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ABSTRACT 

In this paper, we propose three grid-based nonuniform interpolation 

techniques to find the AUC of the convolution operation of a digital 

alias-free FIR filter. Up to the authors’ knowledge, these techniques 

were not addressed in literature before. We call them composite 3-

nonuniform-sample (C3NS), composite 4-nonuniform-sample 

(C4NS) and composite 5-nonuniform-sample (C5NS) rules. They 

are named after the traditional composite Simpson’s 1/3 rule which 

is usually used in second-order polynomial interpolation of equally-

spaced sampling points. The proposed new rules shows better 

estimated results than the uniform-based ones when the number of 

sampling points doesn’t match the required Nyquist rate. Moreover, 

we prove that composite Simpson’s 1/3 rule is more accurate than 

composite Simpson’s 3/8 rule mathematically and by simulation. 

Keywords 

Nonuniform interpolation, random sampling, digital alias-free 

signal processing, FIR filter, composite Simpson’s rules, Boole’s 

rule 

1. INTRODUCTION 
Sampling theory in signal processing was historically addressed by 

Cauchy’s work back to 1841 [1], although other similar works, like 

interpolation theory, have been carried out by many big 

mathematician names such as Gauss, Newton, Lagrange and others 

[2]. In order to sample an analog signal properly, the sampling 

frequency should be selected carefully to enable the perfect 

reconstruction of the original signal. In uniform sampling, the 

samples of the signal are taken evenly at integer multiples of a 

constant time period, 𝑇𝑠, known as the sampling time. 

The Shannon sampling theorem [3]-[4], states that a bandlimited 

baseband signal with a maximum frequency component, 𝑓𝑚, must 

be sampled at a frequency not less than twice 𝑓𝑚, i.e. 𝐹𝑠 ≥ 2𝑓𝑚, for 

the reconstruction process to be carried out unambiguously. This 

minimum sampling frequency is also known as the Nyquist rate. 

Although this is a sufficient but not necessary condition, aliasing 

occurs if the sampling frequency is less than the Nyquist rate using 

uniform sampling in classical digital signal processing (DSP), 

where spectrum replicas of the signal fold back to the band of 

consideration, and the resulting spectrum is no more reflecting the 

actual Fourier transform of the original signal, and so, it can’t be 

reconstructed perfectly. 

The notion of nonuniform sampling of continuous-time signals to 

avoid aliasing has been indirectly addressed by many researchers 

on the early decades of last century [5]. But it was until 1956 that a 

dedicated engineering-based paper on nonuniform sampling 

(interpolation) has been published [6]. In addition to his other paper 

[7], published in 1957, Yen has derived mathematical expressions 

for interpolating specific irregular and nonuniform samples. Later 

on, in 1960, Shapiro and Silverman [8] showed that alias-free 

sampling could be performed with sampling frequency less than the 

Nyquist rate. 

Digital alias-free signal processing (DASP) [9] is a fairly novel 

notion of processing signals digitally without the effect of aliasing, 

even if the class of processed signals is not heavily restricted. This 

apparently impossible objective is achieved by using suitable 

random (or nonuniform) sampling schemes.  

For a given random sampling scheme and a deterministic 

continuous-time signal, the resulting discrete-time signal becomes 

a random signal. It has been shown that it is possible to select 

sampling schemes such that any two different continuous-time 

signals are rasped at two different random discrete-time signals 

[10]. In that sense the sampling schemes and subsequent signal 

processing are alias-free.  

Filtering of nonuniformly sampled input signals has been addressed 

in [11], and in [12] an underlying uniform grid is used to align filter 

time response samples to the input signal’s ones. This paper is an 

extension to [12] including the mathematical derivation of two 

extra interpolation rules, called C4NS and C5NS, in addition to 

comparison between some interpolation techniques that use 

uniform sampling methods. Moreover, the full error analysis for the 

composite 3-nonuniform-sample (C3NS) rule is also derived here. 

The rest of this paper is composed of three sections addressing 

filtering and interpolation for uniform and nonuniform sampling, 

along with computer simulation and numerical results. Conclusion 

is also provided at the end of the paper. 

2. UNIFORM SAMPLING APPROACH 

2.1 Digital Filtering 
In classical DSP, the discrete convolution operation of digital 

filtering, using uniform sampling frequency, 𝐹𝑠, and 𝑁 sampling 

points within 𝑇 seconds observation period, is 

𝑦(𝑡) =
𝑇

𝑁
∑ 𝑥(𝑛𝑇𝑠) ℎ(𝑡 − 𝑛𝑇𝑠)𝑁−1

𝑛=0 .  (1) 

where 𝑥(𝑛𝑇𝑠) represents the sampled input signal, ℎ(𝑛𝑇𝑠) is the 

filter time response,  and 𝑇𝑠 = 1/𝐹𝑠 is the sampling time. Now, by 

considering values of 𝑦(𝑡) at discrete time instants that are 𝑘 

multiples of the sampling time, and taking into account that 𝑇 =
𝑁𝑇𝑠, we get 

𝑦(𝑘𝑇𝑠) = 𝑇𝑠 ∑ 𝑥(𝑛𝑇𝑠) ℎ(𝑘𝑇𝑠 − 𝑛𝑇𝑠)𝑁−1
𝑛=0 .  (2) 

Equation (2) is nothing more than finding an AUC of a specific 

product using the simple rectangle rule with 𝑇𝑠 representing the 

incremental time value of the calculation process. This rule, 

sometimes referred to as the midpoint rule, is simple and easy to 

implement. However, it is not the perfect choice of calculating the 

convolution operation always.  
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2.2 Interpolation 
Interpolation is a mathematical technique used in curve fitting of a 

set of data points or discrete samples. In linear interpolation, for 

example, a first order polynomial is used to calculate function 

values at intermediate points between two given data points. While 

estimating the function values outside these points is known as 

extrapolation. In this section, we focus on interpolation of equally-

spaced points using higher order Lagrange polynomials. 

2.2.1 Composite Simpson’s 1/3 Rule 
In regular Simpson’s 1/3 rule, a given function, 𝑓(𝑡), can be 

approximated by using a second-order Lagrange polynomial, 𝑃(𝑡). 

This polynomial is formed by means of quadratic interpolation 

techniques and making use of only three equally spaced samples 

{(𝑡0, 𝑓(𝑡0)), (𝑡1, 𝑓(𝑡1)), (𝑡2, 𝑓(𝑡2))}, i.e. the boundaries of two 

equal segments of 𝑓(𝑡), as shown in Fig.1. Once the parabolic 

equation becomes known, we can estimate the area under 𝑓(𝑡) 

within an interval [𝑎, 𝑏] by integrating 𝑃(𝑡) from 𝑎 to 𝑏. It has been 

found that 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈

ℎ

3
(𝑓0 + 4𝑓1 + 𝑓2),    (3) 

where, for simplicity, 𝑓0 = 𝑓(𝑡0), 𝑓1 = 𝑓(𝑡1) and 𝑓2 = 𝑓(𝑡2). Note 

that 𝑡0 = 𝑎, 𝑡1 =
𝑏+𝑎

2
,  𝑡2 = 𝑏, and ℎ =

𝑏−𝑎

2
 is the spacing step 

between any two consecutive samples, or equivalently, the 

segment’s width. 

 

Fig. 1. Simpson’s 1/3 rule, where 𝑃(𝑡) is a fitting curve for 𝑓(𝑡) 

using only three equally-spaced samples of 𝑓(𝑡). 

The error of estimation in Simpson’s 1/3 rule is bounded by the 

maximum value of the expression, 

𝐸𝑟𝑟𝑆𝑖𝑚𝑝1/3 = −
ℎ5

90
𝑓(4)(𝜉),  (4) 

where 𝑓(4) is the forth derivative of 𝑓(𝑡) and 𝜉 is a number within 

the open interval  (𝑎, 𝑏). 

If the finite interval [𝑎, 𝑏] is relatively large, then the estimation 

error will be high. Thanks to the composite (or extended) 

Simpson’s 1/3 rule, where the interval [𝑎, 𝑏] is divided into 𝑛 equal 

subintervals, with two identical segments per each subinterval, 

within which we can apply the regular Simpson’s 1/3 rule, 

explained above, in each single subinterval as shown in Fig. 2. In 

this case we have 𝑁 = 2𝑛 + 1 equally spaced samples with step 

segment width ℎ =
𝑏−𝑎

𝑁−1
=

𝑏−𝑎

2𝑛
. Integration of 𝑓(𝑡) using composite 

Simpson’s 1/3 rule can be numerically estimated as, 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈

ℎ

3
(𝑓0 + 4 ∑ 𝑓2𝑖−1

𝑛
𝑖=1 + 2 ∑ 𝑓2𝑖

𝑛−1
𝑖=1 + 𝑓𝑁−1),        (5) 

and the error of estimation is, 

𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝1/3 = −
ℎ5

90
∑ 𝑓(4)(𝜉𝑖)𝑛

𝑖=1 ,        (6) 

where 𝜉𝑖 ∈ (𝑡2𝑖−2, 𝑡2𝑖). We may rewrite (6) in terms of the average 

estimated error across all subintervals, 𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅,  as 

𝐴𝑣. 𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝1 3⁄  = −
ℎ4(𝑏−𝑎)

180
𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −

(𝑏−𝑎)5

180(𝑁−1)4
𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅,    (7) 

where 𝜉 ∈ [𝑎, 𝑏]. 

 

Fig. 2. Composite Simpson’s 1/3 rule with 𝑛 parabolic 

interpolation functions employed. 

2.2.2 Composite Simpson’s 3/8 Rule 
In much similar way, uniform Simpson’s 3/8 rule uses four 

equidistant points interpolation, with spacing segment width ℎ =
𝑏−𝑎

3
, to estimate the function 𝑓(𝑡) within the interval [𝑎, 𝑏], based 

on third-order Lagrange polynomial. It has been found that the area 

under 𝑓(𝑡) from 𝑎 to 𝑏 can be estimated as 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈

3ℎ

8
(𝑓0 + 3𝑓1 + 3𝑓2 + 𝑓3),     (8) 

with an estimation error of 𝐸𝑟𝑟𝑆𝑖𝑚𝑝3 8⁄ = −
3ℎ5

80
𝑓(4)(𝜉), where 𝑓(4) 

is the forth derivative of 𝑓(𝑡) and 𝜉 is a number within the open 

interval  (𝑎, 𝑏). 

For more accurate estimation of fining the total area under the curve 

of 𝑓(𝑡), the composite Simpson’s 3/8 rule suggests partitioning the 

interval [𝑎, 𝑏] into 𝑛 subintervals with 3𝑛 segments per each 

subinterval, then, interpolating every four samples within each 

subinterval by applying the Simpson’s 3/8 rule, as illustrated above, 

and thence adding the integral results of all subintervals together. 

Therefore, a total of 𝑁 = 3𝑛 + 1 equally spaced samples (𝑡0 =
𝑎, 𝑡1, 𝑡2, … , 𝑡𝑖 = 𝑎 + 𝑖ℎ, … , 𝑡𝑁−1 = 𝑏), with segment width ℎ =
𝑏−𝑎

𝑁−1
=

𝑏−𝑎

3𝑛
, are considered. The new approximation of 𝑓(𝑡)’s 

definite integral is 

 ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈

3ℎ

8
(𝑓0 + 3 ∑ (𝑓3𝑖−2 + 𝑓3𝑖−1)𝑛

𝑖=1 + 2 ∑ 𝑓3𝑖
𝑛−1
𝑖=1 +

𝑓𝑁−1),     (9) 

and the error of estimation is 𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝3/8 = −
3ℎ5

80
∑ 𝑓(4)(𝜉𝑖)𝑛

𝑖=1 , 

where 𝜉𝑖 ∈ (𝑡3𝑖−3, 𝑡3𝑖). Analogously to composite Simpson’s 1/3 

rule, the average error can be estimated as 

 𝐴𝑣. 𝐸𝑟𝑟𝐶𝑆𝑖𝑚𝑝3 8⁄ = −
ℎ4(𝑏−𝑎)

80
𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −

(𝑏−𝑎)5

80(𝑁−1)4 𝑓(4)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅.   (10) 

By comparing the average errors in (7) and (10), we can deduce that 

the composite Simpson’s 1/3 rule is better in estimating the area 

under the curve of a given function, 𝑓(𝑡), than the composite 

Simpson’s 3/8 rule within the same interval [𝑎, 𝑏] and the same 

number of equispaced samples, assuming that the average fourth 

derivatives of 𝑓(𝑡) for both rules, evaluated at a specific number 
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between 𝑎 and 𝑏, are almost the same. This motivates us to explore 

the composite Boole’s rule and check its associated error term. 

Now, an emerging question is: if the interpolation using composite 

Simpson’s 1/3 rule seems to be more accurate than the composite 

Simpson’s 3/8 rule, so why do we need the last one? The simple 

answer is that, sometimes, we don’t have the proper number of 

samples to apply the first one alone. To overcome this limitation, 

we use a mix of the two rules together. For example, if there is an 

even number of samples, or the number of samples is odd but does 

not satisfy the condition of having integer value for the number of 

subintervals in the formula: 𝑁 = 3𝑛 + 1, then there is a necessity 

to mix more than one interpolation rule. 

2.2.3 Composite Boole’s 3/8 Rule 
Five uniformly spaced function evaluations (samples) are 

considered for the case of Boole’s rule, with segment spacing ℎ =
𝑏−𝑎

4
. Therefore, interpolating 𝑓(𝑡) to calculate the area under the 

curve from 𝑎 to 𝑏 yields 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈

2ℎ

45
(7𝑓0 + 32𝑓1 + 12𝑓2 + 32𝑓3 + 7𝑓4),      (11) 

where 𝑡𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0,1,2,3,4. The error associated with this 

approximation is 𝐸𝑟𝑟Boole = −
 8ℎ7

945
𝑓(6)(𝜉),   𝜉 ∈ (𝑎, 𝑏). 

With regards to the composite Boole’s rule where the interval [𝑎, 𝑏] 
is divided into 𝑛 equal subintervals with 4𝑛 segments per 

subinterval, a total of 𝑁 = 4𝑛 + 1 uniform samples (𝑡0 =
𝑎, 𝑡1, 𝑡2, … , 𝑡𝑖 = 𝑎 + 𝑖ℎ, … , 𝑡𝑁−1 = 𝑏), with segment’s width ℎ =
𝑏−𝑎

𝑁−1
=

𝑏−𝑎

4𝑛
, are considered. Therefore, the definite integral of 𝑓(𝑡) 

can be estimated as: 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈

2ℎ

45
∑ (7𝑓4𝑖−4 + 32𝑓4𝑖−3 + 12𝑓4𝑖−2 + 32𝑓4𝑖−1 +𝑛

𝑖=1

7𝑓4𝑖).      (12) 

The error of estimation is 𝐸𝑟𝑟𝑜𝑟𝐶𝐵𝑜𝑜𝑙𝑒 = −
8ℎ7

945
∑ 𝑓(6)(𝜉𝑖)𝑛

𝑖=1 , 

where 𝜉𝑖 ∈ (𝑡4𝑖−4, 𝑡4𝑖). While the overall average error is estimated 

by 

𝐴𝑣. 𝐸𝑟𝑟𝐶𝐵𝑜𝑜𝑙𝑒   = −
2ℎ6(𝑏−𝑎)

945
𝑓(6)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅ = −

2(𝑏−𝑎)7

945(𝑁−1)6 𝑓(6)(𝜉)̅̅ ̅̅ ̅̅ ̅̅ ̅.   (13)      

It is not easy to compare the absolute values of the average errors 

for composite Boole’s rule and composite Simpson’s 1/3 rule (or 

composite Simpson’s 3/8 rule) mathematically. However, we 

know, at least, that the rate of uniform convergence of the average 

error term in composite Boole’s rule, (13), is faster than the other 

ones, (7) and (10), for fixed interval limits, since it is proportional 

to (𝑁 − 1)−6 compared to (𝑁 − 1)−4 for the other ones. 

3. NONUNIFORM SAMPLING APPROACH 
Lagrange interpolation polynomials can be generalized to include 

unequally spaced nodes (samples). In general, any continuous and 

differentiable function, 𝑓(𝑡), with 𝑁 nonuniformly distributed 

nodes {(𝑡0, 𝑓0), (𝑡1, 𝑓1), … , (𝑡𝑁−1, 𝑓𝑁−1)}, can be approximated 

with a general (𝑁 − 1)-degree piecewise polynomial 𝑃𝑁−1(𝑡) =
∑ 𝑃𝑘(𝑡)𝑁−1

𝑘=1 , where each  𝑃𝑘(𝑡) is  calculated by 

𝑃𝑘(𝑡) = 𝑓𝑘 ∏
𝑡−𝑡𝑖

𝑡𝑘−𝑡𝑖

𝑁−1
𝑖=1
𝑖≠𝑘

.   (14) 

3.1 Composite 3-Nonuniform-Sample Rule 
The proposed composite 3-nonuniform-sample (C3NS) rule 

addresses the case of interpolation of nonuniform sampling points 

that are aligned to an underlying uniform grid. This was chosen in 

purpose, where a potential practical implementation is in mind, and 

to mitigate the aliasing problem by using random-based function 

evaluations or nodes. 

3.1.1 Estimated Area Under the Curve (AUC) 
Suppose we have a continuous-time function, 𝑓(𝑡), and we need to 

estimate the area under 𝑓(𝑡) within the interval [0, 𝑇) by 

interpolating specific number of nonuniformly spaced samples of 

it. Hence, we divide the whole interval [0, 𝑇) into subintervals 

according to the number of sampling points. Every three 

consecutive samples constitute one subinterval, as shown in Fig. 3. 

Left and right samples (borders) of a given subinterval are shared 

with previous and next subintervals to form the composite rule and 

to calculate the total interpolated area from 0 to 𝑇. 

 

Fig. 3. One subinterval, [𝑡0, 𝑡2], of the C3NS rule. 

Starting with the first three nonuniform samples, at time instants 

𝑡0 = 0, 𝑡1 and 𝑡2 (one subinterval), and recalling that time spacing 

between any two samples is integer multiple of 𝑇𝑠, the uniform grid 

time step, we introduce the integer numbers 𝑛1 and 𝑛2 as follows: 

𝑡1 − 𝑡0 = 𝑛1𝑇𝑠 and 𝑡2 − 𝑡1 = 𝑛2𝑇𝑠. Now, we estimate the 

subinterval area under 𝑓(𝑡) from 𝑡0 to 𝑡2 = (𝑛1 +  𝑛2)𝑇𝑠 by simply 

interpolating the three sample points 𝑓0 = 𝑓(𝑡0), 𝑓1 = 𝑓(𝑡1) and 

𝑓2 = 𝑓(𝑡2) using a second-order Lagrange polynomial 𝑃(𝑡). 

Working out the mathematical calculations, we find the area within 

this subinterval to be equal to 

∫ 𝑓(𝑡)𝑑𝑡
𝑡2

𝑡0
≈

𝑇𝑠(𝑛1+ 𝑛2)

6𝑛1𝑛2

[(2𝑛1𝑛2 − 𝑛2
2)𝑓0 + (𝑛1 + 𝑛2)2𝑓1 +

(2𝑛1𝑛2 − 𝑛1
2)𝑓2].   (15) 

For the case of 𝑛 subintervals with a total number of 𝑁 = 2𝑛 + 1 

samples, and denoting by 𝑛𝑖1 and 𝑛𝑖2 the integers 𝑛1 and 𝑛2 for 

each subinterval respectively, then the total area of 𝑓(𝑡) from 0 to 

𝑇 can be estimated as: 

∫ 𝑓(𝑡)𝑑𝑡
𝑇

0
≈ 𝑇𝑠 ∑

(𝑛𝑖1+ 𝑛𝑖2)

6𝑛𝑖1𝑛𝑖2
((2𝑛𝑖1𝑛𝑖2 −  𝑛𝑖2

2 )𝑓2𝑖−2 + (𝑛𝑖1 +𝑛
𝑖=1

 𝑛𝑖2)2𝑓2𝑖−1 + (2𝑛𝑖1𝑛𝑖2 − 𝑛𝑖1
2)𝑓2𝑖).   (16) 

3.1.2 Error Analysis 
To find the estimation error for one subinterval, 𝐸𝑟𝑟3NS, assuming 

that 𝑇𝑠 = ℎ for the sake of simplicity (and to be inline with 

literature’s notation as much as possible), we start with: 

𝐸𝑟𝑟3NS = ∫ 𝑓(𝑡)𝑑𝑡
(𝑛1+ 𝑛2)ℎ

0
−

ℎ(𝑛1+ 𝑛2)

6𝑛1𝑛2

[(2𝑛1𝑛2 − 𝑛2
2)𝑓0 +

(𝑛1 + 𝑛2)2𝑓1 + (2𝑛1𝑛2 − 𝑛1
2)𝑓2].   (17) 

Now, the Taylor Series expansion of 𝑓(𝑡), 𝑓0, 𝑓1 and 𝑓2 at 𝑡 = 𝑡1 =
𝑛1ℎ, is 

𝑓(𝑡) = 𝑓1 + (𝑡 − 𝑛1ℎ)𝑓1
(1)

+
1

2
(𝑡 − 𝑛1ℎ)2𝑓1

(2)
+

1

6
(𝑡 −

𝑛1ℎ)3𝑓1
(3)

+
1

24
(𝑡 − 𝑛1ℎ)4𝑓1

(4)
+ 𝑂(𝑡 − 𝑛1ℎ)5,   (18)  
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where 𝑓1
(i)

 is the 𝑖-th derivative of 𝑓(𝑡) at 𝑡 = 𝑡1.   

𝑓0 = 𝑓(𝑡1) − 𝑛1ℎ𝑓(1)(𝑡1) +
1

2
(𝑛1ℎ)2𝑓(2)(𝑡1) −

1

6
(𝑛1ℎ)3𝑓(3)(𝑡1) +

1

24
(𝑛1ℎ)4𝑓(4)(𝑡1) + 𝑂(𝑛1ℎ)5.   (19) 

𝑓1 = 𝑓1.   (20) 

𝑓2 = 𝑓1(𝑡1) + 𝑛2ℎ𝑓1
(1)

+
1

2
(𝑛2ℎ)2𝑓1

(2)
+

1

6
(𝑛2ℎ)3𝑓1

(3)
+

1

24
(𝑛2ℎ)4𝑓1

(4)
+ 𝑂(𝑛2ℎ)5.   (21) 

Substituting (18)-(21) into the expression of 𝐸𝑟𝑟3NS shown in (17), 

we get 

𝐸𝑟𝑟3NS = ∫ [𝑓1 + (𝑡 − 𝑛1ℎ)𝑓1
(1)

+
1

2
(𝑡 − 𝑛1ℎ)2𝑓1

(2)
+

(𝑛1+ 𝑛2)ℎ

0
1

6
(𝑡 − 𝑛1ℎ)3𝑓1

(3)
+

1

24
(𝑡 − 𝑛1ℎ)4𝑓1

(4)
+ 𝑂(𝑡 − 𝑛1ℎ)5] 𝑑𝑡 −

ℎ(𝑛1+ 𝑛2)

6𝑛1𝑛2
[(2𝑛1𝑛2 −  𝑛2

2) (𝑓(𝑡1) − 𝑛1ℎ𝑓(1)(𝑡1) +
1

2
(𝑛1ℎ)2𝑓(2)(𝑡1) −

1

6
(𝑛1ℎ)3𝑓(3)(𝑡1) +

1

24
(𝑛1ℎ)4𝑓(4)(𝑡1) +

𝑂(𝑛1ℎ)5) + (𝑛1 + 𝑛2)2𝑓1 + (2𝑛1𝑛2 − 𝑛1
2) (𝑓1(𝑡1) +

𝑛2ℎ𝑓1
(1)

+
1

2
(𝑛2ℎ)2𝑓1

(2)
+

1

6
(𝑛2ℎ)3𝑓1

(3)
+

1

24
(𝑛2ℎ)4𝑓1

(4)
+

𝑂(𝑛2ℎ)5)].   (22) 

𝐸𝑟𝑟3NS = (𝑛1 + 𝑛2)ℎ𝑓1 +
1

2
(𝑛2

2 − 𝑛1
2)ℎ2𝑓1

(1)
+

1

6
(𝑛2

3 +

𝑛1
3)ℎ3𝑓1

(2)
+

1

24
(𝑛2

4 − 𝑛1
4)ℎ4𝑓1

(3)
+

1

120
(𝑛2

5 + 𝑛1
5)ℎ5𝑓1

(4)
+

𝑂((𝑛2
6 − 𝑛1

6)ℎ6) −
ℎ(𝑛1+ 𝑛2)

6𝑛1𝑛2
[(2𝑛1𝑛2 − 𝑛2

2) (𝑓1 − 𝑛1ℎ𝑓1
(1)

+

1

2
(𝑛1ℎ)2𝑓1

(2)
−

1

6
(𝑛1ℎ)3𝑓1

(3)
+

1

24
(𝑛1ℎ)4𝑓1

(4)
+ 𝑂(𝑛1ℎ)5) +

(𝑛1 + 𝑛2)2𝑓1 + (2𝑛1𝑛2 − 𝑛1
2) (𝑓1 + 𝑛2ℎ𝑓1

(1)
+

1

2
(𝑛2ℎ)2𝑓1

(2)
+

1

6
(𝑛2ℎ)3𝑓1

(3)
+

1

24
(𝑛2ℎ)4𝑓1

(4)
+ 𝑂(𝑛2ℎ)5)]. (23) 

Arranging the terms and carrying out some mathematical 

manipulation, we get 

𝐸𝑟𝑟3NS =
ℎ4(𝑛1+ 𝑛2)3(𝑛1− 𝑛2)

72
𝑓1

(3)
−

ℎ5(𝑛1+ 𝑛2)3(4𝑛1
2− 7𝑛1𝑛2+ 4𝑛2

2)

720
𝑓1

(4)
,   (24)  

where a term of 𝑂(𝐹(𝑛1
6, 𝑛2

6, ℎ6)) is neglected, since 𝐹(. ) is a 

function of fraction raised to the power of 6, which is very small 

compared to the other terms.  

The error in (24) can be greatly decreased by choosing 𝑛1 =  𝑛2 

(equally spaced samples), where it reduces to 

𝐸𝑟𝑟3NS, 𝑛1= 𝑛2 = −
𝑛1

5ℎ5

90
𝑓1

(4)
.   (25) 

This is exactly the same error for Simpson’s 1/3 rule as found in 

literature for uniform sampling case, but without 𝑛1, since 𝑛1ℎ here 

is the same as ℎ in there, and both denote the spacing step between 

the uniform sampling points. 

Note that there is a trade-off in selecting 𝑛1 and 𝑛2, where equal 

numbers means uniform sampling, and so, aliasing will occur when 

sampling frequency is less than Nyquist/Landau rate. Whereas 

choosing 𝑛1 ≠ 𝑛2 means NUS, and this will mitigate aliasing 

effect, but also, will increase the error term accordingly. 

Now, we calculate the total composite error for 𝑛 subintervals, 

𝐸𝑟𝑟C3NS, which can be found by 

𝐸𝑟𝑟C3NS = ∑
ℎ4(𝑛𝑖1+ 𝑛𝑖2)3(𝑛𝑖1− 𝑛𝑖2)

72
𝑓2𝑖−1

(3)
−𝑛

𝑖=1

ℎ5(𝑛𝑖1+ 𝑛𝑖2)3(4𝑛𝑖1
2 − 7𝑛𝑖1𝑛𝑖2+ 4𝑛𝑖2

2 )

720
𝑓2𝑖−1

(4)
.   (26) 

 

3.2 Composite 4-Nonuniform-Sample Rule 
This proposed composite 4-nonuniform-sample (C4NS) rule 

interpolates four nonuniform sampling points, as follows 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈ ∑ 𝑤𝑖𝑓𝑖

3
𝑖=0 ,   (27) 

where 𝑤𝑖 is the weight of the 𝑖-th function point (sample), as 

follows 

𝑤0 =
ℎ (3𝑛1

3+ 5𝑛1
2𝑛2+ 𝑛1

2𝑛3+ 𝑛1𝑛2
2− 𝑛1𝑛3

2− 𝑛2
3− 𝑛2

2𝑛3+ 𝑛2𝑛3
2+ 𝑛3

3)

12𝑛1(𝑛1+ 𝑛2)
.   (28) 

𝑤1 =
ℎ (𝑛1+ 𝑛2− 𝑛3)(𝑛1+ 𝑛2+ 𝑛3)3

12𝑛1𝑛2(𝑛2+ 𝑛3)
.   (29) 

𝑤2 =
ℎ (𝑛2− 𝑛1+ 𝑛3)(𝑛1+ 𝑛2+ 𝑛3)3

12𝑛2𝑛3(𝑛1+ 𝑛2)
.   (30) 

𝑤3 =
ℎ (𝑛1

3+ 𝑛1
2𝑛2− 𝑛1

2𝑛3− 𝑛1𝑛2
2+ 𝑛1𝑛3

2− 𝑛2
3+ 𝑛2

2𝑛3+ 5𝑛2𝑛3
2+ 3𝑛3

3)

12𝑛3(𝑛2+ 𝑛3)
.   (31) 

 

3.3 Composite 5-Nonuniform-Sample Rule 
In composite 5-nonuniform-sample (C5NS) rule, we use five 

nonuniform sampling points to estimate 𝑓(𝑡), so 

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
≈ ∑ 𝑤𝑖𝑓𝑖

4
𝑖=0 ,   (32) 

where  

𝑤0 = −
ℎ

60 𝑛1(𝑛1+ 𝑛2)(𝑛1+ 𝑛2+ 𝑛3)
(− 12 𝑛1

4 −  33 𝑛1
3𝑛2 −

 18 𝑛1
3𝑛3 −  3 𝑛1

3𝑛4 −  27 𝑛1
2𝑛2

2 −  29 𝑛1
2𝑛2𝑛3 −  4 𝑛1

2𝑛2𝑛4 −
 2 𝑛1

2𝑛3
2 + 𝑛1

2𝑛3𝑛4 +  3 𝑛1
2𝑛4

2 −  3 𝑛1𝑛2
3 −  4 𝑛1𝑛2

2𝑛3 +
 𝑛1𝑛2

2𝑛4 +  𝑛1𝑛2𝑛3
2 +  2 𝑛1𝑛2𝑛3𝑛4 +  𝑛1𝑛2𝑛4

2 +  2 𝑛1𝑛3
3 +

 𝑛1𝑛3
2𝑛4 −  4 𝑛1𝑛3𝑛4

2 −  3 𝑛1𝑛4
3 +  3 𝑛2

4 +  7 𝑛2
3𝑛3 +  2 𝑛2

3𝑛4 +
 3 𝑛2

2𝑛3
2 + 𝑛2

2𝑛3𝑛4 −  2 𝑛2
2𝑛4

2 −  3 𝑛2𝑛3
3 −  4 𝑛2𝑛3

2𝑛4 +
 𝑛2𝑛3𝑛4

2 +  2 𝑛2𝑛4
3 −  2 𝑛3

4 −  3 𝑛3
3𝑛4 +  3 𝑛3

2𝑛4
2 +  7 𝑛3𝑛4

3 +
 3 𝑛4

4).   (33) 

𝑤1 =
ℎ(𝑛1+ 𝑛2+ 𝑛3+ 𝑛4)3

60 𝑛1𝑛2(𝑛2+ 𝑛3)(𝑛2+ 𝑛3+ 𝑛4)
(3 𝑛1

2 +  6 𝑛1𝑛2 + 𝑛1𝑛3 −

 4 𝑛1𝑛4 +  3 𝑛2
2 +  𝑛2𝑛3 −  4 𝑛2𝑛4 −  2 𝑛3

2 + 𝑛3𝑛4 +  3 𝑛4
2). (34) 

𝑤2 = −
ℎ(𝑛1+ 𝑛2+ 𝑛3+ 𝑛4)3

60 𝑛2𝑛3(𝑛1+ 𝑛2)(𝑛3+ 𝑛4)
(3 𝑛1

2 +  𝑛1𝑛2 +  𝑛1𝑛3 −  4 𝑛1𝑛4 −

 2 𝑛2
2 −  4 𝑛2𝑛3 + 𝑛2𝑛4 −  2 𝑛3

2 +  𝑛3𝑛4 +  3 𝑛4
2).   (35) 

𝑤3 =
ℎ(𝑛1+ 𝑛2+ 𝑛3+ 𝑛4)3

60 𝑛3𝑛4(𝑛2+ 𝑛3)(𝑛1+ 𝑛2+ 𝑛3)
(3 𝑛1

2 +  𝑛1𝑛2 −  4 𝑛1𝑛3 −

 4 𝑛1𝑛4 −  2 𝑛2
2 +  𝑛2𝑛3 + 𝑛2𝑛4 +  3 𝑛3

2 +  6 𝑛3𝑛4 +  3 𝑛4
2). (36) 

𝑤4 = −
ℎ

60 𝑛4(𝑛3+ 𝑛4)(𝑛2+ 𝑛3+ 𝑛4)
(3 𝑛1

4 +  7 𝑛1
3𝑛2 +  2 𝑛1

3𝑛3 −

 3 𝑛1
3𝑛4 +  3 𝑛1

2𝑛2
2 + 𝑛1

2𝑛2𝑛3 −  4 𝑛1
2𝑛2𝑛4 −  2 𝑛1

2𝑛3
2 +

 𝑛1
2𝑛3𝑛4 +  3 𝑛1

2𝑛4
2 −  3 𝑛1𝑛2

3 −  4 𝑛1𝑛2
2𝑛3 + 𝑛1𝑛2

2𝑛4 +
 𝑛1𝑛2𝑛3

2 +  2 𝑛1𝑛2𝑛3𝑛4 +  𝑛1𝑛2𝑛4
2 +  2 𝑛1𝑛3

3 + 𝑛1𝑛3
2𝑛4 −

 4 𝑛1𝑛3𝑛4
2 −  3 𝑛1𝑛4

3 −  2 𝑛2
4 −  3 𝑛2

3𝑛3 +  2 𝑛2
3𝑛4 +  3 𝑛2

2𝑛3
2 +

 𝑛2
2𝑛3𝑛4 −  2 𝑛2

2𝑛4
2 +  7 𝑛2𝑛3

3 −  4 𝑛2𝑛3
2𝑛4 −  29 𝑛2𝑛3𝑛4

2 −
 18 𝑛2𝑛4

3 +  3 𝑛3
4 −  3 𝑛3

3𝑛4 −  27 𝑛3
2𝑛4

2 −  33 𝑛3𝑛4
3 −  12 𝑛4

4).  

 (37) 

It is very complicated to work out the error terms in C4NS and 

C5NS rules mathematically, hence, it will be skipped for the time 

being! 

 

4. Simulation Results 
We have carried out two sets of numerical integration using 

uniform sampling- and nonuniform sampling-based interpolation 

methods discussed above. Fig.4 shows the first set of results for 
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calculating AUC of a test signal 𝑓(𝑡) = 𝑠𝑖𝑛(𝑡) + 𝑐𝑜𝑠(2𝑡) within 

the interval [0,1.2] seconds. It is obvious that uniform-based 

interpolation techniques, depicted in solid lines, outperform their 

counterparts, i.e. same-order Lagrange polynomials ones, shown in 

dashed lines, for the whole range of sampling points from 61 to 601 

samples. This is because of the low frequency used in the signal 

(less than 1Hz.) Note also that CS13 results are more accurate than 

CS38, and this emphasize our conclusion on the average errors in 

(7) and (10). 

 

Fig. 4. Error analysis for input signal of only two single 

sinusoids having frequencies 1/2𝜋 Hz and 1/𝜋 Hz. 

In the second set of simulations, we have used a much complex 

signal that has higher frequency components. Namely, 𝑓(𝑡) =

10−2 𝑠𝑖𝑛𝑐 (50 (𝑡 −
𝑇

2
))  cos(2𝜋103𝑡) + 10−2 𝑠𝑖𝑛𝑐 (273 (𝑡 −

 
𝑇

2
))  𝑐𝑜𝑠(6𝜋103𝑡). As depicted in Fig. 5.  

 

Fig. 5. Error analysis for input signal of two sinc functions 

shifted at two different carrier frequencies. 

Fig 5 shows that the nonuniform interpolation techniques now 

outperforms the uniform ones in the left part of the figure, where 

the number of samples is equivalent to an average sampling 

frequency less than the required sampling rate. 

5. Conclusion 

We have derived three mathematical formulas for interpolation of 

grid-based nonuniform samples (C3NS, C4NS and C5NS), as well 

as the full error analysis of the C3NS rule. Moreover, a 

mathematical comparison between uniform sampling-based 

interpolation techniques is presented, where it has been shown that 

for the same number of sampling points and same interpolation 

interval, composite Boole’s rule uniform convergence rate is much 

faster than other uniform composite rules’ ones, and both CS13 and 

CS38 have the same convergence rate, with CS13 outperforms 

CS38 in the absolute error value most often. 

For mitigating of aliasing in DASP applications, the proposed 

nonuniform-based interpolation rules show enhanced results over 

uniform ones when Nyquist rate is not met. 
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