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An explicit formula of perturbating
stiffness matrix for partial natural
frequency assignment using static
output feedback

Jiafan Zhang1, Jianping Ye1, Huajiang Ouyang2 and Xiang Yin1

Abstract

The partial eigenvalue (or natural frequency) assignment or placement, only by the stiffness matrix perturbation,

of an undamped vibrating system is addressed in this paper. A novel and explicit formula of determining the

perturbating stiffness matrix is deduced from the eigenvalues perturbation theorem for a low-rank perturbed

matrix. This formula is then utilized to solve the partial eigenvalue (or natural frequency) assignment via the

static output feedback. The control matrix, output matrix and feedback gain matrix can be explicitly expressed and

easily constructed.
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Introduction

In the last dozen years, the partial eigenvalue (or natural frequency) assignment or placement has been
a rich research area. Many aspects of the inverse problem of structural and mechanical dynamics have
been involved in the research, such as the structural inverse modification,1–3 model updating4–6 and active vibration
control.7–12 These cited here are a small part of the literatures published in recent years. In the above research
content, the proposed methods have a nice feature, that is, all the unassigned eigenvalues (or unmodified natural
frequencies) with the corresponding eigenvectors remain unchanged while a small number of eigenvalues of a
structure are assigned to the targeted values. The results and related methods with this feature are also deemed
to be no spillover.

This paper is concerned with the partial eigenvalue (or natural frequency) assignment or placement, only by
the stiffness matrix perturbation, of an undamped vibrating system. A novel and simple formula is presented for
determining the perturbating stiffness matrix. It is derived from the important results given by Brauer and the
others,13,14 who proved the eigenvalues perturbation theorem for a low-rank perturbed matrix. The application of
the formula is then explored in dealing with some related aspects mentioned above, especially in solving the static
output feedback control of an undamped vibrating system.
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The Brauer’s theorem and a related result

The relationship among eigenvalues of a given square matrix A and its rank one updated matrix was proved by
Brauer.13 The following Theorem 2 is an extension of the Brauer’s theorem. Firstly, the Brauer’s theorem is
introduced as follows.

Theorem 1.13,15 Let A be an n� n arbitrary matrix with eigenvalues fk1; k2; . . . ; kng. Let xk be an eigenvector of A
associated with the eigenvalue kk, and let u be any n-dimensional column vector. Then, the matrix Aþ xku

T has
eigenvalues fk1; . . . ; kk�1; kk þ xTk u; kkþ1; . . . ; kng.

Theorem 1 shows that eigenvalues of the matrix Aþ xku
Tconsist of those of A, except that one eigenvalue kk of

A is replaced by kk þ xTk u. The following theorem further describes how to modify, in only one step, r eigenvalues
of an arbitrary square matrix A without changing any of the remaining (n� r) eigenvalues.

Theorem 2.14,15 Let A be an n� n arbitrary matrix with eigenvalues fk1; k2; . . . ; kng. Let X1 ¼ x1x2. . . xr½ � be an
n� r matrix such that rank(X1)¼ r and Axi ¼ kixi, i¼ 1, 2, . . ., r, r � n. Let C be an r� n arbitrary matrix. Then,
the matrix AþX1C has eigenvalues l1; l2; . . . ; lr; krþ1; krþ2; . . . ; knf g, where l1; l2; . . . ; lr are eigenvalues of the
matrix K1 þ CX1 with K1 ¼ diag k1; k2; . . . ; krð Þ.

In the next section only the stiffness matrix perturbation of a vibrating system is considered. The aim is to
assign some natural frequencies of the original system with no spillover. A new explicit formula of the perturbat-
ing stiffness matrix will be presented based on above Theorem 2. Its computation is fairly straightforward when
changing amounts of some natural frequencies of the original system are given.

An explicit formula of the perturbating stiffness matrix

Consider an n-degree-of-freedom undamped vibrating system that is modeled by the following set of homoge-
neous second-order ordinary differential equations

M0
€q tð Þ þK0qðtÞ ¼ 0 (1)

where qðtÞ is n-dimensional displacement vector depending on time t, M0;K0 are n� nmass and stiffness matrices,
respectively. In general, M0 is symmetric and positive definite, and K0 is symmetric and positive semi-definite,
denoted by M0 > 0, K0 � 0. It is well known that dynamical performances of the system (1) are characterized by
the following generalized eigenvalue equations

K0xi ¼ kiM0xi; i ¼ 1; 2; . . . ; n (2)

where ki ¼ x2
i is the square of the ith natural frequency xi, called the ith eigenvalue and xi is the corresponding ith

mode shape, called the ith eigenvector.
The real number set of eigenvalues of the system (1) can be partitioned into two non-intersection subsets

fk1; k2; . . . ; krg and fkrþ1; krþ2; . . . ; kng. For the convenience of the following exposition, the former subset and
the corresponding eigenvectors are expressed by, respectively, two submatrices, that is K1 ¼ diag k1; k2; . . . ; krð Þ
and X1 ¼ x1x2. . . xr½ �, which are consistent with the expression in Theorem 2. The latter subset and the corre-
sponding eigenvectors are represented by K2 ¼ diag krþ1; krþ2; . . . ; knð Þ and X2 ¼ xrþ1xrþ2. . . xn½ �. Additionally, it
is always assumed without loss of generality that the eigenvectors (X1, X2) of the system (1) are normalized in such
a way that

XT
1

XT
2

" #
M0 X1;X2½ � ¼ In (3)

XT
1

XT
2

" #
K0 X1;X2½ � ¼ diag K1; K2ð Þ (4)
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where the superscript T denotes the matrix transpose, and In is an n� n identity matrix.
Now the problem is to change the eigenvalues subset fk1; k2; . . . ; krg of the system (1) to another subset of

targeted eigenvalues fl1; l2; . . . ; lrg, which is also written as a submatrix R1 ¼ diag l1; l2; . . . ; lrð Þ, while keeping
any of the remaining (n� r) eigenvalues fkrþ1; krþ2; . . . ; kng and the corresponding eigenvectors of the system (1)

unchanged. Furthermore, that’s all going to be done through only replacing or updating the stiffness matrix K0 by

K0 þ DK in the system (1). Notice that an assumption, l1; l2; . . . ; lrf g \ krþ1; krþ2; . . . ; knf g ¼ 1, is made in this

problem. In what follows, the perturbating stiffness matrix DK is constructively presented for solving the problem.
The generalized eigenproblem (2) can be equivalently transformed into a standard eigenproblem via letting

A ¼ M�1
0 K0. It follows from Theorem 2 that, if the matrix K1 þ CX1has eigenvalues l1; l2; . . . ; lrf g, then AþX1

C ¼ M�1
0 K0 þX1C has eigenvalues l1; l2; . . . ; lr; krþ1; krþ2; . . . ; knf g, noting that C is an r� n arbitrary matrix.

Let C ¼ R1 � K1ð ÞXT
1M0, since XT

1K0X1 ¼ K1 and XT
1M0X1 ¼ Ir from equations (3) and (4), it is easy to verify

that

K1 þ CX1 ¼ XT
1K0X1 þ R1 � K1ð ÞXT

1M0X1 ¼ R1 ¼ diag l1; l2; . . . ; lrð Þ

Thus, AþX1C ¼ M�1
0 K0 þX1C ¼ M�1

0 K0 þX1 R1 � K1ð ÞXT
1M0 has eigenvalues l1; l2; . . . ; lr; krþ1;f

krþ2; . . . ; kng. Premultiplying the matrix M�1
0 K0 þX1 R1 � K1ð ÞXT

1M0 with M0, then the standard eigenproblem

of this matrix can be equivalently transformed into the following generalized eigenproblem

ðK0 þ DKÞyi ¼ liM0yi; i ¼ 1; 2; . . . ; r (5a)

and

ðK0 þ DKÞyj ¼ kjM0yj; j ¼ rþ 1; rþ 2; . . . ; n (5b)

where

DK ¼ M0X1 R1 � K1ð ÞXT
1M0 (6)

In this case, it can also be shown from Proposition 5 of Bru et al.15 that the eigenvectors associated with the

eigenvalues krþ1; krþ2; . . . ; knf g for the eigenproblem (5) and (2) are the same. Thus, the aforementioned problem

is solved with equation (6).
Remark 1: (i) DK with equation (6) is exactly symmetrical, and eigenvectors associated with eigenvalues fk1;

k2; . . . ; krg of the eigenproblem (2) are also the eigenvectors associated with the eigenvalues l1; l2; . . . ; lrf g of the

eigenproblem (5). This can be concluded from Proposition 4 of Bru et al.15 (ii) In Chu et al.16 authors discussed

the one-sided updating, that is the stiffness matrix updating, for model updating of the system (1) with no

spillover. They had proved that any feasible candidate DK must be parameterized form of DK ¼
M0X1UX

T
1M0, where U is a parametric symmetric matrix. In this paper, the simplest form of DK is provided

for partial eigenvalue (or natural frequency) assignment or placement. Its computation is a simple one-step

procedure, and no extra eigen-matrix equation is needed to solve for U as required in Chu et al.16 (iii) For

some real generalized eigenproblem, that is Ax¼ kBx with A, B being real matrices and B> 0, if all of its

eigenvalues are non-defective, the similar result as equation (6) in the paper can also be obtained for partial

eigenvalue assignment or placement via the perturbation of matrix A.

Applications of the formula

In this section, the main application of the formula (6) dedicated to the static output feedback control is discussed.

Notice that directly updating stiffness matrix from measured natural frequencies using the formula (6) is a rather

trivial matter and the updated model is no spillover.
When considering the external applied forces that come from the static output feedback control, the motion

equations of the system (1) can be rewritten as

M0
€q tð Þ þK0qðtÞ ¼ Bu tð Þ (7a)
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u tð Þ ¼ �G�ðtÞ (7b)

� tð Þ ¼ CqðtÞ (7c)

where B is a constant n�m control matrix, C a constant m� n output matrix, G a constant output feedback gain
matrix to be determined and m < n. u tð Þ is the control forces vector, � tð Þ the output or measurement vector. An
assumption that both u tð Þ and � tð Þ are m-dimensional vector is made here. Substituting equations (7b) and (7c)
into equation (7a), then the closed-loop motion equations of the system (1) becomes

M0
€q tð Þ þ K0 þ BGCð ÞqðtÞ ¼ 0 (8)

and the associated generalized eigenproblem is given as

ðK0 þ BGCÞyi ¼ liM0yi; i ¼ 1; 2; . . . ; n (9)

Letting m ¼ r, comparing equation (9) with equation (5) gives

DK ¼ M0X1 R1 � K1ð ÞXT
1M0 ¼ BGC (10)

Now an approach to solve the partial eigenvalues (or natural frequencies) assignment of the system (1) via the
static output feedback is presented. For the case of collocated actuator and sensor pairs with C ¼ BT, letting
B ¼ M0X1, C ¼ XT

1M0 and G ¼ R1 � K1, then a specific solution is easily achieved. Another specific solution
deserves to be considered, which can be obtained from the singular value decomposition (SVD) of DK.

DK ¼ U1;U2½ �
S 0

0 0

" #
UT

1

UT
2

" #
¼ U1SU

T
1

Thus, it is obvious that B ¼ U1, C ¼ UT
1 and G ¼ S.

Moreover, the following parameterized solutions can be proposed through rewriting equation (10) as

M0X1//
�1 R1 � K1ð Þ/�1/XT

1M0 ¼ BGC (11)

where / is an m�m arbitrary, non-singular symmetric matrix. In this case, the solutions are

B ¼ M0X1/ (12a)

C ¼ /XT
1M0 (12b)

and

G ¼ /�1 R1 � K1ð Þ/�1 (12c)

For the case of non-collocated actuators and sensors configuration with C 6¼ B, rewriting equation (10) as

M0X1/1/
�1
1 R1 � K1ð Þ/�1

2 /2X
T
1M0 ¼ BGC (13)

where /1, /2 are m�m arbitrary, non-singular matrices, then the parameterized solutions are

B ¼ M0X1/1 (14a)

C ¼ /2X
T
1M0 (14b)
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and

G ¼ /�1
1 R1 � K1ð Þ/�1

2 (14c)

Remark 2: (i) B, C and G obtained here preserve the symmetry and the positive semi-definiteness of the open-
loop system (1) after feedback, regardless of collocated or non-collocated configuration of actuators and sensors.
The symmetry, definiteness and reciprocity property of second-order systems are highly significant from practical
application view point, which involve the stability, computation algorithms and test methods of considered
systems.2,4,17 For vibroacoustical coupled problems, the vibroacoustical reciprocity principle is also valid,
although the second-order model formulation describing vibroacoustical coupling is a non-symmetrical matrix
equation.18 (ii) The control influence matrix B and the output measurement matrix C in this paper are most likely
to be dense matrices. But due to the recent progress of the smart materials with distributed arrays of transducers
the application of dense matrices B and C can be made feasible.19 (iii) If B and C are determined a prior for some
other considerations, /1, /2 (or /) can be figured out from the linear matrix equations (14a), (14b) (or (12a)).
There may be a trial of some adjustment of B and C for satisfying the solvability condition of the matrix
equations. In practice, /1 and /2 in equations (14a) and (14b) act as elementary column/row transformations
on M0X1 and XT

1M0, respectively.
Example 4.1. Consider the system (1) with M0 and K0 as follows

M0 ¼

1:56 0:66 0:54

0:66 0:36 0:39

0:54 0:39 3:12

�0:39 0 0

�0:27 0 0

0 0:54 �0:39

�0:39 �0:27 0

0 0 0:54

0 0 �0:39

0:72 0:39 �0:27

0:39 3:12 0

�0:27 0 0:72

2
666666666666666664

3
777777777777777775

K0 ¼

12 18 �12

18 36 �18

�12 �18 24

18 0 0

18 0 0

0 �12 18

18 18 0

0 0 �12

0 0 18

72 �18 0

�18 24 0

18 0 72

2
666666666666666664

3
777777777777777775

Its eigenvalues are 0:0364; 1:4365; 11:4697; 58:1668; 206:0230; 818:8383f g. Let r ¼ m ¼ 3,
K1 ¼ diag 0:0364; 1:4365; 11:4697ð Þ, R1 ¼ diag 0:05; 1:8; 12ð Þ. X1 associated with K1 is not listed for the sake
of saving space. From equation (6), it gives

DK ¼

0:2126 0:0622 � 0:3078 � 0:0837 � 0:0835 0:0831

0:0622 0:0216 � 0:0672 � 0:0349 � 0:0813 0:0201

�0:3078 � 0:0672 0:6404 0:0710 � 0:1603 � 0:1570

�0:0837 � 0:0349 0:0710 0:0753 0:2609 � 0:0236

�0:0835 � 0:0813 � 0:1603 0:2609 1:2615 0:0184

0:0831 0:0201 � 0:1570 � 0:0236 0:0184 0:0394

2
666666666666666666664

3
777777777777777777775

The eigenvalues 0:05; 1:8; 12:0; 58:1668; 206:0230; 818:8383f g are those of the perturbed system, which is
also no spillover for the corresponding eigenvectors.
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For the collocated configuration, using SVD of above DK gives

C ¼ BT ¼

�0:0358 �0:0557 �0:1835 0:1897 0:9618 0:0289

�0:4676 �0:1233 0:8253 0:1715 0:1054 �0:2110

�0:7623 �0:3289 �0:4941 0:1858 �0:1786 0:0109

2
6664

3
7775

and G ¼ diag 1:3518; 0:8593; 0:0395f g. For an arbitrary, nonsingular symmetric matrix /, for example it gives

C ¼ BT ¼

1:4417 0:5986 0:2433 �0:5458 �0:6363 0:1149

1:3533 0:5810 0:6019 �0:4488 �0:2906 0:0352

0:4987 0:1091 �0:7357 0:0349 1:0287 0:1944

2
6664

3
7775

G ¼
3:2661 � 2:9481 � 0:1483

�2:9481 2:6897 0:0486

�0:1483 0:0486 0:6021

2
664

3
775

where / ¼
0:8147 0:9058 0:1270

0:9058 0:6324 0:0975

0:1270 0:0975 0:9575

2
6664

3
7775

For the non-collocated configuration, let, for example / ¼ /1 ¼ /2 be the transformation matrix of the
reduced row echelon form of XT

1M0 as follows

/ ¼
1:6236 � 4:3104 6:3833

�2:7601 12:3892 � 15:4595

0:5186 � 1:2167 0:7324

2
6664

3
7775

It gives

B ¼

0:0891 2:9963 �2:9661

0:1850 0:6388 � 0:3329

3:8365 �14:2933 19:8235

0:9237 �4:6336 5:4925

4:7227 �18:6603 22:8126

�0:7406 3:1314 �4:2030

2
66666666666664

3
77777777777775

C ¼
1:0 0 0 2:2289 13:3681 0:0769

0 1:0 0 � 6:4839 � 34:3060 0:0876

0 0 1:0 0:5017 2:5748 � 0:1990

2
6664

3
7775
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G ¼
0:3471 0:0646 � 0:7157

�0:0741 0:0108 0:3061

�0:1362 � 0:0081 0:3915

2
6664

3
7775

Conclusions

A simple one-step computation formula of the perturbating stiffness matrix is proposed to implement the partial

eigenvalue (or natural frequency) assignment or placement. The formula can be used to design the static output

feedback control, and to solve the other relevant problems.

Acknowledgements

The authors would like to thank the referees and the associate editor for their valuable comments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

1. Ouyang H and Zhang JF. Passive modifications for partial assignment of natural frequencies of mass-spring systems.Mech

Syst Signal Process 2015; 50–51: 214–226.
2. Mao X and Dai H. Structure preserving eigenvalue embedding for undamped gyroscopic systems. Appl Math Model 2014;

38: 4333–4344.
3. Belotti R, Ouyang H and Richiedei D. A new method of passive modifications for partial frequency assignment of general

structures. Mech Syst Signal Process 2018; 99: 586–599.
4. Yuan Y. Structural dynamics model updating with positive definiteness and no spillover. Math Probl Eng 2014; 896261:

1–6.
5. Bagha AK and Modak SV. Active structural-acoustic control of interior noise in a vibro-acoustic cavity incorporating

system identification. J Low Freq Noise V A 2017; 36: 261–276.
6. Modak SV. Direct matrix updating of vibroacoustic finite element models using modal test data. AIAA J. 2014; 52:

1386–1392.
7. Ram YM, Mottershead JE and Tehrani MG. Partial pole placement with time delay in structures using the receptance and

the system matrices. Linear Algebra Appl 2011; 434: 1689–1696.
8. Hu HX, Tang B and Zhao Y. Active control of structures and sound radiation modes and its application in vehicles. J Low

Freq Noise V A 2016; 35: 291–302.
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