as we increasingly rescale
β, the partial ordering of options given by SDTR asymptotically approaches the ordering
of options by the expectations of their simple prospects.

5.3 Lower Bound Theorem

The Upper Bound Theorem also offers some suggestion that it is harder for background
uncertainty to generate stochastic dominance in Pascalian contexts: All else being equal,
increasing the range of simple payoffs increases rate(Oi, Oj , β), and so the condition∫∞
−∞∆+

ij(x) dx∫∞
−∞∆−ij(x) dx

> rate(Oi, Oj , β) becomes more demanding. But since this is a sufficient

rather than a necessary condition for stochastic dominance, this is only a suggestion.
The suggestion is confirmed, however, by the following necessary condition for stochas-

tic dominance:

Theorem 2 (Lower Bound Theorem). For any options Oi, Oj and background prospect
β,

Oi �sd Oj → max
x

∆ij(x) > max
x

∫ ∞
−∞

∆−ij(x− y)× β(y) dy

The proof is again left for the appendix. But as an intuitive sketch: We saw above
that, for a possible payoff p, the difference between Oi’s and Oj ’s probabilities of a payoff
≥ p is given by

∫∞
−∞ β(x) ×∆ij(p − x) dx. So Oi gives an equal or greater probability of

a payoff ≥ p iff
∫∞
−∞ β(x)×∆+

ij(p− x) dx ≥
∫∞
−∞ β(x)×∆−ij(p− x) dx. Since β integrates

to 1,
∫∞
−∞ β(x) × ∆+

ij(p − x) dx cannot be greater than maxx ∆+
ij(x), which is equal to

maxx ∆ij(x). So if
∫∞
−∞ β(x) × ∆−ij(p − x) dx is greater than maxx ∆ij(x) for any p, Oi

cannot stochastically dominate Oj .
This result tells us two things: First, whenever the simple prospect of Oi does not

stochastically dominate that of Oj (so that maxx
∫∞
−∞∆−ij(x − y) × β(y) dy is non-zero),

17Since |β
′(x)|
β(x)

is bounded above by r, the ratio between values of β separated by less than | supp(∆ij)|
(i.e., rate(Oi, Oj , β)) cannot be greater than er| supp(∆ij)|. This follows from Grönwall’s inequality.

18Rescaling β by a factor of s means transforming it to βs = 1
s
β(x−a

s
), for some constant a. Comparing

the corresponding points in the original and transformed distributions (x and x−a
s

), we find that β(x) is

reduced by a factor of s, but β′(x) is reduced by a factor of s2. So if |β
′(x)|
β(x)

is bounded above by r, then

|β′
s(x)|
βs(x)

is bounded above by r
s
, and rate(Oi, Oj , βs) is bounded above by e

r| supp(∆ij)|
s . This implies that as

s goes to infinity, rate(Oi, Oj , βs) goes to 1.
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there is some probability threshold such that sets of simple payoffs with total probability
below that threshold cannot generate stochastic dominance, no matter their magnitude.
To illustrate, suppose we make the choice between Oi and Oj more Pascalian by tak-
ing each positive simple payoff of Oi and negative simple payoff of Oj , and replacing
its simple payoff-probability pair with a smaller probability of a proportionately larger

simple payoff, plus a complementary probability of 0—that is, replacing 〈vi/jk , p
i/j
k 〉 with

〈cvi/jk ,
p
i/j
k
c 〉, 〈0, p

i/j
k −

p
i/j
k
c 〉, for some constant c. This “Pascalian transformation” preserves

the expectations of both options. But as c goes to infinity, maxx ∆ij(x) goes to 0, while
maxx

∫∞
−∞∆−ij(x − y) × β(y) dy does not, so Oi must eventually cease to stochastically

dominate Oj . More generally, holding other features of a choice situation fixed, SDTR
will eventually cease to require the expectationally superior option as the source of its ex-
pectational superiority becomes increasingly Pascalian (reliant on very small probabilities
of extreme simple payoffs).19

But second, the probability threshold established by the Lower Bound Theorem—
namely, maxx

∫∞
−∞∆−ij(x− y)× β(y) dy—is sensitive to the scale of β. As we increase the

scale of β, we spread its fixed budget of probability mass more thinly, so that maxx
∫∞
−∞∆−ij(x−

y)× β(y) dy must shrink, approaching zero in the limit. Thus, the greater the scale of β,
the more Pascalian a choice situation can become while preserving stochastic dominance.

5.4 Some illustrations

The Upper and Lower Bound Theorems give separate sufficient and necessary conditions
for stochastic dominance. If we fill in some details, though, we can find necessary-and-
sufficient conditions for stochastic dominance in restricted contexts. This lets us see just
how tightly SDTR constrains risk attitudes in particular choice situations, both “ordinary”
and “Pascalian”.

First, let’s specify a background prospect: a Laplace distribution with a mean of zero
and a scale parameter of − 500

ln(.05) (≈ 166.9).20 A Laplace distribution has exponential
tails, and is therefore as light in the tails as any large-tailed distribution can be. The scale
parameter of − 500

ln(.05) is chosen because it yields a 95% confidence interval of [−500,+500],
which gives an intuitive sense of the scale of the distribution. If we assume that units
represent lives saved/lost (or more precisely, the choiceworthiness of saving a typical life),
then this means the agent is 95% confident that her background payoff will fall in an
interval whose magnitude is the value of 1000 human lives. For an agent who attaches
normative weight to the total value of the world that results from her choices, this scale
parameter is implausibly small (as I will argue in §6). But I assume this very modest degree
of background uncertainty in order to emphasize how easily background uncertainty can
generate can generate very strong stochastic dominance constraints on an agent’s choices.

To see the strength of these constraints, consider the following:

19In a very specific and limited sense, therefore, SDTR vindicates the oft-mooted idea that it is per-
missible to ignore outcomes with sufficiently small probabilities (described, for instance, as “de minimis”
(Whipple, 1987) or “rationally negligible” (Smith, 2014, 2016)). But the Pascalian threshold drawn by
SDTR differs from these previous ideas in important ways: First, it applies to sets of outcomes rather
than individual outcomes (so it does not face problems of individuation). Second, it is sensitive in precise
ways to other features of the choice situation (e.g., to the magnitude of any high-probability simple payoffs
that must be weighed against the more improbable outcomes, and to the scale of the agent’s background
prospect), so it does not establish any general threshold below which probabilities can be ignored.

20Stochastic dominance is invariant under translations of the background prospect (i.e., transformations
of the form β′(x) = β(x−a) for some constant a), since translations of β only result in identical translations
of each option’s overall prospect. Thus, in a parameterized distribution like Laplace, the choice of a mean
(or, more generally, location parameter) makes no difference for our purposes.
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Generalized Basic Gamble (G ′) {〈−1, .5〉, 〈0, .5− p〉, 〈2, p ∈ [0, .5]〉}

We can interpret G′ as an option that will save two lives with probability p, cause one
death with probability .5, and have no consequences with probability .5− p.

Given a choice between G′ and the Null Option N , G′ has greater expected choicewor-
thiness than N iff p > .25. But for what values of p is G′ stochastically dominant? To
figure this out, let’s consider the CDF of the background prospect, expressed as:

B(x) =

{
.5 exp( ln(.05)x

500 ) x ≤ 0

1− .5 exp(− ln(.05)x
500 ) x > 0

For any x, G′ improves the probability of a payoff ≥ x (relative to N) by p(B(x)−B(x−
2)), and worsens the probability of a payoff ≥ x (relative to N) by .5(B(x + 1) − B(x)).
Thus, G′ stochastically dominates N iff:

∀x(p(B(x)−B(x− 2)) > .5(B(x+ 1)−B(x)))

or equivalently

∀x
(
p >

.5(B(x+ 1)−B(x))

B(x)−B(x− 2)

)
The function on the right side of this inequality is bounded above at ∼ .25226. This

means that, while G′ has greater expected choiceworthiness than N iff p > .25, G′ stochas-
tically dominates N iff p > ∼ .25226. So, even given a relatively light-tailed background
prospect with a small scale factor, stochastic dominance imposes extremely tight con-
straints on the choice between G′ and N—nearly as tight as those imposed by expecta-
tionalism.

But now consider a more Pascalian version of G′:

Generalized Pascalian Gamble (G ′′) {〈−1, .5〉, 〈0, 1− p〉, 〈2000, p ∈ [0, .5]〉}

G′′ has greater expected choiceworthiness than N iff p > .00025. By reasoning parallel
to the case of G′, G′′ stochastically dominates N iff:

∀x
(
p >

.5(B(x+ 1)−B(x))

B(x)−B(x− 2000)

)
The function on the right side of this inequality, however, is bounded above at ∼ .0030047.
That is, G′′ only comes to stochastically dominate N when the probability of a positive
simple payoff is more than ten times greater than the probability at which G′′ becomes ex-
pectationally superior. So at least here, stochastic dominance places very tight constraints
on choices involving intermediate probabilities of modest simple payoffs, but gives much
more latitude when faced with very small probabilities of very large simple payoffs.21

What does this mean for potentially Pascalian real-world choices—e.g., the choice
between short-term interventions that do moderate amounts of good with high probability

21Notably, given that β has large tails, it seems to matter very little precisely how heavy its tails are.
For instance, suppose we replace the Laplace distribution with a Cauchy distribution (which has much
heavier tails) with a scale parameter of −500(cot(.525π)) (≈ 39.35)—which yields the same 95% confidence
interval of [−500,+500]. Now we find that G′ stochastically dominates N iff p >∼ .25969 (as opposed to
∼ .25226 for the Laplace distribution), and G′′ stochastically dominates N iff p >∼ .009452 (as opposed
to ∼ .0030047 for the Laplace distribution). That is, at least in these two cases, moving to a much heavier
tailed distribution with a roughly equivalent scale parameter does not change the conditions for stochastic
dominance very much, and in fact makes those conditions somewhat more demanding, rather than less.
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and interventions that try to influence the far future, doing potentially astronomical good,
but with (plausibly) very low probability of success? Fully answering this question is a
large project unto itself (requiring, among other things, a plausible model of our actual
background uncertainty and of the probabilities and payoffs involved in the interventions
we wish to compare). But as a first approximation, let’s consider another stylized case
in which we must choose between a “sure thing” option that saves one life for certain
(S = {〈1, 1〉})) and a “long shot” option that tries to prevent existential catastrophe,
thereby enabling the existence of astronomically many future lives, but has only a very
small probability of making any difference at all (L = {〈0, 1 − p〉, 〈a, p〉}, where a is
astronomically large, p is very small, and ap > 1).

First, we might ask what is the threshold on p imposed by the Lower Bound Theorem
below which, no matter the magnitude of a, L cannot stochastically dominate S. To a
good approximation, the answer turns out to be: the inverse of the scale factor of β.22 If
one’s background uncertainty reflects uncertainty about the total amount of value in the
Universe, it seems safe to assume that its scale factor should be at least on the order of 109.
(Indeed, the arguments in the next section will suggest that it should be much larger.) If
so, then the “Pascalian threshold” below which L cannot stochastically dominate S will
likely be no greater than 10−9.

This threshold applies to L no matter the magnitude of the astronomical simple payoff
a. How much do things change if we consider some particular value of a, like Bostrom’s
1052? The short answer is: not much. For these purposes, payoffs much larger than the
scale factor of the background prospect can, to a very close approximation, be treated
as infinite.23 Thus, the probability threshold at which a payoff like 1052 can generate
stochastic dominance over S will be roughly the inverse of the scale factor of β, as long as
that scale factor is significantly less than 1052.

This suggests a strategy for proponents of Bostrom-style arguments (and “longter-
mists” more generally) to allay concerns about Pascalian fanaticism: If we can increase
the probability of astronomically positive payoffs like 1052 future lives by significantly
more than the inverse of the scale factor of our background uncertainty (e.g., conser-
vatively, by more than 10−9), then aggregative consequentialists at least should have no
decision-theoretic reservations about favoring such interventions (assuming they are expec-
tationally superior to their alternatives), since they are required by stochastic dominance.
But if the decision-relevant probabilities are on the order of, say, 10−30, then even though

22If β has a scale factor (i.e., 50% confidence interval) of 1, then the threshold given by the Lower Bound
Theorem in the choice between L and S is .5 − .5p. (Assuming, without loss of generality, that the 50%
confidence interval of β is centered at 0, maxx

∫∞
−∞∆−LS(x− y)× β(y) dy =

∫∞
−∞∆−LS(.5− y)× β(y) dy =∫ .5

−.5(1 − p) × β(y) dy. And if the scale factor of β is 1, then
∫ .5
−.5 β(y) dy = .5.) As the scale factor s of

β increases, the values of β shrink, but maxx
∫∞
−∞∆−LS(x − y) × β(y) dy is also able to draw increasingly

from the very peak of β. So in the limit as s goes to infinity, maxx
∫∞
−∞∆−LS(x− y)× β(y) dy converges to

(.5− .5p)× r× 1
s
, where r is the ratio between the maximum value of β and its average value over its 50%

confidence interval. Since r must be greater than 1, and will typically be well under 20, the probability
threshold given by the Lower Bound Theorem will typically be within an order of magnitude of 1

s
for large

values of s.
23To see this, consider L1 : {〈0, 1 − p〉, 〈1052, p〉} and L2 : {〈0, 1 − p〉, 〈+∞, p〉}. Will L2 stochastically

dominate S for much smaller values of p than L1? L1 �sd S iff ∀xp
∫ x
x−1052 β(y)dy ≥

∫ x
x−1

β(y)dy. As long

as p > 10−52, this condition will be satisfied for values of x in the right tail of the background prospect
(in particular, for all values of x that exceed the mean of the background prospect by at least .5× 1052).
For all other values of x,

∫ x
x−1052 β(y)dy is only very slightly smaller than

∫ x
−∞ β(y)dy, assuming the scale

factor of the background prospect is much smaller than 1052, since the cutoff x − 1052 will be far out in
the left tail of the distribution. Thus, the value of p required for L1 to stochastically dominate S is only
very slightly greater than than the value required by L2.
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the expectations may still be astronomical (using Bostrom’s number, 1022), it becomes
more plausible that we are rationally permitted to prefer expectationally inferior “sure
thing” interventions.24

Given the above results, it seems to me that the greatest intuitive worry about SDTR
in the presence of large-tailed background uncertainty is not that it will capture too little
of expectational reasoning (failing to recover intuitive constraints on our choices), but
rather that it will capture too much—requiring us to accept many gambles that seem
intuitively Pascalian (e.g., where the probability of any positive payoff is on the order of
10−9 or less). But really, this is not a worry at all: Unlike primitive expectationalism, SDP
is supported by a priori arguments far more epistemically powerful than our intuitions
about Pascalian gambles. If some gambles that seem intuitively Pascalian turn out to be
stochastically dominant once we account for our background uncertainty, we should not
conclude that stochastic dominance is implausibly strong. Rather, we should conclude
that there is a much more compelling argument for choosing the expectation-maximizing
option in these cases than we had previously realized. This would be not a reductio but
rather an unexpected and practically important discovery.

6 Sources of background uncertainty

The results above are practically significant only if some agents are (or ought to be) in
a state of background uncertainty described by a large-tailed distribution with at least
a moderately large scale factor. In this section, I give three arguments that, at least for
agents who assign normative weight to aggregative consequentialist considerations (and
perhaps more generally), this sort of background uncertainty is rationally required.

First, an intuitive argument: The level of background uncertainty required by the
arguments in the last section is in fact extremely modest. Setting aside some contrived
exceptions, a distribution has exponential or heavier tails as long as there is some finite
bound on the ratio between probabilities assigned to adjacent intervals of a fixed length,
like [x − 1, x] and [x, x + 1].25 In our context, this means that there is some finite upper
bound on how much more probable I take it to be that the Universe contains between x−1
and x units of value than that it contains between x and x+1 units of value (or vice versa).
The only way there could fail to be such a bound (given that my β is supported everywhere)
is if the ratio increased without bound in one or both tails of β. But this implies that
I become arbitrarily confident about the relative probability of very similar hypotheses,
in a domain where I seem to have virtually no grounds for distinguishing between those
hypotheses. It would mean, for instance, that I find it vastly more probable that the
Universe contains between −18, 946, 867, 974, 834 and −18, 946, 867, 974, 835 units of value
than that it contains between −18, 946, 867, 974, 835 and −18, 946, 867, 974, 836 units of
value. And as the numbers get larger, my relative confidence only gets (boundlessly)
greater. But it seems obvious that, if anything, my confidence in these relative probabilities
should diminish as the numbers get larger. None of my evidence provides any serious
support for the first of the above hypotheses ([−...5,−...4]) over the second ([−...6,−...5]),
at least not in any way that I am capable of identifying.

24For a general exposition of the case for longtermism (roughly, the thesis that what we ought to do is
primarily determined by the effects of our choices on the far future) based on the potentially astronomical
scale of future human civilization, see Beckstead (2013)and Greaves and MacAskill (ms). For discussion of
the worry that these “astronomical stakes” arguments involve a problematic form of Pascalian fanaticism,
see Chapters 6–7 of Beckstead (2013).

25The constant 1 is arbitrary. If the ratio between the probabilities of [x− l, x] and [x, x+ l] is bounded
for some value of l, then it is bounded for any value.
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The second argument is a bit more concrete: Attempting to model our actual back-
ground uncertainty, even on fairly conservative assumptions, yields tails significantly heav-
ier than exponential. Assume that the total amount of value in the world is, at least in
part, a function of the total welfare of all morally statused beings. In this case (unless
other normative considerations are systematically anti-correlated with total welfare), my
background uncertainty should be at least as great as my uncertainty regarding the total
amount of welfare in the Universe. This uncertainty is determined by my uncertainty
about (1) the number of morally statued beings and (2) their average welfare.

The most obvious source of large tails is uncertainty about the number of statused
beings. Playing on the Drake equation, we can approximate the number of statused beings
in the Universe as the product of (1.1) the total number of galaxies in the Universe, (1.2)
the average number of stars (that will ever exist) per galaxy, (1.3) the average number of
populations of statused beings per star, (1.4) the average longevity of those populations,
in generations, and (1.5) the average number of individuals in a generation.

Any of factors (1.1), (1.4), and (1.5) might be a source of large-tailed background
uncertainty, but (1.1) is the most straightforward.26 One might think that (1.1) is a
limiting factor, since there is an upper bound on the number of galaxies given by the
size of the observable universe (thought to contain between 200 billion and a few trillion
galaxies in total (Gott III et al., 2005; Conselice et al., 2016)). But the observable universe
is only a small part of the Universe as a whole: It is now known, in fact, that the Universe
as a whole must be many times larger than the part we can observe. And more importantly,
there is no known upper bound on its size, assuming that it is finite.27

Of course, the absence of an upper bound on the size of the Universe is not enough
for our purposes: We need a probability distribution. This requires a choice of prior,
a fraught endeavor whose philosophical difficulties we will not be able to resolve here.
But the best we can do is to choose a reasonable and conservative prior and see where
it leads us. Vardanyan et al. (2009) suggest a physically motivated prior which they
call the astronomer’s prior. Conditional on a finite universe, the astronomer’s prior is
uniform over values of Ωk in the interval (0, 1], where Ωk is the curvature parameter
in the standard ΛCDM cosmology (smaller values of Ωk indicating less curvature and

26With respect to (1.4) and (1.5), it could be that interstellar civilizations are extremely long-lived, or
that they reach extremely large populations. Setting aside speculative physics, however, there seem to be
fairly hard upper bounds on both these factors, given by the impending heat death of the Universe and
the light-speed limit on a civilization’s rate of expansion.

27Assuming that the Universe has the simplest (viz., simply connected) topology, it is finite if and only
if it has positive curvature, with larger curvature implying a smaller Universe. Current cosmological data
constrain the curvature of the Universe to a fairly small interval around zero (Gong et al., 2011; Jimenez
et al., 2018). Based on this data, Vardanyan et al. (2011) find a lower bound on the size of the Universe of
251 Hubble volumes (roughly 7.7 times larger than the observable universe), with 99% confidence. Much
larger numbers have been suggested as well: Greene (2004) notes that in many inflationary models, the
Universe is so large that “[i]f the entire cosmos were scaled down to the size of earth, the part accessible to
us would be much smaller than a grain of sand” (p. 285). From one such inflationary model, Page (2007)

extrapolates (though without fully endorsing) a lower bound of roughly 101010122

Hubble volumes.
To my knowledge, no cosmologist has proposed an upper bound on the size of the Universe as a whole.

Vardanyan et al. (2009) give a probability distribution that is bounded above at roughly 108 Hubble
volumes (p. 438). But this is an artifact of their choice of categories: Because a universe larger than that
bound is observationally indistinguishable from a flat (infinite) universe, they group larger finite universes
together with infinite universes for purposes of model comparison (see §3.3, pp. 435-6).

I am setting aside, as overkill, various multiverse hypotheses according to which the result of the Big
Bang (our observable universe, and what lies beyond it) is only a small part of the Universe as a whole.
But these hypotheses of course add to our uncertainty about the size of the Universe and the total amount
of value it contains.
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hence a larger Universe).28 This implies a prior over the present curvature radius of the
Universe, a0, where Pr(a0) ∝ a−3

0 , which in turn implies a prior over the present volume

of the Universe, V , where Pr(V ) ∝ V −
5
3 . This distribution is extremely heavy-tailed—

much heavier than exponential.29 And it implies an equally heavy-tailed distribution with
respect to the number of galaxies, which is directly proportional to V .

Given such a heavy-tailed distribution for the size of the Universe, a large-tailed dis-
tribution for total welfare in the the Universe (or, in the part of the Universe unaffected
by our choices) is nearly a foregone conclusion. The remaining factors are (1.2-5) the
number of statused beings per galaxy and (2) the average welfare of statused beings. A
large-tailed background prospect then just requires two modest assumptions: first, that
the product of these remaining factors is not strongly anti-correlated with the number of
galaxies in the Universe, and second, that we assign positive probability to both positive
and negative values for average welfare. The second assumption looks unassailable, and I
cannot think of any reason to question the first.

The most serious objection I can see to the preceding line of argument is that the
Universe, and the number of morally statused beings it contains, may well be infinite
rather than finite (Knobe et al., 2006; Vardanyan et al., 2009; Carroll, 2017). I will,
unfortunately, have little to say about this objection (though I say a bit in §9.6 below).
I take it for granted that the true axiology can make non-trivial comparisons between
infinite worlds, so that even if we were certain that the Universe was infinite, we could
still be uncertain about its overall value. But how (if at all) we extend the arguments
of this paper to the infinite context depends very much on what sort of infinite axiology
we adopt, and there is as yet no agreement even on very basic questions about how to
formulate an infinite axiology.30 Perhaps more to the point (though no more satisfying),
expectational reasoning is if anything more threatened by infinite worlds than stochastic
dominance reasoning (see for instance Bostrom (2011, pp. 13ff), Arntzenius (2014)), so
even if the arguments in this paper suffer in an infinitary context, that is not likely to
generate much support for expectationalism over SDTR.

The third and final argument for large-tailed background uncertainty is the simplest:
When I am uncertain which of several probability distributions best characterizes some
phenomenon, the resulting “mixture distribution” (the probability-weighted average of the
distributions over which I’m uncertain) inherits the tail properties of the heaviest distri-
bution in the mixture: The further out we go in the tails of the mixture distribution, the
more the heaviest-tailed distributions dominate the probability-weighted sum. So, sup-

28For motivation of the astronomer’s prior, see Vardanyan et al. (2009, p. 436). Vardanyan et al also
consider a second prior, which is log-uniform over Ωk. But the plausibility of this prior depends significantly
on their decision to group models with |Ωk| ≤ 10−5 together with Ωk = 0, since a log-uniform prior on the
full interval (0, 1] would be improper. If we were willing to entertain this improper prior, it would yield an
even heavier-tailed distribution with respect to the size of the Universe than the astronomer’s prior.

29Specifically, the astronomer’s prior corresponds to the following prior over V :

fV (x) =

{
2

5
3

3
π

4
3 c2H−2

0 x−
5
3 x ≥ 2π2H−3

0 c3

0 otherwise

where H0 is the Hubble constant and c is the speed of light.
Of course, this is only a prior, and what we are really care about is the posterior, i.e., the probability

distribution we should actually adopt given our current evidence. But since observational evidence cannot
measure Ωk to a precision greater than ∼ 10−4, it cannot discriminate within the tail of very large finite
universes (corresponding to values of Ωk asymptotically approaching zero from below), and hence cannot
significantly change the tail properties of the distribution.

30For some of the many extant proposals, see for instance Vallentyne and Kagan (1997), Mulgan (2002),
Bostrom (2011), and Arntzenius (2014).
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pose I am unsure what background prospect is justified by my evidence, or that I assign
credence to multiple physical theories/models that imply different objective probability
distributions over background payoffs. As long as I assign positive credence to any dis-
tribution with exponential or heavier tails, the resulting background prospect will itself
have exponential or heavier tails. The hypothesis that the correct objective or epistemic
probability distribution over, say, the size of the Universe should have exponential or heav-
ier tails pretty clearly merits at least some positive credence. And this alone essentially
guarantees large-tailed background uncertainty for agents who assign normative weight to
aggregate consequentialist considerations. At the least, this “argument from higher-order
uncertainty” puts the burden of proof on skeptics to give an argument for thinner-than-
exponential tails compelling enough to set our credence in large-tailed hypotheses to zero.

This final argument also suggests that the phenomenon of large-tailed background
uncertainty, and the significance of the results in §5, are not limited to agents who assign
normative weight to aggregative consequentialist considerations. The observation that
even minimal higher-order uncertainty can beget heavy-tailed “first-order” uncertainty
applies regardless of the considerations one is uncertain about. So, for instance, even an
agent whose concerns are exclusively prudential (i.e., who measures the choiceworthiness
of an option solely by her resulting utility/welfare) plausibly has reason to be in a state
of large-tailed background uncertainty.

It is also important to remember that even the total-welfare-based arguments for large-
tailed background uncertainty do not only apply to agents who are out-and-out aggregative
consequentialists, i.e., who measure the choiceworthiness of their options exclusively by
the total amount of value in the resulting world. It is sufficient that aggregative con-
sequentialist considerations make an additive contribution to the choiceworthiness of an
option. In this case, the agent’s background uncertainty will still have the same shape as
is would if she attached normative weight only to aggregate consequences (unless she has
additional non-consequentialist sources of background uncertainty). Non-consequentialist
considerations, plausibly, will be mainly captured by simple prospects. Depending on the
weight of these considerations, they could make stochastic dominance relationships among
the agent’s options less likely—in particular, if their contribution to choiceworthiness is
very large relative to the scale factor of the agent’s background prospect. But even if one
assigns very little relative weight to consequentialist considerations, the weight of ordi-
nary non-consequentialist considerations is still likely to be small relative to the scale of
one’s background uncertainty. For instance, I suggested above that 109 is a conservative
lower bound on the scale factor of our uncertainty concerning the amount of value in the
Universe (where units represent the value of happy lives). And only the most extreme de-
ontological views assign ordinary non-consequentialist considerations a weight anywhere
near that order of magnitude.

7 The rational significance of background uncertainty

An initially counterintuitive feature of the preceding arguments is their implication that
what an agent rationally ought to do can depend on her uncertainties about seemingly
irrelevant features of the world. To put the point as sharply as possible: Whether I am
rationally required, for instance, to take a risky action in a life-or-death situation can
depend on my uncertainties about the existence, number, and welfare of sentient beings in
distant galaxies, perhaps outside the observable universe, with whom I will never and can
never interact, on whom my choices have no effect, and whose existence, number, welfare,
etc, make no difference to the local effects of my choices.
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Surprising and counterintuitive though this conclusion may seem, however, I think it
is fully intelligible on reflection. In this section, I will try to dispel (or at least mitigate)
the feeling of counterintuitiveness. To do that, I will first describe a simple case where the
rational relevance of background uncertainty is intuitively clear, then argue that what is
true of this simple case is true of more complex cases as well.

Here, then, is the simple case:

Methuselah’s Choice Methuselah is, and knows himself to be, the only sentient being
in the Universe (past, present, or future). He came into existence finitely long ago,
and has so far been in a neutral state. He now faces a choice—the only choice he
will ever make. He can choose either O1, which yields 100 years of happy life for
sure, or O2, which yields 1500 years of happy life with probability .1, or zero years
of happy life with probability .9.

If these years of happy life are the only potential source of value in the Universe, it
seems intuitively obvious to me that Methuselah is rationally permitted to make either
choice. Even if he is rationally required to satisfy the VNM axioms, say, these alone do
not tell him which option to choose. And long run arguments for expectationalism are
irrelevant as well, since Methuselah knows for certain that there is no long run.

But now suppose that we add a source of background uncertainty:

Methuselah’s Box In addition to Methuselah, Methuselah’s universe contains a magic
box, which contains a real-number generator. Methuselah will make his choice be-
tween O1 and O2 at time t. Then, at time t′, the random number generator inside
the box will generate a number, from a Cauchy distribution centered at zero with a
scale parameter of 10,000, and open itself to reveal this number to Methuselah. In
addition to the simple payoff from his choice, Methuselah will receive a number of
happy or unhappy life-years equal to the number generated by the box.

(To avoid comparisons between happy and unhappy life-years, assume that whatever total
payoff Methuselah receives, it will come in the form of exclusively happy or exclusively
unhappy life-years. Thus, for instance, if he receives +1500 from his choice and −2000
from his box, he will experience 500 years of unhappy life. If he gets +1500 from his choice
and −200 from his box, he will experience 1300 years of happy life.)

In virtue of Methuselah’s uncertainty about the background payoff he will receive from
his box, O2 now stochastically dominates O1 (assuming only that Methuselah regards
happy life as better than unhappy life, more happy life as better, and more unhappy life
as worse). And for precisely this reason, it now seems clear that Methuselah rationally
ought to choose O2. Absent the uncertainty that his box introduces, Methuselah could
have reasoned his way to choosing O1 on the grounds that if he chooses O1, he will certainly
receive at least 100 years of happy life, while if he choose O2, he very probably will not.
And there is no compelling defeater to this reasoning, provided that (as I claimed above)
there is no compelling argument in this case for risk-neutrally maximizing expected happy
life-years. But once we introduce the box, there is a compelling defeater to the original
justification for O1: First, Methuselah is not guaranteed to experience at least 100 years
of happy life if he chooses O1. Second, in fact, he has a better chance of experiencing at
least 100 years of happy life if he chooses O2. And third, the same is true for any other
possible payoff : Whatever payoff he chooses to focus on, Methuselah has a better chance
of a payoff at least that good if he choose O2. Thus, Methuselah’s background uncertainty
gives him conclusive grounds for choosing O2.
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But what does this have to do with more ordinary choice situations? Let’s generalize
the lesson of Methuselah’s case in two steps. First, consider an agent Alice who is certain
that total hedonistic utilitarianism is true and faces a choice between O1, which will do an
amount of good equivalent to 100 happy life-years with probability 1, and O2, which will do
an amount of good equivalent to 1500 happy life-years with probability .1, and do nothing
with probability .9. Suppose that Alice’s beliefs about total welfare in the Universe, apart
from the effects of her present choice, are described by a Cauchy distribution centered at
zero with a scale parameter of 10,000 happy-life-year-equivalents.

Because Alice is a total hedonistic utilitarian, her situation is in every relevant respect
equivalent to Methuselah’s: It makes no difference, from a utilitarian standpoint, whether
the welfare at stake is the agent’s own, whether it belongs to a single welfare subject or
to many, whether those subjects are near to the agent in space or time, etc. Just as in the
case of Methuselah, therefore, we should conclude that (i) if there were nothing of moral
significance in the Universe apart from the simple payoff of O1 or O2, then there would be
no decisive justification for choosing O2, but (ii), by making O2 stochastically dominant
over O1, her background uncertainty gives her just such a decisive justification.

Does this line of reasoning apply only to rigorously orthodox utilitarians, who are
committed to universal impartiality and the interpersonal fungibility of welfare? No.
All that our reasoning in the cases of Methuselah and Alice really depended on was the
fungibility of choiceworthiness, which is a conceptual truth so trivial that it is hardly worth
stating. Suppose that Bob accepts a commonsense, pluralistic theory of practical reasons,
and suppose he faces a choice between O1 and O2, where O1 has a simple prospect of
{〈100, 1〉} andO2 has a simple prospect of {〈0, .9〉, 〈1500, .1〉}. And suppose his background
uncertainty is a Cauchy distribution with a scale parameter of 10,000. Then for any
degree of choiceworthiness, O2 gives Bob a better chance of performing an action at
least that choiceworthy, which provides a uniquely decisive justification for choosing O2.
The difference with the cases of Methuselah and Alice is simply that the various ways in
which, say, O2 might turn out to have choiceworthiness ≥ 500 are much more complex and
qualitatively diverse. This makes the force of the stochastic dominance argument harder
to see, but not any weaker. Just as, for classical utilitarians, any world that contains
welfare equivalent to x happy life-years is equally good regardless of how that welfare is
distributed across time, space, or sentient beings, so on any normative theory, any option
with a choiceworthiness of x is just as choiceworthy as any other, no matter how complex
or multifarious the considerations that determine its choiceworthiness. The case of Bob is
therefore no different, from the standpoint of rational choice, than the case of Methuselah.

8 Two modest conclusions

What decision-theoretic conclusions should we take away from the preceding arguments?
In this section, I describe two relatively moderate conclusions we might draw. In the next
section, I make the case for my own more ambitious conclusion.

8.1 A decision theory for consequentialists?

In recent years, there has been a great deal of activity at the intersection of ethics and
decision theory, and considerable interest in the idea of “moral/ethical decision theory”—a
decision theory distinct from expected utility theory that either governs ethical decision-
making in general or serves as the decision-theoretic component of particular ethical the-
ories. Along these lines, the results in §5 might be seen as laying the foundation for a

27



“utilitarian decision theory”, analogous to recent attempts to develop a “deontological
decision theory” (Colyvan et al., 2010; Isaacs, 2014; Lazar, 2017a,b). Though I have ar-
gued that the assumptions on which these results depend generalize well beyond purely
consequentialist theories like classical utilitarianism, they are clearly easiest to justify in
the context of such a theory: The additive separability of simple and background payoffs
is trivial for classical utilitarians (the total welfare that results from an option can be
expressed as the sum of, say, welfare inside and outside the agent’s future light cone), and
as we saw in §6, uncertainty about total welfare in the Universe provides an especially
strong source of background uncertainty. We might conclude from the preceding argu-
ments, then, that SDTR is an attractive ethical decision theory for classical utilitarians
and other aggregative consequentialists.

At minimum, though, we have found that accounting for background uncertainty gives
aggregative consequentialists a new and powerful basis for choosing options whose simple
prospects maximize expected objective value (and not just the expectation of some in-
creasing function of objective value) in most ordinary choice situations—even if they are
also subject to decision-theoretic requirements besides stochastic dominance. That is, we
have reached an important practical conclusion for aggregative consequentialists which re-
quires no decision-theoretic assumptions besides the almost entirely uncontroversial SDP.
A fortiori, this conclusion applies to any aggregative consequentialist who satisfies any of
the standard axiom systems like VNM or Savage, or even non-standard axiom systems
like that of Buchak’s (2013) REU (which, like VNM and Savage, satisfies stochastic domi-
nance). Any such agent must, in practice, rank options almost exactly by the expectations
of their simple prospects, even if she is extremely risk-averse or risk-seeking with respect
to objective value (except in Pascalian situations where, as we have seen, she may enjoy
greater latitude).

8.2 An add-on to standard decision theory?

Building on the last observation, we can understand the results in §5 as a friendly “add-
on” to axiomatic expectationalism: At least for some agents, the presence of background
uncertainty coupled with the stochastic dominance requirement implied by the standard
axioms imposes strict constraints on the agent’s preferences over simple prospects, con-
straints that don’t follow from those axioms in the absence of background uncertainty.
Specifically, agents can be rationally required to rank options in a way that closely approx-
imates the expectational ranking of their simple prospects under a particular, privileged
assignment of cardinal values to payoffs—namely, the assignment that satisfies additive
separability between simple and background payoffs.31

Plausibly, this privileged cardinalization will match the natural cardinal structure of
the phenomena in the world to which the agent attaches normative weight. For instance,
suppose that I only care about my lifetime income, always preferring more income to
less. The only assignments of cardinal values to outcomes that allows additive separability
between simple payoffs (the monetary reward of my present choice) and background payoffs
(the remainder of my lifetime income) will be those that are positive affine transformations

31Remember that this assignment, if it exists, is unique up to positive affine transformation. So any
non-affine transformation of this assignment will break the additive separability condition on which the
results in §5 depend. Perhaps more to the point, stochastic dominance relations only depend on the ordinal
ranking of payoffs, so the same stochastic dominance relations will hold under a positive monotone but non-
affine transformation of the privileged cardinal choiceworthiness assignment. These relations will no longer
be accurately described by the Upper and Lower Bound Theorems, however, so we cannot link stochastic
dominance with expectational superiority under the transformed assignment, but only by adverting to the
original, privileged assignment.
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of the monetary value of payoffs, as measured in a currency like dollars or euros. So
under sufficient background uncertainty, SDP and any axiomatic theory that implies it
will require me to rank my options approximately by the expected monetary value of their
simple prospects.

To put the point a little differently: Under sufficient background uncertainty, the stan-
dard axioms (by way of SDP) let us derive strong decision-theoretic conclusions merely
from the agent’s ranking of payoffs (or, equivalently, her ranking of options under cer-
tainty), without any information about her ranking of uncertain prospects. The add-on to
standard decision theory here is not stochastic dominance, which was already implied, but
rather the idea that agents often are or ought to be in a state of large-tailed background
uncertainty. Recognizing this sort of background uncertainty does not impose any new
constraints on the agent’s utility function per se: given a ranking of overall payoffs, she
may still maximize the expectation of any utility function that is increasing with respect
to that ranking. But background uncertainty forces all these utility functions to agree
much more than they otherwise would on the ranking of options, in a way that makes it
look as if the agent was simply maximizing her expected simple payoff on a privileged
cardinal scale.

As promised in §3, I haven’t given any novel arguments for rejecting any of the standard
axioms of expected utility theory, except by showing that we can derive robust decision-
theoretic conclusions without appeal to those axioms. If you are inclined to accept the
standard axioms, therefore, it is natural to adopt this “add-on” interpretation of the argu-
ments in the last three sections, as supplementing rather than replacing the implications
of axiomatic expectationalism.32

9 Stochastic dominance as a general decision theory

But I will advance a more ambitious conclusion: that SDTR rather than expectationalism
is the true theory of rational choice under uncertainty. In other words, I will argue that
rejecting stochastically dominated options is a sufficient as well as a necessary condition
for rational choice—or at least, I will argue that this is a position worth exploring. My
argument, in short, in this: The major disadvantage of SDTR relative to expectationalism
is its apparent failure to place plausible constraints on risk attitudes. On the other hand,
SDTR has a number of advantages over expectationalism, some of which we’ve already
seen and others of which will be introduced in this section. These advantages are significant
enough that, if stochastic dominance can in fact recover constraints on our risk attitudes
that are as strong, or nearly as strong, as our decision-theoretic intuitions demand, then
it deserves to be treated as a serious competitor to expectationalism.

We have already seen two possible advantages of SDTR: First, its requirements rest on

32There is another closely related way in which the results in §5 might be welcome news to orthodox
decision theorists: They lend support to the already widely recognized idea that, if we adopt a “grand
world” rather than a “small world” framing of decision problems and account for the level of background
risk or uncertainty that the grand world context implies for real-world agents, non-standard decision
theories like rank-dependent utility (Quiggin, 1982) and risk-weighted expected utility (Buchak, 2013) are
likely to end up in close practical agreement with standard decision theory. For existing arguments to
this effect, see for instance Quiggin (2003), Thoma and Weisberg (2017) and Thoma (forthcoming). The
existing literature tends to assume that the grand world context generates background uncertainty with
only bounded support or thin tails, and that the agent’s (non-EU-compliant) risk attitude comes from
some narrowly constrained class (e.g., a transformation f : [0, 1] 7→ [0, 1] on cumulative probabilities of the
form f(x) = xc for some constant c). But when background uncertainty is sufficient to generate stochastic
dominance, it constrains the implications of a much wider class of risk attitudes: viz., any risk attitude
that satisfies stochastic dominance, including any risk attitude permitted by RDU or REU.
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stronger a priori foundations than those of expectationalism (if nothing else, because they
are strictly weaker). Second, unlike primitive expectationalism, it can both constrain our
risk attitudes in ordinary situations and avoid fanaticism in Pascalian situations (without
resource to ad hoc devices like excluding “de minimis probabilities”). In this section, I
will briefly survey some other cases where SDTR outperforms primitive and/or axiomatic
expectationalism. Some of these are still problem cases for SDTR, where it is not obvious
what stochastic dominance reasoning will imply or where it gives less guidance than we
would like. But in all of them, SDTR delivers better answers than expectationalism seems
capable of providing.

In this survey, I will mainly ignore the effects of background uncertainty. Incorporating
background uncertainty into each of the cases discussed below is (at least) a paper unto
itself, and my aim is only to illustrate that there is a broad range of problem cases in
which SDTR outperforms expectationalism.33

9.1 Infinite payoffs

The simplest problem cases for expectational decision theory are those involving possibil-
ities of infinite positive and/or negative payoffs, as exemplified by Pascal’s Wager (Pascal,
1669). In these cases, expectational reasoning delivers either implausible advice or no ad-
vice at all. On the other hand, even in the absence of background uncertainty, stochastic
dominance can often deliver plausible verdicts. To illustrate, let’s consider a few variants
of the Wager.

Case 1: Pascal’s Wager (Costly)

O1 {〈10, 1〉}

O2 {〈9, .99〉, 〈+∞, .01〉}

Here, expectationalism implies that O2 is rationally required, while SDTR implies that
either option is rationally permissible.

Case 2: Pascal’s Wager (Costless)

O1 {〈10, 1〉}

O2 {〈10, .99〉, 〈+∞, .01〉}

Here, both SDTR and expectationalism imply that O2 is rationally required.

Case 3: Pascal’s Wager (Regular)

O1 {〈10, .99〉, 〈+∞, .01〉}

O2 {〈10, .9〉, 〈+∞, .1〉}

Here, expectationalism implies that both options are equally good, and hence rationally
permissible. SDTR implies O2 is rationally required.34

33As far as I have been able to discover, the presence of background uncertainty only ever favors stochastic
dominance (in particular, because background uncertainty can only ever generate new stochastic dominance
relations among options as identified by their simple prospects, never undo existing relationships (Pomatto
et al., 2018, pp. 2–3)) and only ever disfavors expectationalism (in particular, by generating undefined
expectations), though of course this is an imprecise and speculative claim in need of further support.

34SDTR thus furnishes a simple reply to the “mixed strategies” objection to Pascal’s Wager raised in
Hájek (2003), while also allowing that one is not always rationally required to accept the Wager.
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Case 4: Pascal’s Wager (Angry God)

O1 {〈−∞, .09〉, 〈9, .9〉, 〈+∞, .01〉}

O2 {〈−∞, .01〉, 〈9, .9〉, 〈+∞, .09〉}

Here, the expected choiceworthiness of both option is undefined, so insofar as expecta-
tionalism yields any practical conclusions at all, it implies that both options are rationally
permissible. SDTR implies that O2 is rationally required.35

9.2 The St. Petersburg game

In the St. Petersburg game (Bernoulli, 1738), you are offered the chance to pay some finite
price for a lottery ticket that pays +2 with probability 1

2 , +4 with probability 1
4 , +8 with

probability 1
8 , and so on. Since the ticket has infinite expected value, expectationalism

implausibly implies that you should be willing to pay any finite price for it. Once again,
SDTR can do better.

Case 5: St. Petersburg

O1 {〈100, 1〉}

O2 {〈2, .5〉, 〈4, .25〉, 〈8, .125〉, ...}

Here, expectationalism implies that O2 is rationally required. SDTR implies that both
options are rationally permissible.

Case 6: St. Petersburg, St. Petersburg +1

O1 {〈100, 1〉}

O2 {〈2, .5〉, 〈4, .25〉, 〈8, .125〉, ...}

O3 {〈3, .5〉, 〈5, .25〉, 〈9, .125〉, ...}

Here, expectationalism implies that O2 and O3 are both rationally permissible, but O1 is
rationally prohibited. SDTR implies that O1 and O3 are both rationally permissible, but
O2 is rationally prohibited.36

35From the results in previous sections, we can infer a few conclusions about infinite payoffs under large-
tailed background uncertainty. First, it is always permissible under SDTR to prefer an option that increases
the probability of an infinite positive payoff (or decreases the probability of an infinite negative payoff)
relative to its alternatives. Second, just as with finite payoffs, large-tailed background uncertainty will
sometimes generate new stochastic dominance relations between options whose simple prospects involve
infinite payoffs. Among other things, this means we can put a minimum price on Pascal’s Wager: that is,
if accepting the Wager increases the probability of an infinite positive payoff by p, then there is some finite
threshold t such that the Wager stochastically dominates any sure payoff less than t. If Pascal’s Wager has
the simple prospect {〈0, 1− p〉, 〈+∞, p〉}, then this threshold can be expressed as t : minx(B(x− t)− (1−
p)B(x)) = 0, where B is the CDF of the agent’s background prospect. If, for instance, p = .01 and the
agent’s background prospect is described by a Laplace distribution with a scale parameter of 1000, then
the minimum price she is required to pay for Pascal’s Wager is slightly greater than 10.

36As with Pascal’s Wager, large-tailed background uncertainty lets us put a minimum price on the St.
Petersburg game, which increases under increasing rescalings of the background prospect. The fact that
the St. Petersburg game can stochastically dominate sure-thing payoffs > 2 under background uncertainty
follows from the fact that its finite truncations can do so. The fact that it can fail to stochastically dominate
finite sure-thing payoffs follows from the Lower Bound Theorem: Where Oi is a St. Petersburg gamble and
Oj yields a sure payoff of t, as t goes to infinity, maxx ∆ij(x) goes to 0, while maxx

∫∞
−∞∆−ij(x−y)×β(y) dy

is non-zero and increasing. These facts together imply the existence of a minimum price.
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9.3 The Pasadena game

The Pasadena game (Nover and Hájek, 2004) is a gamble in which the probability-weighted
sums of both positive and negative simple payoffs diverge to infinity. This means that the
expected choiceworthiness of the gamble is not infinite but undefined.37 In the original
version of the game, we toss a fair coin until it lands heads, and receive a payoff of
(−1)n−1 × 2n

n , where n is the number of flips.
We can say more or less the same things about the Pasadena game as we said about

the St. Petersburg game.

Case 7: Pasadena

O1 {〈100, 1〉}

O2 {〈2, .5〉, 〈−2, .25〉, 〈83 , .125〉,−4, .0625〉, ...}

Here, SDTR and expectationalism agree: The expectation of O2 is undefined, and so
incomparable with the expectation of O1, so expectationalism implies that both options
are permissible. SDTR straightforwardly implies that both options are permissible, since
neither is stochastically dominant.

But now consider...

Case 8: Pasadena, Altadena

O1 {〈100, 1〉}

O2 {〈2, .5〉, 〈−2, .25〉, 〈83 , .125〉,−4, .0625〉, ...}

O3 {〈3, .5〉, 〈−1, .25〉, 〈11
3 , .125〉,−3, .0625〉, ...}

Here, since both O2 and O3 have undefined expectations, expectationalism implies that
neither of them is comparable with O1, and all three options are rationally permissible.
SDTR, on the other hand, yields the intuitively correct verdict that O1 and O3 are ratio-
nally permissible but O2 is not.38

37Strictly, the expectation is given by an infinite series of probability-weighted payoffs whose sum can
conditionally converge to any finite or infinite value, depending on how the terms are ordered. Here I
assume that simple payoffs have no privileged ordering, so expected choiceworthiness is defined only when
their probability-weighted sum converges absolutely. For discussion of possible extensions of expectational
decision theory to handle cases like the Pasadena game, see for instance Easwaran (2008), Colyvan (2008),
Bartha (2016), Colyvan and Hájek (2016) and Lauwers and Vallentyne (2016).

38Lauwers and Vallentyne (2016) object to stochastic dominance reasoning in the context of gambles with
undefined expectations like St. Petersburg and Pasadena. They describe a case involving two St. Petersburg
lotteries, SP1 and SP2, with anti-correlated payoffs (each giving its minimum payoff in exactly those states
where the other does not), along with a slightly improved St. Petersbury lottery W+. Although W+
stochastically dominates both SP1 and SP2, the lottery SP1+SP2

2
(which yields the average of SP1’s and

SP2’s payoff in each state) statewise dominates (and hence stochastically dominates) W+. As I understand
their argument, Lauwers and Vallentyne take it as an objection to stochastic dominance reasoning that there
can be triples of options Oi/j/k such that Ok stochastically dominates Oi and Oj , but

Oi+Oj

2
stochastically

dominates Ok (which implies that
Oi+Oj

2
stochastically dominates Oi and Oj): It seems implausible that

the average of two prospects can be strictly better than both the prospects it averages.
As far as I can see, though, this is simply a case of hasty generalization from finite to infinite cases. The

real lesson of Lauwers and Vallentyne’s case is that, when two options have infinite expectations, averaging
their payoffs can result in an improvement over both options. This is wholly plausible when we consider
the result: SP1 and SP2 each have a simple prospect of {〈2, .5〉, 〈4, .25〉, 〈8, .125〉, ...}, whereas SP1+SP2

2

has a simple prospect of {〈3, .5〉, 〈5, .25〉, 〈9, .125〉, ...}. The result of averaging the two anti-correlated St.
Petersburg lotteries, in other words, is St. Petersburg +1. As long as we accept that this is an improvement
over St. Petersburg, Lauwers and Valletyne’s case is not a reason to question stochastic dominance.
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9.4 Ordinality and lexicality

Philosophers have recently begun paying attention to decision-theoretic questions that
arise when an agent is uncertain not only about the empirical state of the world but also
about basic normative principles.39 As has been noted in this literature (e.g. by Sepielli
(2010) and MacAskill (2016)), a major difficulty for extending standard expectational
decision theory to this “metanormative” context is that some normative theories appear
to give only ordinal rankings of options, which cannot be multiplied by probabilities to
compute expectations and which expectational reasoning is therefore unable to handle.
This has led to the suggestion (e.g. in MacAskill (2014)) that fundamentally different
decision procedures may be needed to handle different categories of normative theory.
Stochastic dominance reasoning, however, can handle both ordinal and cardinal contexts,
and may therefore offer a more unified theory of rational choice than expectationalism,
given the existence of merely-ordinal normative theories. As a simple illustration, consider
the following case, where Roman numerals represent ordinal ranks, with larger numerals
representing greater degrees of choiceworthiness.

Case 9: Ordinal Risk

O1 {〈i, .3〉, 〈ii, .7〉}

O2 {〈ii, .7〉, 〈iii, .3〉}

Since the payoffs have only ordinal values, the expected choiceworthiness of both options
is of course undefined, so expectationalism implies that both options are rationally per-
missible. SDTR correctly implies that O2 is rationally required.

Another worry in the literature on normative uncertainty is that some normative the-
ories rank options lexically, either regarding certain categories of action as absolutely re-
quired or prohibited (e.g., lying or intentionally killing the innocent), or regarding certain
categories of normative consideration as taking absolute precedence over others (e.g., the
welfare of the worse off over the welfare of the better off). I won’t attempt to say how these
cases should be represented, but at least the simplest such cases (involving straightfor-
wardly absolutist theories) have the same structure as the “infinite payoff” cases described
in §9.1, and so seem to favor SDTR over expectationalism.40

9.5 Incomparability and incompleteness

Another kind of problem case for expectationalism involves incompleteness. Normative
incompleteness can take many forms, e.g., an incomplete ordinal ranking of options, total
incomparability between different dimensions of normative evaluation (e.g., morality vs.
prudence), or rough/imprecise comparability between different categories of goods that
gives rise to phenomena like “parity” (Chang, 2002). As with ordinality and lexicality, the
decision-theoretic problems associated with incompleteness are especially acute when we
account for normative uncertainty: As MacAskill (2013) points out, an agent who has any
positive credence in theories that posit incomparability between the possible payoffs of her
options is likely to find that the expected choiceworthiness of those options is undefined.

Once again, however, stochastic dominance can recover intuitive verdicts in cases of
incomparability that expectational reasoning cannot. For instance, as Bader (2018) points

39For a survey of this literature, see Bykvist (2017).
40For more on stochastic dominance reasoning in the context of uncertainty among merely-ordinal and/or

lexical normative theories, see Tarsney (2018) and Aboodi (unpublished).
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out, stochastic dominance gives the right result in the “opaque sweetening” case introduced
by Hare (2010). Here, a and b represent incomparable payoffs, and a+ and b+ are improved
versions of those payoffs, such that a+ is preferable to a but incomparable to b and b+

(and likewise b+ is preferable to b but incomparable with a and a+).

Case 10: Opaque Sweetening

O1 {〈a, .5〉, 〈b, .5〉}

O2 {〈a+, .5〉, 〈b+, .5〉}

Once again, the expected choiceworthiness of both options is undefined, so expectation-
alism implies that both options are rationally permissible. SDTR more plausibly implies
that O2 is rationally required.

9.6 Infinite worlds

As I admitted in §6, the possibility that the world is infinite, and contains infinitely much
positive and negative value regardless of our choices, complicates my central line of ar-
gument. Generalizing the result from §5 to the infinitary context requires a satisfactory
axiology for infinite worlds, which we don’t yet have. But at least on face, SDTR seems
much better equipped than expectationalism to handle infinite worlds. The simplest axio-
logical representation of infinite worlds is given by the extended real number line (the reals,
plus special elements∞ and −∞, ordered as you would expect). This is the worst case for
consequentialist ethical reasoning, since it implies that no finite difference we can make
to the world has any axiological effect. Nonetheless, even under this gloomy supposition,
SDTR is able to provide useful practical guidance, so long as I have non-zero credence
that the world is finite. Suppose, for instance, that I am nearly certain that the world is
infinite and contains either infinite positive value or infinite negative value, but have some
credence that it is finite, such that my actions can make an axiological difference.

Case 11: Heaven or Hell

O1 {〈−∞, .45〉, 〈10, .1〉, 〈+∞, .45〉}

O2 {〈−∞, .45〉, 〈11, .1〉, 〈+∞, .45〉}

Here, the expected choiceworthiness of both options is undefined, so expectationalism
implies that both options are rationally permissible, while SDTR correctly implies that
O2 is rationally required.

This is just a simple illustration of a broader point: If Oi and Oj each carry the
same probabilities of infinite positive and infinite negative payoffs, then Oi stochastically
dominates Oj just in case its finite prospect is stochastically dominant. Thus, if we can’t
change the probabilities of infinite payoffs, SDTR (unlike expectationalism) allows us to
simply ignore the infinite possibilities and condition our choice on the assumption of a finite
payoff. In this way at least, the positive features of SDTR under background uncertainty
established in §5 transfer straightforwardly to the infinite context.

Things get slightly tricker when we consider the more realistic possibility that the
world, being infinite, contains infinitely much of both positive and negative value. Here it
is not only the expectation but the cardinal value itself that is undefined. However, if we
are willing to treat ∞−∞ as a special degree of value, albeit one that is incomparable
with any other finite or infinite degree of value, then the same conclusions will hold:
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Case 12: Heaven + Hell

O1 {〈−∞, .05〉, 〈10, .1〉, 〈+∞, .05〉, 〈∞ −∞, .8〉}

O2 {〈−∞, .05〉, 〈11, .1〉, 〈+∞, .05〉, 〈∞ −∞, .8〉}

Here again, expectationalism is silent, while SDTR implies that O2 is rationally required.
Given that −∞ < 10 < 11 <∞ and ∞−∞ is incomparable with all four of these values,
it is still the case that, for any possible payoff, O2 offers at least an equal (and for some
payoff, a strictly greater) probability of payoff at least that desirable.41

Of course, the extended real number line gives a supremely unsatisfying account of the
axiology of infinite worlds, and much ink has been spilled trying to do better (see note 30).
I won’t try to survey these accounts or describe how stochastic dominance might interact
with each of them. But I will point out that, if the correct axiology allows us to make
ordinal comparisons between infinite worlds, then SDTR can derive practical conclusions
from uncertainty over those ordinal values. And if the correct axiology lets us make ordinal
but not cardinal comparisons (between some or all pairs of infinite worlds), then SDTR is
here too at an advantage over expectationalism.42

Consider, for instance, a modified version of the ordinal case from §9.4, this time with
Roman numeral subscripts used to represent better and worse ordinal ranks assigned to
infinite worlds.

Case 13: Ordinal Heaven + Hell

O1 {〈10, .15〉, 〈15, .35〉, 〈(∞−∞)i, .15〉, 〈(∞−∞)ii, .35〉}

O2 {〈15, .35〉, 〈20, .15〉, 〈(∞−∞)ii, .35〉, 〈(∞−∞)iii, .15〉}

Once again, expectationalism is silent, while SDTR correctly implies that O2 is rationally
required.

10 Conclusion

At least for agents who give normative weight to aggregative consequentialist consider-
ations, stochastic dominance can effectively constrain risk attitudes, recovering many of
the plausible implications of expectational reasoning in a novel and unexpected way, while
potentially avoiding the threat of Pascalian fanaticism. Stochastic dominance reasoning
also handles a range of problem cases better than expectational reasoning. And it rests
on stronger a priori foundations. These facts together, I have argued, put SDTR in the
running as a general theory of rational choice under uncertainty.

41One might be tempted to think that we should treat the probability assigned to ∞ − ∞ like pure
Knightian uncertainty over the whole extended real number line, in which case we could not say for
instance that O2 offers a greater probability of a payoff at least as good as 11. But this would be a
mistake: I am not uncertain whether∞−∞ is greater than, less than, or equal to 11. Rather, I am certain
that the two values are incomparable.

42Cardinal comparisons have been treated as a desideratum in the infinite ethics literature largely in
order to accommodate expectational decision theory (e.g. in Bostrom (2011, pp. 21–22) and Arntzenius
(2014, p. 37)). If the correct decision theory does not require cardinality, therefore, this might make it
easier to find a satisfactory axiology for infinite worlds.
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A Proofs of theorems

Theorem 1 (Upper Bound Theorem). For any options Oi, Oj and background prospect
β, ∫∞

−∞∆+
ij(x) dx∫∞

−∞∆−ij(x) dx
> rate(Oi, Oj , β)→ Oi �sd Oj

Proof. Consider an arbitrary payoff p. Given a background payoff of x, option Oi yields
a payoff ≥ p iff it yields a simple payoff ≥ p − x. Therefore, where Pr(Oi ≥ x) is the
probability that Oi yields a simple payoff ≥ x, the total probability that Oi yields an
overall payoff ≥ p is given by∫ ∞

−∞
β(x)× Pr(Oi ≥ p− x) dx.

Therefore the difference between the probability that Oi yields a payoff ≥ p and the
probability that Oj yields a payoff ≥ p is given by

B̄i(x)− B̄j(x) =

∫ ∞
−∞

β(x)× Pr(Oi ≥ p− x) dx−
∫ ∞
−∞

β(x)× Pr(Oj ≥ p− x) dx

=

∫ ∞
−∞

β(x)× (Pr(Oi ≥ p− x)− Pr(Oj ≥ p− x)) dx

=

∫ ∞
−∞

β(x)×∆ij(p− x) dx

=

∫ ∞
−∞

β(x)×∆+
ij(p− x) dx−

∫ ∞
−∞

β(x)×∆−ij(p− x) dx

From the definition of rate(Oi, Oj , β), the value of β cannot vary over the support of
∆ij by more than a factor of rate(Oi, Oj , β). So we can conclude that:

B̄i(p)− B̄j(p) ≥
∫ ∞
−∞

∆+
ij(p− x) dx−

(
rate(Oi, Oj , β)×

∫ ∞
−∞

∆−ij(p− x) dx

)
This implies: ∫∞

−∞∆+
ij(x) dx∫∞

−∞∆−ij(x) dx
> rate(Oi, Oj , β)→ B̄i(p)− B̄j(p) > 0

And since this is true for arbitrary p, we can conclude that∫∞
−∞∆+

ij(x) dx∫∞
−∞∆−ij(x) dx

> rate(Oi, Oj , β)→ ∀x(B̄i(x)− B̄j(x) > 0),

which implies ∫∞
−∞∆+

ij(y) dy∫∞
−∞∆−ij(y) dy

> rate(Oi, Oj , β)→ Oi �sd Oj
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Theorem 2 (Lower Bound Theorem). For any options Oi, Oj and background prospect
β,

Oi �sd Oj → max
x

∆ij(x) > max
x

∫ ∞
−∞

∆−ij(x− y)× β(y) dy

Proof. From the proof of the Upper Bound Theorem, we know that Oi �sd Oj only if

∀x
(∫ ∞
−∞

β(y)×∆+
ij(x− y) dy ≥

∫ ∞
−∞

β(y)×∆−ij(x− y) dy

)
Suppose that ∆ij was a constant function, with ∆ij(x) = k for all x. Then, since∫∞

−∞ β(y) dy = 1, it would follow that
∫∞
−∞ β(y) × ∆+

ij(x − y) dy = k. From this we can
infer that ∫ ∞

−∞
β(y)×∆+

ij(x− y) dy ≤ max
x

∆ij(x).

And in fact, given that the simple prospects of Oi and Oj (i) are non-identical (a neces-
sary condition for stochastic dominance) and (ii) involve only finite payoffs (as stipulated
in §2), ∆ij cannot be constant, so the inequality is strict:

∫∞
−∞ β(y) × ∆+

ij(x − y) dy <
maxx ∆ij(x).

From this it follows that:

Oi �sd Oj → ∀z
(

max
x

∆ij(x) >

∫ ∞
−∞

β(y)×∆−ij(z − y) dy

)
Or in other words:

Oi �sd Oj → max
x

∆ij(x) > max
x

∫ ∞
−∞

∆−ij(x− y)× β(y) dy
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Hájek, A. (2003). Waging war on Pascal’s Wager. Philosophical Review 112 (1), 27–56.

Hare, C. (2010). Take the sugar. Analysis 70 (2), 237–247.

Harsanyi, J. C. (1955). Cardinal welfare, individualistic ethics, and interpersonal compar-
isons of utility. Journal of Political Economy 63 (4), 309–321.

Isaacs, Y. (2014). Duty and knowledge. Philosophical Perspectives 28 (1), 95–110.

38



Jimenez, R., A. Raccanelli, L. Verde, and S. Matarrese (2018). Peering beyond the hori-
zon with standard sirens and redshift drift. Journal of Cosmology and Astroparticle
Physics 04 (002), 1–13.

Knight, F. H. (1921). Risk, Uncertainty and Profit. Boston: Houghton Mifflin Company.

Knobe, J., K. D. Olum, and A. Vilenkin (2006). Philosophical implications of inflationary
cosmology. The British Journal for the Philosophy of Science 57 (1), 47–67.

Krantz, D. H., R. D. Luce, P. Suppes, and A. Tversky (1971). Foundations of Mea-
surement, Volume I: Additive and Polynomial Representations. New York: Academic
Press.

Lauwers, L. and P. Vallentyne (2016). Decision theory without finite standard expected
value. Economics and Philosophy 32 (3), 383–407.

Lazar, S. (2017a). Anton’s game: Deontological decision theory for an iterated decision
problem. Utilitas 29 (1), 88–109.

Lazar, S. (2017b). Deontological decision theory and agent-centered options.
Ethics 127 (3), 579–609.

Levy, H. (2016). Stochastic Dominance: Investment Decision Making under Uncertainty
(3rd ed.). Cham: Springer.

MacAskill, W. (2013). The infectiousness of nihilism. Ethics 123 (3), 508–520.

MacAskill, W. (2014). Normative Uncertainty. Ph. D. thesis, University of Oxford.

MacAskill, W. (2016). Normative uncertainty as a voting problem. Mind 125 (500), 967–
1004.

MacAskill, W. and T. Ord (forthcoming). Why maximize expected choice-worthiness?
Noûs.
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