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Abstract 24 

To gain initial stability for cementless fixation the acetabular components of a total hip 25 

replacement are press-fit into the acetabulum. Uneven stiffness of the acetabular bone will 26 

result in irregular deformation of the shell which may hinder insertion of the liner or lead to 27 

premature loosening. To investigate this, we removed bone cores from the ilium, ischium and 28 

pubis within each acetabulum and from selected sites in corresponding femoral heads from 29 

four cadavers for mechanical testing in unconfined compression. From a stress-relaxation test 30 

over 300 s, the residual stress, its percentage of the initial stress and the stress half-life were 31 

calculated. Maximum modulus, yield stress and energy to yield (resilience) were calculated 32 

from a load-displacement test. Acetabular bone had a modulus about 10-20%, yield stress 33 

about 25% and resilience about 40% of the values for the femoral head. The stress half-life 34 

was typically between 2-4 s and the residual stress was about 60% of peak stress in both 35 

acetabulum and femur. Pubic bone was mechanically the poorest. These results may explain 36 

uneven deformation of press-fit acetabular shells as they are inserted. The measured half-life 37 

of stress-relaxation indicates that waiting a few minutes between insertion of the shell and the 38 

liner may allow seating of a poorly congruent liner. 39 

 40 
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1. Introduction 47 

The use of uncemented fixation for total hip arthroplasty (THA) varies from country to 48 

country but registries report it is gaining in popularity. In the US in 2012, 93% of THA 49 

constructs were cementless, increasing from 46% in 2001, and the hybrid construct, 50 

comprising a cemented stem and cementless cup, accounted for just 5% [1]. This is higher 51 

than in most countries. In Australia, cementless components are used in 63.2% and hybrid 52 

fixation in 32.4% of primary THA [2], whereas in Sweden cemented fixation is still more 53 

popular with only 20.9% of procedures reported as being uncemented and 3% hybrid [3]. In 54 

the latest report from the National Joint Registry of England and Wales, 39.0 % of all primary 55 

hip replacements in 2015 had both components uncemented and 17.1% were classified as 56 

hybrid [4].  57 

To gain initial stability, cementless acetabular components require a press-fit of an 58 

oversized shell into the acetabulum [5,6]. This approach can also be used for revision surgery 59 

[7] in cases of contained defects according to the American Academy of Orthopaedic Surgery 60 

classification [8]. There are concerns, however, that insertion forces may deform the 61 

acetabular shell making placement difficult, and this could affect liner insertion [9-11].  62 

Despite the apparent importance of the underlying cancellous bone mechanical properties 63 

in providing initial stability we are aware of only two studies that have measured the 64 

mechanical properties of bone from this region of the pelvis [12,13]. The first was a 65 

comprehensive investigation of two whole pelves: a female from which 18 cubic samples 66 

were taken, and a male from which 39 cubes were obtained, although none was specifically 67 

taken from the acetabulum. The cubes hade sides about 6.5 mm long and were tested in all 68 

three directions across the faces in uniaxial unconstrained compression to 0.8% strain after 69 

pre-conditioning [12]. The second study investigated cement penetration into the reamed 70 
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acetabular bone using cores taken from the articular surface of the femoral head and the 71 

acetabulum from patients with end-stage osteoarthritis (OA) undergoing THA. In addition to 72 

permeability, they measured the Young’s modulus, apparent density and porosity [13].  73 

Others have used CT scans to measure bone density and estimate the modulus [14,15], 74 

although once again these models were of the whole pelvis rather than just the acetabulum. In 75 

a previous study we investigated the effect of the stiffness of the bone on acetabular shell 76 

deformation and the ability of a surgeon to make a subjective estimate of the stiffness of the 77 

acetabular bone [16]. In that study, however, the design of the experiment precluded direct 78 

measurement of the properties of the acetabular bone. 79 

To address this deficit, therefore, mechanical testing was performed on cores of bone from 80 

the ilium, ischium and pubis of reamed acetabula to answer the questions: (1) Does the 81 

stiffness of the cancellous bone vary with location in the acetabulum? (2) Because bone is 82 

slightly viscoelastic, how quickly does a deformation relax and (3) to what extent?  These 83 

data were compared with measurements from cores taken from selected sites over the 84 

corresponding femoral head. 85 

 86 

2. Materials and Methods 87 

2.1 Bone samples 88 

Four male, fresh frozen, whole pelves were obtained from Caucasian donors with mean 89 

body mass index of 26.3 kg m
-2

 (range 20-31) and mean age 69 years (range 65-73). All 90 

specimens underwent CT scanning to exclude structural abnormalities prior to testing. Ethics 91 

committee approval for this study was obtained from the UK Human Tissue Authority, 92 

licensing number 12148, and all procedures were performed in accordance with the 93 

declaration of Helsinki. 94 
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Bone cores, approximately 9 mm diameter and of various lengths, were removed from 95 

selected sites on both femoral heads and acetabula from each pelvis (Figure 1). Cores from 96 

the acetabula were drilled perpendicular to the articular surface into each of the three bones 97 

making up the innominate: ilium, ischium and pubis. Cores were removed from four sites in 98 

each femoral head; three from the load-bearing area: superior, anterior, posterior and one 99 

drilled along the axis of the femoral neck following resection of the femoral head. Samples 100 

were stored frozen wrapped in saline-soaked gauze. Before testing, each sample was thawed 101 

at room temperature and trimmed using a scalpel to remove any articular cartilage and ensure 102 

the ends were plane-parallel. The length and diameter of each core were measured using 103 

electronic Vernier calipers (Mitutoyo Digimatic, CD-6”CX). After mechanical testing, cores 104 

were cleaned of marrow by immersing in proteinase K (1 mg/ml in PBS, Fisher Scientific, 105 

UK)/ SDS (1% v/v) (SigmaAldrich / Merck, UK) solution. The apparent density of each core 106 

was determined by weighing and dividing the mass by the core volume. Material density was 107 

measured by weighing each core immersed in water and using Archimedes’ principle [17].  108 

Finally, bone cores were imaged using a Faxitron MX microfocal radiography unit 109 

(Faxitron, Tucson, AZ, USA) and a ScanX computed radiography scanner (Dürr NDT, 110 

Germany). Samples were imaged at 25 kV for 15 s exposures using a phosphor screen. 111 

Digital images were obtained by digital scanning of the phosphor screen using a ScanX laser 112 

scanner to release the stored image from the phosphor screen in the form of visible light 113 

photons. The photons were collected and amplified by the scanner and converted to a digital 114 

signal for processing and display. Images were acquired by Faxitron software and stored as 115 

DICOM images. Image J v1.50e was used to re-orientate images and convert to TIFF files.  116 

2.2 Mechanical testing 117 
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Mechanical testing was done using an Instron materials testing machine (Instron Ltd., 118 

High Wycombe, model 5564) fitted with a 2 kN load cell. The calibration precision of the 119 

load cell was <0.2% from 20 N to 2 kN load. Two tests were performed in unconfined 120 

compression: a modified stress-relaxation test followed by a load-displacement test to yield. 121 

A modified stress-relaxation was performed by compressing at a displacement rate of 5 mm 122 

min
-1

 to a set load then holding the displacement for a total test time of 300 s. Femoral cores 123 

were loaded to 50 N. Acetabular cores proved to be much weaker and peak load was reduced 124 

first to 25 N for the first acetabulum, then to 10 N for the remaining acetabula. Loads were 125 

converted to stress by dividing by the cross-sectional area, engineering strains were 126 

calculated from the displacement divided by the original length. We used the loading part of 127 

the stress-relaxation test to calculate the modulus from the gradient of a straight line or a 128 

quadratic curve fitted to the stress-strain data. In the case of a non-linear relationship, the 129 

peak modulus was determined and the modulus at a load of 10 N also measured to enable 130 

comparison of femoral with acetabular data at a constant stress. The peak stress, the residual 131 

stress after 300 s as a percentage of the initial stress and the stress half-life, the time taken for 132 

half of the stress relaxation to occur, were calculated.  133 

Stress-strain testing was done at a cross-head speed corresponding to a strain rate of 10% 134 

per minute (0.00167 s
-1

). Compression was monitored visually until the steepness of the load-135 

displacement curve could be seen to be decreasing, indicating failure was starting to occur 136 

[17]. A fourth-degree polynomial was fitted to the stress-strain data in order to determine the 137 

maximum slope (maximum modulus) and the 3% yield point, i.e. the stress and strain at 138 

which the maximum modulus had declined by 3% [17]. The energy to yield, also called 139 

resilience, was calculated from the area under the stress-strain curve to the yield point. 140 

Analysis was done using Microsoft Excel software. Data are presented as mean (standard 141 

deviation). Statistical analysis was done using SigmaPlot 13.0 (Systat Software Inc.).  142 
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Repeated measures analysis of variance was used to explore differences between sites, with 143 

repeated measures being the ‘within-subjects factor’, and a value of P<0.05 was taken to be 144 

statistically significant. 145 

 146 

3. Results 147 

In total, 32 femoral and 23 acetabular cores were tested. The mean diameter of the cores 148 

was 8.89 mm (range 7.97 to 9.22 mm) and the mean length was 14.6 mm (range 6.7 to 22.2 149 

mm). One pubic core broke while being extracted. It was immediately apparent that 150 

acetabular cores were much less robust than those from the femoral head. Testing protocols 151 

had to be adapted to test successfully the much weaker and softer cores, especially those from 152 

the pubis, two more of which broke during preparation or at an early stage of testing.  153 

3.1 Stress-relaxation 154 

Data from a typical stress-relaxation test from a femoral head core are shown in Figure 2. 155 

In this case a quadratic expression was fitted to the rising part of the loading curve and the 156 

peak modulus calculated at the end of this loading phase. The initial stresses were all close to 157 

0.8 MPa for the femur and 0.16 MPa for the acetabulum. Stress relaxation was characterised 158 

by the final stress and the percentage residual stress, expressing the final stress as a 159 

percentage of the initial stress (Table 1). Stress relaxation generally proceeded very rapidly so 160 

that half of the stress-relaxation had occurred within a few seconds, although there was a 161 

wide spread of values and some notable exceptions to this generalization as shown by the 162 

range of values (Table 1). A compilation of all the acetabular relaxation data is shown in 163 

Figure 3 and that from the femoral head cores in Supplementary Figure 1. While many curves 164 

from each anatomical component are similar, several samples deviated markedly from the 165 

most common pattern for reasons that are not clear. Samples from the ilium and ischium of 166 
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donor C relaxed almost  to zero with half-lives of 9.3 s and 11.5 s respectively, whereas 167 

donor C is the only one to show reasonably consistent patterns from all sites over the femoral 168 

head. The right pubic sample of donor A was the first tested and was loaded to 25 N. This 169 

proved too high, the sample broke, and so data from the right acetabulum of donor A have 170 

been scaled by 10/25 for comparison with all the other acetabular samples which were loaded 171 

only to 10 N. The average modulus of all the acetabular cores at 10 N (13.2 (9.4) MPa) was 172 

about 25% of the average of the cores from the three loaded regions (posterior, anterior and 173 

superior) of the femoral head (56.2 (16.1) MPa). One core from the femoral neck of each of 174 

individuals A and B also failed early during testing. 175 

3.2 Stress-strain 176 

A typical stress-strain curve is shown in Figure 4 with the peak modulus and the yield 177 

point, the stress at which the modulus has decreased by 3%, marked. The peak moduli 178 

calculated may be found in Table 2 and show that the acetabular bone was considerably more 179 

deformable than that from the femoral head. Mean values differed significantly by site 180 

(P<0.001) and post hoc tests showed that these differences lay largely between femoral head 181 

and acetabular samples. There was large variation in the data and the cores from the anterior 182 

of the femoral head were, on average the stiffest. In contrast, the cores from the acetabulum 183 

had, on average, only 13% of the modulus of the average of cores from the loaded region of 184 

the femoral head. The ischial samples were the stiffest, followed by iliac and pubic. 185 

Yield stress varied significantly with site (P<0.001) and reflected a similar order to the 186 

modulus, with the superior of the femoral head having the greatest median strength (Table 2). 187 

In the acetabulum, however, the ilium was the strongest and there was no difference between 188 

the strengths of the ischium and pubis although all the acetabular values were, again, 189 

considerably smaller, about 25% of those from the femoral head. 190 
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The energy to yield, resilience, showed a similar pattern to strength (Table 2). There was 191 

little difference between anterior, superior and posterior samples, with median values all 192 

around 15 kJ m
-3

. Cores from the ilium were most resilient and those from pubis and ischium 193 

were similar. The overall difference between sites was not significant (P=0.22) due to the 194 

large variation in values although, on average, acetabular bone had only about 40% of the 195 

resilience of the femoral head bone. 196 

3.3 Bone density 197 

Measured values of densities are shown in Table 2. The apparent density of each core 198 

represents the amount of bone and values were significantly lower in the acetabulum than in 199 

the femoral head (P < 0.001). Apparent densities at the three sites in the acetabulum were 200 

very similar and approximately half of the average over the femoral head; values for the neck 201 

were slightly smaller than those for the femoral head. The material density of the bone matrix 202 

was slightly, but significantly (P < 0.001), greater in the acetabular bone than in the femoral 203 

head. The ratio of apparent to material densities was about 0.1 in the acetabulum but between 204 

0.20 to 0.28 over the femoral head. X-ray images of cores from the acetabulum show the 205 

differences in quantity and texture of the trabecular bone compared with samples from the 206 

femoral head and the femoral neck (Fig.5). 207 

 208 

4. Discussion 209 

These data show that acetabular bone is considerably less stiff and less resilient than bone 210 

from the femoral head. Possibly because loads are spread over a larger area in the acetabulum 211 

whereas the femoral head and neck have an effect of concentrating the loads into a smaller 212 

area for transmission to the femoral diaphysis. Some of the pubic samples were not tested as 213 

they were so fragile that either they were already broken or broke during preparation. The 214 
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smaller modulus of pubic bone means that deformation under a given load is larger than for 215 

ischial or ilial samples. Although the gradient of the curve for the pubic samples was smaller, 216 

the yield strength was not much different from ilial or ischial samples and hence the 217 

resilience, being the area beneath the curve, was not as dissimilar from those other sites as 218 

might initially be expected. Being incorporated into a larger structure will also enhance the 219 

properties over those measured in isolated, unsupported cores [18]. These data are in general 220 

agreement with the density measures of Dalstra et al. who reported the highest densities were 221 

to be found in the superior/anterior area of the acetabular wall, while the lowest densities 222 

were found in the ischial bone [12]. 223 

Bone from all sites showed viscoelastic behaviour, with stresses decaying by about 40% 224 

over a 5 minute period. Most of this decay appears to take place in the first approximately 10 225 

s in most of the samples. The two outliers from donor C, right ilium and ischium, are 226 

unexplained. The subsequent testing to failure showed no unusual behaviour and there was no 227 

evidence of specimen damage before or during testing. Variations between samples could be 228 

evidence of natural variation as only four individuals were available and further testing, of 229 

samples from individuals with a wider range of ages and both sexes, is indicated, as discussed 230 

further below.   231 

It needs to be noted that the test we performed is not a true stress-relaxation test, in which 232 

a predetermined constant strain is applied to each sample. In a pilot study it became apparent 233 

that there was large variability in the properties of bone from different regions of the 234 

acetabulum and we found that we could not identify a realistic and consistent value of strain 235 

to apply to all samples in order to standardize a stress relaxation test using constant strain. 236 

We could, however, load to a predetermined stress, although we still over-estimated this in 237 

the first samples in this study. A creep test might then have seemed the obvious test to 238 

perform but the screw-driven materials testing machine available to us is not well-suited to 239 
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such a test. Hence, in order to obtain an element of comparability we allowed the stress to 240 

relax from a predetermined value. 241 

The moduli and apparent densities we found for the acetabulum are similar to those 242 

reported by previous studies.  Dalstra et al. reported mean values for moduli of between 30-243 

60 MPa and apparent densities of 0.25 (0.10) g cm
-3

 for female bone, after removing some 244 

samples suspected of being subchondral bone rather than trabecular bone, and 0.195 (0.054) g 245 

cm
-3

 for bone from the one male pelvis tested [12]. Measurements, however, were made over 246 

the whole pelvis and identifying values from locations and directions that would correspond 247 

to those we measured is not possible. They measured density and fabric parameters over the 248 

whole pelvis with a view to improving finite element modelling of the pelvis, whereas we 249 

concentrated on properties, both instantaneous and time dependent, within the acetabulum as 250 

these will have the most direct effect on immediate cementless fixation of a press-fit cup. 251 

Another report found greater values for Young's modulus in the acetabulum, 116.4 (86.7) 252 

MPa, compared with the femoral head, 47.4 (29.5) MPa, with apparent densities of 0.35 g 253 

cm
-3

 in the acetabulum and 0.24 g cm
-3

 in the femoral head[13]. These samples were taken 254 

from patients with end-stage OA which may be the reason these acetabular moduli and 255 

densities are considerably higher than those we report here. Surprisingly, however, the 256 

moduli and apparent densities measured from the femoral heads are at the low end of the 257 

range compared with many previous studies [17,19,20]. For example, in earlier studies of OA 258 

bone we found that the average modulus of cancellous bone from the femoral head was 356 259 

MPa and the apparent density was 0.71 g cm
-3

 reflecting the increased amount of bone 260 

commonly found [17], compared with non-diseased bone as reported here.  261 

The apparent density of the trabecular bone in the acetabulum was approximately half 262 

that of the cores over the femoral head but, surprisingly, the material density was about 25% 263 

greater in the acetabulum. Strength and stiffness arise not just from the amount of bone but 264 
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also its quality, and although there are clear differences in the densities these are not as great 265 

as those found in the moduli between femoral head and acetabulum. It is not clear from these 266 

measurements why the moduli are almost an order of magnitude different. One possible 267 

explanation is the bone structure, which was beyond the scope of this study. Differences in 268 

strength and energy to yield are smaller and may reflect more the differences in the amount of 269 

bone. 270 

When pressing a shell into the acetabulum the greatest resistance will come from the 271 

stiffest bone. Consequently, it would be expected that insertion at the pubic location would 272 

progress most rapidly while that at ilial and ischial sites would meet most resistance. Unless 273 

the shell is uniformly supported by the insertion device this may cause some deformation of 274 

the shell making insertion of the liner problematic. The relaxation of the stress, however, may 275 

mean that, given sufficient time, the bone might ‘relax’ and the shell deformation reduce. The 276 

measurements made here suggest that most of that relaxation occurs rapidly, within about 10 277 

s, but the variation shown in Figure 2 indicates that relaxation still proceeds in some samples 278 

after 5 minutes. If a liner does not fit the shell immediately, quality control means it is 279 

unlikely to be a mismatch in manufacturing and perhaps waiting a few minutes for the bone 280 

to absorb the deforming forces may allow the liner to be inserted.  281 

There are a number of limitations to this study. The difficulty obtaining whole pelves and 282 

acetabula means that the number of individuals studied is small and studying both sides 283 

means that these samples are not then statistically independent. Consequently, repeated 284 

measures tests were used with the ‘within-subjects’ factor being the repeated measure as this 285 

test enables statistical inference to be made with fewer subjects [21]. All the donors were 286 

male and fairly close in age. A similar study would be required using tissue from female 287 

donors in order to provide an accurate representation of the similarities and differences 288 

between the sexes. The donors for this study were towards the younger end of those 289 
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undergoing THR so including a wider range of older donors, and those with OA, would also 290 

be of interest. Although care was taken to cut the faces of the cores to be plane-parallel, a 291 

small angle between the loading platens and the core could explain some of the variation in 292 

strain. Bone marrow was left in situ, no attempt was made to clean the cores prior to testing, 293 

and this may have had a slight strengthening effect although, arguably, one that is present in 294 

vivo. The fragility of some of the cores, especially from the pubis, surprised us and made 295 

these samples difficult to test. Knowing this would lead us to redesign a future study to be 296 

more protective of cores during preparation. Finally, bone strength and stiffness depend not 297 

only on the amount of bone and its quality but also on the organisation of the trabeculae. In 298 

this preliminary study we did not measure bone trabecular structure but future studies would 299 

benefit from microCT measures of fabric. 300 

In conclusion, this study provides unique data on the mechanical properties of cores from 301 

the acetabulum that not only will assist future modelling studies but also may inform surgical 302 

approaches to insertion of an acetabular shell for cementless fixation. Acetabular bone was 303 

considerably less stiff and much weaker than bone from the femoral head. The strongest and 304 

stiffest bone was found in the superior aspect, mainly the ilium, closely followed by the 305 

ischium with pubic bone having markedly inferior mechanical properties. 306 

 307 
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Table 1. Stress relaxation results. Samples were loaded to 50 N (femur) or 10 N 391 

(acetabulum). Data show the mean peak stress, the mean final stress 300 s after the start of 392 

the test, the final stress as a percentage residual of the peak stress and the stress half-life for 393 

four sites on the femoral head and three in the acetabulum. Also calculated during the loading 394 

phase was the modulus at 10 N load. Data are shown as mean (standard deviation), where 395 

normally distributed, or median [range] for skewed data. No data were available from 3/8 396 

pubic samples and 2/8 neck samples due to failure of the fragile samples during preparation 397 

or testing. 398 

 399 

 Femoral head  Acetabulum 

 Posterior Anterior Superior Neck  Ilium Ischium Pubis 

N 8 8 8 6  8 8 5 

Peak 
stress 
/MPa 
 

0.797 
(0.023) 

0.801 
(0.025) 

0.797 
(0.012) 

0.795 
(0.043) 

 0.163 
(0.008) 

0.173 
(0.020) 

0.157 
(0.006) 

Final 
stress 
/MPa 
 

0.485 
(0.085) 

0.480 
(0.059) 

0.420 
(0.137) 

0.484 
(0.051) 

 0.088 
(0.031) 

0.091 
(0.041) 

0.089 
(0.008) 

Residual 
stress % 
 

61  
(11) 

57  
(14) 

55  
(14) 

56  
(14) 

 55  
(19) 

53  
(23) 

56  
(5) 

Half-life /s 
 
 

3.0 
[1.8:18.1] 

2.6 
[0.8:58.3] 

3.8 
[2.7:55.1] 

2.6 
[1.8:79.1] 

 2.1 
[1.0:3.6] 

3.2 
[1.9:11.5] 

2.2 
[1.6:2.2] 

         
Modulus 
at 10 N 
/MPa 

45.6 
[30.1:59.1] 

52.5 
[14.6:84.8] 

67.1 
[32.2:116.1] 

40.6 
[12.7:166.5] 

 12.1 
[5.1:48.6] 

13.8 
[8.4:40.4] 

5.5 
[3.7:23.0] 

 400 

 401 

  402 
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Table 2. Stress-strain and density data. The peak stress, yield stress and the energy to yield 403 

are from four sites on the femoral head and three in the acetabulum. Apparent and material 404 

densities were measured from the same cores. Data are shown as median [range] or mean 405 

(SD).. 406 

 407 

 Femoral head  Acetabulum 

 Posterior Anterior Superior Neck  Ilium Ischium Pubis 

N 8 8 8 6  8 8 5 

Peak 
modulus 
/MPa 

131.7 
[14.8;291.5

] 

183.9 
[24.9:433.

4] 

162.0 
[56.9:379.

0] 

75.1 
[29.1:142.0] 

 16.3 
[9.42:34.8] 

17.8 
[0.83:89.0] 

8.9 
[1.2:20.3] 

Yield 
stress 
/MPa 

1.72 
[0.55:4.1] 

1.48 
[0.69:9.04] 

2.03 
[0.60:4.92] 

1.10 
[0.68:2.25] 

 0.64 
[0.07:0.80] 

0.34 
[0.10:0.93] 

0.22 
[0.20:0.77] 

Energy to 
yield /    
kJ m

-3 

15.4 
[5.1:39.5] 

14.8 
[4.4:156.0] 

15.6 
[4.4:69.8] 

13.3 
[3.6:22.5] 

 9.1 
[0.25:15.5] 

3.7 
[0.63:9.3] 

3.5 
[0.09:45.1] 

         
Apparent 
density /  
g cm

-3
 

0.39 (0.15) 0.42 (0.16) 0.45 (0.13) 0.35 (0.10)  0.25 (0.05) 0.20 (0.04) 0.21 (0.10) 

Material 
density / 
g cm

-3 

1.93 (0.47) 1.80 (0.37) 1.64 (0.20) 2.03 (0.49)  2.32 (0.47) 2.37 (0.53) 2.28 (0.35) 

 408 

 409 

 410 

  411 
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Figure 1. Core locations from the acetabulum (ilium, ischium and pubis) and the proximal 412 

femur from the load-bearing area: superior, anterior, posterior and one drilled central to the 413 

femoral neck following resection of the femoral head.  414 

 415 

Figure 2. Example of a modified stress-relaxation test showing (a) the loading phase (blue, 416 

large dots) expressed as a stress-strain curve to calculate the modulus from the gradient of a 417 

fitted quadratic polynomial (black, small dots) and (b) the subsequent relaxation as stress 418 

versus time showing the decay from peak to final stress 300s after the start of the test. (Donor 419 

C, right femoral head, posterior). 420 

 421 

Figure 3. Stress relaxation curves for acetabular samples. Samples were loaded to 10 N and 422 

the recording was ended 300 s after the start of loading. (Samples from the right acetabulum 423 

of donor A were loaded to 25 N and, accordingly, the data have been scaled by 10/25 for 424 

comparison).  425 

 426 

Figure 4. Typical stress-strain curve illustrating the finding of the maximum modulus, yield 427 

stress and energy to yield as the area under the curve to the yield stress. 428 

 429 

Figure 5. X-ray images (Faxitron) of bone cores from each of the main areas tested showing 430 

the differences in amount and texture of the trabecular bone at each site. Each core is 9 mm 431 

diameter. 432 

 433 



21 
 

 434 

Figure S1. Stress relaxation curves for femoral head samples. Samples were loaded to 50 N 435 

and the recording was ended 300 s after the start of loading. Two neck samples broke during 436 

testing. 437 

 438 



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/mep/download.aspx?id=540067&guid=deadefd5-afd9-4c08-97ed-6ceadbbe5a60&scheme=1
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Click here to download high resolution image

http://ees.elsevier.com/mep/download.aspx?id=540076&guid=ea56ee80-61f9-47e5-a416-66e6cf66646f&scheme=1
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Supplementary information 

 

Figure S1. Stress relaxation curves for femoral head samples. Samples were loaded to 50 N and the recording 

was ended 300 s after the start of loading. Two neck samples broke during testing. 

  



 

 

 


