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ABSTRACT: Improvements to photosynthetic efficiency
could be achieved by manipulating pigment biosynthetic
pathways of photosynthetic organisms in order to increase the
spectral coverage for light absorption. The development of
organisms that can produce both bacteriochlorophylls and
chlorophylls is one way to achieve this aim, and accordingly we
have engineered the bacteriochlorophyll-utilizing anoxygenic
phototroph Rhodobacter sphaeroides to make chlorophyll a.
Bacteriochlorophyll and chlorophyll share a common bio-
synthetic pathway up to the precursor chlorophyllide. Deletion
of genes responsible for the bacteriochlorophyll-specific
modifications of chlorophyllide and replacement of the native
bacteriochlorophyll synthase with a cyanobacterial chlorophyll
synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble
chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the
engineering of novel antenna complexes that enhance the spectral range of photosynthesis.
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The overall efficiency of photosynthesis, measured on the
basis of conversion to biomass, is in the region of 1−7%.1

The primary steps of solar energy harvesting and charge
separation, although inherently extremely efficient, are still
constrained by the small portions of the available solar
spectrum that can be absorbed by the light-harvesting
pigment−protein complexes, which have evolved to be
sufficient for survival in their particular ecological niche. One
approach hypothesized to improve the efficiency of energy
capture is to broaden the range of wavelengths absorbed by a
biological system by producing mixtures of pigments, or
mixtures of photosystems, in the same cell.1,2 In oxygenic
phototrophs, where the two photosystems are in competition
for the same wavelengths of light, it has been proposed that re-
engineering PSII and PSI to absorb light from different regions
of the solar spectrum could improve energy capture, with
potential positive impacts on growth rates and therefore crop
yields and season lengths.3

The major photon absorbing pigments involved in solar
energy capture are the (bacterio)chlorophylls ((B)Chls),
housed in the antenna complexes of plants, algae and
phototrophic (cyano)bacteria. The spectral range of these
complexes is altered by modifications to the (B)Chl macro-
cycle, which shifts the red-most absorption band from ∼680
nm in the case of Chl a, to 800−920 nm for BChl a and as far

as 1023 nm in the case of antennas containing BChl b. These
pigments share a common pathway up to the biosynthetic
intermediate chlorophyllide (Chlide), the direct precursor of
Chl a (Figure 1a). In the case of the true BChls, Chlide is
converted to a bacteriochlorophyllide species (BChlide) by
further modifications to rings A and B, extending the Qy

absorption bands of BChl pigments into the near-infrared4 and
allowing anoxygenic phototrophic bacteria to harvest light that
is not absorbed by the oxygenic algae and cyanobacteria higher
in the water column/microbial mat.5

In the purple phototrophic bacterium Rhodobacter (Rba.)
sphaeroides, the major BChl absorption bands are in the 375−
400, 580−600 and 800−900 nm spectral regions, with
carotenoids providing additional absorption between 400 and
550 nm. Thus, there is a spectral region between 600 and 800
nm with no major absorption features that could be occupied
by a pigment such as Chl a. BChl a pigments within the
peripheral (LH2) and core (LH1) antenna effectively funnel
absorbed solar energy to the photosynthetic reaction center
(RC), where charge separation occurs.6,7 In order to establish a
photosystem capable of harvesting a wider range of wave-
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lengths, it will ultimately be necessary to engineer an organism
capable of making a mixture of Chl and BChl pigments. BChl
biosynthesis can be viewed as an extension of the Chl pathway,
so the production of Chl a in a photosynthetic bacterium can
be achieved by truncation of native BChl biosynthesis, along
with modifications to introduce Chl-specific enzymes that
attach and reduce the isoprenoid alcohol moiety (Figure 1a),
which decisively increases the hydrophobicity of the pigment.
Here we report the implementation of this strategy using
Rba. sphaeroides as a chassis; this anoxygenic phototroph has a
versatile metabolism permitting viability under oxic conditions
in the dark, allowing for the deletion, replacement and addition
of genes involved in pigment biosynthesis and photosyn-
thesis.8,9 The introduction of cyanobacterial Chl-specific
enzymes into a Chlide-accumulating mutant of Rba. sphaeroides
resulted in successful rerouting of BChl biosynthesis and the
production of Chl a, the first time this ubiquitous oxygenic
photopigment has been synthesized in a purple phototrophic

bacterium. As a proof-of-principle for incorporating this
engineered pigment into a chlorophyll-protein complex we
further demonstrate that this non-native pigment can be
sequestered by the eukaryotic water-soluble chlorophyll
protein10 from Brussels sprout (Brassica oleracea var.
gemmifera), BoWSCP, also heterologously produced in the
Chl a accumulating strain of Rba. sphaeroides.
The assembly of a plant chlorophyll-protein complex in a

photosynthetic bacterium represents an initial step in the
design of a novel, high-energy Chl a-containing antenna that
could be able to funnel excitation energy toward the native,
lower energy, BChl a-containing light-harvesting antenna
(LH2 and LH1) and RCs. In order to provide the Chlide
substrate for the production of Chl a in Rba. sphaeroides, a
mutant (ΔCXF) blocked at the steps exclusive to BChl
biosynthesis (ΔbchC, ΔbchX and ΔbchF) was used as a host
(Figure 1b).11 This mutant accumulates Chlide, demonstrating
that the BChl synthase (BchG) encoded by the native bchG

Figure 1. Concept for constructing a Chl a biosynthesis pathway in the purple phototroph Rba. sphaeroides. (a) The native BChl a biosynthetic
pathway (blue arrows). Removal of BchF, BchX and BchC (red cross) from the native pathway halts the production of BChl at the level of Chlide,
and ChlG and ChlP from Synechocystis (green arrows) are introduced to reroute the pathway to Chl a. Dashed arrows represent multiple enzymatic
steps. Chemical structures of Chl a (IUPAC numbered) and BChl a are shown. 3V, C3-vinyl; 3HE, C3-hydroxyethyl. R denotes the attached
alcohol moiety. Inset: Alcohol moieties of (B)Chls, denoted by R. Highlighted bonds are those sequentially reduced by the gene product of chlP/
bchP. GGPP, geranylgeranyl pyrophosphate; DHGG, dihydrogeranylgeranyl pyrophosphate; THGG, tetrahydrogeranylgeranyl pyrophosphate. (b)
The organization of native (upper) and modified (lower) partial photosynthesis gene clusters of Rba. sphaeroides. Blue, bch genes; magenta, crt
genes; peach, regulatory genes; gray, unassigned genes. Deletions of bchF, C and X (red cross) in the native pathway are shown as well as the sites
where the native bchG and bchP were replaced by chlG and chlP from Synechocystis (green). (c) Agarose gel of PCR products confirming the
replacement of bchG with chlG in ΔCXFG::chlG and bchG and bchP with chlG and chlP in ΔCXFGP::chlGP. In each PCR reaction a bchG/P or
chlG/P specific forward primer was used with a reverse primer in the downstream rsp_0278 (for bchG/chlG) or rsp_0276 (for bchP/chlP) gene.
Lanes 1, 5, 9 = bchG specific primers; lanes 2, 6, 10 = chlG specific primers; lanes 3, 7, 11 = bchP specific primers; lanes 4, 8, 12 = chlP specific
primers; M = Hyperladder 1kb (Bioline). (d) Absorption spectra of methanol extracted (B)Chl pigments.
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gene is unable to esterify this pigment to produce a Chl
species, as reported in vitro,12 and therefore cannot grow
prototrophically. In order to attach an alcohol moiety to
Chlide in this strain, the native bchG gene was replaced with
the gene encoding the Chl synthase enzyme (ChlG) from the
cyanobacterium Synechocystis sp. PCC 6803 (hereafter
Synechocystis), codon-optimized for expression in Rba. sphaer-
oides, generating strain ΔCXFG::chlG (Figure 1b and 1c).
Similarly, the native bchP gene encoding the geranylgeranyl
reductase was also replaced with a codon-optimized version of
Synechocystis chlP, generating strain ΔCXFGP::chlGP (Figure
1b and 1c). The sequences of the codon-optimized genes are
given in Table S1.
The pigments that accumulated in these strains, along with

those from the WT and ΔCXF, were extracted from pellets of
microoxically grown cells and analyzed by HPLC (Figures 1d
and 2). As expected, the WT accumulated BChl a (Figure 2a),

while ΔCXF was unable to synthesize (B)Chl pigments
(Figure 2b). With our engineered strains, both the
ΔCXFG::chlG and ΔCXFGP::chlGP strains synthesize four
species of Chl a, esterified with geranylgeranyl-(GG),
dihydroGG- (DHGG), tetrahydroGG- (THGG) or phytol
moieties (Figure 1a inset panel), with each detected by
fluorescence emission at 670 nm (Figure 2c and 2d). To
confirm the identity of these pigments, Chls synthesized by
WT and ΔchlP (Figure S1) strains of Synechocystis were used
as HPLC standards for Chl a (Figure 2e) and GG-Chl a
(Figure 2f) respectively. In all cases the detected pigments
were confirmed to be species of BChl a or Chl a by their
absorption spectrum (Figure 1d).

The most prominent pigment extracted from the
ΔCXFG::chlG strain was Chl a, with only extremely low
amounts of GG-Chl a and intermediate levels of DHGG- and
THGG-Chl a, showing that the native BchP is able to perform
three reductions of GG-Chl a, albeit at a lowered efficiency
when contrasted with the accumulation of a single fully
reduced BChl a species in the WT (Figure 2a). We
hypothesized that this lower efficiency may be due to BchP
acting on an unnatural substrate and that replacement of the
native bchP gene with the Synechocystis homolog, which has
previously been shown to be active in Rba. sphaeroides,13 may
result in more efficient tail reduction such that only Chl a with
a fully reduced isoprenoid tail would accumulate. However,
strain ΔCXFGP::chlGP shows no improvement over
ΔCXFG::chlG in this respect and the proportion of fully
reduced phytol-Chl a is actually lower than when the native
BchP is used (Figure 2d). This aspect of the engineered Chl a
pathway in Rba. sphaeroides requires further study of the
expression and subunit composition of BchP/ChlP enzymes.
In order to sequester the engineered Chl pigments we used

mature BoWSCP lacking its 19 residue amino(N)-terminal
endoplasmic reticulum signal peptide14 and post-translationally
cleaved 21 residue carboxy(C)-terminal extension peptide15

(Figure 3a); this construct was codon optimized (Table S1)
and expressed with a C-terminal 10xHis-tag in the
ΔCXFGP::chlGP strain of Rba. sphaeroides. Recombinant
WSCP-His was purified from cell free extracts by immobilized
metal affinity chromatography (IMAC) and protein fractions
that contained Chl (Figure 3b), as judged by absorbance at
280 and 665 nm, were pooled, concentrated and analyzed by
SDS-PAGE and immunoblotting (Figure 3c). The major
Coomassie stained band corresponds to a protein of the
predicted MW of WSCP-His (20.8 kDa) (Figure 3c lane 1),
which cross-reacts with an anti-6-His antibody (Figure 3c lane
2). WSCP-His was identified as the predominant protein
species following affinity purification by mass spectrometry
analysis (Table S2, data uploaded to the ProteomeXchange
Consortium16 via the PRIDE partner repository, identifier
10.6019/PXD002638). The absorption spectrum of the
purified pigment−protein complex (Figure 3d, solid green
line) has 6 peaks (summarized in Table 1) and a small
shoulder at ∼584 nm, in agreement with the spectra previously
reported for native and thylakoid or Chl a reconstituted
BoWSCP;14,17 excitation at 431 nm resulted in fluorescence
emission at ∼670 nm, as expected for Chl a (Figure 3d, dashed
blue line). The pigment bound to WSCP-His was isolated by
solid phase extraction and identified by mass spectrometry.
GG-, DHGG- and THGG-Chl a were identified, but not Chl a
or Chlide (Figures 3e, 3f and S2). Tight binding to the WSCP-
His could account for the failure to detect Chl a.10 It is
interesting that Chlide was not detected, showing that WSCP-
His selectively binds esterified Chl a over an excess of the less
hydrophobic precursor, which accumulates in this strain.11

The production of Chl a does not restore photoautotrophic
growth to the ΔCXF mutant as Rba. sphaeroides cannot use
this pigment for light harvesting or photochemistry.
Furthermore, only a small amount of Chl a is produced
compared to BChl a in the wildtype organism (approximately
0.1%), which is not surprising as a mutant of Rba. sphaeroides
harboring deletions in genes encoding photosystem apopro-
teins accumulates no BChl despite having an intact pigment
biosynthesis pathway.18 This observation shows that, in the
absence of the appropriate binding proteins, even the native

Figure 2. HPLC analysis of (B)Chls extracted from described strains
of Rba. sphaeroides. Elution profiles of pigments extracted from pellets
of (a) WT, (b) ΔCXF, (c) ΔCXFG::chlG, (d) ΔCXFGP::chlGP, (e)
standard of Chl a from WT Synechocystis, (f) standard of GG-Chl a
from a ΔchlP strain of Synechocystis. Elution of BChls and Chls was
monitored by absorbance at 770 nm (blue) or by fluorescence
emission at 670 nm with excitation at 431 nm (black), respectively.
Traces are normalized to major peak height for clarity.
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BChl pathway shuts down, no doubt to avoid the production

of potentially phototoxic pigments. Further optimization of the

introduced Chl pathway can now be attempted by altering the

native photosynthetic apparatus to incorporate Chl a or

introducing foreign Chl a-utilizing photosystem apoproteins.

These ambitious aims require heterologous expression of

multiple membrane proteins and further engineering of both

pigment biosynthesis and assembly pathways.

■ METHODS

Growth Conditions. Rba. sphaeroides strains were grown

microoxically in the dark in a rotary shaker (150 rpm) at 34 °C

Figure 3. Purification of pigment-bound WSCP-His produced in Chl a synthesizing Rba. sphaeroides. (a) Sequence alignment of apo BoWSCP and
recombinant WSCP-His used in this study. Positions of the Kunitz trypsin inhibitor (KTI) and [F/Y]DPLGL chlorophyll binding motifs are
indicated by black bars. The 19 residue N-terminal endoplasmic reticulum signal peptide (underlined) and 21 residue C-terminal extension peptide
(gray box) that are post-translationally cleaved in holo BoWSCP are absent in WSCP-His, which has a 10xHis-tag (shown in bold). (b)
Photograph of purified WSCP-His. (c) SDS-PAGE and anti-6-His immunoblot analysis of purified WSCP-His. Lanes 1 and 2 contain 20 μg and 5
μg of protein, respectively. Lane M = Precision Plus Protein Standards (Biorad). (d) Absorption (Abs, solid green line) and fluorescence (Flu,
dotted blue line) spectra of pigment bound WSCP-His. (e) Mass spectrum showing [M + H]+ ions for GG-Chl a and DHGG-Chl a. Also
detectable are the mono- and dioxidation products of GG-Chl a, DHGG-Chl a and THGG-Chl a formed by exposure to air during isolation and
storage. Mass assignments were obtained at an accuracy of <3 ppm with external calibration and identifications were confirmed by isotope pattern
(see Figure S2). (f) Mass spectrum showing the expected positions of [M + H]+ ions for Chlide a and its mono-oxidation product, neither of
which are detected.

Table 1. Absorption Peaks (nm) of Purified WSCP-His in 200 mM Tris-HCl (pH 8.0) at 25 °C

Protein Soret Q

WSCP-His expressed in Rba. sphaeroides ΔCXFGP::chlGP WSCP+a 342 384 418 436 628 673
Native BoWSCPb 343 384 423 437 629 673
BoWSCP-His expressed in E. coli (thylakoid membrane reconstituted)b 342 383 422 437 629 673
BoWSCP-His expressed in E. coli (Chl a reconstituted)b,c 342/343 384 417/421 436/437 629/630 673/674

aThis study. bRef 14. cRef 17.
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in liquid M22+ medium19 supplemented with 0.1% casamino
acids.
Escherichia coli strains JM10920 and S17−121 with

pK18mobsacB or pIND4 plasmids were grown shaking (250
rpm) at 37 °C in LB medium supplemented with 30 μg·ml−1

kanamycin. For strains and plasmids used in this study see
Table S3.
Construction of Mutants of Rba. sphaeroides. The

Rba. sphaeroides bchG and bchP genes were replaced with their
counterparts from Synechocystis (chlG and chlP, respectively)
using the allelic exchange vector pK18mobsacB.22 Briefly, the
chl genes were codon-optimized for expression in Rba. sphaer-
oides using J-Cat,23 and these sequences, flanked by the up-
and downstream regions of the target for replacement, were
synthesized by Bio Basic (Ontario, Canada). The fragments
were subcloned into pK18mobsacB cut with EcoRI/HindIII.
Sequenced clones were conjugated into Rba. sphaeroides from
E. coli S17−1, and transconjugants in which the clone had
integrated into the genome by homologous recombination
were selected on M22+ medium supplemented with 30 μg·
ml−1 kanamycin. Transconjugants that had undergone a
second recombination were subsequently selected on M22+
supplemented with 10% (w/v) sucrose and lacking kanamycin.
Sucrose-resistant, kanamycin-sensitive colonies had excised the
allelic exchange vector through the second recombination
event.24 Gene replacements were confirmed by sequencing at
the relevant loci. Sequences of primers used in this study can
be found in Table S4.
Strains harboring the gene encoding BoWSCP were created

as follows. The gene (designed and synthesized as above)
encoding C-terminally 10xHis-tagged holo-BoWSCP, flanked
by NcoI and HindIII restriction sites, was codon-optimized for
expression in Rba. sphaeroides. The fragment was digested and
cloned into the NcoI/HindIII sites of pIND4.25 The resulting
sequenced plasmid was conjugated into relevant strains of
Rba. sphaeroides from E. coli S17−1 and transconjugants were
selected for and maintained on M22+ medium supplemented
with 30 μg·ml−1 kanamycin.
Pigment Analysis. Pigments were extracted from cell

pellets after washing in 20 mM HEPES pH 7.2 by adding 9
pellet volumes of 0.2% (v/v) ammonia in methanol, vortex-
mixing for 30 s and incubating on ice for 20 min. The extracts
were clarified by centrifugation (15000 g for 5 min at 4 °C)
and the supernatants were immediately analyzed on an Agilent
1200 HPLC system. (B)Chl a species were separated on a
Phenomenex Aqua C18 reverse-phase column (5 μm particle
size, 125 Å pore size, 250 mm × 4.6 mm) using a method
modified from that of Addlesee and Hunter.26 Solvents A and
B were 64:16:20 (v/v) methanol/acetone/H2O and 80:20 (v/
v) methanol/acetone, respectively. The buffer composition
changed from 0 to 100% solvent B over 10 min, and was
maintained at 100% for 15 min, during which time (B)Chl
species were eluted. Elution of Chl a species were monitored
by checking absorbance at 665 nm or fluorescence emission at
670 nm with excitation at 431 nm, while elution of BChl a
species were monitored by checking absorbance at 770 nm. To
compare how much Chl a is produced in engineered strains
compared to BChl a in the wildtype, the areas of HPLC peaks
(detected by absorbance at 665 nm for Chl a species or 770
nm for BChl a) were integrated and the molar stoichiometry
estimated using literature reported extinction coefficients for
Chl a27 and BChl a.28

Pigment from ∼500 μg of WSCP-His in 200 μL IMAC
elution buffer (see below) was extracted as above and isolated
by solid phase extraction as previously described.29 The sample
was dried under nitrogen, dissolved in 20 μL methanol and
infused at 3 μL·min−1 via an atmospheric pressure chemical
ionization source into a Maxis UHR-TOF mass spectrometer
(Bruker Daltonics) operating with the following parameters:
capillary potential: 4 kV, corona current: 4 μA, dry gas: 3.5 L·
min−1 at 220 °C, nebulizer gas: 2 bar, vaporiser temperature
350 °C, ion cooler transfer time: 60 μs. All other parameters
were as per the manufacturer’s default settings.

Purification of WSCP-His from Rba. sphaeroides and
Identification by Nanoflow LC−MS/MS. Expression of
WSCP-His from pIND4 was induced in Rba. sphaeroides
cultures at OD710 0.8 by addition of isopropyl β-D-1-
thiogalactopyranoside (IPTG) to a final concentration of 125
μM. Cultures were harvested by centrifugation (6300 g for 15
min at 4 °C) 12 h after induction. Cell pellets were
resuspended in binding buffer (25 mM HEPES pH 7.5, 500
mM NaCl, 5 mM imidazole) and broken by sonication on ice
(6 × 30 s bursts separated by 30 s gaps). The clarified cell-free
extract was isolated as the supernatant following centrifugation
(43000 g for 20 min at 4 °C), passed through a 0.4 μm filter
and fractionated by immobilized Ni-affinity chromatography.
Following sequential washes with at least 10 column volumes
of binding buffer containing 5, 20, 50, and 100 mM imidazole,
remaining bound protein was eluted with 400 mM imidazole
in 25 mM HEPES pH 7.5 with 100 mM NaCl. Protein
fractions were analyzed by SDS polyacrylamide gel electro-
phoresis and stained with Coomassie Brilliant Blue, or
transferred onto a polyvinylidene fluoride membrane for
immunodetection. Membranes were incubated with an anti-
6-His primary antibody (Bethyl) followed by a secondary
antibody conjugated with horseradish peroxidase (Sigma-
Aldrich).
To identify WSCP-His by nanoflow LC−MS/MS, 50 μg

protein (3 μL) was diluted to 10 μL with 100 mM Tris-HCl
pH 8.5 containing 8 M urea and 5 mM DTT and incubated at
37 °C for 30 min. S-alkylation was carried out by addition of 1
μL 100 mM iodoacetic acid followed by incubation in the dark
at room temperature for 30 min. Two μg trypsin/
endoproteinase LysC mix (Promega) was added and the
protein digested at 37 °C for 3 h. After dilution with 75 μL 50
mM Tris-HCl pH 8.5, 10 mM CaCl2, digestion was continued
overnight. The digest was desalted using a C18 spin column
(Thermo Scientific) following the manufacturer’s instructions
and 500 ng analyzed by nanoflow liquid chromatography
(Dionex UltiMate 3000 RSLCnano system) coupled online to
a Q Exactive HF mass spectrometer (Thermo Scientific). Mass
spectra were processed using Mascot Distiller v. 2.5.1.0 for
database searching with Mascot Server v. 2.5.1 (Matrix
Science) against NCBInr (Viridiplantae).
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