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Austrian-born Kurt Gödel is widely considered the greatest logician of modern times. It is above 

all his celebrated incompleteness theorems – rigorous mathematical results about the necessary limits 

of any formalised theory – that have earned him this fame.   

There have been many ambitious attempts to draw out the philosophical consequences of these 

results (see Raatikainen 2005; Franzén 2005). The view that the human mind is in some sense 

equivalent to a finite computing machine is commonly called ‘mechanism’. Lucas (1962), for 

example, has argued that Gödel’s results prove conclusively that the human mind can surpass any 

computing machine, and that mechanism is false. However, his argument is controversial; many 

experts think it is simply flawed.  

Gödel himself was quite cautious about outlining the strong philosophical implications of his 

results. However, he did suggest a more careful philosophical conclusion of a disjunctive form. There 

are different formulations, but the common idea is the following: 

(GD) Either the human mind (even within the realm of pure mathematics) can surpass the 

power of any finite computing machine, or there are absolutely undecidable 

mathematical problems. 

Gödel characterised this as a ‘mathematically established fact’. The epithet ‘absolutely’ here 

means that ‘they would be undecidable, not just within some particular axiomatic system, but by any 

mathematical proof the human mind can conceive’ (Gödel 1951, p. 310). Furthermore, Gödel 

suggested that the philosophical implications are, by either alternative, ‘very decidedly opposed to 

materialistic philosophy’ (ibid.).  

The former conclusion is now widely known as ‘Gödel’s disjunction’ (in short: GD), hence the 

title of the book at hand. The volume aims to bring together the best up-to-date knowledge related to 

GD, and to illuminate it from various perspectives. The book includes ten original articles, and a 

substantial and very helpful introduction by the editors.    

Walter Dean seeks to analyse the metaphysical status of algorithms, in particular the view he calls 

‘algorithmic realism’; this is the view according to which algorithms can be considered mathematica l 

objects. Though popular, Dean finds this position to be ultimately problematic. The opposite of 

algorithmic computability is randomness, and Joan Rand Moschovakis’ chapter provides a survey of 

the notions of randomness and lawless sequences. 

Gödel’s second incompleteness theorem concerns, in essence, the unprovability of a theory’s 

consistency in the theory itself. It is quite well known that there are certain technical obstacles to 

proving a fully general result. The chapter by Albert Visser is a valuable survey of certain more recent 
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research, by e.g. Harvey Friedman, Pavel Pudlák, Craig Smorynski, and Visser himself, which 

revolves around the second incompleteness theorem and aims at more general results. This work is 

not yet widely known, and consequently, this review fills a gap in the literature.  

Graham Leach-Krouse compares Gödel’s views to those of another pioneer in the field, the 

American logician Emil Post, who independently achieved results similar to those of Gödel. These 

two figures both held interesting philosophical views about mechanism and absolute unprovability, 

although they sometimes pulled in opposite directions. Leach-Krouse’s discussion is not, however, 

purely historical; it has a systematic aspect too. 

The notion of an absolutely undecidable problem in GD is grounded on the concept of 

provability- in-principle, or absolute provability. Epistemic Arithmetic is a formal framework initia ted 

by Stewart Shapiro (1985) and William Reinhardt (1986) in which a formal arithmetical theory is 

enriched with a modal operator whose intended interpretation is absolute provability. There has been 

some debate about the usefulness of this approach (see Horsten 1998), but it has proved to be quite a 

fruitful formal tool for the rigorous study of issues such as GD. The chapters by Timothy Carlson and 

by Marianna Antonutti Marfori and Leon Horsten are contributions to this research programme; they 

examine in particular issues around the so-called Epistemic Church’s Thesis (ECT). Carlson goes on 

to study what he calls ‘knowing machines’. Antonutti and Horsten demonstrate an analogue of GD 

in this context formulated in terms of ECT. The chapter by Theodora Achourioti is also related to this 

general programme; it considers an alternative semantic interpretation of the modal operator of 

absolute provability.  

More traditionally, it has been common to take it for granted that the notion of absolute provability 

is sufficiently well understood. However, in different but complementary ways, Shapiro, Timothy 

Williamson and Peter Koellner all raise doubts about the very clarity of the concept. Shapiro’s 

contribution is a compact and very clear systematic discussion of GD. He points out that any 

systematic discussion of mechanism and Gödel’s theorems must presuppose a certain amount of 

idealisation. However, Shapiro argues that it is doubtful there would be any sufficiently sharp and 

stable notion of idealised human knowability which would support a Gödelian anti-mechanis t 

argument. Williamson argues that we are on a slippery slope with the notion of absolute provability: 

there is no principled stopping point, and on closer inspection, any mathematical truth is provable- in-

principle.  

However, it is above all Koellner’s chapter – at least to the present reviewer’s mind – that is the 

true gem of the collection, as it really takes the discussion concerning GD to a wholly new level. 

Gödel himself believed that if we had an adequate paradox-free theory of truth, it would be possible 

to demonstrate the first anti-mechanist disjunct – he did not consider the existence of absolutely 

unsolvable problems plausible. Accordingly, Koellner tries different formal theories of truth: both the 

Tarskian approach involving a hierarchy of languages and a hierarchy-free Kripke-Feferman-style 

approach. Building on the earlier work of Reinhardt, and assuming for the sake of argument that the 

notion of absolute provability is well defined, Koellner shows that GD can be rigorously demonstrated 

in the setting of Epistemic Arithmetic. However, he also shows that the prospects of demonstrat ing 

either disjunct are dim. Koellner also puts forward the possibility that, under some interpretations, 

both disjuncts of GD may be separately ‘absolutely undecidable’.  

It is perhaps inevitable that any collection of this kind is at least a bit uneven. All in all, however, 

this book is a major contribution to this interesting and important topic, and obligatory reading for 

anyone interested in issues related to GD.  
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Errata 

p. 5: ‘Liar sentence which says of itself that it is true’ – should read: ‘…says of itself that it is false’ 

(or ‘… is not true’). 
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