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Sequence analysis of the merozoite surface protein 7 (PvMSP-7) 
multigene family: vaccine candidates for Plasmodium vivax 

Chew Weng Cheng 

 Abstract  

P. vivax is found predominantly in Asia and the emergence of resistance to 
antimalarial drug and insecticides are major challenges to control of vivax malaria. 
Control is further complicated by the dormant liver stage of P. vivax, which produces 
an asymptomatic parasite reservoir. Malaria vaccine development is recognised as the 
most efficient control intervention globally. Currently, malaria vaccine development is 
concentrated in P. falciparum and RTS,S has been the most promising vaccine. This 
has encouraged similar initiatives to develop a P. vivax vaccine.  

The subject of this thesis is the Plasmodium vivax merozoite surface protein 7 
(PvMSP-7), which forms a multi-protein complex with other merozoite surface proteins 
and plays a principal role in erythrocyte invasion. Studies in P. falciparum have shown 
that targeting MSP-7 can impair erythrocyte invasion and regulate disease severity. For 
this reason, PvMSP-7 is a plausible vaccine candidate. However, several questions 
remain to be addressed before a vaccine can be developed; (i) the antigenic variation 
and expression pattern of the PvMSP-7 multigene family, (ii) which PvMSP-7 paralog 
is the most promising target, and (iii) which domain of the protein is most antigenically 
relevant. The main aim of this thesis is to characterise the structural and expression 
variation in PvMSP-7 paralogs in the Thai clinical setting, to pinpoint the optimal 
PvMSP-7 antigen for malaria vaccine development.  

In Chapter 2, molecular diversity among 20 P. vivax clinical isolates from three 
malaria endemic areas in Thailand is assessed on a whole genome basis to establish 
parasite population structure in Thailand and its implications for the vaccine design. In 
Chapter 3, PvMSP-7 genetic diversity is examined among genomic data from Thai 
clinical isolates, showing that paralogs vary in their patterns of sequence variation. In 
Chapter 4, PvMSP-7E is evaluated as a specific P. vivax genetic marker, showing that 
genetic diversity is determined by protein secondary structure. In chapter 5, 
transcriptomic analysis of clinical RNA samples was used to determine the 
transcriptional profiles of all PvMSP-7 paralogs in diverse patients, showing that 
specific PvMSP-7 paralogs are expressed constitutively throughout the bloodstream 
infection cycle. In Chapter 6, serum from naturally infected patients was used to screen 
a high-density peptide microarray and identify immunogenic B-cell epitopes, showing 
that 14 universal epitopes belong to just six PvMSP-7 genes.  

The conclusion of the thesis is that, of the 13 PvMSP-7 paralogs, PvMSP-7A is 
the most promising malaria vaccine candidate, being least polymorphic across parasite 
populations, expressed throughout the bloodstream infection cycle, and containing the 
greatest number of immunogenic B-cell epitopes. These immunogenic epitopes may 
confer a two-fold advantage in eliciting immunity and by impairing host cell invasion. 
This thesis provides a basis for the development of PvMSP-7A as an experimental 
vaccine, leading to the sustainable prevention of vivax malaria across the world. 
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Chapter 1  

General introduction 

	

1.1 Malaria 

Malaria is one of the most destructive tropical diseases caused by Plasmodium 

parasites. In 2016, it claimed 445 thousand lives and accounted for 216 million 

morbidities (WHO, 2017). There are four species of human malaria parasites, P. 

falciparum, P. vivax, P. ovale, and P. malariae. Ovale malaria can be further divided 

into two closely related but distinct species, P. ovale curtisi and P. ovale wallikeri. 

Recently, P. knowlesi has been identified as a zoonotic malaria parasite that impacts 

significantly on human populations (Jongwutiwes et al., 2011). The most prevalent 

Plasmodium species are P. falciparum and P. vivax, the latter being the most 

widespread species outside Africa. The P. vivax transmission in Africa is extremely low 

due to the lack of Duffy gene expression in erythroid cells among the population. The 

Duffy gene acts as a receptor for P. vivax merozoites to invade host erythrocytes (Miller 

et al., 1976). Climatic factors are playing a pivotal role in malaria transmission in which 

the rainfall patterns, temperature, and humidity provide a nourishing breeding ground 

for Anopheles mosquitoes (Bi et al., 2013; Lingala, 2017).  For this reason, P. vivax has 

high transmission throughout South and Southeast Asia (Guerra et al., 2006), Central 

and South America (Gething et al., 2012). P. vivax infection was not a priority for 

malaria elimination in the past until a substantial risk of mortality was reported (Baird, 

2013; Douglas et al., 2014; Price et al., 2009). P. vivax infection produces symptoms 

such as, shaking chills, headache, muscle aches, febrile paroxysms and higher 

proinflammatory cytokine levels (Hemmer et al., 2006) which subsequently lead to 

severe outcomes. After infection with P. vivax, a proportion of sporozoites will develop 

into dormant forms in hepatocytes, known as hypnozoites (Hulden and Hulden, 2011). 

The hypnozoite stage in P. vivax causes multiple, unpredictable symptomatic episodes 

over many months, and possibly years (Robinson et al., 2015). This biological 

characteristic has further complicated the case detection and eradication strategy. 

Emerging of drug-resistant strain in P. vivax has underscored the importance of vivax 
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malaria. Chloroquine was once the first-line treatment against P. vivax infection until 

1989, where the first resistance case was noted (Rieckmann et al., 1989). Subsequently, 

a number of antimalarial drug resistance have emerged from most malaria-endemic 

countries including, sulfadoxine-pyrimethamine (Imwong et al., 2001) and mefloquine 

(Alecrim et al., 1999). As a result of the widespread antimalarial drug resistance and 

increased global burden of P. vivax, a more effective approach is sought to control the 

transmission dynamics. Developing a malaria vaccine is considered an effective mode 

of the control strategy. The complexity of the parasite’s life cycle has challenged the 

development of a universally effective vaccine. However, a subunit malaria vaccine is 

considered an essential part of the ideal control strategy, targeting the parasite 

circulating in endemic areas. Therefore, vaccine development is an avenue to reduce 

the morbidity and mortality. 

 

1.2 History  

Malaria is one of the world ancient diseases that was recorded more than 4,000 years 

ago. The first record was described in Chinese medical writings in 2,700 BC during the 

Huang Ti dynasty. Subsequently, a similar record was found by Greek, Roman, 

Assyrian, Indian, and Arabic writings. During the 4th century BCE, malaria occurred 

widely in Greece, where it affected many human populations. The first extensive 

reference to malaria was given by Hippocrates of Kos, who attributed malarial disease 

to the fumes originating from swamps. From that perspective, the “bad air” gave the 

disease its name: mal’aria in Italian. 

The discovery of the malaria parasite begun with a French army surgeon 

(Charles Louis Alphonse Laveran) where he noticed the parasites in the blood of a 

patient who succumbed to malaria in the year 1880. He observed moving filaments 

under the light microscope, which today is believed to be exflagellation of a male 

gametocyte. The discovery led him to the Nobel Prize award in 1907 (Haas, 1999). By 

1886, malaria was suggested to have multiple parasite species. Patients infected with 

malaria seemed to have varied symptoms, tertian malaria (48-hour periodicity) and 

quartan malaria (72-hour periodicity) (Cox, 2010). Camillo Golgi who discovered the 

malaria species was awarded the Nobel Prize in 1906. Malaria was generally accepted 
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to cause by a protozoan parasite in 1890. The first two human malaria parasites, P. vivax 

and P. malariae were introduced by two Italian scientists, Giovanni Batista Grassi and 

Raimando Felletti. P. falciparum was later named by an American scientist, William 

H. Welch in 1897 as the malignant tertian malaria parasite. Two malaria parasites, P. 

ovale and P. knowlesi were later introduced in 1922 and 1931, respectively. In 1897, 

Ronald Ross demonstrated that the malaria parasites were transmitted from infected 

host to mosquitoes. Ross carried out extensive investigations to identify mosquitoes as 

parasite vectors. For this discovery, he was awarded a Nobel Prize in 1902. During 1898 

to 1899, sporogony life stages of three malaria parasites were described (P. falciparum, 

P. vivax, and P. malariae). By the late 19th century, malaria developmental stages were 

known to the community.    

 

1.3 Global burden of malaria  

As of 2016, 216 million cases of malaria were reported (WHO, 2017), largely in the 

African region (90%), followed by the Southeast Asian region (7%), and Eastern 

Mediterranean region (2%) (Figure 1.1), and an estimated 445 thousand deaths occurred 

due to the disease, 91% of these in Africa. Malaria remains endemic in 91 countries, 

however, the incidence rate is reported to have decreased by 18%, from 76 to 63 cases 

per 1000 populations (WHO, 2017). Out of 91 countries, 44 countries reported lower 

malaria incidence (< 10,000 cases) due to malaria elimination programs (WHO, 2017). 

Malaria transmission in the Southeast Asia region has seen the largest decline (48%). 

Two countries have been certified by WHO as malaria-free in 2016; Kyrgyzstan and 

Sri Lanka. In 2016, Figure 1.1 shows the status of malaria transmission in the respective 

country. The data presented in the world report could have underestimated the true 

magnitude of the disease due to conservative estimates by WHO. The discrepancy may 

contribute to the insufficient diagnostic facilities in the endemic areas.  

Two most prevalent malaria species, P. falciparum, and P. vivax continue to 

account for most of the malaria incidence. In 2016, 99% of the malaria cases in Africa 

were contributed by P. falciparum. Outside Africa, P. vivax is the most prevalent 

species circulating in endemic areas. About 64% of cases were caused by P. vivax in 

the Americas region, followed by 40% and 30% in the Eastern Mediterranean and 
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Southeast Asia regions, respectively. P. vivax transmission is known to occur at a very 

low frequency in African populations due to Duffy-negativity. Contrary to this 

established scientific knowledge, recent studies have discovered the P. vivax infection 

in most parts of Africa (Gunalan et al., 2018; Mendes et al., 2011). This phenomenon 

raises the possibility of P. vivax adapted to infect Duffy-negative populations. If so, 

then P. vivax incidence would be expected to increase in the coming years. Therefore, 

studying P. vivax infection should now become a priority, as the frequency of P. vivax 

infection will hamper the malaria elimination strategy.      

 In Thailand, malaria cases recorded a declined between 2010 and 2016, from 

32,480 cases to 11,522 cases (35% reduction). Malaria transmission occurs primarily 

along the international borders with Burma (Myanmar), Cambodia, and Malaysia. 

Factors affected malaria prevalence here are the forest fringe areas of these provinces, 

population movements, and the emergence of antimalarial drug resistance. Moreover, 

the expansion of rubber plantations in Thailand has led to sporadic cases over the past 

decade. Conflict in southern Thailand has challenged the control strategy, and a major 

malaria outbreak occurred in 2016. Figure 1.2 shows the provinces with malaria 

transmission in Thailand. Like other endemic areas, malaria burden in Thailand is due 

to the two most prevalent Plasmodium species, P. falciparum, and P. vivax. Contrary 

to other regions, P. vivax seems to dominate as a cause of malaria in Thailand since 

2010 (>50% of cases contributed by P. vivax) (Figure 1.3).  

 An endemic area refers to a region in which malaria transmission is still active 

(Hay et al., 2008). The definition can be extended to define the intensity of exposure. 

‘Holoendemic’ describes an area with the perennial intense transmission, whereas 

‘hyperendemic’ refers to an area with seasonally intense malaria transmission. 

‘Mesoendemic’ is an area with the transmission that fluctuates with changes due to 

multiple local conditions, and ‘hypoendemic’ often refers to settings with low 

transmission and where effects are not significant. Endemicity is associated with host-

vector interactions, population movements, antimalarial drug resistance, insecticides 

resistance, and the local demographic. 
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Figure 1.0.1 Countries with ongoing malaria transmission in 2016.  

Figure 1.1 Countries with ongoing malaria transmission in 2016. Countries 

categorized as no malaria transmission (white), countries with zero malaria 

transmission over the past three years (sky blue), countries with zero malaria 

transmission in 2016 (yellow), countries certified with malaria free since year 2000 

(light green), and countries with ongoing malaria transmission (blush). It is apparent 

that malaria transmission is still present in the central and south America, south and 

southeast Asia, and Africa. Source: World malaria report 2017 (WHO, 2017). 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 6 

	
	
	
	
	
 

 

 

 

 

 

 

 

 

Figure 1.0.2 Provinces with ongoing malaria transmission in Thailand.  

Figure 1.2 Provinces with ongoing malaria transmission in Thailand. Provinces 

with malaria transmission are coloured in pink. The provinces with darker shade 

indicates higher malaria transmission. From the map, most malaria endemic areas are 

along the international borders such as, Burma (Myanmar), Cambodia, and Malaysia. 

These areas are dense forest, reported antimalarial drug resistance, and populations 

movement between two countries. Three endemic areas (dashed boxes), Tak province, 

Ubon Ratchathani province, and Yala province are focused in this study. 
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Figure 1.0.1 Proportion of malaria parasites species in Thailand from year 2010 to 2016. 

Figure 1.3 Proportion of malaria parasites species in Thailand from year 2010 

to 2016. The number of cases between P. falciparum and P. vivax were expressed in 

percentage on the y-axis and fiscal year on the x-axis. The number of cases were 

adapted from the World malaria report 2017 (WHO, 2017). The malaria infections in 

Thailand were largely dominated by P. vivax since 2010.  
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1.4 Mosquito vectors 

Anopheles mosquitoes are the main vector of malaria parasites. There are currently 

more than 3,500 species of mosquitoes in 41 genera known to transmit Plasmodium 

spp. (Ferraguti et al., 2016). Of these, there are only about 70 Anopheles species 

responsible for human malaria transmission. Each of the species has its own breeding 

preferences, generally in water. The vector has four developmental stages, egg, larva, 

pupa, and adult. The first three developmental stages are aquatic and take 

approximately 5-14 days to complete. The cycle varies according to the Anopheles 

species and temperature. The female adult mosquitoes have a lifespan of around 1-2 

weeks and require a blood meal for the development of eggs. There are four main 

factors in order to establish successful malaria transmission between a host and a 

mosquito including, abundance, longevity, capacity, and contact with humans.  For the 

first criterion, the number of mosquitoes circulating in the area must be high enough to 

obtain a blood meal from an infected patient. Second, mosquitoes must survive a 

sufficiently long time after a blood meal. Longer survival allows the parasites to 

develop to the infective stages and travel to the salivary glands for transmission. 

Moreover, each mosquito should carry enough parasites in the salivary glands to ensure 

successful infection. Lastly, transmission is greatest when the mosquito breeding sites 

are closest to human homes. 

Anopheles species differ from one malaria area to another, due to their biology 

and ecology, adaptation, and epidemiological patterns. An. gambiae, An. fenestus, An. 

moucheti, An. nili are four main species transmitting malaria in sub-Saharan Africa. In 

Thailand, An. dirus, An. minimus, and An. maculatus are the main vectors circulating 

in endemic areas of Thailand (Suwonkerd et al., 2013). Environmental factors, human 

activities, and climate seasonality are three principle elements contributing to malaria 

transmission in Thailand. The malaria outbreak that occurred in Ubon Ratchathani 

province during 2016 was largely due to illegal logging by local people and migrants 

from other regions.   
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1.5 Clinical manifestation 

The pathogenesis of malaria parasites is complex and the relapsing manifestation ranges 

from asymptomatic infection to acute disease and a chronic febrile disease. Periodic 

paroxysms are the most notable symptom of malaria infection. After the infection, the 

patient will undergo an incubation period of about a week with no symptoms. Prior to 

the first febrile attack, patients often experience symptoms like a headache, anorexia, 

myalgia, abdominal pain, cough, diarrhoea, restlessness, delirium, and anaemia (Malik 

et al., 1998). The symptoms may last for 48 hours coinciding with the duration of the 

asexual developmental period. The first paroxysm can be divided into three stages, the 

cold stage, hot stage, and sweating stage. During the cold stage, patients will experience 

an intense cold coupled with vigorous shivering that lasts at least 15 minutes. The hot 

stage symptoms resemble extremely burning sensation up to six hours. The sweating 

stage is when patients sweat profusely and drop in body temperature for at least two 

hours. The parasites exert a profound effect upon the infected red cells and escape the 

vascular system. This characteristic explains how severe infections develop at 

significantly low levels of parasitaemia. In addition, accumulation of multiple clinical 

relapses also contributes to the severity of anaemia with low parasitaemia. Although 

vivax malaria is generally considered to be benign, severe complications have recently 

been recognized which include severe anaemia (<5 mg haemoglobin/dL), severe 

thrombocytopenia, acute pulmonary oedema, jaundice, splenic rupture, acute renal 

failure and rarely, cerebral malaria, and shock.    

Moreover, the clinical presentations under low transmission settings of P. vivax 

malaria in children vary depending upon age and usually cannot be differentiated easily 

from other infectious complications (Anstey et al., 2012). Commonly, irrespective of 

age, symptoms presenting are fever, chills, and headache. However, in newborns, fever 

could be the only prominent symptom. Rupture of erythrocytes by mature schizonts 

stimulates the release of several inflammatory cytokines, which result in fever and 

myalgia. During initial infection, fever might be irregular. Upon synchronous red blood 

cells rupture, it leads to a typical cyclic fever (Stanley, 1997). If P. vivax malaria is left 

untreated during pregnancy, it causes severe anaemia in the mothers and can result in 

spontaneous abortion and intrauterine retardation of fetal growth. 
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1.6 Life cycle 

Plasmodium parasites have complex developmental stages that involve switching 

between an asexual reproduction in a vertebrate host and a sexual reproduction in the 

mosquito (Figure 1.4). Through the developmental phase, the parasite transforms into 

multiple, distinctive morphological forms (rings, trophozoites, schizonts, merozoites, 

and gametocytes). Plasmodium parasites are haploid in both vertebrate host and 

mosquito, except a brief diploid period inside the mosquito midgut where gametocytes 

undergo sexual reproduction to a zygote. The asexual life cycle in vertebrate host begins 

with the entry of parasites from a blood meal, followed by replication inside 

hepatocytes, erythrocyte invasion, replication inside erythrocytes, and egress from 

erythrocytes either to transform into gametocytes or re-invade naïve erythrocytes. 

These transitions can be divided into three stages: pre-erythrocytic, intra-erythrocytic, 

and post-erythrocytic.  

 The developmental phase begins with a bite of an infected female Anopheles 

mosquito, where 100-125 infective sporozoites are inoculated into the subcutaneous 

tissue (Aly et al., 2009). Upon entry into the bloodstream, sporozoites take about one 

to three hours to leave the injected site. Sporozoites travel through the capillaries and 

invade hepatocytes. At this stage, patients infected with malaria parasites will not show 

any clinical manifestations. This phase is known as a productive invasion. Within the 

hepatocytes, the sporozoites will transform into the trophozoite stage and mature into a 

round schizont. The schizogony takes 47-52 hours to complete and releases 1,500-8,000 

merozoites (Aly et al., 2009). After maturation, merozoites release from the 

disintegrated hepatocytes in membrane-bound vesicles called merosomes. The 

merosomes squeeze out of the liver and release merozoites into the bloodstream. These 

invasive merozoites are ready to infect naïve red blood cells within 30 minutes and 

correspond with parasitemia. However, in P. vivax and P. ovale, the parasites may enter 

a dormant stage in the liver (known as hypnozoite stage). These parasites are capable 

of inducing relapse infection after months or even years. This phenotype has made the 

study of P. vivax invasion a challenge, something exacerbated by the lack of a 

continuous culturing system. 

 Upon entry into erythrocytes, the parasite resides within the parasitophorous 

vacuole and feed on the haemoglobin. It will transform into a ring-stage form, then 
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progress to a larger, trophozoite form. The parasites feed on haemoglobin and modify 

red blood cell membrane to adhere to the uninfected red blood cells and the endothelium 

of blood vessels. Trophozoites are the most active feeding stage, they usually appear to 

be larger, rounded, and some of them assemble as membranous sacs (Maurer’s clefts). 

Continuous feeding on haemoglobin generates a by-product known as hemozoin 

crystals. These distinctive pigments often define the trophozoite stage. The schizont 

stage is marked by nuclear divisions and the expression of proteins critical for 

erythrocyte invasion. At this developmental stage, nuclear divisions often form 16 

nuclei. Multiple divisions simultaneously generate about 8-24 mature merozoites in P. 

falciparum, whilst 12-24 mature merozoites in P. vivax. Rupturing of the schizont 

releases merozoites into the circulation to invade new red blood cells. Merozoite 

invasion is central to the intra-erythrocytic stage. It sustains the parasite life cycle and 

malaria pathogenesis. In addition, the intra-erythrocytic stage is immunologically 

important due to the exposure of merozoites to the host immune system. This makes 

merozoite an attractive target for vaccine candidates. 

 After the release of merozoites into blood circulation, a small proportion of them 

will sexually differentiate into gametocytes (male: microgametocytes, female: 

macrogametocytes). These gametocyte cells are the precursor for male and female 

gametes. Mature gametocytes are transmitted into the anopheline mosquito during a 

blood meal. Male gametocytes differentiate to produce eight sperm-like gametocytes, 

whereas the female gametocytes generate a single and spherical macrogamete. 

Subsequently, a diploid zygote is formed in the fly midgut by fertilization of male and 

female gametes and developed into an ookinete. The motile ookinete penetrates the 

midgut epithelium and differentiates into an oocyst. After ten to thirteen days stretching 

the basal lamina overlying the oocyst, each rupture oocyst will release thousands of 

haploid sporozoites, which invade the salivary gland. The infective sporozoites are 

ready to infect vertebrate hosts during the next mosquito bite.     
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of Plasmodium vivax. 

Figure 1.4 Life cycle of Plasmodium vivax. The life cycle can be divided into three 

cycles, pre-erythrocytic (blue), intra-erythrocytic cycle (red), and sporogony cycle 

(green). Two hosts are required to complete the life cycle, primary host (female 

Anopheles mosquito) and secondary host (human). 
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1.7 Prevention and control of malaria 

Vector control strategies include the use of insecticide-treated bed nets (ITNs) with 

pyrethroids and indoor insecticide spray. This approach has been effective in reducing 

the global burden of malaria transmission. However, the widespread resistance of 

mosquitoes to insecticides is a major concern. It has been estimated that, should the 

mosquitoes become resistant to pyrethroid, more than 100,000 additional deaths would 

be expected (Mulamba et al., 2014). Meanwhile, at the parasite intervention level, 

chemotherapeutic management is the most common approach against malaria. 

Vaccination is an attractive and sustainable malaria prevention strategy; however, it has 

yet to be achieved. There are tremendous research efforts being conducted to develop 

potential vaccine candidates, discussed in the next section. 

   Chloroquine, a group of 4-amino-quinoline, has been the first line treatment 

for P. vivax since 1946.  However, there are reports about the emerging of chloroquine 

drug resistance in Papua New Guinea (Yung and Bennett, 1976), Indonesia (Baird et 

al., 1991a) , Myanmar (Guthmann et al., 2008), India (Shah et al., 2011), and South 

America (Gonçalves et al., 2014). Recently, reduced sensitivity of chloroquine against 

P. vivax was also reported in Ethiopia (Abreha et al., 2017). Chloroquine is no longer 

in used for P. falciparum because resistance has developed in most endemic areas. In 

the case of mixed species infections, artemether-lumefantrine, which has the 

schizonticidal efficacy, is always the preferred antimalarial drug. However, this drug is 

not generally used outside Africa. As chloroquine and artemether-lumefantrine are not 

able to target liver stage infection, primaquine is the primary drug for P. vivax. 

Primaquine is a hypnozoiticide which targets the parasite in the liver to prevent the 

episode of relapse infection. However, the use of primaquine can have severe side 

effects. It causes severe hemolysis in glucose-6-phosphate-dehydrogenase deficient 

(G6PD) patients, pregnant women, and others hypersensitive to 4-aminoquinoline 

compounds.  

Combination therapy is a regular practice in managing malaria. The drug 

combinations provide better efficacy and delay parasite replication which channel to a 

longer therapeutic life of monotherapy. Artemisinin-combination therapies (ACTs) is 

currently the frontline therapy against P. falciparum. Artemisinin contains a 

sesquiterpene lactone with an endoperoxide bridge can target malaria parasites within 
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minutes (Sun and Zhou, 2016). Quinine and quinidine are two active compounds that 

have a synergistic effect with artemisinin. The formulation is recommended against 

severe malaria. The use of artemisinin is not confined to P. falciparum; some studies 

reported efficacy in treating P. vivax infection (Karunajeewa et al., 2008; Phan et al., 

2002). The study of artemisinin in Vietnam among vivax-infected patients showed a 

significant parasite clearance following the treatment. Other ACTs used to target P. 

falciparum include artesunate-amodiaquine, artesunate-sulfadoxine-pyrimethamine, 

artesunate-chlorgunanil-dapsone, and artesunate-pyronaridine.  

 Combination therapy has been the standard regimen for managing malaria in 

Thailand. Sulfadoxine-pyrimethamine (SP) was reported in deteriorating efficacy along 

the Thai-Cambodia border, and thereby no longer recommended for treatment 

(Thimasarn et al., 1997). Mefloquine, a 4-aminoquinoline-methanol was used as a 

single therapy against P. falciparum in Thailand until the emergence of the resistant 

strain. Three days dihydroartemisinin-piperaquine is deployed across the country for 

uncomplicated P. falciparum malaria. Efficacy of chloroquine in Thailand was reported 

to have declined especially along the western Thailand border.  

Studies revealed that drug resistance is associated with mutations of the 

multidrug resistance 1 (mdr1) gene. Y976F mutation in mdr1 of P. vivax is linked to 

chloroquine resistance, where the multiple gene copies generated with susceptibility to 

chloroquine resistance (Golassa et al., 2015). The mdr1 of P. vivax is more prevalent 

along the western Thailand border, which leads to chloroquine resistance in Thailand 

(Imwong et al., 2008). Besides that, there are other alternative antimalarial drugs that 

are sensitive to P. vivax such as, rifampicin, artesunate, sulfadoxine-pyrimethamine, 

artesunate-amodiaquine, and artesunate-pyronaridine (Chu and White, 2016). In 

conclusion, widespread drug-resistant strains may compromise the malaria control and 

research efforts should also focus on alternative approaches, such as the 

characterization of malaria vaccine candidates and the underlying biology to develop 

effective malaria control tools in the future. 
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1.8 Merozoite binding mechanisms  

As discussed above, during the Plasmodium life cycle merozoites invade new 

erythrocytes once they emerge from infected erythrocytes. The interactions between 

merozoites and erythrocytes are therefore essential for malaria vaccine design. 

Merozoite recognition and invasion of erythrocytes involve multiple complex steps 

before a successful invasion is established.  It involves attachment, reorientation, and 

invagination of the merozoite during the host-cell invasion (Figure 1.5). The invasion 

begins when the merozoites and erythrocytes establish primary contact at any point on 

the surface (Cowman and Crabb, 2006). This initial attachment is mediated by 

merozoite surface proteins that coat the outer surface of the parasite (Lin et al., 2016). 

Subsequently, the parasite activates essential invasion organelles including, rhoptries, 

micronemes, and dense granules. These invasion organelles then release their contents 

periodically at the entry point. The rhoptries and micronemes act as a storage pocket 

for the merozoite proteins during schizogony and transported to the merozoite surface 

soon after merozoite egress from schizont. These two apical organelles have a higher 

binding capability to the receptors on erythrocyte surface which critical for invasion 

mechanism. The rhoptries are essential for host cell modification whereas micronemes 

are important for host cell adhesion and rupture (Kats et al., 2008). Following 

attachment of merozoite to the erythrocyte, apical reorientation takes place to position 

its end adjacent to the erythrocyte membrane. Then, micronemes and rhoptries 

discharge their contents and an irreversible tight or moving junction forms between the 

apical end of the invading merozoite and target erythrocyte. The tight junction 

coordinates the connection between erythrocyte membrane, parasite, and actomyosin 

motor that drives invasion (Giovannini et al., 2011). Upon contact with erythrocytes, 

thickening of the erythrocyte membrane is the first sight of junction formation. The 

entire invasion system is powered by an actin-myosin contractile system within the 

parasite itself.		
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Figure 1.0.1 Merozoite invasion into host red blood cells. 

Figure 1.5 Merozoite invasion into host red blood cells. The merozoite invasion 

into the erythrocytes involve multiple steps including primary contact, reorientation, 

moving junction, and entry into host-cell. The diagram is available from (Wright and 

Rayner, 2014). 

 

1.9 Vaccine development 

Various antigens from different malaria life stages have been expressed as potential 

vaccine candidates. Although most vaccines targeting liver-stage indicates a positive 

direction against malaria distribution, immunity studies showed just partial efficacy in 

clinical trials. Multistage malaria vaccine candidates likely to offer an attractive 

perspective for malaria vaccine development targeting more than one life stage. Based 

on the malaria parasite life cycle, this approach is ideally to prevent initiation of 

infection, suppress clinical manifestations, and transmission of the disease (Boes et al., 

2015).  To achieve this objective, key antigens from pre-erythrocytic, blood, and sexual 

antigens should be identified. Pre-erythrocytic stage vaccines target sporozoites and 

ultimately disturb parasite development before the symptomatic intra-erythrocytic stage 

ensues. Despite being asymptomatic in the infected patients, the parasite may be 

attacked to interrupt the initiation of infection. These vaccines aim to block the 

sporozoites invasion into hepatocytes. Blood stage vaccine development faces 

challenges owing to the antigenic variation on the merozoite surface proteins and 

infected erythrocyte surface proteins. The aim of blood-stage malaria vaccine 
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development is to inhibit the merozoite invasion into erythrocytes and suppress malaria 

clinical symptoms. Antigens discovery in blood stage should give priority to the 

functionally conserved regions to confer universally immune responses. Transmission-

blocking vaccines aim at disrupting the transmission of the parasite from human to 

mosquito. The vaccines against the sexual stage of the parasites are aimed to prevent 

parasites from infecting the female Anopheles mosquito through a blood meal. Most of 

the vaccine developments are focusing on the P. falciparum. Identification of new 

antigens and evaluation in vitro remain elusive in P. vivax. In this section, antigen 

discovery in the three life stages of Plasmodium will be discussed, while focusing 

mainly on the intra-erythrocyte cycle and merozoite surface proteins of P. vivax. 

 

1.9.1 Pre-erythrocytic stage vaccine  

Currently, RTS,S/AS01 is a vaccine being developed for use against the deadliest 

species of Plasmodium, P. falciparum. The construction of RTS,S is based on the 

carboxy-terminal of the P. falciparum circumsporozoite protein (CSP) and formulated 

with an AS01 adjuvant system (Cohen et al., 2010). The vaccine targets the parasite in 

its pre-erythrocytic stage, and that shows protective immunity among young children 

aged between 5-17 months (Rts, 2015). However, recent large-scale Phase III clinical 

trial introduced some doubt on its efficacy by suggesting that RTS,S/AS01 may not 

confer protection against severe malaria in infants aged between 6-12 weeks (Lell et 

al., 2009). The vaccine efficacy declined from 27.0% to 18.3% after several months in 

follow-up studies (Gosling and Seidlein, 2016). Although RTS,S/AS01 did not perform 

as expected, it could still potentially be used to immunize other age groups. Besides 

RTS,S, there are also other novel vaccine candidates identified in the pre-erythrocytic 

stage including, Thrombospondin-related anonymous protein (TRAP) (Gantt et al., 

2000), liver-stage antigen 1 (LSA1) (Kurtis et al., 2001), liver-stage antigen 3 (LSA3) 

(Brahimi et al., 2001), and early transcribed membrane protein 5 (ETRAMP5) 

(Fontaine et al., 2010).  

Vaccines based on recombinant CSP have been tested in Phase III clinical trials 

in P. falciparum. The results from the trials were encouraging, in terms of protective 

immune responses and well tolerated in clinical patients (RTS, 2011, 2012). Moreover, 
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a portion of the CSP against P. vivax is currently in phase 1/2a vaccine trial (Bennett et 

al., 2016). This vaccine candidate consists of the amino- and carboxy- fragments of the 

CSP and a truncated repeat region from two strains of parasites (VK210 and VK247) 

(Bennett et al., 2016; Cheng et al., 2013). Although the vaccine did not induce sterile 

protection, the parasite growth was significantly slower (Bennett et al., 2016). TRAP is 

another promising vaccine candidate that plays a prime role for sporozoite gliding on 

the mosquito salivary gland (Duffy et al., 2012; Kosuwin et al., 2018; Long and 

Hoffman, 2002). Both of these proteins are essential for the sporozoite invasion 

(Steinbuechel and Matuschewski, 2009; Sultan et al., 1997) and so vaccine design using 

these CSP and TRAP should essentially block the hepatocyte invasion by sporozoites.  

 

1.9.2 Blood-stage vaccine 

Although pre-erythrocytic stage vaccines have seen major progress in development, 

blood-stage vaccine candidates have made rather slower progress towards clinical 

testing. Vaccines that target blood-stages aim to prevent the development of clinical 

symptoms and impair parasite growth. Numerous blood-stage antigens have been 

studied, some with the potential to be a vaccine candidate (Miura, 2016). The merozoite 

is an attractive target for vaccine development because it is free in circulation for a brief 

period before entering another red blood cell and so vulnerable to destruction by 

antibodies. The initial release of merozoites into circulation can stimulate the immune 

memory of vaccinated individuals, leading to a high antibody production that offsets 

the further development of the blood infection at subsequent cycles (Carvalho et al., 

2002). Merozoite surface protein 1 (MSP-1), apical membrane antigen 1 (AMA1), and 

merozoite surface protein 3 (MSP-3) are the broadly studied surface antigens in blood-

stage Plasmodium.  

MSP-1 is involved in erythrocyte invasion and is a leading blood-stage vaccine 

candidate. MSP-1 undergoes secondary processing and immunization with a 42 kDa 

fragment is capable of reducing parasitemia (Singh et al., 2006), although recent Phase 

2b clinical trials of MSP-1 failed to protect children against malaria infection in Kenya 

despite having high antibodies titer (Ogutu et al., 2009). Lyon and colleagues in 2008 

showed that MSP-1 42 kDa fragment delivered in Freund’s adjuvant derived strain-
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specific immunity leading to reduce vaccine efficacy (Lyon et al., 2008). It is likely 

that the strain-specific immunity has been influenced by the adjuvant system. Adjuvants 

have been used to enhance the level of immune responses to a vaccine where it guides 

the adaptive immune response (Coffman et al., 2010). Lyon and colleagues suggested 

that a more appropriate adjuvant should be used to further assess the MSP-1 42 kDa 

fragment immunity in human (Lyon et al., 2008). In addition, MSP-1 is a highly 

polymorphic antigen, multiple copies of the fragments are thought to be present in a 

recombinant vaccine (Draper et al., 2009). An animal model constructed using MSP-1 

Block 2 showed to induce immunogenic responses in all Block 2 serotypes (Cowan et 

al., 2011). The N-terminal of the MSP-1 is known as Block 2 which encompasses most 

of the variants (Cowan et al., 2011). The MSP-1 vaccine with a cocktail of polymorphic 

variants in Block 2 and conserved sequence in Block 1 was shown to elicit protective 

immune responses in African populations (Cowan et al., 2011). Despite extensive 

polymorphism in the MSP-1 Block 2, the antigenic variants could still elicit protective 

immunity couples with the humoral responses confer by T-cell epitopes on the 

conserved Block 1 (Cowan et al., 2011; Parra et al., 2000).  

  AMA-1 is another promising surface antigen expressed during the intra-

erythrocytic stage (Mitchell et al., 2004). It plays an essential role in the invasion of the 

host cells through establishing the moving junction with the merozoite (Richard et al., 

2010). A phase I clinical trial of AMA-1 using AS02A adjuvant was conducted in Mali  

(Thera et al., 2010) and North America (Thera et al., 2008). The outcomes of both 

studies were encouraging, where it elicits high immunogenicity and well tolerated in 

natural infections (Thera et al., 2008; Thera et al., 2010). However, sequence diversity 

of AMA-1 is of similar magnitude as MSP-1 (Osier et al., 2008), and therefore, 

protection may be similarly undermined by strain-specific polymorphism. Vaccine 

development based on this protein might require incorporating multi-copies of the 

AMA-1 in order to confer protection against all strains. 

 MSP-3 is a multigene family consisting of eight members in P. falciparum 

(Singh et al., 2009) and 12 paralogs in P. vivax (Carlton et al., 2008). The expansion of 

MSP-3 in P. vivax suggests a mechanism of immune evasion. Various studies have been 

conducted to investigate antibodies responses to MSP3, but protection efficacy remains 

to be examined in P. vivax at least. The immunogenicity of two MSP-3 paralogs in P. 
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vivax, MSP-3α and MSP-3β were tested in Brazilian populations. The recombinant 

proteins were highly immunogenic in natural infections administered via different 

adjuvants (Bitencourt et al., 2013). This result is encouraging for vaccine development, 

even though the immune responses of other MSP-3 paralogs remain to be characterised. 

MSP-3 in P. falciparum has progressed further, a Phase 1b clinical trial was conducted 

in West African populations (Sirima et al., 2011). The MSP-3 vaccine was substantially 

safe in the trial where the incidence rate was below two in 100 days. In addition, the 

trial highlights high antibody responses conferred by the MSP-3 vaccine and some 

indication of protection efficacy, despite only 45 children recruited for the study. The 

immune responses induced by MSP-3 in P. falciparum and P. vivax are consistent, 

therefore, the findings warrant further investigation as a subunit vaccine candidate in 

blood-stages.  

Thus far, most vaccine candidates in blood-stages have shown encouraging 

immune responses, and protective efficacy in experimental models or initial clinical 

trials. The blood-stage vaccine components discussed above are not exhausted, there 

are further surface antigens that warrant further investigation. The MSP-7 multigene 

family, the subject of this thesis, are another possibility for blood-stage vaccine 

development, owing to their role in erythrocyte invasion and interaction with MSP-1 

(Cheng et al., 2018; Garzón-Ospina et al., 2010; Garzón-Ospina et al., 2016, 2014; 

Kadekoppala and Holder, 2010; Tewari et al., 2005). A more comprehensive coverage 

of the MSP-7 multigene family will follow in the next section.   

 

1.9.3 Sexual-stage vaccine 

Blocking the malaria transmission at the mosquito stage is another approach to 

vaccination. This approach uses gametocyte or sexual-stage antigens to prevent 

transmission of parasites from host to mosquito. Some of the sexual-stage proteins 

exploited in transmission-blocking vaccine candidates include the gametocyte surface 

protein Pfs 230 (Eksi et al., 2006), the ookinete protein Pfs 25/28 (Saxena et al., 2007), 

and Pfs 48/45, a six-cysteine protein family found on the gamete cell surface and 

involved in gamete interaction within the mosquito gut (Dijk et al., 2011). Pfs 230 is 

an important transmission-blocking vaccine candidate in P. falciparum. It has shown to 
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inhibit the development of oocysts (Krause et al., 2007). The inhibition of oocysts 

formation in the mosquito midgut will retard the development of thousands of 

sporozoites, so impairs the parasite transmission from mosquito to human (Hill, 2011). 

Six fragments of Pfs 230 were expressed as recombinant proteins in E. coli. Four out 

of six fragments elicited antisera that reduced P. falciparum infectivity to mosquitoes 

(Williamson et al., 1995). Pfs 25/28 are two conserved vaccine candidates that showed 

to elicit immune responses in natural infection (Duffy and Kaslow, 1997).  In humans, 

immunization with Pfs 25 demonstrated inhibition of sporozoites transmission from 

mosquito to human (Wu et al., 2008). Immunization of rodents and primates with Pfs 

48/45 inhibited oocyst formation by up to 95% after challenge with P. falciparum 

compared to controls (Chowdhury et al., 2009). 

From the multistage vaccine development perspective, transmission-blocking 

vaccines are capable of extending the life of other malaria vaccines by stopping the 

spread of the parasites. In any case, the antigen conformations and the vaccine efficacy 

need to be investigated further. The main hurdle to the further development of 

transmission-blocking vaccines has been the effectiveness of vaccine distribution. 

Every individual in malaria-endemic areas are likely to transmit the parasites, therefore, 

all residents within a community should be vaccinated. This translates into a mass 

vaccination investment, which has proven to be financially challenging. Since malaria 

transmission is a local and a focal feature of the landscape, deployment of transmission-

blocking vaccine may be more sensible at a smaller local community in combination 

with other approaches. 

 

1.10 Vaccine technology 

Over the past few decades, many different vaccine formulations for malaria have been 

explored. Vaccine technologies can be divided into three categories, attenuated 

microbes, killed microbes or protein subunits (Hill, 2011). Vaccines that use attenuated 

microbes are the most successful form of a vaccine (Coelho et al., 2017). These contain 

a weakened form of the microbe that protects against a cross-reactive pathogen. Such 

vaccines have been shown to elicit protective immune responses in infectious diseases 

such as human immunodeficiency virus (Blower et al., 2001), influenza virus 
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(Bournazos and Ravetch, 2017), and smallpox (Minor, 2015). In malaria, three live 

attenuated malaria vaccines have been tested in clinical trials using RTS,S/AS01 

(Keitany et al., 2014). The parasites were attenuated by irradiation, drug coverage, and 

genetic attenuation. Attenuation by irradiation was the first approach against malaria 

parasites, in the form of radiation-attenuated sporozoites (RAS). Hoffmann and 

colleagues immunised 11 patients with RAS, of the 26 challenges, 24 were shown to 

induce protective immunity lasting up to 42 weeks (Hoffman et al., 2002). In addition, 

immunization with a larger dose of cryopreserved sporozoites was shown to protect up 

to 60% of patients (Doll and Harty, 2014). Although the results seemed encouraging, 

this approach is laborious and expensive and so was superseded by other approaches.   

Parasite attenuation by drug coverage using sporozoites and anti-malarial drug 

chloroquine inhibited the parasite intra-erythrocytic cycle (Keitany et al., 2014). 

Immunological studies have shown that immune responses derived from this approach 

conferred long-lasting protection in four of six patients (Bijker et al., 2013). To further 

verify the vaccine efficacy, more volunteers should be enrolled in the testing to 

determine the protection against sporozoite challenge. Genetic attenuation involves 

deletion of specific genes in Plasmodium sporozoites that precludes parasite 

development in the liver stage (Aly et al., 2009; Tarun et al., 2007). The deletion of 

genes including, UIS3, UIS4, p52, and sap1 were able to elicit long-lasting protection 

against sporozoite challenge in mice model. However, one out of six patients showed 

blood stage parasitemia after the second dose of injection, suggesting the mutant was 

not entirely attenuated (Aly et al., 2009). Despite the disadvantages of each method, it 

would be interesting to compare the vaccine efficacy using the three strategies.  

Lack of success using vaccines based on attenuated parasites has diverted 

attention to the development of killed-whole parasite formulations. The use of whole 

infectious pathogens was previously integrated into various vaccine designs, including 

tuberculosis, mumps, and rubella. Vaccine development using whole-killed parasite 

was seen to confer protection against blood-stage infection in malaria (Zepp, 2010). 

This approach covers a broad array of antigens exposed to the immune system and may 

overcome the limitation on vaccine efficacy caused by the antigenic polymorphism. A 

whole-killed parasite vaccine can be generated with both high temperature or 

chemicals. Challenge experiments in rodents and primates vaccinated with killed-whole 
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parasite can confer protective immunity (McCarthy and Good, 2010). In studies where 

monkeys were immunized with red cell lysate of three different Plasmodium species, 

P. knowlesi (Jiang et al., 2009), P. falciparum (Butler et al., 2012), and P. yoelii (Hagen 

et al., 1993), the monkeys were protected against parasite challenge. These results 

showed positive immunization of primates with killed-whole parasite during blood-

stages. However, similar experiments are yet to be conducted in humans as a compatible 

adjuvant is still to be explored. Moreover, the cost and logistics to deliver the whole-

killed parasite vaccine in endemic areas are concerns for this vaccine technology.   

Subunit vaccine is another approach for vaccine technology. An example is the 

extensive studied RTS,S even though it provides sub-optimal protection (Kaslow and 

Biernaux, 2015). It is likely that the RTS,S together with other protein subunits can 

induce sterile protection. Synthetic peptides and chimeric protein vaccines are two 

examples of malaria subunit vaccines. Production of synthetic peptides in P. falciparum 

has been a challenge because it is difficult to produce epitopes on the protein surface in 

the correct conformation. A long synthetic peptide is likely to address the problem. 

However, the efficacy is unlikely to be superior to that of whole-killed parasite unless 

the conserved epitopes are recognized by the immune system. In addition, subunit 

malaria vaccines need to be highly reactive and required high titer to induce sterile 

protection (Cohen et al., 2010). As for recombinant protein subunit vaccine, the type of 

adjuvant used in conjunction is crucial, as shown in RTS,S/AS01 (Didierlaurent et al., 

2017). The nature of adjuvant can enhance the immunogenicity of protein antigens. 

RTS,S/AS01 consists a number of virus-like particle delivery systems combined with 

repeat sequences and a C-terminal fragment of the circumsporozoite protein. These 

virus-like particle delivery systems have restricted size and only partial malaria 

sequences are used, which may compromise the vaccine efficacy (Draper et al., 2015).  

Another vaccine candidate that uses the similar approach is Pfs25. It is a 

transmission-blocking vaccine composed of protein-protein conjugates. Long-lasting 

protection was demonstrated using conjugates with aluminium hydroxide (Kubler-

Kielb et al., 2010). Additionally, similar protective immune responses were observed 

for dimeric Pfs25 conjugated to circumsporozoite protein repeat (Kubler-Kielb et al., 

2007). These observations show that the subunit vaccine that can inhibit both sporozoite 

replication in hepatocytes and transmission between host and vector. In parallel with 
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efforts to develop subunit vaccines against the pre-erythrocytic stage and sporogonic 

cycle, the intra-erythrocytic stage should be fully explored.  

Subunit vaccines targeting the multiprotein complex formed during erythrocyte 

invasion is a new avenue of investigation, potentially able to elicit highly protective 

immune responses in humans. MSP-1 forms a multiprotein complex with MSP-6 and 

MSP-7 prior to erythrocyte invasion (Kauth et al., 2006). Using antibodies against 

MSP-1/6/7 can prevent merozoite invasion by shedding of the multiprotein complex 

(Woehlbier et al., 2010). Therefore, developing subunit vaccines that contain fragments 

of MSP-1/6/7 may provide an efficient vaccine. As multi-copy proteins, careful 

consideration of structural and functional diversity among paralogs, such as the antigen 

conformations, polymorphic regions, and immunogenicity, is necessary during vaccine 

design with these blood-stage antigens. Having discussed different vaccine 

technologies aimed at various life stages of malaria parasites, it is clear that each of the 

methods has its own advantages and disadvantages, and in fact, vaccine development 

should achieve a balance of immune effector roles to block replication of parasites at 

different life stages. 

 

1.11 Plasmodium vivax merozoite surface protein 7 (PvMSP-7) 

	
1.11.1 Molecular evolution 

MSP-7 is a surface protein expressed by Plasmodium merozoites. The MSP-7 and 

MSP-7 related protein (MSRP) genes were first discovered in the P. falciparum 

merozoite surface as a 22-kDa (MSP-722) fragment (Pachebat et al., 2001). The 

fragment binds non-covalently to the MSP-1 complex. Subsequently, the second 

fragment with 19-kDa (MSP-719) was reported to be derived from MSP-722 through a 

proteolytic event (Figure 1.6) MSP-7 is differentially expanded in Plasmodium genus, 

P. vivax has the highest copy number (Figure 1.7). The multigene family consists of 13 

paralogs in P. vivax, nine paralogs in P. falciparum, five paralogs in P. knowlesi, four 

paralogs in P. berghei, four paralogs in P. yoelii, four paralogs in P. chabaudi, and 

seven paralogs in P. reichenowi (Figure 1.7) (Garzón-Ospina et al., 2010). The 
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extensive copy number variation found across human and rodent malaria species 

suggests species-specific duplications or deletions. Evolutionary studies found several 

MSP-7 members undergo recombination events that led to the generation of new 

sequences (Castillo et al., 2017; Garzón-Ospina et al., 2010; Garzón-Ospina et al., 

2016). The evolution of the MSP-7 family appears to follow a birth-and-death model, 

where major events such as duplication, pseudogenizations, and gene loss occur 

frequently (Castillo et al., 2017; Garzón-Ospina et al., 2010). 

As the MSP-7 family is conserved across the Plasmodium genus, this suggests 

that the proteins are playing multiple, essential roles. However, it is currently unknown 

about their exact function(s). Population genetic studies have shown that several P. 

vivax MSP-7 paralogs are under purifying selection, including PvMSP-7A, -7E, -7H, -

7I, -7K, and -7L (Castillo et al., 2017; Cheng et al., 2018; Garzón-Ospina et al., 2016, 

2014; Garzón-Ospina et al., 2012; Garzón-Ospina et al., 2011).  MSP-7 genes between 

Plasmodium genus have similar structure and organization, although they have a 

relatively low identity (Kadekoppala and Holder, 2010; Mongui et al., 2006). Sequence 

similarity of MSP-7 genes between P. falciparum and P. vivax by Mongui et al. (2006) 

revealed that the proportion of sequence identity ranges between 9.9% to 41.8%. 

However, the further analysis focused on the C-terminal of MSP-7 in all Plasmodium 

species showed that this domain has remained highly conserved, suggesting this 

fragment could be especially important for protein function (Castillo et al., 2017; Cheng 

et al., 2018; Kadekoppala and Holder, 2010). Kadekoppala et al. (2008) showed that 

the C-terminal region of PfMSP-7 has high binding activity, and suggested that it might 

be implicated in host cell invasion. Furthermore, experimental knock-down of PfMSP-

7’s C-terminal produced a significant reduction in parasite invasion into erythrocytes 

(Kadekoppala et al., 2008). The central region of most MSP-7 paralogs, especially in 

P. vivax, is highly polymorphic, suggesting that balancing selection is acting to 

maintain diversity. A closer look at MSP-7 proteins in P. vivax, shows that seven 

members are relatively conserved (PvMSP-7A, -7D, -7F, -7J, -7K, -7L, and -7M). 

Taken all these findings together, it is possible that MSP-7 paralogs are functionally 

differentiated and the family collectively performs multiple functions.  
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Figure	1.0.2	 Schematic diagram of MSP-7 proteolytic events and a multiprotein complex. 

Figure 1.6 Schematic diagram of MSP-7 proteolytic events and a multiprotein 

complex. SP denotes signal peptide. a) MSP-7 was synthesized as a 48-kDa precursor 

in P. falciparum. b) MSP-7 undergoes two proteolytic events. The first proteolysis 

generates two protein fragments; 20-kDa fragment from the N-terminal and 33-kDa 

fragment from the C-terminal. The N-terminal fragment (MSP-720) interacts with P-

selectin which modulates the disease severity (Perrin et al., 2015). The C-terminal 

fragment (MSP-733) undergoes secondary proteolysis to generate a 22-kDa fragment 

and further cleave to generate 19-kDa fragment. These two fragments participate in the 

host-cell invasion with other merozoite surface antigens (Pachebat et al., 2001). c) a 

multiprotein complex is formed between MSP-1 (83-, 36-, 33-, and 30-kDa), 36-kDa 

of MSP-6, and MSP-7 (22- and 19-kDa). This complex is thought to involve in the 

erythrocyte invasion.  
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Figure	1.0.3	 Schematic	diagram	of	MSP-7	copy	number	in	seven	Plasmodium	species 

Figure 1.7 Schematic diagram of MSP-7 copy number in seven Plasmodium 

species. MSP-7 genes are arranged alphabetically from head to tail on a chromosome. 

Brown coloured boxes represent the regions flanking the MSP-7 multigene family array 

in each Plasmodium species. Each grey box depicts an MSP-7 gene, whilst the dotted 

lines connect genes with an orthologous relationship in phylogenies. The gap along P. 

yoelii, P. berghei, and P. chaubadi were introduced to allow gene positioning. The 

diagram is taken from (Garzón-Ospina et al., 2010). 
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1.11.2 Proteolytic processing of MSP-7 

MSP-7 is synthesized as a 48 kDa precursor undergoes two proteolytic cleavages, 

necessary for correct function (Figure 1.6). These proteolytic events are proposed to be 

essential for merozoite development and maturation (Pachebat et al., 2007). In the 

primary proteolytic event, MSP-7 yields two protein fragments, 20-kDa (MSP-720, N-

terminal) and 33-kDa (MSP-733, C-terminal) (Figure 1.6). Upon maturation of 

schizonts, MSP-720 appears to be degraded on the merozoite surface. The 33-kDa 

fragment located at the C-terminal undergoes secondary proteolysis, generating the 22-

kDa fragment and further cleaved to yield a 19-kDa fragment (MSP-719). The MSP-722 

fragment is tightly associated with MSP-1 multiprotein complex (Pachebat et al., 2007). 

Other leading vaccine candidates including MSP-1 and AMA-1 undergo similar 

proteolytic processing like MSP-7, but only a small part of the C-terminal participates 

in the host-cell invasion (Blackman et al., 1994; Urquiza et al., 1996).  

Upon erythrocyte invasion, MSP-7 found on the MSP-1 multiprotein complex 

as a 22- or 19-kDa fragment. This suggests MSP-7 interacts with the MSP-1 complex 

and the sequential proteolytic processing coincident with merozoite development and 

maturation. MSP-7 is non-covalently associated with the merozoite surface, forming 

complexes with other MSPs (Figure 1.6) (Cowman et al., 2002). MSP-1 forms a 

protein-complex with MSP-636, MSP-720, and MSP-719 which plays a role in the initial 

parasite-erythrocyte interaction (Kauth et al., 2006). This large multiprotein complex 

interacts via the processed form of the C-terminal region. Based on the localization of 

MSP-7 on the merozoite surface, it is thought that the C-terminal interacts with host-

cell through Band 3 (Garcia et al., 2007). This complex modulates the erythrocyte 

invasion mechanism and is shed from the parasite surface following entry into the host 

cell. The fact that, not all parts of the MSP-7 are interacting with the MSP-1 

multiprotein complex, vaccine design should, therefore, focus on the C-terminal of the 

protein.   
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1.11.3 The role of MSP-7 

Antibodies targeting the multiprotein complex consisting of MSP-1, -6, and -7 were 

shown to interfere with the shedding of MSP-1 and prevent host-cell invasion in P. 

falciparum (Woehlbier et al., 2010). Moreover, antibodies against different areas of this 

multiprotein complex revealed interference with the development of the parasite in vitro 

and shedding of the complex (Kauth et al., 2006; Woehlbier et al., 2006). However, 

PfMSP-7 knock-out parasites seem to survive and invade host-cell in vivo and in vitro, 

suggesting interruption of PfMSP-7 alone is not adequate to impede the invasion 

mechanism (Kadekoppala et al., 2008; Woehlbier et al., 2010). Meanwhile, deletion of 

a PfMSP-7 paralog (PF3D7_1335100) involved in the multiprotein complex led to a 

reduction in parasite’s ability to invade host red blood cells by at least 20% in vitro 

(Kadekoppala et al., 2008). Kadekoppala and colleagues also showed knocked-down 

of further five PfMSP-7 paralogs generated a null phenotype (Kadekoppala et al., 

2008). Likewise, deletion of MSP-7 in P. berghei revealed the impairment of parasite 

growth and predominantly reticulocytes preference (Tewari et al., 2005). Furthermore, 

Kauth and colleagues (2006) reported the ability of MSP-1/6/7 in inducing strong 

humoral responses in falciparum-infected patients. Rabbit antibodies raised against 

PfMSP-6 and PfMSP-7 demonstrated the potential to inhibit parasite replication in 

vitro. Such polyclonal antibodies against the multiprotein complex imply the potential 

relevance of each component in vaccine development.  

On the other hand, antibodies targeting the PfMSP-636 and PfMSP-722 showed 

the ability to interrupt secondary proteolytic processing of PfMSP-1 (Woehlbier et al., 

2010). The secondary proteolytic event is thought to be a precursor for forming the 

multiprotein complex and priming the invasion competent merozoites. Consequently, 

interrupting the secondary proteolytic event in MSP-1 could impede the primary step 

in the shedding of the multiprotein complex and inhibit the parasite’s maturation 

pathway. Similarly, two MSP-7 paralogs in P. yoelii showed their ability to interact 

with the C-terminal of PyMSP-1 in a yeast two-hybrid system. One of those PyMSP-7 

paralogs was the homologue of PfMSP-7 that previously isolated in the shed complex 

of MSP-1 (Mello et al., 2004). All lines of evidence indicate that the MSP-7 paralogous 

genes have important roles in the invasion process.  
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Functional knock-out of certain MSP-7 paralogs in P. berghei and P. falciparum 

did not completely impair the parasite’s invasion ability (Kadekoppala et al., 2008; 

Tewari et al., 2005). Likewise, only certain MSP-7 paralogs are found to interact with 

the MSP-1 multiprotein complex in P. falciparum and P. yoelii. This might suggest that 

not all MSP-7 paralogs participate in the red cell invasion mechanism (Mello et al., 

2004). Evidence from rodent infections indicated the immunomodulatory role of MSP-

7. Infection with PbMSP-7 knock-out parasites resulted in a significantly lower death 

rate in mouse models (Mello et al., 2004). Moreover, PbMSP-7 knock-out in 

laboratory-adapted parasite strain induced cerebral malaria in experimentally infected 

mice,  but a wild-type strain did not (Spaccapelo et al., 2011). MSP-7 paralogs in P. 

falciparum and P. berghei have also been shown to act as immunomodulators in 

regulating disease severity (Perrin et al., 2015). P-selectin has been characterized as a 

host factor for mediating malaria-associated pathology (Combes et al., 2004), and it 

interacts with PfMSP-7 the N-terminal region and the P-selectin C-type lectin and EGF-

like domains (Figure 1.6) (Perrin et al., 2015). The N-terminal region of PfMSP-7 was 

reported to be undetectable in the multiprotein complex, whilst only the C-terminal 

region participated in the erythrocyte invasion. This finding implies different fragments 

of MSP-7 have different biological functions. Interestingly, the same interaction was 

observed in PbMSP-7 (Tewari et al., 2005). Therefore, these data suggesting MSP-7 

paralogs have diverse and critical roles in addition to erythrocyte invasion.  

 

1.11.4 Population genetics of MSP-7 

The patterns of genetic diversity among MSP-7 family members vary between P. 

falciparum and P. vivax (Garzón-Ospina et al., 2012; Garzón-Ospina et al., 2011). The 

genetic diversity of PfMSP-7 has been reported to be rather conserved, possibly due to 

the evolutionary forces acting on the P. falciparum lineages (Castillo et al., 2017; 

Garzón-Ospina et al., 2010). However, sequence polymorphism among MSP-7 

paralogs in P. vivax is more variable, some paralogs show extensive sequence variation, 

while others are uniform among strains. There are currently 13 MSP-7 genes arranged 

head-to-tail at chromosome 12 of P. vivax (Garzón-Ospina et al., 2010). The PvMSP-7 

paralogs are named alphabetically from A-Z (Table 1.1). The respective accession 
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number of PvMSP-7 in two reference strains are also detailed in the table below (Table 

1.1); Salvador I (Carlton et al., 2008) and PvP01 (Auburn et al., 2016).  

The population genetic diversity of most PvMSP-7 paralogs (PvMSP-7A, -7C, 

-7E, -7F, -7H, -7I, -7K, and -7L) has been evaluated in clinical isolates, largely within 

Colombian population (Cheng et al., 2018; Garzón-Ospina et al., 2014; Garzón-Ospina 

et al., 2012; Garzón-Ospina et al., 2011). PvMSP-7A, -7F, -7K, and -7L display low 

polymorphism compared to the others (Garzón-Ospina et al., 2014; Garzón-Ospina et 

al., 2012; Garzón-Ospina et al., 2011). This shows that the PvMSP-7 family displays a 

heterogeneous pattern of genetic diversity: some members are highly conserved while 

the others are highly diverse, perhaps because they are exposed to different selective 

pressure or possess different biological constraints. 

PvMSP-7C, -7H, and -7I were analysed by Garzón-Ospina et al. (2012) where 23 

haplotypes were detected for PvMSP-7C, while 28 haplotypes were found for both 

PvMSP-7H and PvMSP-7I. PvMSP-7A and PvMSP-7K are highly conserved (Garzón-

Ospina et al., 2011). PvMSP-7A demonstrates little genetic diversity, with only four 

polymorphic sites, while PvMSP-7K has nine different haplotypes. PvMSP-7F and 

PvMSP-7L were also reported to have low genetic diversity (Garzón-Ospina et al., 

2014). These genes had only four and six segregating sites, respectively. Therefore, if 

PvMSP-7 paralogs were to use in vaccine development, selection of certain paralogs 

must consider the sequence polymorphism to avoid immune escape variants and allele-

specific immune responses. The conserved proteins are the most attractive vaccine 

candidates because they have little capacity for vaccine escape. 
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Table	1.0.1	 The	nomenclature	reflects	each	PvMSP-7	gene	used	in	GenBank	and	PlasmoDB	database	

Table 1.1 The nomenclature reflects each PvMSP-7 gene used in GenBank 

and PlasmoDB database. The table shows 13 PvMSP-7 genes named alphabetically 

and their respective accession numbers in Salvador I (Carlton et al., 2008) and PvP01 

(Auburn et al., 2016) reference strain.  

PvMSP-7  Salvador I PvP01 

A PVX_082645 PvP01_1220400 

B PVX_082650 PvP01_1220300 

C PVX_082655 PvP01_1220200 

D PVX_082660 PvP01_1220100 

E PVX_082665 PvP01_1220000 

F PVX_082670 PvP01_1219900 

G PVX_082675 PvP01_1219800 

H PVX_082680 PvP01_1219700 

I PVX_082685 PvP01_1219600 

J PVX_082690 PvP01_1219500 

K PVX_082695 PvP01_1219400 

L PVX_082700 PvP01_1219300 

M PVX_082710 PvP01_1219200 

	
 

1.11.5 MSP-7 transcript expression  

While most research relating to MSP-7 has focused on the characterization of MSP-7 

functions and antigenic variation, our understanding of MSP-7 gene expression is 

limited. MSP-7 transcripts were detected in the blood-stages of P. falciparum 

(Kadekoppala et al., 2010; Otto et al., 2010) , P. yoelii (Mello et al., 2004; Otto et al., 

2014), P. berghei (Otto et al., 2014), and P. vivax (Bozdech et al., 2008; Mello et al., 

2004). Consistently, all MSP-7 paralogs across four Plasmodium species showed an 

increase in transcript expression towards schizogony. The P. vivax transcriptome 

revealed the peak expression of 13 PvMSP-7 paralogs during late-schizont stage 

(Bozdech et al., 2008). Although there is currently no evidence of PvMSP-7 present on 

the merozoite surface, the proteins have similarity to that of PfMSP-7 previously 

characterized on the merozoite surface. Similarly, MSP-7 paralogs in P. berghei and P. 
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yoelii were consistently expressed around the schizont stage using RNA sequencing 

approach (Mello et al., 2004; Otto et al., 2014). Moreover, the PbMSP-7 and PyMSP-

7 paralogs were also evidenced by co-localize with the MSP-1 multiprotein complex 

on the merozoite (Mello et al., 2004; Tewari et al., 2005). Moreover, localization assay 

using immunofluorescence in P. vivax (Mello et al., 2004), P. yoelii (Mello et al., 2004), 

and P. falciparum (Kadekoppala et al., 2010) revealed some MSP-7 paralos were found 

on the surface of merozoites. As previously discussed, only C-terminal of PfMSP-7 was 

shown to participate in the host-cell invasion and the N-terminal is likely to interact 

with P-selectin to modulate the disease severity (Perrin et al., 2015). A 174 amino acid 

fragment derived from the N-terminal of PfMSP-7 was expressed and tagged with green 

fluorescent protein (GFP). 

Current analysis of P. vivax transcripts is limited to two studies which used 

microarray technology (Bozdech et al., 2008; Westenberger et al., 2010). These two 

studies contributed significantly to the understanding of P. vivax transcription. Though, 

there are several limitations to these studies. Microarray data generated by Bozdech et 

al. (2008) are lacking the transcriptional profile of certain genes not present in Salvador 

I genome annotation (Carlton et al., 2008). Furthermore, the data produced by 

Westenberger et al. (2010) did not cover the erythrocytic stage of the parasite which 

essential for understanding the invasion-related transcription. The study of P. vivax was 

hampered by the lack of effective continuous in vitro culture system that restricts 

scientists to dive right into the biology of this species (Noulin et al., 2013). A study 

conducted by Zhu et al. (2016) shows a novel finding to study P. vivax transcriptome 

in clinical isolates. The group sequenced two clinical isolates from the field with 

asynchronous parasite composition. Intriguingly, the global transcriptome of two 

clinical isolates was correlated with the microarray-based results. However, the study 

was based on two clinical isolates which might not provide strong evidence for 

understanding the transcriptional changes of P. vivax in clinical isolates. Taken all these 

evidence together, RNA-seq was used to characterise the transcript abundance in ten 

clinical isolates and as a more definitive approach to characterise the transcriptional 

changes in the PvMSP-7 multigene family. 
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1.12 Plasmodium vivax in Thailand  

The tremendous control efforts imposed a few decades back have successfully 

eliminated malaria from major cities in Thailand. Malaria transmission in Thailand has 

a unique feature where the transmission areas are separated by a malaria-free corridor 

in central Thailand. Currently, Thailand is regarded as a malaria-hypoendemic region 

(Cui et al., 2003). Malaria infections are found along the border of two countries, such 

as Thailand-Myanmar, Thailand-Cambodia, and Thailand-Malaysia due to forest cover 

and movement of populations between two countries. Several studies have been 

conducted to define the spatial and temporal variation of malaria in Thailand. The 

incidence rate of malaria in Thailand was reported with high spatial heterogeneity, and 

most cases occurred along the Myanmar and Cambodia. Tak province (Thailand-

Myanmar) recorded the highest malaria incidence possibly source from foreign 

workers, but precise information regarding migratory labourers and patterns of 

migration are inaccessible (Zhou et al., 2005). P. vivax is highly diverse between 

different geographic regions (Chenet et al., 2012; Hupalo et al., 2016; Jennison et al., 

2015; Neafsey et al., 2012) and mixed-clonal infections are common in Thailand. 

Malaria transmission in Thailand does not conform to a uniform pattern, therefore it is 

crucial to identify malaria risk areas. A major geographic division of P. vivax 

population structure was seen between western and eastern Thailand in a recent study 

of global diversity, which in line with the malaria-free region in the central region 

(Gupta et al., 2016; Pearson et al., 2016). However, this result was based on only four 

isolates (Pearson et al., 2016). 

Population genetic variability of P. vivax was also conducted at Mae Sod 

(Thailand-Myanmar) the level of variability was equally high compared to those from 

Papua New Guinea, which is a hyperendemic area (Cui et al., 2003). P. vivax population 

bordering Cambodia (Chanthaburi) shows high haplotype and nucleotide diversities, 

the diversities are similar to those studies conducted at Thailand-Myanmar border 

(Kosuwin et al., 2014). It is noteworthy that, malaria transmission is always low along 

the Thailand-Malaysia border (southern Thailand), unfortunately, it reappeared in 

several areas with sporadic outbreaks. Thus, the low level of polymorphisms in 

southern Thailand could be shaped by bottleneck effects (Cheng et al., 2018; 

Jongwutiwes et al., 2010; Kittichai et al., 2017). Improved knowledge of genetic 
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polymorphisms will provide a clearer picture regarding the transmission dynamics of 

malaria in Thailand and further strengthen the infection control strategies. 

 

1.13 Immunity to malaria 

The mechanism underlying the immune responses in malaria parasite is not fully 

explained. Unlike viral infection which provides long-lasting immunity upon perhaps 

just a single infection, malaria patients only acquire immunity gradually. Immunity to 

malaria is known to i) be acquired gradually after exposure to parasite continuously 

(Baird, 1995; Cohen, 1979), ii) transfer passively to infants through maternal 

antimalarial antibodies (Diggs et al., 1995; Dobbs and Dent, 2016), iii) develop 

partially in response to parasitemia (Schofield and Grau, 2005), and iv) provide levels 

of protection that correlate with clinical malaria (Kusi et al., 2017). In malaria endemic 

areas, individuals are semi-immune as they are exposed to malaria parasite over time. 

This explains the malaria burden contributed mainly by the young children group 

(Arévalo-Herrera et al., 2016). Furthermore, newborns within the age of three to six 

months are protected against clinical malaria in areas with intense transmission. The 

protection is likely to be derived from the transfer of IgG through the placenta in utero 

(Amaratunga et al., 2011). Having said that, most of the infants in hyperendemic areas 

experience the first episode of malaria attack within the first few months of life.  

The acquired immunity in adults seems to be non-sterile since they continue to 

present asymptomatic malaria with low-level parasitemia. This condition is known as 

premunition where it maintains parasite load below the threshold of pathogenicity and 

elicits chronic infection (Pérignon and Druilhe, 1994). Premunition is often seen in 

malaria hyperendemic areas. In addition, age and cumulative episodes of infection are 

two factors contribute to premunition. As suggested by Baird and colleagues in 1991, 

age plays an important role in the state of malaria immunity (Baird et al., 1991b). 

Immigrants with naïve immunity to malaria developed asymptomatic malaria and lower 

parasitemia when they exposed to areas with high malaria transmission. The 

parasitemia was significantly lower than those children in hyperendemic areas after two 

years of exposure to malaria. Meanwhile, parasite exposure and clinical immunity 

showed a positive correlation with transmission dynamics (Snow et al., 1997).  Holo-
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endemic communities in African showed children acquired immunity from complicated 

malaria earlier in life. From the evidence above, cumulative exposure and age are both 

playing an essential role in acquired immunity against malaria.       

Immunoglobulins transferred from protected healthy individuals have been 

shown to confer immunity against malaria in children (McGregor, 1964). An 

experiment was conducted in Thai children, where they were treated with 

immunoglobulin from West-African adults (Sabchareon et al., 1991). Interestingly, 

acquired immunity is acting independently of parasite life cycle, but not in passive 

transfer immunoglobulins. Immunoglobulins from the passive transfer have been 

shown to reduce parasitemia but do not confer sterile protection. It was suggested that 

the antibodies were targeting the blood stage of the malaria parasite (Marsh et al., 

1989). Findings based on a longitudinal study in Ghana revealed that the rate of re-

infection after antimalarial treatment was identical to that of infants’ cohort in the same 

endemic area, suggesting that the pre-erythrocytic stage is less likely to participate in 

the naturally acquired immunity (Owusu-Agyei et al., 2001). In fact, antibodies appear 

to act against the erythrocytic stage, particularly targeting the merozoite. This is 

indicated by the lack of HLA-class molecules on the erythrocyte surface and parasite 

(Perrin and Dayal, 1982). Hence, immunity operating at the erythrocytic stage could be 

dominated by the humoral immunity. Despite enormous efforts to characterize the 

vaccine candidates, only certain antigens show some degree of immune protection, 

which warrants further understanding of malaria immunity. 

 

1.13.1 Humoral immunity  

Antibody-mediated immune responses confer primary immunity against blood-stages 

of P. falciparum infection, although the complete picture of this mechanism is still 

imperfect. Antimalarial antibodies have shown to inhibit invasion and replication of P. 

falciparum parasites, disruption binding to host receptors and mediate opsonisation of 

infected erythrocytes (Hill et al., 2013). Immunisation of IgG antibodies in African 

children and Thai adults revealed the importance of humoral immunity in eliciting 

natural immunity against malaria (Bouharoun-Tayoun et al., 1990; Cohen et al., 1961). 

In addition, cytophilic subclasses IgG1 and IgG3 were shown to protect human against 
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infection (Weaver et al., 2016). Several studies have characterised the role of antibodies 

against merozoite invasion. Intriguingly, the majority of the individuals in malaria-

endemic areas displayed IgG3 subclass antibodies to the MSP-2 antigen (Stanisic et al., 

2009). The level of antibodies against MSP-2 was also correlated with protection 

efficacy in Gambian population (Taylor et al., 1998).  

 Numerous studies have displayed the association between antibodies against 

Plasmodium antigens and the reduced risk of malaria episodes (Greenhouse et al., 2011; 

Hill et al., 2013; Stanisic et al., 2015). Predominantly, most of the antigens identified 

are merozoite surface proteins and antigens lie within the invasion machinery (Beeson 

et al., 2016; Woehlbier et al., 2010). These components are thought to be promising 

vaccine candidates because they are readily exposed to antibodies (Beeson et al., 2016). 

Given that polymorphic antigens are not considered promising vaccine candidates, the 

conserved regions within these antigens should be considered in subunit vaccine design 

because these parts are essential for the development of the humoral neutralizing 

antibody against the pathogen (López et al., 2017). This approach was employed in 

vaccine design using P. falciparum erythrocyte membrane protein 1 (PfEMP-1) 

(Krause et al., 2007), AMA-1 (Remarque et al., 2012), and MSP-1 (Cavanagh et al., 

1998). In malaria holoendemic areas, stable immune responses were seen to confer by 

AMA-1 in all age groups of patients (Remarque et al., 2012). Likewise, naturally 

acquired immunity was reported to induce by MSP-1 in P. falciparum and the 

correlation to protective immunity was subsequently reported (Cavanagh et al., 1998; 

Moormann et al., 2013).   

 

1.13.2 Cellular immunity  

Complete eradication of malaria parasites in the circulation is CD4+ T cell- and B cell-

dependent (Langhorne et al., 1998). CD4+ T cells confer protective immunity and also 

limit the parasite replication without B cells (Grun and Weidanz, 1983). The experiment 

conducted using CD4+ T cells from healthy individuals and exposed to P. falciparum 

antigens in vitro revealed secretion of cytokines and proliferation of T-cells (Rhee et 

al., 2001). The CD4+ T cells response consists of two functionally distinct subsets, 

interferon-γ (IFNγ) and interleukin-4 (IL4). The secretion of IL-4 by T-cells especially 

is correlated with the antibody titre (Boström et al., 2012). Populations in the malaria-
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endemic areas often show no malaria symptoms and low T-cell responses to malaria 

antigen in vitro (Hviid et al., 1996). Likewise, the similar observation was reported in 

Madagascar population where the individuals showed low T cell responses (Chougnet 

et al., 1990). The lack of T cell responses could stem from the arresting antigen-specific 

T-cell outside the peripheral circulation (Hviid et al., 1991) or from host genetic factors 

(Jepson et al., 1997).  

IFNγ plays a central role in the protective immunity (Inoue et al., 2013). It 

participates in the activation of mononuclear and polymorphonuclear leukocytes. These 

components are essential in phagocytosis and lysis of infected red blood cells. On the 

other hand, as erythrocytes lack HLA class-I molecules, CD8+ T cells might be 

confined to the pre-erythrocytic stage with its cytotoxic role (Huang et al., 2015; Tsuji, 

2010). In contrast, the MHC-unrestricted γδ T cells might act during the erythrocytic 

stage where it showed an inhibitory effect in the P. falciparum cultures (Huang et al., 

2015). 

 

1.14 Thesis aims and organisation 

This thesis has two general objectives, i) to investigate the population structure of P. 

vivax in three malaria-endemic areas of Thailand, and ii) to examine the suitability of 

PvMSP-7 as vaccine candidate from the perspective of population genetics, gene 

expression, and immunogenicity.  

The first aim of the thesis was to investigate the population structure of P. vivax 

from three malaria major endemic areas of Thailand using whole-genome approach. 

Patients were recruited from three different areas, Tak province (Northwest of 

Thailand), Ubon Ratchathani province (Northeast of Thailand), and Yala province 

(South of Thailand). Further to that, analysis was focused on the PvMSP-7 multigene 

family located at the chromosome 12 of P. vivax. This multigene family has been 

suggested to express during blood-stage infection and could affect the merozoite 

invasion of erythrocytes. For these reasons, PvMSP-7 paralogs are plausible vaccine 

candidates. The investigation of the population structure of P. vivax, antigenic variation 

of 13 PvMSP-7 paralogs, the transcriptional changes in natural infection, and novel 
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immunogenic epitopes will serve as ultimate starting points for further experimental 

work. The works present herein, will translate into the development of PvMSP-7 as a 

vaccine candidate.   

The thesis is organized into five chapters explaining the main findings. In 

Chapter 2: population genomics of Plasmodium vivax in Thailand, describes the 

population structure of P. vivax parasite populations in Thailand. Chapter 3: sequence 

diversity of multigene family Plasmodium vivax merozoite surface protein 7 (PvMSP-

7) genes in Thai clinical isolates, explains the antigenic variation of 13 PvMSP-7 

paralogs in Thailand. The genetic diversity was explored across 13 PvMSP-7 paralogs 

which useful in the vaccine development perspective. Chapter 4: polymorphism in 

merozoite surface protein-7E of Plasmodium vivax in Thailand: Natural selection 

related to protein structures, presents a comprehensive analysis of the highly 

polymorphic locus in the PvMSP-7 multigene family which showed the potential of this 

locus as a genetic marker in Thailand. Chapter 5: clinical expression profiles of a 

Plasmodium vivax vaccine candidate: merozoite surface protein 7 (PvMSP-7), 

elucidates the transcriptional changes of this multigene family in natural infection 

during the IDC with co-expression analysis. Chapter 6: identification of antigenic 

epitopes within Plasmodium vivax merozoite surface protein 7 (PvMSP-7) in natural 

infection, uses the state-of-art high-density peptide array technology to screen novel 

immunogenic antibody epitopes across 13 PvMSP-7 paralogs.   
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Chapter 2  

Population genomics of Plasmodium vivax in Thai clinical isolates 

Abstract 

The development of an effective malaria subunit vaccine has been hampered by the 

high magnitude of genetic diversity in Plasmodium. The global distribution of P. vivax 

is structured into distinct geographical regions and impact the design of a universally 

effective vaccine.  Malaria transmission dynamics vary in Thailand where all the 

endemic regions are divided by a malaria free-corridor in the metropolitan city. 

Furthermore, understanding the population structure of P. vivax in Thailand is relevant 

to the efficacy of malaria vaccine development. To characterise the population structure 

of P. vivax in Thailand, 20 clinical samples were collected from three malaria endemic 

areas in Thailand. The 20 patients naturally experienced clinical malaria episodes were 

recruited from Tak province (Northwest of Thailand), Ubon Ratchathani (Northeast of 

Thailand), and Yala (South of Thailand). The whole-genome sequencing approach was 

used to sequence all clinical isolates. At the genome level, three distinct clusters were 

observed on the principal component analysis separating clinical isolates according to 

their geographical region. Pronounced genetic differentiation also revealed in the P. 

vivax populations from the three malaria-endemic areas (FST>0.1). This key finding 

highlights the extensive population structure of P. vivax in Thailand. Therefore, this 

discovery will guide a more effective vaccine development against P. vivax.  
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2.1 Introduction 

Understanding the genetic structure of Plasmodium between locations provide a key 

insight into the genetics of the parasite which can translate into a more effective control 

and elimination strategy. The identification of genetic differences in parasite between 

geographical areas pinpoint the variants that present at different frequencies (Takala 

and Plowe, 2009). This knowledge will show the common allele and rare allele 

circulating between two populations. Having said that, should a malaria subunit vaccine 

include the rare allele it might elicit variant-specific immunity against the infection 

(Ferreira et al., 2004). This is one of the obstacles in malaria vaccine design that 

contributes to lacking a universally effective vaccine. P. vivax often shows the high 

magnitude of genetic diversity and geographical variation (Chen et al., 2017; Jennison 

et al., 2015; Neafsey et al., 2012). Therefore, a detailed characterisation of the P. vivax 

population structure between different endemic areas expands the strategy to design a 

more effective vaccine. 

The genetic diversity of P. vivax is far higher than previously thought (Jennison 

et al., 2015; Neafsey et al., 2012). However, the variation patterns are not homogenous 

under different transmission settings due to host genetics and environmental factors. 

The population tends to cluster according to continental origins. P. vivax population in 

America found to have less variation relative to population in Asia or Oceania (Imwong 

et al., 2007). Contrasting to the previous study, genetic diversity of P. vivax inferred 

from mitochondrial genomes in America was found comparable with those populations 

in other continental origins (Taylor et al., 2013). This observation could be due to the 

limited sampling areas in the previous study and complex geography pattern drives the 

variation in P. vivax population (Taylor et al., 2013). Two recent studies reported this 

pathogen is adapting to the selection pressure present in each local landscape which 

translates ongoing evolutionary interaction between the parasite and the environment 

(Hupalo et al., 2016; Pearson et al., 2016).   

Microsatellite approach has been broadly used to infer the population structure 

of P. vivax in diverse endemic areas (Ferreira et al., 2007; Kittichai et al., 2017; Koepfli 

et al., 2015; Liu et al., 2014). The population structure of P. vivax across four continents 

was investigated using 11 microsatellites (Koepfli et al., 2015). In total, 841 clinical 

isolates were collected between the year 1999 to 2008 from Central Asia, South 
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America, South-East Asia, and the South Pacific. Koepfli and colleagues reported the 

parasite diversity was greater in South-East Asia followed by South Pacific, South 

America, and Central Asia. The genetic differentiation was also pronounced in all 

parasite populations implying geographical factor influences the population structure 

(Koepfli et al., 2015). 

Likewise, a similar microsatellite strategy was used to examine the genetic 

structure of P. vivax in Amazonia (Ferreira et al., 2007). Ferreira and colleagues also 

assessed the P. vivax transmission dynamics through the cross-sectional and 

longitudinal surveys. The analysis was conducted in 74 clinical samples using 14 

markers (Ferreira et al., 2007). Interestingly, a strong linkage disequilibrium and high 

frequency of haplotypes replacement were observed in the same pool P. vivax 

population over time. This is ultimately contributing to the increase antigenic variation 

within the population. Moreover, Kittichai and colleagues employed microsatellite 

approach to uncover the substantial population structure of P. vivax in Thailand 

(Kittichai et al., 2017). Ten genetic markers were used to identify the population 

structure in two malaria endemic areas in Thailand. Based on the finding on 127 clinical 

samples, genetic differentiation was evidenced between endemic regions and no sharing 

haplotype was found (Kittichai et al., 2017). Therefore, a more robust elimination 

strategy is required to tackle the malaria transmission in Thailand.  

Two recent genomic analyses of P. vivax have revealed the global population 

structure (Hupalo et al., 2016; Pearson et al., 2016). The first study unravelled the 

global P. vivax population structure using 247 samples from Southeast Asia, Oceania, 

and a few clinical isolates from China, India, Sri Lanka, Brazil, and Madagascar 

(Pearson et al., 2016). Closer looks into the sample collection in Thailand, 88 patients 

from Western Thailand and 4 patients from Eastern Thailand were involved in the 

analysis. Whole-genome sequencing approach was used to sequence the clinical 

isolates. In total, 726,077 high-quality single-nucleotide polymorphisms (SNPs) were 

derived. Interestingly, a phylogeny analysis revealed three distinct branches clustering 

samples from Western Southeast Asia, Eastern Southeast Asia, and the Pacific Island. 

The P. vivax populations in Thailand stratified into Western and Eastern groups that 

suggest malaria-free corridors have established in the metropolitan cities. The finding 

was in line with principal component analysis and ADMIXTURE analysis (Pearson et 
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al., 2016). Similarly, Hupalo and colleagues used the similar genomic approach to study 

the population stratification of P. vivax globally (Hupalo et al., 2016). The study 

recruited 182 patients from 11 countries (Brazil, Cambodia, Colombia, India, 

Madagascar, Mexico, Myanmar, Korea, Papua New Guinea, Peru, Western Thailand, 

and Vietnam). The principal component analysis revealed distinct clusters that divide 

the isolates according to the geographical demography. The concordant result was 

obtained in phylogeny analysis and ADMIXTURE analysis (Hupalo et al., 2016). 

Therefore, the global P. vivax population structure has been influenced by the 

geographical isolation. Understanding the local patterns of malaria transmission will 

improve future malaria vaccine development strategy.  

In Thailand, P. vivax contributes significantly to the malaria incidence rate. The 

proportion of malaria incidence in P. vivax increase from 18.9% in the year 2011 to 

63.2% in 2015 (Bureau of Vector Borne Disease, 2015). Malaria transmission in 

Thailand has a unique characteristic where all the endemic areas are separated by a 

malaria-free corridor in the central of Thailand (Parker et al., 2015; Pearson et al., 

2016). The malaria endemic areas are clustered along the international borders such as 

Myanmar, Laos, Cambodia, and Malaysia (Parker et al., 2015; Thimasarn et al., 1995). 

This malaria transmission landscape is arising from the complex interactions between 

the ecological and socio-cultural factors (Thimasarn et al., 1995). That said, careful 

evaluation is desired to implement malaria eradication strategy in these areas. The 

international border between Thailand and Myanmar contributes significantly to the 

malaria prevalence due to the political conflict and inefficient public health 

infrastructure (Parker et al., 2015; Thimasarn et al., 1995). Moreover, malaria 

transmission between the Thailand-Myanmar and Thailand-Southern Malaysia has a 

similarity where both areas are dominated by militants which retard the health service 

implementation (Thimasarn et al., 1995). Population movement across the border 

further complicates the malaria transmission dynamics with transporting malaria 

parasites from one region to another region (Thimasarn et al., 1995). On the other hand, 

Thailand-Cambodia border often records two seasonal peaks for malaria transmission, 

one in the dry season and one at the beginning of the rainy season (Thimasarn et al., 

1995). The malaria transmission in this region is contributed by the internal migration 

due to economic factors (Guyant et al., 2015). Prosperous natural resources in the forest 

fringe areas drive the population to the areas where malaria transmission is prevalent. 
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Therefore, these factors contribute significantly to the malaria transmission dynamics 

in Thailand. 

Therefore, mapping of global and local P. vivax population structure is playing 

a pivotal role in developing an antimalarial malaria vaccine. Previous studies 

determined the population structure of P. vivax in Western and Eastern of Thailand, 

although the size from the Eastern province was very low (n=4). The present study 

employed whole-genome sequencing approach to derive a more detailed picture of P. 

vivax population structure from three malaria endemic areas in Thailand (Tak province, 

Northwest of Thailand; Ubon Ratchathani, Northeast of Thailand; and Yala, South of 

Thailand). Using the finding from the genomic level, it will guide the development of 

a malaria-subunit vaccine in Thailand. Eventually, it will lead to a more effective 

strategy against malaria control and elimination in Thailand.  

 

2.2 Methodology  

	
2.2.1 Ethic Statement 

Informed consent was obtained from all participants involved in the study. The subjects 

were informed regarding the purpose of the study and the potential risks involved. The 

research study was approved by the Institutional Review Board of the Faculty of 

Medicine, Chulalongkorn University (COA No. 322/2016 and IRB No. 104/59). All 

procedures performed in the study followed the international guidelines for human 

research protection as the Declaration of Helsinki, The Belmont Report, CIOMS 

Guideline and International Conference on Harmonization in Good Clinical Practice 

(ICH-GCP).  

 

2.2.2 Study Population 

This study was conducted across three rural areas along the international borders of 

Thailand. These study sites were hotspots of malaria transmission. The first study site 
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was located at Yala province, the border of Thailand and Malaysia (South of Thailand). 

Secondly, the analysis focused on Ubon Ratchathani province, the border of Thailand 

and Cambodia (Northeast of Thailand). Lastly, the third study site was Tak province, 

the border of Thailand and Myanmar (Northwest of Thailand). Yala occupies 4,521.1 

km2 with a total population of approximate 511,911 people. Ubon Ratchathani has 

approximate 1,000,000 of population occupies 15,744.850 km2. Tak has more than 

539,000 population occupies 16,406.6 km2.  

 

2.2.3 Sample Collection 

Patients infected with malaria were allowed voluntary participation in this research 

study. Informed consents were requested from all patients in compliance with the 

Institutional Review Board. Samples collection was carried out between May to August 

2016 in respective province hospitals. A trained medical officer and medical laboratory 

technician were responsible to confirm that the patients were infected with malaria 

through signs and symptoms of infection and microscopy diagnosis. Twenty patients 

(n=20) were recruited in the study, eight patients from Yala province (n=8), seven 

patients from Ubon Ratchathani province (n=7), and five patients from Tak province 

(n=5) (Table 2.1). The age of the 20 patients ranged from 16 to 50 years with the mean 

age of 31.15 years. Based on the clinical history and physical examination, all patients 

infected with only malaria parasite with no evidence of other concurrent infections. 

Approximate ten millilitres of venous blood sample was drawn from each subject and 

preserved in EDTA anticoagulant tubes. Blood samples preserved in EDTA 

anticoagulant tubes were transported on ice from the study sites to the laboratory at the 

Department of Parasitology, Faculty of Medicine, Chulalongkorn University. Upon 

arriving in the laboratory, clinical samples were processed immediately to avoid lysis 

of human leukocytes. To further characterise the population structure of P. vivax 

between the international borders of Thailand, 48 genome sequences were retrieved 

from the National Center for Biotechnology Information (NCBI) database. These data 

were used in the global study of P. vivax (Hupalo et al., 2016; Pearson et al., 2016). 

The isolates were sequenced from various continental origins, Brazil (n=3), Cambodia 

(n=10), Myanmar (n=8), Malaysia (n=6), East Thailand (n=3), and West Thailand 

(n=18) (Supplementary Table 1). 
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2.2.3.1 Inclusion Criteria 

Febrile individuals with single P. vivax infection who expressed willingness to 

participate in the study. Microscopy examination and molecular testing were used to 

detect the presence of single vivax infection. 

2.2.3.2 Exclusion Criteria 

Children less than 5-year old, patients with severe malaria symptoms, and other known 

underlying immunodeficiency diseases were excluded in the study. 

 

2.2.4 Microscopy (Species Identification and Parasitemia) 

Microscopy examination was used to screen all the clinical isolates collected. Thin and 

thick blood smears were prepared to identify the presence of malaria parasites and 

possibly the species of the parasites. The blood smears were stained with Giemsa’s stain 

which is the gold standard diagnosis in the laboratory. Parasitemia count was calculated 

from thin and thick blood smears per guidelines recommended by Centers for Disease 

and Prevention (CDC). One-hundred microscopic fields were examined under 100X 

objective for thin smears, while two-hundred leukocytes were counted for thick blood 

films. The equations for parasitemia calculation as follow:  

Thin smear  

Infected erythrocytes in percent (%) = !"#$%&	()	*+)%,-%.	%&/-0&(,/-%1
2(-34	+"#$%&	()	%&/-0&(,/-%1	,("+-%.

	× 100 

Thick smear  

Number of parasites per microliter (µL) of blood = 5666
!"#$%&	()	4%"7(,/-%1	,("+-%.

	× number 

of parasites	

*Assumed 8,000 leukocytes per µL to quantify parasite density	
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Table 2.1 20 clinical isolates collected in the study. Patients were collected from 

three malaria endemic areas in Thailand (Yala, Ubon Ratchathani, and Tak province). 

No. Identifier Location Year of 
collection Source Age 

1 YL002G16 Yala 2016 Clinical 50 
2 YL003G16 Yala 2016 Clinical 48 
3 YL004G16 Yala 2016 Clinical 24 
4 YL005G16 Yala 2016 Clinical 43 
5 YL007G16 Yala 2016 Clinical 14 
6 YL008G16 Yala 2016 Clinical 47 
7 YL009G16 Yala 2016 Clinical 35 
8 YL010G16 Yala 2016 Clinical 24 
9 UB001G16 Ubon Ratchathani 2016 Clinical 29 
10 UB002G16 Ubon Ratchathani 2016 Clinical 25 
11 UB003G16 Ubon Ratchathani 2016 Clinical 46 
12 UB004G16 Ubon Ratchathani 2016 Clinical 23 
13 UB005G16 Ubon Ratchathani 2016 Clinical 48 
14 UB006G16 Ubon Ratchathani 2016 Clinical 24 
15 UB007G16 Ubon Ratchathani 2016 Clinical 58 
16 TAK001G16 Tak 2016 Clinical 20 
17 TAK002G16 Tak 2016 Clinical 16 
18 TAK003G16 Tak 2016 Clinical 29 
19 TAK004G16 Tak 2016 Clinical 23 
20 TAK005G16 Tak 2016 Clinical 17 

Table	0.1.1	 20	cli 

nical	isolates	collected	in	the	study	
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2.2.5 Molecular identification 

Nested PCR with species-specific primers were designed to identify the species of 

malaria. These primers were designed and optimized in Molecular Biology of Malaria 

and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of 

Medicine, Chulalongkorn University (Putaporntip et al., 2009a). The nested PCR 

primers were designed based on 18S ribosomal RNA with 100% specificity towards 

human malaria species (Table 2.2). The first reaction of the nested PCR contained 20 

µL mixture from three µL DNA template, 0.13 µL genus-specific primers, 13.79 µL 

nuclease-free water, two microlitres 10X buffer, 0.6 µL magnesium chloride, 0.4 µL 

dNTP, and 0.08 µL Taq polymerase. The first amplification was set at 94ºC for one 

minute (denaturation), 40 cycles (denaturation) at 94 ºC for 40 seconds, first annealing 

at 50ºC for 30 seconds, second annealing at 72ºC for one minute, elongation at 72ºC 

for five minutes and finally hold at 20ºC. The secondary nested PCR reaction contained 

20 µL mixture with three microlitre template from the first reaction. Species-specific 

primers (Table 2.2) were used for the secondary nest with amplification conditions the 

same as the first reaction, but the number of cycles reduced to 30. Two percent agarose 

gel was prepared and ran for 30 minutes. The agarose gel was visualized using ethidium 

bromide (EtBr). In each PCR reaction, a sample confirmed infected with P. vivax was 

used as a positive control while a blank contained only nuclease-free water was used as 

a negative control. Ta	
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Table	2.0.2	 Scies-specific	primers	used	to	target	different	 
Table 2.2 Species-specific primers used to target different human malaria 

species.   

Species Primer Primer Sequence (5’ – 3’) 

Plasmodium spp. F1 ATG CTT TAT TAT GGA TTG GAT GTC 
 R1 CAG ACC GTA AGG TTA TAA TTA TGT 

   

P. falciparum PfF1 ATT ATT TAT TGT ATT ATT TTT TCT G 

 PfR1 GTA TTG AGC GGA ACA AAT C 
   

P. vivax  PvF1 AGT TAC CAC AAG ATA TTT TTG AAT TTT 

 PvR1 TTG AGC AGA ACA ATA CAG 
   

P. ovale PoF1 ATA TCA TTT TTC TCC AGT GGG 

 PoR1 ATG AGC AGA ACA ATA CAG 

   
P. malariae  PmF1 ATA TCA TTC TTT TCT TAG TGG T 

 PmR1 CTG TGC AGA ACA ATA CAG 

   
P. knowlesi PkF1 TAT TCT TCT TTT AGT GGA TTA TTT A 

 PkR1 TAC ACT GAT TAG AAC AAT AC 

 

 

2.2.6 Clonal detection 

P. vivax is genetically diverse in Thailand owing to the great magnitude of malaria 

transmission along the borders. This transmission pattern channels to the multiple-strain 

or multiple clone infections (Gupta et al., 2016; Havryliuk and Ferreira, 2009; Lin et 

al., 2013). Isolates infected with multiple strain of parasites can lead to 

misidentification of the variants. Therefore, analysing isolates with a single parasite 

strain will improve the variant accuracy. Highly polymorphic markers are powerful and 

reliable tools to genotype P. vivax isolates. Several highly polymorphic genes are ideal 

for molecular genotyping, such as PvMSP-1 Belem strain (Putaporntip et al., 2002), 

PvMSP-1 Salvador I strain, PvMSP-3a, PvMSP-3b (Putaporntip et al., 
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2014), and PvMSP-3g (Rice et al., 2013; Rungsihirunrat et al., 2011; Véron et al., 

2009) . PCR amplification using these molecular markers were performed on 20 

samples collected from each endemic area. Each primer was designed to amplify the 

respective gene in P. vivax. Mixed infection was distinguished with more than one band 

detected on the gel (Figure 2.1). The PCR reaction was carried in a total volume of 20 

µL. The reaction mixture contained three microlitres DNA template, 0.13 µL genus-

specific primers, 13.79 µL nuclease-free water, two microlitres 10X buffer, 0.6 µL 

magnesium chloride, 0.4 µL dNTP, and 0.08 µL Taq polymerase. The amplified PCR 

products were analysed on one percent agarose gel stained with ethidium bromide.  

 

 

 

 

 

 

Figure	2.0.1	 Clonal	detection	in	isolates	infected	with	P.	vivax. 

Figure 2.1 Clonal detection in isolates infected with P. vivax. PvMSP-3a was 

used as a genetic marker to screen 11 clinical isolates. Lane 1= negative control, lane 2 

– 5= single infection, lane 6 – 7= mixed strain infections, lane 8 = negative sample, lane 

9 – 11= single infection. Mixed clone infections are shown in lane 6 and 7 where three 

bands are observed.   

 

 

2.2.7 Leukocytes Removal 

The clinical samples were collected directly from the malaria patients which contained 

largely the human DNA. To minimize human DNA contamination in the downstream 

analyses, leukocytes were removed using C6288 cellulose (Sigma-Aldrich) column. 

The protocol was adapted from Sriprawat et al. (2009). Plasma from the clinical isolates 

	 1					2						3					4				5					6						7					8				9				10					11		

1500 bp 
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was removed via centrifugation at 5,000 rpm for 15 minutes. A 20 mL syringe with a 

centre outlet was tipped with two 2 cm2 pieces of Grade 105 lens cleaning paper 

(Whatman®). Fifteen millilitres of loosely packed C6288 cellulose fibre was added to 

the syringe and packed down to ten millilitres mark on the syringe. Before the blood 

was filtered through the column, five millilitres of saline water was added to wet the 

column. Infected-blood samples were added to the syringe and allowed to pass through 

via gravity. Once the blood was no longer visible on top of the syringe, applied plunger 

onto the syringe to force last few drops of blood out of the column. The filtered blood 

was then centrifuged at 5,000 rpm for ten minutes and the supernatant was removed 

(Figure 2.2).   

 

	
 

	
	
 

	
	

Figure	2.0.2	 Packed	C6288	cellulose	column	

Figure 2.2 Packed C6288 cellulose column. The parasitized-blood was filtered 

through C6288 column into a collection tube.   

 

2.2.8 DNA Extraction 

DNA extractions were performed using the DNeasy Blood Mini and Midi Kit (Qiagen, 

Hilden, Germany) with slight modifications from the manufacturer’s protocol. Plasma 

was removed from the clinical specimens and frozen at -80˚C for downstream 

applications. Two-hundred microliter of proteinase K enzyme was pipetted into the 

bottom of the 15 mL centrifuge tube. Two millilitres of blood was suspended in the 15 

mL centrifuge tube, followed with 2.4 mL of lysis buffer. The suspension was mixed 

thoroughly and incubated at 70˚C for ten minutes. This step is important to ensure the 

cells are lysed and released of parasite DNA. Two millilitres of ethanol was added and 

 C6288 Column 

 Whatmann® Grade 105 
paper 

Parasitized-blood  
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mixed vigorously to obtain the homogenous suspension. The mixture was passed 

through the Qiagen column which has a silica membrane to trap DNA and eliminate 

contaminants and proteins. The column was washed twice with washing buffer 1 and 

washing buffer 2. The column was spin dry to ensure the solutions from washing buffers 

are completely removed, to prevent possible interference with downstream analyses. 

The DNA was eluted with elution buffer provided in the kit.  

 

2.2.9 DNA quantification  

DNA concentration was quantified using three different approaches including Qubit, 

TECAN, and NanoDrop. The accuracy of DNA quantity is essential as it would 

influence the end results and library preparations of the whole-genome sequencing. A 

0.5% agarose gel was prepared to assess the quality of purified DNA. The gel was left 

overnight at 30V and visualised with SYBR Green (Applied Biosystems, Carlsbad, 

USA). The single band should be observed on top of the gel which indicates DNA 

integrity. 

 

2.2.9.1 Qubit    

Total DNA amount was measured with Qubit® 3.0 fluorometer (Invitrogen). Qubit has 

higher sensitivity in quantifying DNA as it employs fluorometric principle. Fluorescent 

dye increases the accuracy of the measurement, as it only binds to the target of interest 

and concentrations measure through the intensity of fluorescence. DNA concentration 

was measured using Qubit® dsDNA BR Assay Kit (Invitrogen) designed specifically 

to quantify double-stranded DNA. Calibration of the fluorometer was performed 

according to the manufacturer’s protocol. Two standards were prepared for the initial 

calibration, standard 1 and standard 2 (Table 2.3). Working solution was prepared by 

diluting Qubit® dsDNA BR reagent 1:200 in Qubit® dsDNA BR buffer. After the 

sample (1 µL) was added to the assay tube, it was vortexed for three seconds and 

incubated at room temperature for five minutes. Calibrations were performed according 

to the instructions displayed on the fluorometer. Sample volume and measurement units 
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were selected. Assay tube was inserted into the fluorometer and removed after the 

reading was recorded. Measurements were repeated triplicates. The Qubit® 3.0 

fluorometer generates the readings automatically according to the equation as follows: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑄𝐹	𝑣𝑎𝑙𝑢𝑒	× L66
M

  

QF = value given by the Qubit 3.0 Fluorometer 

   x = volume of sample added (µL) 

Table	2.0.3	 Calculation	for	DNA	quantifications	using	Qubit®	dsDNA	BR	Assay	Kits	and	Qubit®	RNA	Broad-
Range	Assay	Kits 

Table 2.3 Calculation for DNA quantifications using Qubit® dsDNA BR 

Assay Kits and Qubit® RNA Broad-Range Assay Kits 

 Sample volume (µL) Working solution 

(µL) 

Final volume (µL) 

Standard 1 10 190 200 

Standard 2 10 190 200 

Sample 1 199 200 

	
 

2.2.9.2 TECAN    

Quant-iT™ Picogreen (TECAN) acts as a fluorescent dye that binds exclusively to 

DNA molecules. This dye is an ultrasensitive fluorescent nucleic acid stain that 

accurately quantifies double-stranded DNA. Five standards were prepared for initial 

calibration (Table 2.4). Samples were diluted to the ratio of 1:50, DNA to TE buffer. 

This concentration is preferred for samples with a low DNA quantity. Based on the 

quantification of Qubit, DNA concentration in all samples was not high. Therefore, 

dilution factor 1:50 was ideal to increase the accuracy of quantification. To achieve the 

1:50 ratio, 4.2 µL of sample was mixed with 205.80 µL of TE buffer. The picogreen 

working solution was then added to the tubes and mixed homogeneously. The mixture 

was transferred to the respectively well on the 96-well microplate. After 5 minutes 

incubation under aluminium foil, the microplate was loaded to Infinite 200 PRO 

Microplate Reader (TECAN). Plate layout and final concentrations were set in the 
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Magellab™ Data Analysis Software. The preparation was then excited at 485 nm and 

emission measured at 520 nm. Data was output in an Excel spreadsheet and values were 

expressed in ng/µL. Sample concentration was then plotted against the DNA standard 

curve. 

Table	2.0.4	 Preparation	of	standards	for	Quant-iT	Picogreen 

Table 2.4 Preparation of standards for Quant-iT™ Picogreen. 

Standard 
TE Buffer 

(µL) 

DNA Standard 

(µL) 
Picogreen (µL) 

Concentration 

(ng/mL) 

Standard 1 0 210 210 1000 

Standard 2 189 21 210 100 

Standard 3 207.9 2.1 210 10 

Standard 4 209.79 0.21 210 1 

Standard 5 210 0 210 0 

	
	
	
2.2.9.3 NanoDrop ND-2000 

NanoDrop (Thermo Scientific, Delaware, USA) is a microvolume sample retention 

technology that allows quantitation of low nucleic acid in a preparation. The principle 

based upon the fibre optic technology and surface tension properties that hold the 

sample. In the present study, as the parasitized blood was precious, one microlitre of 

each purified DNA was pipetted onto the measurement pedestal. The spectral 

measurement was initiated through a setup on the computer. Once the measurement 

was recorded, the sample was wiped off using lens cleaning paper. The A260/A230 

ratio was recorded for each sample. This ratio indicates the purity of the nucleic acid. 

The ratio is preferably within the range 1.5 to 1.8, readings below or above the range 

could indicate possible contaminants present in the sample such as organic compounds 

carryover from the DNA purification procedure. To quantify the sample accurately, the 

upper and lower pedestals were cleaned with deionised water before each measurement 

was taken. This procedure would minimise the sample carryover and remove residues 

from the surface. 	
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2.2.10 Whole-genome sequencing  

Library preparation and sequencing was performed at the Centre for Genomic 

Research, University of Liverpool, United Kingdom. Sequencing was performed on 

HiSeq4000 platform. Modified TruSeq Nano DNA Library Prep Kit was prepared for 

genomic DNA samples. Paired-end sequencing with 350 bp insert libraries of 20 

indexed samples was run on a single lane Illumina HiSeq4000 platform. The procedure 

began with the input of 50 ng for all samples to recover the material after fragmentation. 

Then, the half volume of reactions was used throughout the protocol. The whole-

genome sequencing generated approximately 22 to 39 million paired-end reads for 20 

clinical isolates. In addition, the genome-wide mean coverage of 20 clinical isolates 

was estimated using Qualimap 2 (Okonechnikov et al., 2015). The depth of coverage 

for 20 isolates ranged from 2.11X to 147.02X (Table 2.5).  

 

2.2.11 Bioinformatics Analysis 

The raw sequences in the Fastq format were derived from the whole-genome 

sequencing. Fastq sequences contain quality score for each nucleotide and sequencing 

adapters. Before the sequences ready to use for downstream analyses, the raw Fastq 

reads were trimmed for the presence of Illumina adapter sequences using Cutadapt, 

version 1.2.1 (Martin, 2011). A specific option (-O 3) was set during the trimming 

procedure, any 3’ end of the reads that match at least three base pairs of the adapter 

sequence were removed. Furthermore, reads that scored below the quality score of 20 

and shorter than ten bases were removed using Sickle, version 1.200 (Joshi and Fass, 

2011). The overall quality of the sequencing data was evaluated with FastQC (Andrews, 

2010). The software assessed the GC content and proportion of duplicated reads. 

MultiQC (Ewels et al., 2016) was used to merge all QC reports from FastQC into a 

single summary report which provides a more systemic visualisation of QC results. 

Based on the outputs, sequences passed the FastQC evaluation including the normal 

distribution of overall GC content, quality values of all bases were high (quality score 

within 20 to 34), and low overrepresented sequences. A high overrepresented sequence 

is usually an indication of library contamination.  
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2.2.12 Read mapping 

P. vivax isolates were sequenced directly from the field and contained a high 

amount of host DNA. Therefore, the sequences were mapped to the human genome 

(GRCH37) using BWA-MEM (Li, 2013). The unmapped sequences were mapped 

against the P. vivax PvP01 reference genome using BWA-MEM (Auburn et al., 2016). 

Due to a large number of reads, BWA-MEM aligner was preferred as it has been 

optimised for the fast alignment of illumina sequence reads (Li, 2013). In addition, 

BWA-MEM was also reported to generate high quality and improved accuracy of 

sequence alignment especially in a complex Plasmodium genome (Thankaswamy et al., 

2017). The mechanism behinds BWA-MEM is the sophisticated seeding algorithm with 

maximal exact matches (MEMs). The process then extends the seeds with the affine-

gap Smith-Waterman algorithm (SW). For paired-end mapping, BWA-MEM works 

with a batch of reads independently. For each batch of the reads, mean and variance are 

calculated across the insert size distribution. These statistics will then transform into 

alignment scores and use to build final alignment (Li, 2013). BWA-MEM was used to 

align paired-end reads to the reference genomes. The alignments were stored in the 

Sequence Alignment Map (SAM) files. Default setting recommended by BWA-MEM 

was used throughout the alignment. Shorter split hits were marked using the command 

‘-M’. This command was to improve the identification of duplicates. Mapping quality 

was  assigned to each individual read. A read that aligned with no gap and no mismatch 

was assigned a high-quality score. However, its mates mapped within the complex 

regions were assigned a low-quality score because the point of origin cannot be 

determined. These quality scores indicate the probability of reported alignment is 

incorrect and useful in guiding the variant discovery. The quality score more than ten 

likely to indicate the alignment is unique. Once the reads aligned to the reference 

genome, they were sorted using SAMtools (Li et al., 2009). SAMtools sorted SAM files 

to the BAM files for downstream analyses. BAM file and SAM file are comparable, 

however, BAM file is compressed to allow fast retrieval for indexed queries. BAM file 

was sorted by coordinate and indexed to achieve fast access to a specific aligned region. 

As the aim of the downstream analysis was to discover variants, more stringent criteria 

were applied in the GATK pipeline to avoid false positive variants. 
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In the present study, P. vivax PvP01 reference genome was preferred over the 

Salvador I reference genome because the quality of the assembly was improved greatly. 

The fragmentation was reduced to 226 scaffolds from 2500 scaffolds in Salvador I 

reference genome. The PvP01 reference genome also discovered additional 792 genes 

(Auburn et al., 2016). The nuclear genome of PvP01 is 29 Mb in size, distributed across 

14 chromosomes with 6,642 genes identified. The PvP01 reference genome was 

retrieved from PlasmoDB release 31 (http://plasmodb.org/plasmo/).  

 

2.2.13 Variant calling  

Genome Analysis Toolkit, version 3.7 (GATK) was used to discover variants 

(McKenna et al., 2010). Procedures were performed according to the best practices 

pipeline in GATK. The best practices pipeline has been refined by the developers to 

discover high-quality variants using high-throughput technology. The GATK pipeline 

was extensively integrated in the genomic analysis of P. falciparum and P. vivax to 

derive a reliable dataset (Hostetler et al., 2016; Hupalo et al., 2016; Lukens et al., 2014; 

Neafsey et al., 2012; Park et al., 2012; Pearson et al., 2016). Picard, version 2.0.1 was 

used to pre-processing the BAM files before passing to GATK including 

AddorReplaceReadGroups, CleanSam, FixMateInformation, and MarkDuplicates. 

AddorReplaceReadGroups was used to assign a unique identifier to the BAM file. 

CleanSam was specified to perform soft-clipping extends beyond-end-of-reference 

alignment and MAPQ was set to 0 for unmapped reads. FixMateInformation was 

applied to verify all mate-pair information that matched between each read and its mate 

pair. MarkDuplicates function was used to identify multiple reads that match at a 

specific position in each BAM file. All duplicate reads were tagged, and a metrics file 

was generated for each BAM file contained a number of duplicates. The 

MarkDuplicates function is essential to remove PCR duplicates, failure of this 

procedure will cause over-representation of the overall sequence quality and depth of 

coverage. The resulting BAM files from Picard tool were used to perform local 

realignment in GATK. The local realignment was used to reduce the number of 

mismatching bases relative to the reference sequence. The presence of mismatching 

bases will introduce errors to the variant discovery process, as it might be mistaken as 
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a variant. HaplotypeCaller function was used to discover SNPs and indels in the dataset. 

The variant calling function was performed independently on each BAM file. The 

variants derived from each BAM file were joint using HaplotypeCaller. The variants 

were stored in the Variant Call Format (VCF) where it contained information about the 

position of the variant, quality score, and sample statistics. The joint genotyping 

procedure is effective to produce high-confidence genotype likelihood for every 

position (Pristo et al., 2011, Auwera et al., 2013)   . Various artefacts in high-throughput 

technology were discussed including the incomplete reference genome and dependent 

errors (Li, 2014). In the present study, to reduce the artefacts in the analysis, variants 

from one sample were compared against another sample using HaplotyeCaller in 

GATK. The different consensus of variants was compared against each sample and the 

best match was chosen based on the variant quality score recalibration (VQSR). 

Variants with a VQSR score above 90.0 were considered as a true variant whereas 

variants below the threshold were omitted. The concordant variants were then used in 

the downstream analysis. As malaria parasite is haploid, ploidy -1 function was 

specified to consider only the heterozygous sites.  

 

2.2.14 Variant filtering 

Variant filtration was performed to achieve a highly reliable variant dataset. The 

sequence and variant calling parameters were assessed to eliminate low-quality 

variants, such as phred-like quality (QUAL), QualByDepth (QD), FisherStrand (FS), 

RMSMappingQuality (MQ), MappingQualityRankSumTest (MQRankSum), and 

ReadPosRankSumTest (ReadPosRankSum). The cut-off values for these parameters 

were used as recommended by GATK and other published data in Plasmodium 

(Hostetler et al., 2016; Hupalo et al., 2016; Lukens et al., 2014; Neafsey et al., 2012; 

Park et al., 2012; Pearson et al., 2016). QUAL refers to the phred-scaled quality at a 

variant site, high confidence calls would usually have high QUAL. QD is calculated 

from QUAL and unfiltered depth of samples which indicates variant confidence. FS is 

useful to detect any strand bias such that only one variant at a specific site observes 

either on the forward or reverse strand. The identification of strand bias is based on the 

phred-scaled p-value using Fisher’s Exact Test. MQ indicates the mapping quality of 

all isolates. MQRankSum calculates the mapping qualities from the Mann-Whitney 
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Rank Sum Test. ReadPosRankSum is useful for heterozygous calls. The principle is 

similar to MQRankSum, but it is specific to determine the distance between alternate 

allele. In the initial analysis, the reads were mapped to the PvP01 reference genome, 

pre-processed using Picard tool, and indel realignment using GATK. This procedure 

derived a total of 761,249 consensus SNPs. After further filters applied to the dataset 

including VQSR, QUAL, QD, FS, MQ, MQRankSum, and ReadPosRankSum, the final 

haploid dataset contained 247,789 SNPs. This dataset was used for subsequent analysis. 

The following filters were used in the 20 clinical isolates:  

• Variants with VQSR < 90.0 were excluded  

• Variants with QUAL < 100.0 were excluded 

• Variants with QD < 2.0 were excluded 

• Variants with FS < 60.0 were excluded 

• Variants with MQ < 40.0 were excluded 

• Variants with MQRankSum < 12.5 were excluded 

• Variants with ReadPosRankSum < -8.0 were excluded 

 

2.2.15 Population structure  

The population structure was used to infer the genetic ancestry differences in P. vivax 

population from different endemic areas in Thailand. Population stratification of P. 

vivax population in Thailand was determined using principal component analysis 

(PCA) implemented in SNPRelate (Zheng et al., 2012) and ADMIXTURE analysis 

(Alexander et al., 2013). The programs were freely available in R environment version 

3.3.1 (R, 2016). The filtered VCF file contained 247,789 SNPs was filtered in PLINK 

version 1.9 (Purcell et al., 2007) using the linkage disequilibrium (LD) pruning 

approach before the PCA was generated. The SNPs with strong LD can distort the PCA 

and ADMIXTURE analysis due to the tightly linked SNPs (Purcell et al., 2007). The 

LD-pruning was, therefore, performed to reduce the variants number and uncover the 

true associations between samples (Sobota et al., 2015). In the LD-pruning, a sliding 

window size of 50 was set across the genome, advanced with steps of five SNPs, and 

SNPs with threshold value above 0.5 were removed. The LD at 0.5 retained 24,524 

independent SNPs used to infer the population structure of P. vivax in Thailand. The 
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PCA plot was constructed in SNPRelate and the population structure of P. vivax was 

revealed by the top two principal components (PCs). Genetic similarity or dissimilarity 

was identified through the distinct clusters. On the other hand, the population structure 

of P. vivax in Thailand was also achieved using ADMIXTURE analysis (Alexander et 

al., 2013). The LD-pruned dataset was used in the analysis. ADMIXTURE program 

works on a maximum likelihood algorithm to predict the underlying admixture 

coefficients and ancestral allele frequencies. The number of ancestral populations (K) 

was estimated using five-fold cross-validation in haploid mode. Five K values between 

two to six were run to improve the likelihood of ancestral populations. The optimal K 

value was chosen based on the lowest cross-validation error (CV). The CV estimates 

the proportion of error in each K by partitions all the observed genotypes (Scheet and 

Stephens, 2006; Wold, 1978). Therefore, the optimal K value was used to construct the 

underlying population structure in bar plots.  

 

2.2.16 Phylogeny analysis 

The phylogeny tree was constructed to further validate the population structure 

observed in PCA. The phylogeny association has been used to explain the genetic 

relationships either on the population or individual level (Collins and Didelot, 2018). 

Phylogenetic trees were constructed using two models, maximum likelihood 

(Felsenstein, 1981) and the neighbour-joining method (Saitou and Nei, 1987). The 

maximum likelihood was performed in Randomized Axelerated Maximum Likelihood, 

version 8 (RAxML) (Stamatakis, 2014) using all 247,789 filtered SNPs. Maximum-

likelihood estimates the evolutionary trees from nucleotide sequences and the 

evolutionary rate at each site is considered. RAxML works by constructing an initial 

tree, the algorithm will try to increase likelihood through improving each branch length 

and building local rearrangement. Bootstrap was set to 100-fold to increase the 

reliability. The best-fit model of nucleotide sequence was determined using 

jModelTest, version 2.0 (Posada, 2008). Usage of correct substitution is important as it 

will significantly affect the outcome of the phylogeny analysis. jModelTest calculates 

the probabilities of difference between DNA sequences along the branches of a 

phylogenetic tree. A sequence alignment contained all 20 sequences were passed into 

jModelTest, GTR substitution model with gamma rate variation was identified as the 
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best selection results. The neighbour-joining tree was constructed in MEGA 7.0 (Kumar 

et al., 2016) using 500 bootstrap pseudoreplicates. The neighbour-joining tree differs 

from maximum likelihood where it constructs the phylogenetic tree from the genetic 

distance between sequences. It requires less computational power and ancestry is not 

considered in the analysis. That said, the neighbour-joining tree is suitable to infer the 

underlying population genetic structure.  

 

2.2.17 Genetic differentiation  

Fixation index (FST) was used to estimate the genetic differentiation among P. vivax 

population in Thailand. The FST was calculated in SNPRelate (Zheng et al., 2012) using 

LD-pruned dataset. FST is influenced by the genetic polymorphism or allele frequencies, 

where 1 reflects the level of genetic differentiation is high and 0 indicates no population 

subdivision. The principle of the FST was based on the Weir & Cockerham (Weir and 

Cockerham, 1984). Weir and Cockerham (1984) estimate the FST between the 

population through the analysis of variance (ANOVA) methodology. This approach is 

unbiased especially in the study where the sample size is small (sample size < 6) and 

able to compensate for overestimating in the low magnitude of population 

differentiation (Willing et al., 2012).  
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2.3 Results 

	
2.3.1 Summary of sequencing data  

Whole genome sequencing generated between 22 and 39 million paired-end reads for 

20 samples (Table 2.5). Genomic studies of P. vivax have always been complicated by 

the presence of human DNA in the parasite-infected blood (Auburn et al., 2013). 

Removal of human leukocytes from the clinical samples was performed using a 

modified cellulose column (Venkatesan et al., 2012). However, the proportion of reads 

that mapped to the P. vivax PvP01 reference genome remained low for most of the 

isolates. The mean coverage between 2.11 to 147.02. The genome sequences were 

mapped to the human reference genome (GRCh37) before the unmapped reads were 

mapped to the P. vivax PvP01 reference genome. Most of the samples have a significant 

proportion of reads mapped to the human genome which suggests the clinical isolates 

were heavily contaminated with human DNA (average 74 million reads).  Despite poor 

coverage in some of the isolates, the mapped reads would still able to provide insights 

about parasite population from these three malaria-endemic areas. Variant calling was 

callable at some sites even the samples had low coverage. Genotyping was suggested 

to be able to perform reliably at certain sites with known segregating variants (Winter 

et al., 2015). Thus, all samples were included in the downstream analyses. 
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Table	2.0.5	 Summary	of	sequencing	data	for	20	samples 
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2.3.2 Principal component analysis (PCA)  

The main objective of the PCA was to analyse the geographical division of the P. vivax 

population in Thailand. The PCA plot was constructed using 24,524 LD-pruned SNPs 

(Figure 2.3). In total, 20 clinical isolates were used in the analysis, eight patients from 

Yala province, seven patients from Ubon Ratchathani province, and five patients from 

Tak province. Three distinct clusters were observed separating the 20 clinical isolates 

according to their geographical origin (Yala, Ubon Ratchathani, and Tak). A cluster 

contained clinical isolates from Ubon Ratchathani was located close proximity to Tak 

consistent with their geographical location (639 kilometres between two endemic 

areas). The present study analysed the population structure of P. vivax from Yala 

province (South of Thailand) for the first time. The first principal component and 

second principal component (PC) defined the greatest total variation of 16.5% and 

7.8%, respectively. From Figure 2.3, these two PCs displayed population segregation 

of P. vivax according to their geographical location. One outlier from Yala province 

was identified on the top right of the PCA plot.  
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Figure	2.0.3	 Principle	component	analysis	of	the	20	clinical	isolates	in	Thailand	

 

 

 

 

Figure 2.3 Principal component analysis of the 20 clinical isolates in Thailand.  

The analysis was based on the 24,524 LD-pruned SNPs using in PLINK version 1.9 

(Purcell et al., 2007). The PCA plot shows the geographical segregation of 20 clinical 

isolates according to their origins. Three distinct clusters were observed separating 

clinical isolates form Yala (YL), Ubon Ratchathani (UB), and Tak. The plot was 

generated with SNPRelate implemented in R (Zheng et al., 2012). Each colour and 

shape of symbol denotes the respective endemic areas, black colour and square shape: 

Tak province, red colour and circle shape: Ubon Ratchathani province, and green colour 

and triangular shape: Yala province. Each clinical isolate is coloured according to the 

respective malaria-endemic area.  
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2.3.3 ADMIXTURE analysis 

The ADMIXTURE analysis was conducted to assess P. vivax population structuring in 

Thailand. The most likely number of ancestral population (K) was estimated using a 

cross-validation method (CV). In the analysis, five K values were tested (K = 2 to 6). 

The optimal number of P. vivax population was achieved at the lowest cross-validation 

error (Figure 2.4). Based on the cross-validation error, K = 3 was identified as the least 

error separating the P. vivax in Thailand into three ancestral populations (Figure 2.5). 

At K = 3, the P. vivax population in Thailand separated into three subpopulations 

according to the geographical location: Yala province (South of Thailand), Ubon 

Ratchathani province (Northeast of Thailand), and Tak (Northwest of Thailand). Closer 

looks into the ADMIXTURE analysis in Figure 2.5, P. vivax in Yala province emerged 

as a distinct group from K = 2 to 6. However, one clinical sample from Yala province 

was seen to be admixed with Ubon Ratchathani and Tak province. This sample also 

appeared as an outlier in the PCA plot. On the other hand, P. vivax populations from 

Ubon Ratchathani and Tak province appeared to be more admixed suggesting the gene 

flow between two populations. This admixture pattern is consistent from K = 2 to 6. 

The geographical differentiation of P. vivax from ADMIXTURE analysis was in line 

with the PCA plot which further validates the finding. 
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Figure	2.0.4	 Cross-validation	error	(CV)	to	estimate	the	number	of	P.	vivax	population 

Figure 2.4 Cross-validation error (CV) to estimate the number of P. vivax 

population. The ADMIXTURE runs from K = 2 to 6 using the 247,789 SNPs from 20 

clinical isolates. K = 3 revealed the lowest error and used to infer ancestral population 

of P. vivax. 
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Figure	2.0.5	 ADMIXTURE	plots	of	P.	vivax	in	three	malaria-endemic	areas	in	Thailand 

 

Figure 2.5 ADMIXTURE plots of P. vivax in three malaria endemic areas in 

Thailand. Five K values were plotted from K =2 to 6. K = 3 was used to infer the 

ancestral population as it achieved lowest CV error. A clear cluster is observed among 

the population from Yala province except an individual appeared to be admixed with 

population from the other two provinces. An admixed profile is observed between the 

populations from Ubon Ratchathani and Tak province implying the gene flow. In each 

plot, each population is represented by a different colour and each individual is 

represented by a vertical bar. The dotted white lines separate the individuals according 

to the geographical location. In total, 20 clinical isolates were included in the 

ADMIXTURE analysis.  
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2.3.4 Phylogeny analysis 

Two phylogeny models were constructed to validate the population structure of P. vivax 

in Thailand (Figure 2.6). A maximum likelihood tree was generated using RAxML 

version 8 (Stamatakis, 2014) (Figure 2.6a). The GTR substitution model with gamma 

rate variation was considered the best-fit model using jModelTest version 2.0 (Posada, 

2008). In addition, the neighbour-joining tree was constructed in MEGA 7.0 (Kumar et 

al., 2016) (Figure 2.6b). In total, 68 clinical isolates were used in the analysis where 20 

genome sequences derived from the present study and 48 genome sequences retrieved 

from other studies (Hupalo et al., 2016; Pearson et al., 2016). Five isolates from Yala 

province were clustered together tightly in both maximum likelihood and neighbour-

joining model. However, one isolate from Yala province (YL003G16) did not seem to 

reliably assign to a specific group, although a cluster was formed with an isolate from 

Tak province in maximum likelihood model. This observation is consistent with the 

PCA plot and the ADMIXTURE analysis where it appeared as an outlier. Furthermore, 

isolates from Yala province were too disparate from the isolates collected from 

Malaysia.  

 Furthermore, based on the maximum likelihood tree in Figure 2.6a, six isolates 

from Ubon Ratchathani province formed a high confidence branch (bootstrap 

support>80%). It also formed a cluster with the clinical isolates previously collected 

along the border (Cambodia). Two isolates from Tak province were also clustered with 

isolates from Cambodia and Ubon Ratchathani. One isolate from Ubon Ratchathani 

province failed to cluster with other isolates (UB002G16). One component on the 

maximum likelihood tree was seen to encompass clinical isolates from West Thailand, 

East Thailand, and Cambodia. Clinical isolates from Tak province did not form a 

distinct geographical cluster. Two isolates (TAK005G16 and TAK002G16) were 

clustered with Cambodia and Ubon Ratchathani whereas another two isolates 

(TAK001G16 and TAK004G16) were clustered with the sample previously collected 

in the same location (West Thailand). TAK003G16 located on the same branch as the 

isolate from Yala (YL003G16). Samples from Malaysia, Myanmar, and West Thailand 

were identified in several distinct branches. Meanwhile, in the neighbour-joining tree 

(Figure 2.6b) the clinical samples were clearly assigned to the respective branches 

according to geographical location. Clinical isolates from Ubon Ratchathani province, 
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East Thailand, and Cambodia were located on the distinctive cluster. Moreover, isolates 

from Tak province, West Thailand, and Myanmar can be observed on two clusters. Six 

isolates from Malaysia and three isolates from were assigned to a specific branch.  

	
2.3.5 Genetic differentiation 

Population differentiation between three endemic areas was estimated using the fixation 

index (FST). The FST was estimated by averaging in sliding windows, with a window 

size of 100 SNPs. The index ranges from 0 to 1 suggesting low genetic differentiation 

throughout the genome to complete genetic isolation between populations. The FST 

estimated across 24,524 LD-pruned SNPs revealed a low genetic differentiation 

between Tak and Ubon Ratchathani province (FST = 0.122, p-value > 0.05) implying 

gene flow between two endemic areas (Table 2.6). The FST values were relatively high 

between populations from Yala and Ubon Ratchathani FST = 0.297, p-value < 0.05), 

and between Yala and Tak (FST = 0.346, p-value < 0.05). These high FST values 

suggesting limited gene flow between these endemic areas. This finding is consistent 

with previous three analyses, the population of P. vivax is highly differentiated from 

the populations in the Northeast and Northwest province. In the PCA plot, admixture 

analysis, and phylogeny analysis, isolates from Yala province appeared to form a 

distinct cluster. The genetic divergence of Yala population is also consistent with the 

geographical location where it is more than 1000 km2 away from Tak and Ubon 

Ratchathani province. The overall FST value between Tak and Ubon Ratchathani 

province was remarkably low (FST = 0.122, p-value > 0.05) suggesting modest 

geographical differentiation. The weak overall population structure was also revealed 

in the PCA plot, although two distinct clusters were observed, they were located next 

to each other. The admixture analysis and maximum likelihood tree also displayed an 

admixed relationship between two populations. Tak and Ubon Ratchathani province 

was located closer to each other compared to Yala province with approximately 639 

km2. 
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Figure	2.0.6	 Phylogeny	trees	of	P.	vivax	in	Thailand	and	other	neighbouring	countries		
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Figure 2.6 Phylogeny trees of P. vivax in Thailand and other neighbouring 

countries. In total, 247,789 filtered SNPs were used to construct phylogenetic trees 

using two models, a) maximum likelihood model with 100 bootstraps and b) neighbour-

joining tree with 500 bootstraps. The phylogeny trees show a distinct branch separating 

the P. vivax population in Yala from other two provinces (Ubon Ratchathani and Tak). 

Other previously studied isolates from the region and neighbouring countries were also 

added to the analysis. The branches clustering the endemic area and neighbouring 

country were less pronounced in the maximum-likelihood model. In the neighbour-

joining tree, isolates are appeared to cluster with the isolates previously collected in the 

similar location and the bordering country such as Tak province with West Thai and 

Myanmar and Ubon Ratchathani province with East Thai and Cambodia. The 

maximum likelihood model was constructed using RAxML version 8 (Stamatakis, 

2014) and the GTR substitution model with gamma rate variation was the best-fit model 

derived from the jModelTest version 2.0 (Posada, 2008). The neighbour-joining tree 

was constructed in MEGA 7.0 (Kumar et al., 2016). Samples from each endemic area 

were coloured differently. 68 samples were included in the phylogeny analysis, 48 

genome sequences were retrieved from the global study of P. vivax together with the 

20 genome sequences derived in the present study. Branches with a bootstrap support 

of above 80% are highlighted in red.   

Table	2.0.6	 Genetic	differentiation	of	P.	vivax	population	in	Thailand 

Table 2.6 Genetic differentiation of P. vivax population in Thailand. The 

fixation index (FST) was estimated in SNPRelate (Zheng et al., 2012) using 24,524 LD-

pruned SNPs. Population differentiation is considered statistically significant when 

p<0.05.  

Endemic area Yala Ubon Ratchathani Tak 

Yala -   

Ubon Ratchathani 0.297* -  

Tak 0.346* 0.122 - 
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2.4 Discussion 

The population structure of P. vivax in Thailand was revealed using the whole-genome 

sequencing approach. A similar approach has been used to unravel the population 

structure of P. vivax globally (Hupalo et al., 2016; Pearson et al., 2016). In the present 

study, 20 clinical samples from diverse malaria endemic areas in Thailand have allowed 

me to identify the geographical divisions of vivax malaria in Thailand demographics. 

Patients infected with P. vivax were recruited from Yala province (South of Thailand), 

Ubon Ratchathani province (Northeast of Thailand), and Tak province (Northwest of 

Thailand). Using the SNP variants, the principal component analysis highlights a clear 

differentiation of P. vivax populations in Thailand according to their geographical 

location. Likewise, the ADMIXTURE analysis detected the population differentiation 

of P. vivax according to their geographical origin, although a certain degree of 

admixture population was observed in Ubon Ratchathani and Tak province. The distinct 

population differentiation of P. vivax will have an implication in the vaccine design 

strategy, highlighting the needs for careful consideration to develop an effective malaria 

vaccine. 

The proportion of reads aligned to P. vivax PvP01 reference genome were 

inconsistent between 20 isolates, the percentage of mapped reads ranged from 2.65% 

to 81.34% (Table 2.5). This was stem from the high contamination of host DNA. P. 

vivax isolates always contain a high amount of host DNA due to its biology that infects 

only reticulocytes (Iyer et al., 2007). Although the venous blood samples were filtered 

through C6288 cellulose columns to deplete host leukocytes (Venkatesan et al., 2012), 

the approach has not been very effective in the study. Most of the reads mapped at least 

80% to the human genome (GRCh37) (Table 2.5). However, two samples showed lower 

contamination of host DNA (YL007G17 and UB004G16). The coverage of the genome 

between each isolate was remarkable difference ranged from 2.11X to 147.02X (Table 

2.5). To overcome this limitation, joint-variant calling implemented in GATK was used 

to identify the variants across samples (McKenna et al., 2010). This approach has been 

described previously in the human genome with low sequence coverage (Jun et al., 

2015; Li et al., 2010). The variant calling performed simultaneously across the samples 

showed to generate equally reliable dataset when compare with published variants (Jun 
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et al., 2015; Li et al., 2010). This approach could increase the power to detect a 

concordant set of variants and reduce false-positive variant identification. 

Geographical divisions of P. vivax populations in Thailand were identified by 

principal component analysis (Figure 2.3). Three distinct clusters distinguished the 

isolates from Southern Thailand (Yala province), Northeastern Thailand (Ubon 

Ratchathani province), and Northwestern Thailand (Tak province). This pattern is 

consistent with the geographical proximity of the endemic area and all of them are 

separated by a malaria-free corridor in the metropolitan cities (Suankratay et al., 2001). 

Samples from Yala province were clustered distantly from other two populations and 

an outlier (YL003G16) was detected. This outlier could be due to the limited sample 

size or migration into Yala province with asymptomatic malaria. Samples from Ubon 

Ratchathani province and Tak province were loosely clustered together implying the 

presence of gene flow. Yala province is located further away from Ubon Ratchathani 

and Tak province, approximate 1681 km2 and 1484 km2, respectively. Ubon 

Ratchathani and Tak province are located closer to each other (approximate 639 km2). 

The geographical distance is translated consistently with PCA plot produced.  

The present study has a low sample size (n=20), to further describe the 

population structure of P. vivax around the bordering countries, 48 samples from two 

global studies were included in the PCA plot (Figure 2.7) (Hupalo et al., 2016; Pearson 

et al., 2016). As expected, most of the clinical isolates clustered according to the 

geographical region. Consistently, the clustering pattern is consistent with phylogeny 

trees. Isolates along the international borders were assigned to a specific group in PCA 

plot and phylogeny trees. Brazil isolates formed a distinct cluster in the PCA plot and 

phylogeny trees in line with the geographical location. On the other hand, isolates from 

Ubon Ratchathani province were clustered with samples from Eastern Thailand 

(EastThai) and Cambodia suggesting population movement along the border. Cross-

border movement is not uncommon of between the Thai-Myanmar and Thai-Cambodia 

due to economics factor and political instability (Bhumiratana et al., 2013; Guyant et 

al., 2015). Therefore, the cross-border movement is a driver that homogenise the 

genetic structure of P. vivax along the border. Likewise, isolates from Tak province 

were clustered with samples from Western Thailand (WTH). However, isolates from 

Myanmar did not appear to cluster tightly with samples from Western Thailand and Tak 
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province. Myanmar isolates were collected from the Kachin State (Northmost state of 

Myanmar) which is distantly located from the Thai-Myanmar border (Hupalo et al., 

2016). Isolates from Yala province did not form a cluster with isolates from Malaysia. 

This pattern is stem from the sampling location of Malaysia isolates where they were 

collected from Peninsular Malaysia (approximate 4247 km2 from Yala province) 

(Pearson et al., 2016). As a whole, the pattern of population differentiation was in 

agreement with the global study, a major axis of differentiation was formed between 

western Southeast Asia, eastern Southeast Asia, and the Pacific Island (Hupalo et al., 

2016; Pearson et al., 2016). 

Admixture analysis identified lowest K value at K = 3 indicating the P. vivax 

populations from three malaria-endemic areas. Isolates from Yala province exhibits a 

high degree of homogeneity separating from the other two populations (Figure 2.5). 

The outlier identified in the PCA plot was admixed with population from Ubon 

Ratchathani province suggesting the patient could have migrated from the Northeast 

region. On the other hand, strong genetic differentiation was observed between Yala 

and Tak province (FST=0.346, p-value<0.05), and between Yala and Ubon Ratchathani 

province (FST=0.297, p-value<0.05). The phylogeny using two models (Figure 2.6) 

displayed a distinct branch with five Yala isolates. From the four analysis, P. vivax 

population from Yala province (Southern Thailand) was clearly distinguished from the 

populations in Ubon Ratchathani and Tak province. This pattern of differentiation was 

consistent with previously reported genes including TRAP and PvMSP-3 (Kittichai et 

al., 2017; Kosuwin et al., 2014). This may reflect the limited gene flow in the province. 

The malaria transmission in Yala province is mainly confined to the rubber plantation 

areas. Moreover, political unrest in the region since the year 2004 has hindered the 

migration to the area. Therefore, this factor has reduced the gene flow of the malaria 

parasite in Yala province.  
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Figure	2.0.7	 Principal	component	analysis	of	the	68	clinical	isolates	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
 

 

 

Figure 2.7 Principal component analysis of the 68 clinical isolates.  The analysis 

was based on the 40,845 LD-pruned SNPs using in PLINK version 1.9 (Purcell et al., 

2007). The PCA plot shows the geographical segregation of 68 clinical isolates 

according to their origins. Each colour and shape of symbol denotes the respective 

endemic areas.  

 

The admixed analysis between Ubon Ratchathani and Tak province revealed a 

degree of gene flow between two regions (Figure 2.5). This observation is in agreement 

with the PCA plot generated using clinical samples (Figure 2.3 and Figure 2.7). In 

addition, the low fixation index between two endemic areas supports the gene flow or 

genetic admixture. Population movement between Ubon Ratchathani and Tak province 

has been reported previously (Kosuwin et al., 2014). Over the past few years, 

urbanisation in Ubon Ratchathani province has created employment opportunities 

which attract indigenous population from Tak province. Furthermore, political turmoil 

along the Thai-Myanmar border has displaced the residents from the province (Guyant 

et al., 2015). Some of the indigenous population could harbour asymptomatic malaria 

and therefore, established gene flow between two areas   

Malaysia 

Yala 
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Given the population structure of P. vivax in Thailand, it will have a significant 

implication in vaccine design. Currently, a universally effective vaccine is yet to be 

achieved. The knowledge of the P. vivax population structure will guide the vaccine 

development to cover a higher diversity of haplotypes, relevant to the malaria vaccine 

efficacy either locally or globally (Barry and Arnott, 2014). The distribution of vaccine 

haplotypes is associated with the diversity of potential vaccine candidates. Genetic of 

malaria parasite is influenced by the local adaptation which translates into genetic 

isolation (Patz and Olson, 2006). In addition, malaria elicits allele-specific immunity 

which limits the protective effect in a large proportion of the population (Matuschewski 

and Mueller, 2007; Thera et al., 2006). A cocktail vaccine contains multiple common 

haplotypes is likely to provide a higher protection against malaria in a large proportion 

of the world population. Therefore, investigating the population structure of P. vivax 

provides the basis for malaria vaccine development and predict the efficacy of a 

vaccine.  

	
2.5 Conclusion 

In summary, the current study presents the population structure of P. vivax in Thailand 

in parallel with the global studies. Three populations of P. vivax are identified in 

Thailand separating by their geographical location (Yala, South; Tak, Northeast; and 

Ubon Ratchathani, Northwest). The population structure is critical to assess the 

effectiveness of population in response to a malaria vaccine. Detailed consideration is 

required to deploy the vaccine development pipeline in Thailand as to achieve a 

universally effective vaccine. Now, this finding can be extended to the study of PvMSP-

7 as a vaccine candidate which will be revealed in Chapter 3.   

 

 



	 78 

Chapter 3  

Sequence diversity of Plasmodium vivax merozoite surface protein 7 

(PvMSP-7) genes in Thai clinical isolates 

Abstract 

PvMSP-7 is a multigene family that expressed on the Plasmodium merozoite surface. 

Previous studies revealed the MSP-7 has evolved under a birth-and-death model and 

gene conversion was pronounced in some paralogous genes suggesting functional 

redundancy. Based on this finding, only certain PvMSP-7 paralogs should be 

considered in the vaccine development. Using the whole-genome sequences derived 

from the 20 clinical isolates in Chapter 2, the sequence diversity of the 13 PvMSP-7 

paralogs in Thailand was uncovered. Furthermore, the structural variation in PvMSP-7 

was examined. The results revealed not all PvMSP-7 paralogs showed the same extent 

of sequence variation owing to the functional differences. Some paralogous genes are 

conserved (PvMSP-7A, -7D, -7F, -7J, -7K, -7L, and -7M) while some are rather 

polymorphic (PvMSP-7B, -7C, -7E, -7G, -7H, and -7I). Structural variation was 

observed in all PvMSP-7 paralogs where the central region showed extensive sequence 

variation. Most sequence conservation was seen in the N- and C-terminal. In addition, 

evidence of intragenic recombination was more prevalence in the central region of 

PvMSP-7. The findings propose that the conserved PvMSP-7 genes and domains be 

used in the selection of malaria subunit vaccine development. Therefore, the PvMSP-

7A, -7D, -7F, -7J, -7K, -7L, and -7M should be prioritised in the subunit vaccine design 

against malaria. 
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3.1 Introduction 

Merozoite surface proteins have received great attention as vaccine candidates due to 

their role in erythrocyte invasion (Richards and Beeson, 2009). More recently, it has 

displayed inhibition effects on the blood-stage replication (Boyle et al., 2013; 

Chandramohanadas et al., 2014; Wilson et al., 2015). The merozoite surface proteins 

are anchored to the membrane through glycosylphosphatidylinositol (GPI) membrane 

anchor and integral membrane anchor. The merozoite surface proteins (MSPs) localise 

to the merozoite surface prior to egress from the schizont. Once the MSPs ruptured 

from the schizont, the initial invasion is mediated by the GPI. Moreover, symptomatic 

malaria is caused by the blood-stage parasitaemia once merozoites are free from the 

schizont (Cowman et al., 2012). Importantly, substantial malaria immunity targets the 

blood-stage antigens (Richards and Beeson, 2009). For this reason, MSPs are attractive 

malaria vaccine candidates. One hurdle in the development of the blood-stage vaccine 

is the antigenic diversity. Most of the important antigens displayed sequence variation 

as a mechanism to evade the host’s immune system (Escalante et al., 1998). However, 

the extent of polymorphism is varied in the antigen, some domains are conserved while 

some are rather diverse (Franks et al., 2003). The conserved domains are likely to be a 

suitable malaria subunit vaccine. As such, understanding the sequence polymorphism 

is prime to develop MSPs in vaccine development. Merozoite surface protein 1 (MSP-

1) and merozoite surface protein 3 (MSP-3) are two blood-stage vaccine candidates 

currently undergoing human vaccine trials (Bang et al., 2011; Chitnis et al., 2015).  

The structural variation occurs in almost all the Plasmodium antigens. RTS,S is 

the most promising malaria vaccine candidate composed of the circumsporozoite 

protein (CSP) (Cohen et al., 2010). The construction of RTS,S vaccine consists of 

polymorphic domains and conserved domains of CSP. The polymorphic regions are 

located in central and C-terminal of CSP while conserved domain located in N-terminal 

(Hughes, 1991; Jongwutiwes et al., 1994; Putaporntip et al., 2009c). Evidence of 

positive selection is found mainly in the C-terminal which potentially influencing the 

efficacy of the RTS,S vaccine. This polymorphism has shown to interrupt the T-cell 

reactivity to the specific epitope and influence the HLA binding (Takala and Plowe, 

2009). This evidence demonstrated the antigenic variation will affect the outcome of 
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the vaccine design. Therefore, characterising the extent of sequence polymorphism of 

malaria antigens will resolve vaccine escape variants and improve vaccine efficacy.   

Five multigene families in the whole-genome studies were reported to display 

high genetic diversity including MSP-3, variant interspersed repeat (VIR), MSP-7, 

serine repeat antigen (SERA), and reticulocyte-binding proteins (RBP) (Carlton et al., 

2004; Pearson et al., 2016; Shen et al., 2017). These families have a similarity where 

they are associated with host cell invasion and immune evasion. Intriguingly, MSP-7 

was found under positive selection from the China-Myanmar border and the global P. 

vivax study involved 200 clinical isolates collected across the Asia-Pacific region 

(Pearson et al., 2016; Shen et al., 2017). The positive selection acting on the MSP-7 

family is an indication that they are suitable vaccine candidates due to their functional 

importance. The functional antigens always under strong selection to evade the host 

immune system recognition (Chaurio et al., 2016). The extensive genetic variation 

generates a pool of point mutations for selective pressure to act upon to avoid 

recognition by the host immunity (Goodswen et al., 2018).  

The PCR-based approach has been used to study several PvMSP-7 paralogs in 

Colombian isolates (Garzón-Ospina et al., 2014; Garzón-Ospina et al., 2012; Garzón-

Ospina et al., 2011). Heterogeneous sequence diversity was reported in the PvMSP-7 

family, some paralogs demonstrated high level of sequence polymorphism (PvMSP-

7C, -7E, -7H, and -7I) while some paralogs were rather conserved (PvMSP-7A, -7F, -

7K, and -7L) (Garzón-Ospina et al., 2014; Garzón-Ospina et al., 2012; Garzón-Ospina 

et al., 2011). The genetic diversity ranged from 0.0004 to 0.0039 in Colombian isolates. 

Likewise, a similar level of genetic diversity also reported in China-Myanmar border 

ranges between 0.0004 to 0.033 (Shen et al., 2017). Closer looks into the sequence 

polymorphism along the protein, most of the polymorphic regions were concentrated 

in the central domain while N- and C-terminal were conserved (Garzón-Ospina et al., 

2014). The conserved regions are attractive to be incorporated in the malaria subunit 

vaccine design that likely to confer universal immunity.  In view of the differences in 

genetic diversity between PvMSP-7 paralog, in-depth evaluation of sequence 

polymorphism is required to pinpoint the most promising paralog and the region into 

malaria vaccine development.  
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Using the phylogeny analysis, MSP-7 displays an uneven copy number across 

different Plasmodium lineages (Castillo et al., 2017; Garzón-Ospina et al., 2010). This 

difference has been proposed likely due to adaptations to human host (Castillo et al., 

2017). The evolution of MSP-7 also seen to consistent with a birth-and-death-model 

(Garzón-Ospina et al., 2010). That said, duplication, pseudogenization, and gene loss 

events are common in MSP-7 evolutionary history. Moreover, MSP-7 paralogs in P. 

vivax have diverged from their orthologs in non-human primates’ stem from the 

episodic positive selection pressure (Castillo et al., 2017). Therefore, PvMSP-7 family 

might have undergone selection in parallel with the P. vivax lineage divergence from 

the Asian non-human primates (Castillo et al., 2017; Garzón-Ospina et al., 2010). These 

lines of evidence suggesting that the PvMSP-7 is functionally important.  

Several MSP-7 paralogs in P. falciparum have shown to prime the erythrocyte 

invasion (Kauth et al., 2006). They formed a multiprotein complex with MSP-1 prior 

to host cell invasion (Lin et al., 2016). In addition, several pieces of evidence suggest 

that the MSP-7 could be playing redundant function (Kadekoppala and Holder, 2010). 

Based on the phylogeny analysis performed by Castillo and colleagues using Bayesian 

and maximum-likelihood approaches, MSP-7 paralogs were divided into three major 

groups from A to C (Castillo et al., 2017). Group A consists of PvMSP-7A and PvMSP-

7K while Group B comprises most of the PvMSP-7 paralogs (Castillo et al., 2017). 

Interestingly, the PvMSP-7 paralogs in Group B displayed high sequence similarity 

suggesting gene duplication or gene conversion (Castillo et al., 2017). On the other 

hand, Group C contains PvMSP-7L and PvMSP-7F (Castillo et al., 2017).   

Consistently, the phylogenetic relationships are in line with the finding reported earlier 

by Garzón-Ospina and colleagues in 2010 (Garzón-Ospina et al., 2010). The complex 

evolutionary history in MSP-7 family indicates that careful evaluation is sought during 

vaccine development due to functional redundancy from MSP-7 proteins.  

The efficacy of the vaccine is driven by the antigenic diversity; therefore, it is 

of utmost importance to characterise the level of antigenic variation of PvMSP-7 in 

different endemic areas and countries. To date, no study has addressed the antigenic 

diversity of PvMSP-7 in Thailand. In this chapter, sequence diversity of PvMSP-7 was 

revealed in three malaria major endemic areas in Thailand and pinpoint the specific 

paralogs to be included in the malaria subunit vaccine development.  
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3.2 Methodology 

Experiment design, molecular diagnosis of the clinical samples, and bioinformatics 

processing were described in Chapter 2. 

 

3.2.1 Multiple sequence alignment 

The 13 PvMSP-7 sequences were retrieved from the 20 clinical isolates sequenced 

using the whole-genome approach described in Chapter 2. FASTA sequences were 

generated from 20 P. vivax infected individuals by using GATK 

FastaAlternateReferenceMaker (DePristo et al., 2011). This command generates an 

alternative reference sequence replacing the reference bases at the variable sites with 

the bases derived from the variant calling. All the variant sites were assumed to be true 

variants as the dataset was filtered using stringent parameters. The FASTA files 

representing one PvMSP-7 paralog in each sample. DNA sequences were aligned using 

CLUSTAL W version 2.0 (Thompson et al., 1994) against the PvP01 P. vivax reference 

genome (Auburn et al., 2016). The accession number of the PvMSP-7 in PlasmoDB 

database is listed in Table 1.1 of Chapter 1. In the sequence alignment, all sites that 

postulated a gap were removed. 

 

3.2.2 Genetic diversity  

Population genetic metrics including genetic diversity and haplotype diversity were 

calculated using DnaSP v5 (Librado and Rozas, 2009). The genetic diversity was 

computed based on the principle illustrated in equations 10.5 or 10.6 (Nei, 1987). 

Nucleotide diversity (π) calculates the average number of nucleotide substitutions per 

site in each pairwise sequences. Sampling variance was calculated based on equation 

10.7 and the square root of the indices to obtain standard deviation. Haplotype diversity 

was computed from aligned nucleotide sequences according to equations 8.4 and 8.12 

(Nei, 1987). However, 2n was replaced with n with the assumption that the two 

populations experienced a similar evolutionary sampling procedure. Following 
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common practice, the standard error was calculated from the square root of the variance. 

Insertions and deletions in the sequence alignment were omitted from all estimates.  

  

3.2.3 Tandem repeat detection 

Tandem Repeats in each PvMSP-7 sequence was scanned iteratively using two different 

algorithms, mreps (Kolpakov et al., 2003) and Tandem Repeat Finder (Benson, 1999). 

Both applications are available through public server interface (http://mreps.univ-

mlv.fr and https://tandem.bu.edu/trf/trf.html). mreps is a sophisticated algorithm to 

identify repeat structures in the sequence alignments. The software finds the repeat 

using a permutation of combinatorial and heuristic approach. Repeat fragments are 

verified with mathematical paradigms and biologically relevant representations 

(Kolpakov et al., 2003). Tandem Repeat Finder screened through the nucleotide 

alignments to find perfect and imperfect tandem repeats. The default setting was used 

in the procedure, tandem repeats were identified with the proportion of identity and 

pattern of repetition.   

 

 3.2.4 Natural selection 

Selective pressures acting on individual sites of codon alignments were assessed using 

the Datamonkey web server (Pond and Frost, 2005). Five complementary methods were 

used to infer the selective pressures including single-likelihood ancestor counting 

(SLAC), fixed effects likelihood (FEL), internal branch FEL (iFEL), random effects 

likelihood (REL), and fast unconstrained Bayesian approximation (FUBAR). Statistical 

significance level (p-value) was based on the recommendation supplied by the 

programme (Pond and Frost, 2005). To minimise the false positive detection, 

significant codons were selected based on the consensus from at least two methods with 

p-value <0.1 for SLAC, FEL, and IFEL, FUBAR Posterior Probability >0.9, and/or 

REL Bayes Factor >50. SLAC has a more conservative approach in detecting selective 

pressure acting on each codon site. Hence, the false positive rate is relatively lower. It 

uses the maximum-likelihood and counting methods to calculate the rate of 
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synonymous substitutions per synonymous site (dS) and the rate of nonsynonymous 

substitutions per nonsynonymous site (dN) (Pond and Frost, 2005). FEL has a similar 

approach with SLAC, however, this approach assumes the selective force on each site 

is consistent. FEL uses an MG94xREV approach to infer dN and dS rate to each codon 

site (Kosakovsky Pond and Frost, 2005). Likewise, IFEL approach was used at the 

population level to assess if the sequences have been exposed to selective forces 

(Kosakovsky Pond and Frost, 2005). On the other hand, FUBAR identifies the dN and 

dS rate per codon site based on the Bayesian approach. The posterior probabilities above 

0.9 indicate strong positive selective pressure (Murrell et al., 2013). REL uses the 

enhanced Nielsen-Yang principle to detect codon sites under selection. This method 

has the flexibility to account for the nucleotide substitution biases, therefore, reduce the 

Type I error (Pond et al., 2011). 

 

3.2.5 Recombination 

Two approaches were used to uncover the intragenic recombination signals in 13 

PvMSP-7 paralogs including calculation of the minimum recombination events (RM), 

and searching for recombination breakpoints through the genetic algorithm 

recombination detection (GARD) (Kosakovsky Pond et al., 2006; Rozas and Rozas, 

1997). The RM approach is implemented in the DnaSP version 5.0 (Librado and Rozas, 

2009). The number of recombination event was identified through the Hudson 1987 

approach (Hudson, 1987). It uses R=4Nr equation, where N refers to the population 

size and r is the recombination rate per sequence or between the contiguous sites. In 

addition, GARD was used to verify the recombination evidence present in the 

population sequence. It is implemented in the Datamonkey web server (Pond and Frost, 

2005). GARD uses the phylogenetic inference on top of the appropriate model of 

nucleotide substitution to scan for recombination evidence. The goodness of fit between 

recombinant and nonrecombinant models was evaluated by AIC to support the 

recombination signals (Kosakovsky Pond et al., 2006). Sequence segments were 

deemed statistically significant if P-value less than 0.05 using method of Shimodaira 

and Hasegawa (1999).  
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3.3 Results 

	
3.3.1 Genetic diversity in PvMSP-7 

In the present study, 20 clinical samples were used to assess the nucleotide diversity in 

the PvMSP-7 multigene family. Heterogenous genetic diversity was observed in 

PvMSP-7 paralogs (Table 3.1). The nucleotide diversity (π)	ranged from 0.001 to 0.057. 

Four PvMSP-7 paralogs (PvMSP-7A, -7F, -7J, and -7L) have the lowest nucleotide 

diversity (π=0.001) whereas three PvMSP-7 paralogs have higher nucleotide diversity 

(PvMSP-7D π=0.002, PvMSP-7K π=0.003, and PvMSP-7M π=0.007). Furthermore, 

antigenic variation in six PvMSP-7 paralogs was more prevalent (PvMSP-7B π=0.021, 

PvMSP-7C π=0.021, PvMSP-7E π=0.057, PvMSP-7G π=0.056, PvMSP-7H π=0.045, 

and PvMSP-7I π=0.029). A boxplot represents the genetic diversity across 13 PvMSP-

7 members is shown in Figure 3.1.  

The structural variation in PvMSP-7 paralogs is illustrated in Figure 3.2. The 

nucleotide diversity was plotted on the per base basis to visualise the polymorphic 

region and conserved region spanned along the PvMSP-7 members. Notably, the central 

domain of the PvMSP-7 seems to harbour a high level of nucleotide diversity. Three 

peaks in the central region were observed correspond to PvMSP-7E, PvMSP-7H, and 

PvMSP-7G. On the other hand, the N- and C-terminal of the PvMSP-7 was relatively 

conserved. A small peak of nucleotide diversity was detected in the N-terminal 

correspond to PvMSP-7C, -7E, and -7G. Likewise, a peak was observed at the C-

terminal of PvMSP-7B and PvMSP-7G (Figure 3.2).  

In total, 20 haplotypes were found for PvMSP-7H while 19 haplotypes were 

found for PvMSP-7G (Table 3.1). In addition, 18, 17, and 16 haplotypes were identified 

from five PvMSP-7 paralogs (PvMSP-7B, -7E, -7I, -7C, and -7M). Also, 10, 8, 6, and 

3 haplotypes were found for PvMSP-7A, -7F, -7K, -7L, -7D, and -7J (Table 3.1). 

Haplotype diversity (h) was higher in seven PvMSP-7 paralogs with h>0.900. Lower 

haplotype diversity was observed in five PvMSP-7 paralogs (PvMSP-7A h=0.853, 

PvMSP-7D h=0.674, PvMSP-7F h=0.711, PvMSP-7J h=0.195, PvMSP-7K h=0.884, 

and PvMSP-7L h=0.821). 
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 Repeats in the PvMSP-7 paralogs were deduced using mreps (Kolpakov et al., 

2003) and Tandem Repeat Finder (Benson, 1999). Repeat motifs were found in most 

of the PvMSP-7 paralogs. However, no repeats were detected in PvMSP-7D, -7E, -7H, 

-7J, -7L, and -7M. Two imperfect tandem repeats characterized by consensus repeats 

‘CAGCCGCAC’ and ‘GCAGCTGCA’ were found in the central region of the PvMSP-

7A. Meanwhile, in PvMSP-7B, one imperfect tandem repeat spanning C-terminal of 

the gene was detected with a sequence 

‘CCCCCTGCACCAGGACATCCACAAGCG’. One tandem repeat was found in the 

N-terminal of PvMSP-7C by a consensus sequence ‘TTTCCTTTTCCTTTT’. In 

PvMSP-7F, a repeat characterised by a consensus sequence 

‘GAAGAAGCGGAGGAAGAAGCGGGGGA’ spanned between nucleotide position 

433-458. Two imperfect tandem repeats were detected in the N-terminal and central 

region of PvMSP-7G. These repeats were characterised by consensus sequences 

‘GAAGAGGAAGAGGAAGA’ and ‘GGAGGAGGAGGA’. Two tandem repeats 

were found in the central region of PvMSP-7I by consensus sequences 

‘AAGAAGAAGAAGA’ and ‘GAAGCAGAAGCAGAAGCAG’. Lastly, an imperfect 

tandem repeat was detected in the N-terminal of PvMSP-7K characterised by 

‘AGTGAGGGCCCCGCAAACATG’. 
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Table	3.0.1	 DNA	polymorphism	measurement	of	PvMSP-7	sequences	measurement	of	PvMSP-7	
sequences	 
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Figure	3.0.1	 Boxplot	of	nucleotide	diversity	for	the	13	PvMSP-7	paralogs	
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Figure	3.20.2	 Structural	variation	of	PvMSP-7	family	
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3.3.2 Natural selection  

Codon-based substitution models were used to measure the selective forces acting along 

the PvMSP-7 proteins. The positively selected residues might responsible for the host 

immunity evasion.  Evidence of selective pressure on each codon of the PvMSP-7 

multigene family member was tested using five approaches including SLAC, FEL, 

iFEL, REL, and FUBAR. Selective pressure was observed to act differently along the 

PvMSP-7 genes. Most of the positive selection signals were distributed in the central 

region of PvMSP-7 genes (Figure 3.3). PvMSP-7M was seen to have a higher frequency 

of positive selection signals compare to other members. In total, 15 codons were under 

strong positive selection signals spanning N-, central, and C-terminal. On the other 

hand, a lower number of positively selected residue was detected in PvMSP-7F and 

PvMSP-7L where only one selected site was found in codon 6 and codon 11, 

respectively. PvMSP-7A and PvMSP-7E had two codons under positive selection. In 

addition, positive selection signal was detected in the codons toward the C-terminal 

region in PvMSP-7B, -7C, -7D, -7G, and -7K. Meanwhile, no selective pressure was 

detected in PvMSP-7J.  

Using the similar codon-based tests for departure from neutrality (SLAC, FEL, 

iFEL, REL, and FUBAR), residues under negative selection in the PvMSP-7 multigene 

family were identified (Figure 3.4). All the negatively selected sites were distributed 

outside the central domain of PvMSP-7 genes. It is noteworthy that these negatively 

selected residues were predominantly near the conserved N- and C-terminal. Overall, 

PvMSP-7H had 29 residues under negative selection while PvMSP-7G had 18 

negatively selected sites (predicted by at least two approaches). Negatively selected 

codons were found for PvMSP-7B, -7C, -7E, and -7I ranged from 13 to 19 sites. Only 

one negative selected codon was identified in PvMSP-7D, -7K, -7L, and -7M. On the 

other hand, no negatively selected codons were detected in three PvMSP-7 paralogs 

(PvMSP-7A, -7F, and -7J).  
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Figure	3.30.3	 Positively	selected	codon	sites	in	PvMSP-7	paralogs.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure 3.3 Positively selected codon sites in PvMSP-7 paralogs. The analysis 

was conducted with consideration of recombination. Five algorithms were used to infer 

the recombination position including Single-Likelihood Ancestor Counting (SLAC), 

Fixed effects likelihood (FEL), Random Effects Likelihood (REL), Internal Fixed 

effect likelihood (IFEL), and Fast Unconstrained Bayesian AppRoximation for 

inferring selection (FUBAR). Codons were selected based on the consensus derived 

from at least two methods with p-value <0.1 for SLAC, FEL, and IFEL, FUBAR 

Posterior Probability >0.9, and/or REL Bayes Factor >50. The red line represents the 

codon under positive selection and the PvMSP-7 proteins are drawn to the protein 

length.    
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Figure	3.40.4	 Negatively	selected	codon	sites	in	PvMSP-7	paralogs.	

 

 

 

 

Figure 3.4  Negatively selected codon sites in PvMSP-7 paralogs. The codons 

under negative selection were detected using five approaches implemented in the 

Datamonkey web server (SLAC, FEL, REL, IFEL, and FUBAR). Negatively selected 

codons that achieved statistically significant from at least two methods were reported. 

The significant threshold (p-value) was used as recommended in the web server, p-

value <0.1 for SLAC, FEL, and IFEL, FUBAR Posterior Probability >0.9, and/or REL 

Bayes Factor >50. The blue line indicates the codon under negative selection and the 

PvMSP-7 proteins are drawn according to the protein length. 
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3.3.3 Recombination 

Genetic recombination is known to account for the majority of the variations observed 

in malaria antigens. Putative recombination positions were evaluated by two 

algorithms, such as minimum recombination events (RM) implemented in the DnaSP 

version 5.0 and genetic algorithm recombination detection (GARD) in Datamonkey 

web server. Consensus recombination positions from the two algorithms were presented 

herein (Table 3.2). Nine PvMSP-7 paralogs found to constitute of at least one 

recombination site. Notably, these recombination sites were distributed in the central 

domain of the genes. No recombination evidence was found in four PvMSP-7 paralogs 

(PvMSP-7A, -7F, -7J, and -7L). 
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Table 3.2 Significant recombination position detected in 13 PvMSP-7 genes. 

The recombination position was identified using the minimum recombination events 

(RM) and searching for recombination breakpoints through the genetic algorithm 

recombination detection (GARD). The RM is implemented in the DnaSP version 5.0 

while the GARD is available from the Datamonkey web server. The reported 

recombination positions were detected in two algorithms. The recombination position 

was considered statistically significant with p-value<0.05. 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Table	
3.2.0.2

	 Significant	recombination	position	detected	in	13	PvMSP-7	genes.	

	

PvMSP-7 Recombination position p-value 

A No evidence >0.05 

B 632, 1130, 1197 <0.001 

C     336, 599 <0.001 

D      226 <0.001 

E      356, 467, 600, 807 <0.001 

F     No evidence >0.05 

G      349, 511, 691, 863 <0.001 

H     321, 593, 692, 809 <0.001 

I      334, 419, 523, 694, 
801, 947 <0.001 

J    No evidence  >0.05 

K    540 <0.001 

L    No evidence >0.05 

M   343, 574 <0.001 
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3.4 Discussion 

An ideal vaccine candidate should show a high degree of sequence conservation to 

confer effective immune responses (Thera and Plowe, 2012). In this analysis, the 

antigenic diversity of PvMSP-7 and the potential vaccine candidates against malaria 

was described. Heterogeneous nucleotide diversity of PvMSP-7 in Thailand was 

identified from the 20 clinical samples. Some members demonstrated extensive 

sequence polymorphism (PvMSP-7B, -7C, -7E, -7G, -7H, and -7I) whilst some 

members are rather conserved (PvMSP-7A, -7D, -7F, -7J, -7K, -7L, and -7M). 

Structural variation was displayed in all PvMSP-7 paralogs. The central region of 

PvMSP-7 was shown to harbour high sequence variation while the N- and C-terminal 

was rather conserved. Codon-based substitution models identified most of the 

positively selected residues were distributed in the central region. On the other hand, 

negatively selected codons were predominantly located in the N- and C-terminal. 

Evidence of recombination was also more prevalent in the central region of the protein. 

Taken together all the findings, it is very encouraging that the conserved PvMSP-7 

paralogs and the conserved region can be incorporated in the malaria blood-stage 

subunit vaccine development.  

 In the present study, sequence analysis of 13 PvMSP-7 paralogs has shown a 

marked difference in the nucleotide diversity. Six PvMSP-7 members (PvMSP-7B, -

7C, -7E, -7G, -7H, and -7I) showed higher sequence variation. In contrast, seven 

PvMSP-7 paralogs (PvMSP-7A, -7D, -7F, -7J, -7K, -7L, and -7M) displayed limited 

sequence polymorphism. It is worth noting that this finding is in line with the studies 

conducted in Colombian isolates (Garzón-Ospina et al., 2014; Garzón-Ospina et al., 

2012; Garzón-Ospina et al., 2011) and other samples collected from multiple 

geographic regions (Castillo et al., 2017). This is likely to stem from the different 

selective pressures or biological constraints acting upon PvMSP-7 members. Castillo 

and colleagues have indicated that several PvMSP-7 paralogs undergone episodic 

selection in their divergence from P. cynomolgi and might have promoted the genetic 

variability among the paralogous genes (Castillo et al., 2017).  

 The data show that PvMSP-7E is the most diverse paralog among the PvMSP-

7 multigene family. The level of nucleotide diversity (π=0.057) is identical with the 

study conducted in Colombia with 35 clinical sequences (Garzón-Ospina et al., 2014). 
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Likewise, PvMSP-7B, -7C, -7G, -7H, and -7I displayed a high magnitude of sequence 

polymorphism similar to those of Colombian isolates and other malaria-endemic areas  

(Castillo et al., 2017; Garzón-Ospina et al., 2014; Garzón-Ospina et al., 2012). The 

antigenic variation estimated was comparable to those malaria surface proteins 

including PvMSP-1 (Putaporntip et al., 2002), PvMSP-3 (Rice et al., 2014), PvMSP-5 

(Putaporntip et al., 2010), and AMA-1 (Escalante et al., 2001). Despite the extensive 

level of nucleotide polymorphism observed in these malaria antigens, vaccine 

development could be focused on the conserved domain. In PvMSP-7, the vaccine 

development could be entailed the conserved region on the N- and C-terminal. PvMSP-

7A, -7D, -7F, -7J, -7K, -7L, and -7M revealed a high degree of sequence conservation 

consistent with Colombian isolates and worldwide clinical sequences (Castillo et al., 

2017; Garzón-Ospina et al., 2014; Garzón-Ospina et al., 2012). Although these 

conserved PvMSP-7 paralogs are promising vaccine candidates, appropriate 

consideration is needed to avoid the probability of vaccine escape and allele-specific 

immunity because structural variation is pronounced in the PvMSP-7 multigene family.  

 All PvMSP-7 paralogous genes demonstrated a structural variation pattern. The 

central region of the genes was seen to harbour higher sequence polymorphism than the 

N- and C-terminal suggesting natural selection could have been acting differentially 

along the PvMSP-7 genes (Figure 3.2). Intriguingly, signals of recombination were 

more pronounced in the central region (Table 3.2). The high nucleotide diversity in the 

central region could possibly arise from the recombination events. Intragenic 

recombination occurs during meiosis is an essential event in generating new variants 

on most malaria antigens. The recombination events create allelic diversity where it 

removes deleterious variants or maintains beneficial traits (Hughes, 2008). 

Recombination and positive selection were also described previously in other 

organisms to drive antigenic variation (Andrews and Gojobori, 2004; Orsi et al., 2007). 

In contrast, the nucleotide diversity in N- and C-terminal of the PvMSP-7 was lower. 

However, high level of sequence variation was seen at the N-terminal of PvMSP-7C, -

7E, and -7G and two peaks of nucleotide diversity were also detected in the C-terminal 

correspond to PvMSP-7B and PvMSP-7G. Repeat motifs detected in the N-terminal of 

PvMSP-7C and PvMSP-7G could have resulted in the peak observed.  
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 Differential selective pressure acting upon the genes could arise from the 

functional constraints. Codon-based substitution models detected the positive selected 

signals exclusively in the central of the PvMSP-7 genes suggesting the functional 

important. Consistently, these positive selection signals were located within the 

polymorphic and recombination region of the protein. The central region of the locus 

evolves rapidly probably attributed to the fact that the accumulation of amino acid 

substitutions for the parasite to evade the host’s immune system recognition (Ferreira 

et al., 2004). Moreover, the central domain has been implicated as a potential binding 

site to the primary proteolytic fragment of MSP-1, antigenic variation in this region 

could be responsible for immune evasion (Kadekoppala and Holder, 2010). Positive 

selection signal was also detected on a codon towards N-terminal in PvMSP-7F and 

PvMSP-7L implying the possible role in immune evasion. However, it still remains 

unknown the specific role of N-terminal during malaria infection.  

 Negative selection signal was detected mostly outside the central region of 

PvMSP-7 implying functional importance (Figure 3.4). This is consistent with the 

structural variation of PvMSP-7 where the conserved region located in the N- and C-

terminal. Negative selection was shown to play a role in erythrocyte invasion in a 

malaria conserved antigen, rhoptry-associated protein 1 in Plasmodium (Pacheco et al., 

2010). Likewise, malaria antigens displaying low sequence polymorphism are likely to 

responsible for host cell invasion and often show negative selection signal (Garzón-

Ospina et al., 2018). Strong negative selection signals detected in N-terminal could 

arise from the involvement of the N-terminal in interacting with P-selectin. This 

interaction was shown in P. berghei where MSP-7 established a signal with P-selectin 

to modulate disease severity (Perrin et al., 2015). However, this has not been shown in 

the P. vivax, future work should focus on the N-terminal of PvMSP-7 to validate the 

interaction of P-selectin. Furthermore, negative selection was also evidenced towards 

the codons in C-terminal. The C-terminal of MSP-7 has been suggested its role in 

erythrocyte invasion through MSP-1 multiprotein complex (Kadekoppala and Holder, 

2010). Deletion of MSP-7 C-terminal in P. falciparum was found to inhibit parasite’s 

ability to attach to the red blood cell (Kadekoppala et al., 2008). Therefore, the N- and 

C-terminal of PvMSP-7 is an attractive target for malaria subunit vaccine development. 

However, these negatively selected codons should investigate carefully against the 

immune effectiveness in natural infection. 
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 Closer looks into the codon-based tests of selection pressure across PvMSP-7 

paralogs, no evidence of selection pressure was observed in PvMSP-7J. This paralog 

has a relatively short protein length (95 residues) which likely a pseudogene in the 

PvMSP-7 multigene family. PvMSP-7A and PvMSP-7L displayed evidence of positive 

selection in a few codons but no significant negative selection was detected. Likewise, 

the strong positive selection was detected along the PvMSP-7M locus, however, only 

one codon was under purifying selection. It supports the fact that these genes are under 

functional constraints where it tries to evade target by the host’s immune system. 

Malaria surface antigens such as AMA-1, circumsporozoite protein, and MSP-1 

displayed radical amino acid substitutions by strong balancing selection which likely to 

avoid detection by host’s immune responses (Escalante et al., 1998).  

 One of the major hurdles in the development of malaria subunit vaccine is the 

extensive sequence polymorphism in different malaria endemic areas around the world 

(Chenet et al., 2012). To overcome this problem, the majority of the antimalarial 

vaccines have focused on the conserved candidates and domain to elicit universal 

immune responses. The PvMSP-7 paralogs with low genetic polymorphism are 

encouraged to be incorporated in the malaria vaccine development especially PvMSP-

7A, -7D, -7F, -7J, -7K, -7L, and -7M. Although structural variation was demonstrated 

in most of the PvMSP-7 paralogs, selection of the conserved regions could enhance the 

immune efficacy against malaria. The high level of sequence conservation in the N- and 

C-terminal hold promise in the subunit vaccine design. The vaccine design 

encompasses the N- and C-terminal of PvMSP-7 could likely elicit superior effects in 

regulating disease severity and retard red-blood cell invasion. Therefore, antimalarial 

vaccines derived from PvMSP-7 conserved paralogs potentially impair parasite 

development.  
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3.5 Conclusion 

Despite several indications that MSP-7 is important in erythrocyte invasion, caution 

should be taken during malaria subunit vaccine development as some of the proteins 

might have functional redundancy. The genetic diversity of PvMSP-7 multigene family 

in Thailand revealed heterogeneous sequence variation. Some paralogous genes 

revealed extensive sequence polymorphism while some members are rather conserved. 

From the vaccine design perspective, the conserved paralogs (PvMSP-7A, -7D, -7F, -

7J, -7K, -7L, and -7M) and domains (N- and C-terminal) are ideally to be considered 

in vaccine development and likely to confer superior immune protection against 

malaria. Larger sampling size in Thailand is needed to validate the results. Furthermore, 

malaria immune response is known to be stage-specific, investigating the expression 

pattern of PvMSP-7 is therefore essential in vaccine design. In Chapter 5, the 

transcriptional changes of PvMSP-7 in natural infection will be revealed.  
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Chapter 4  

Polymorphism in merozoite surface protein-7E of Plasmodium vivax 

in Thailand: Natural selection related to protein secondary structures 

Abstract 

PvMSP-7 multigene family shows heterogenous antigen variation among 13 paralogs. 

Among the 13 PvMSP-7 paralogs, PvMSP-7E is the most diverse paralog. To explore 

the potential of this protein as a genetic marker, 92 Thai isolates collected from three 

malaria endemic areas in Thailand (Tak province, Ubon Ratchathani province, and Yala 

and Narathiwat province) were further used to analyse the sequence polymorphism. 

The population genetic analysis estimated 52 unique haplotypes circulating in the 

endemic areas. Population structure based on this locus was observed between each 

endemic area. However, no evidence of genetic differentiation was found between 

populations collected from different periods in the same endemic area, indicating 

spatial but not temporal genetic variation. The sequence microheterogeneity is present 

within the N- and C- terminal regions with predicted four and six α-helical domains, 

respectively. In addition, evidence for purifying selection was found in the α-helices II-

X, convincing structural or functional constraint in these domains. Conversely, the 

signal of positive selection was observed in α-helix I spanning the predicted signal 

peptide, in which amino acid substitutions may compromise the CD4+ T helper cell 

epitopes. The central region of PvMSP-7E encompassed the 5’-trimorphic and the 3’-

dimorphic subregions. A signature positive selection was identified in the 3’ dimorphic 

region within the central domain. A predicted intrinsically disorder protein has been 

shown to span across the central domain containing putative B cell epitopes and 

putative protein binding regions. Evidence of intragenic recombination was more 

distinguished in the central domain than the other domains of the gene. Therefore, the 

findings indicate that the antigen variation, occurrence of intragenic recombination, and 

evolutionary pressures in the PvMSP-7E locus appear to be differentially affected by 

protein secondary structures.  
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4.1 Introduction 

In the previous chapter, the sequence variation of 13 PvMSP-7 members was described. 

From the result, PvMSP-7E was observed to display the highest nucleotide diversity 

than other paralogs within the multigene family. Although the conserved paralogs are 

ideally incorporated in the vaccine design, it is remaining unknown if only a specific 

paralog participates in the multiprotein complex prior to host cell invasion.  Based on 

the previous study, several key malaria surface proteins seem to involve in erythrocyte 

invasion are under positive selection pressure and targeted for vaccine development 

(Garzón-Ospina et al., 2018; Takala and Plowe, 2009). It has long recognized that the 

extensive sequence variation in malaria antigens arise from the balancing selection to 

allow the parasite to escape from host immune system by maintaining the sequence 

polymorphism.  The evidence of natural selection has been characterized in three most 

studied vaccine candidates including, MSP-1 (Cheesman et al., 2010), AMA-1 (Arnott 

et al., 2014), and CSP (Neafsey et al., 2015). As Plasmodium develops through 

different life stages, it expresses various stage-specific components, each of which will 

stimulate a specific immune response. Studies also reported that predominant alleles 

are varied between endemic areas, if a vaccine was to induce allele-specific immune 

responses, it might affect the vaccine efficacy between geographical locations (Takala 

and Plowe, 2009). Vaccine development using polymorphic antigens presented a major 

complication for vaccine design because vaccine candidates could elicit allele-specific 

immune responses. Thus, characterization of sequence polymorphism in malaria 

antigens from different geographic locations form the fundamental strategy for vaccine 

development.  

 MSP-1 is a prime surface protein that expresses during blood stages of the 

parasite. It undergoes several proteolytic cleavages and remains on the merozoite 

surface as a glycosylphosphatidylinositol-anchored complex. In the case of MSP-7, it 

undergoes similar proteolytic events as MSP-1 during schizogony (Baldwin et al., 

2015). Studies have shown that MSP-1 forms a non-covalent complex with MSP-6 and 

MSP-7 prior to host cell invasion. Disruption of MSP-1/6/7 in P. falciparum was 

evidenced to impair merozoite invasion into host cells (Woehlbier et al., 2010). The 

MSP-1 sequence is divided into 17 blocks, where the last block is the main focus in 

vaccine development due to sequence conservation. Immunology studies have shown 
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cross-reactive antibody responses of MSP-1 block 17 in natural infections despite 

several SNPs in the domain. AMA-1 is another broadly studied vaccine candidate in 

blood stages of Plasmodium. The antigen is expressed on the apical surface of the 

merozoite and play a major role in host cell invasion by establishing the junction contact 

between merozoite and erythrocyte. No repeat region was found within the AMA-1 

sequence, like other polymorphic antigens, conserved regions were incorporated in the 

vaccine development. Antibodies constructed using the conserved region was capable 

of stimulating protective immune responses in Papua New Guinea populations despite 

the small proportion of allele-specific antibodies (Cortés et al., 2005). CSP is a pre-

erythrocytic stage vaccine candidate which found on the surface of the sporozoite. The 

N- and C-terminal regions were found to responsible for parasite’s hepatocyte-binding 

ligand (Swearingen et al., 2016). Vaccine design based on this polymorphic antigen 

was focused on the repeat region. The vaccine efficacy induced by the repeat region 

has been in the pipeline to investigate the specificity of antibody responses. These 

studied identified the regions with greatest positive selection in relation to antigen-

specific immune response. Based on the population genetics analyses applied on these 

polymorphic antigens, the domains of PvMSP-7E under positive selection were 

identified. This will translate into vaccine design which pinpoints the regions with most 

immunologically relevant based in this locus.  

 Much less is known about other merozoite proteins such as MSP-3 alpha (Zakeri 

et al., 2006) and MSP-3 beta  (Putaporntip et al., 2014). Similar to MSP-7, MSP-3 is a 

multigene family consists of 12 paralogs encoded on chromosome 10 in P. vivax. These 

two paralogs have extensive sequence variation, consistently from the findings of two 

studies, the high genetic diversity indicating their potential as genetic markers in 

epidemiological studies other than being vaccine candidates. MSP-3 alpha of P. vivax 

in Iranian isolates is highly diverse between the northern and southern region using 

restriction fragment length polymorphism approach. Moreover, MSP-3 beta achieved a 

significant population differentiation between Thai and American parasite populations 

(Fst=0.28, p-value=<0.05) which in line with other molecular markers. From all these 

results, the high sequence variation of MSP-3 paralogs offers a powerful approach for 

genotyping Plasmodium isolates. This information provides an essential strategy for 

malarial drugs and vaccines implementation.  
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The extent of antigenic variation in PvMSP-7 has been characterized in natural 

infections from the previous chapter as well as isolates from Colombia. However, the 

sample size in these studies or sample populations might not well represented. PvMSP-

7E appears to be the most polymorphic marker and evolved rapidly. Hence, this locus 

is potentially developed as a genetic marker for P. vivax populations further to 

involvement in host cell invasion. The rationale of this study is to evaluate the extent 

of sequence polymorphism among P. vivax populations from three major malaria 

endemic areas in Thailand.  

 

4.2 Methodology 

	
4.2.1 Human ethics statement 

The study was approved by the Institutional Review Board in Human Research of 

Faculty of Medicine, Chulalongkorn University, Thailand (IRB No. 104/59). Blood 

samples were collected upon agreement from all participants or from their parents or 

guardians via written consent.  

 

4.2.2 Study population 

110 P. vivax malaria-positive blood samples were collected from patients with 

uncomplicated symptoms. The P. vivax-infected patients were diagnosed by 

microscopic examination of Giemsa stained blood films. Of these, 80 patients were 

recruited between the year 2008-2009 divided into 31 from Tak province, 16 from 

Narathiwat province, and nine from Yala province. To investigate if PvMSP-7E 

exhibits spatial or temporal variations, 24 blood samples collected during 1996 which 

preserved at -80°C were introduced into the analyses. Additional 30 samples from Ubon 

Ratchathani province collected during a malaria epidemic in the year 2014-2015 were 

used in the study. All blood samples were preserved in EDTA coagulant and stored at 

-30°C until used.  
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4.2.3 Amplification and sequencing of PvMSP-7E 

The methods of DNA extraction, Plasmodium species identification and clonality 

detection have been described in Chapter 2. The complete coding region of PvMSP-7E 

(~1.1 kb) was amplified by nested PCR where two pairs of primers were designed 

targeting the outer and the inner region. Since only a small amount of blood volume 

was collected, nested PCR strategy is ideal in this scenario as the aim was to investigate 

other PvMSP-7 paralogs in the future. The PvMSP-7E was amplified by a pair of outer 

primers, PvMSP-7F (5’-CAT ACC TTC GAT ACG TGT ACT TC-3’) and PvMSP-7R 

(5’-CAT TTC GCG TGT GCG TGT CTA TG-3’) using the Salvador I reference strain 

(GenBank accession ID: XM_001614084, chromosome 12 from position 771164 to 

772282). The inner primers were located before the start codon and after the stop codon 

of PvMSP-7E (PvMSP-7EF: 5’-AAT CGC CAC ACA TCG TCT GTG-3’ and PvMSP-

7ER: 5’-ATT TCA TCT TTA CTG TTG GGC AC-3). A schematic diagram of nested 

PCR primers was shown in Figure 4.1.  

Primary PCR amplification was done in a total volume of 15 µL including PCR 

buffer, 200 µM dNTP, 0.2 µM of each primer, nuclease-free water, 2 µL of template 

DNA and 1.25 units of TaKaRa LA Taq (Takara, Seta, Japan). The thermal cycling 

profiles composed of a pre-amplification denaturation at 94ºC for 60 seconds, followed 

by 35 cycles of denaturation at 96ºC for 30 seconds, annealing at 50ºC for 30 seconds, 

polymerization at 72ºC for 7 minutes, and final elongation at 72ºC for 10 minutes. 

Following the primary PCR reaction, the secondary PCR amplification composed a 

total volume of 30 µL containing PCR buffer, 200 µM dNTP, 0.2 µM of each primer, 

nuclease-free water, 1 µL of template DNA from primary PCR and 1.25 units of ExTaq 

DNA polymerase (Takara, Seta, Japan). The amplification cycle for secondary PCR 

composed of denaturation at 94ºC for 60 seconds, followed by 30 cycles of denaturation 

at 96ºC for 30 seconds, annealing at 50ºC for 30 seconds, polymerization at 72ºC for 2 

minutes, and final elongation at 72ºC for 5 minutes. The PCR amplification was 

performed in a GenAmp 9700 PCR thermal cycler (Applied Biosystems, Foster City, 

CA). The PCR products were analyzed on 1% agarose gel electrophoresis, stained with 

ethidium bromide and visualized under UV transillumination.  Prior to DNA 

sequencing, PCR products were purified using the QIAquick PCR purification kit 

(Qiagen, Hilden, Germany). DNA sequences were generated directly and bi-
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directionally from the purified PCR products derived from the secondary PCR 

amplification using ABI PRISM BigDye Terminator v3.1 Ready Reaction Cycle 

Sequencing Kit (Applied Biosystems) and sequencing primers. 

 

Figure	4.0.1	 A	schematic	diagram	of	nested	PCR	primers	was	designed	to	amplify	PvMSP-7E	gene. 

Figure 4.1. A schematic diagram of nested PCR primers was designed to amplify 

PvMSP-7E gene. PvMSP-7F and PvMSP-7R represent the outer primers whilst, 

PvMSP-7EF and PvMSP-7ER show the inner primers.  

 

	

4.2.4 Data analysis and protein secondary structure prediction 

DNA sequences were aligned using CLUSTAL W version 2.0 with the default setting 

(Larkin et al., 2007). All sequences were aligned against the PvMSP-7E reference 

sequence derives from the Salvador I strain (GenBank and PlasmoDB accession no. 

PVX_082665). Published sequences from Colombian isolates were retrieved and added 

to the analysis (GenBank accession nos. KM212276-KM212294) (Garzón-Ospina et 

al., 2014). In the alignment, all sites that postulated a gap were removed in pairwise 

comparisons of the analysis. DNA tandem repeat regions were determined by scanning 

the sequence with Tandem Repeats Finder version 4.09 program available from 

http://tandem.bu.edu/trf/trf.html. Protein secondary structure was reliably determined 

by Deep Convolutional Neural Filed Program (DeepCNF) (Wang et al., 2016b). The 

advanced principle behind DeepCNF has accuracy up to 80% for determining the model 

complex sequence-structure relationship. The program is available freely via the 

RaptorX-Property web server (Wang et al., 2016a). Intrinsically unstructured or protein 

disordered domains were identified by using the GeneSilico MetaDisorder service 

(Kozlowski and Bujnicki, 2012). The disordered domains are characterized by lack of 

stable tertiary structure and the intrinsic flexibility tolerates multiple interactions with 

other disordered proteins. Most of the major vaccine candidates are seen to present 

extensive intrinsically disordered regions along the gene for host-cell invasion (Guy et 

al., 2015). Protein binding regions within the disordered protein were determined by 

using ANCHOR/IUPRED web server (Dosztányi et al., 2009). The protein-protein 
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interaction regions within the disordered protein play a functional role in biological 

processes including regulation and signalling (Dyson and Wright, 2002).  

  

4.2.5 Evolutionary genetic analysis 

The molecular evolutionary analysis was performed using DnaSP version 5.10 (Librado 

and Rozas, 2009). The program calculates haplotype diversity, nucleotide diversity, and 

its variance. The nucleotide diversity (p) was estimated by the mean of pairwise 

sequence differences per site in the sample sequences. All sites were taken into the 

consideration based on that of Juke and Cantor model of nucleotide substitution (Jukes 

and Cantor, 1969). The rate of synonymous substitutions per synonymous site (dS) and 

the rate of nonsynonymous substitutions per nonsynonymous site (dN) were calculated 

using the method of Nei and Gojobori’s model with Jukes-Cantor correction (Jukes and 

Cantor, 1969; Nei and Gojobori, 1986). Under positive selection, the ratio of dN/dS is 

expected to exceed 1, whilst dN/dS below 1 indicates purifying selection which selection 

pressure acts against protein changes. When the domain is not under selection pressure,  

dN/dS = 0 would be assumed. The standard errors with 1000 pseudo-sampling bootstraps 

were performed by comparing the nonsynonymous and synonymous substitutions 

implemented in the MEGA version 6.0 program (Tamura et al., 2013). The statistical 

differences were calculated by using two-tailed Z-test and the statistics considered 

significant with p < 0.05.  

 Evolutionary pressures acting on each codon were estimated by using six 

complementary methods implemented in the Datamonkey web server (Pond and Frost, 

2005). The six approaches used in the analyses were single-likelihood ancestor 

counting (SLAC), fixed effects likelihood (FEL), internal branch FEL (iFEL), random 

effects likelihood (REL), mixed effects model of evolution (MEME), and fast 

unconstrained Bayesian approximation (FUBAR). The significance level was based on 

the default setting as recommended by the web server. SLAC is a modified principle 

from the Suzuki-Gojobori counting approach (Suzuki and Gojobori, 1999). It has 

superior power to infer mutations at each site based on the maximum likelihood 

reconstruction of the ancestral sequences, provided the analysis does not void the 

assumption of neutral evolution. FEL is a less conservative model compares to SLAC, 
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where the ratio of nonsynonymous to synonymous is assessed independently at each 

codon position. iFEL has the similar principle as FEL, but the selection is estimated 

along the internal branch of the phylogeny. REL approach largely based on assumption 

where it allows synonymous rate variation (Yang and Nielsen, 2000). MEME has a 

sophisticated algorithm to detect individual sites under episodic and pervasive positive 

selection. MEME does not assume a priori distribution, instead, it allows each site to 

retain its previous selective history (Murrell et al., 2012). FUBAR is a sophisticated 

algorithm to analyze large dataset based on Markov chain Monte Carlo. The approach 

hypothesizes the selection force is constant along the phylogeny (Murrell et al., 2013). 

Selective influences based on amino acid properties were identified by using the 

TreeSAAP program (Woolley et al., 2003). The actual probabilities changes for amino 

acid properties were deemed significant with their percent probability set at 99.9% 

based on categories 6-8. 

 

4.2.6 Intragenic recombination 

Evidence of recombination events was determined by using the Recombination 

Detection Program version 4 (RDP4) (Martin et al., 2015). Recombination analyses 

were identified by a combination of methods such as GENCONV, Bootscanning, the 

maximum Chi-Square, CHIMAERA, Sister Scanning, and 3SEQ. Default settings were 

used to investigate the overall recombination signals. One sophisticated principle in 

RDP4 is the extensive exploration of recombination signals present within the 

nucleotide alignment. Recombination segments are fragmented into several different 

parts and scanned iteratively within the alignment until no recombination signals can 

be found. This mechanism is useful particularly in sequences with complex 

recombination patterns. The population genetic structure was expressed by using the 

fixation index (Fst) implemented in the Arlequin program version 3.11 (Excoffier et 

al., 2005). The Fst was evaluated by the molecular variance (AMOVA) based on the 

principle by Weir and Cockerham (1984). AMOVA takes into consideration the total 

proportion of genetic variance including the number of mutations. Statistically 

significant of the fixation index was determined by a permutation test. Phylogenetic 

trees were constructed to infer the evolutionary relationship of the PvMSP-7E gene 

using the maximum likelihood method. The best substitution model was selected based 



	 108 

on the lowest Bayesian Information Criterion (Tamura et al., 2013) score. The 

reliability of the phylogeny was evaluated by bootstrap method with 1000 

pseudoreplicates. 

 

4.2.7 B-cell and T-cell epitopes prediction 

B-cell epitopes prediction is important in vaccine design, BCPRED web server was 

used to predict the linear B-cell epitopes with an epitope length of 20 amino acids. The 

estimation was set to 90% classifier specificity to achieve accurate epitope prediction 

(EL- Manzalawy et al., 2008). CD4+ T cell epitopes confer protective immune 

responses in vaccination, PREDIVAC web server was used to predict MHC-II binding 

peptides (Oyarzún et al., 2013). This server is the chosen for the analysis because it has 

more than 95% coverage of human HLA class II DR protein diversity. Five 

predominant HLA-DR alleles in Thai population were selected in the analysis 

including, DRB1*1202, DRB1*1502, DRB1*0701, DRB1*1501, and DRB5*1602 

(Romphruk et al., 1999).  
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4.3 Results 

	
4.3.1 Genetic diversity in PvMSP-7E 

The 110 samples infected with P. vivax were genotyped by PCR using block six of 

PvMSP-1. Of these, only 92 samples infected with a single strain of P. vivax were 

retained in the analyses. Electropherograms with non-superimposed signals were used 

to confirm the presence of single clone infections. In the analysis, Yala and Narathiwat 

provinces are defined as a single population because these areas are located next to each 

other and they have similar malaria transmission dynamics. Therefore, the PvMSP-7E 

sequences were characterised by geographical regions in Thailand as Tak (n=46), Ubon 

Ratchathani (n=22), and Yala-Narathiwat (n=24). However, of the 46 samples from 

Tak province, they were further subdivided into two populations based on the sampling 

period, the year 2008-2009 (n=28) and year 1996 (n=18) (Table 4.1). In total, 52 

haplotypes were found for PvMSP-7E in Thai isolates, consisting of 194 nucleotide 

substitutions, 185 segregating sites, and 9 insertions/deletions. Haplotype #1 was 

predominantly found between populations from Ubon Ratchathani (n=2) and Yala-

Narathiwat (n=14). Similarly, haplotypes #15-#17 were shared between Tak and Ubon 

Ratchathani populations. In contrast, the remaining 48 haplotypes were unique between 

the endemic areas (Figure 4.2). Nucleotide diversity varied from 0.0514±0.0048 

(isolates from Yala-Narathiwat provinces) to 0.0620±0.0046 (isolates from Tak 

province). Although the level of nucleotide diversity was higher in Tak province than 

that of Ubon Ratchathani province, the differences were not statistically meaningful (Z-

test, p > 0.05). The distribution of PvMSP-7E haplotypes in Yala-Narathiwat 

populations was skewed towards few haplotypes as shown by the haplotype diversity 

(h = 0.540 ± 0.062) whereas, populations from Tak and Ubon Ratchathani province had 

a remarkably higher number of haplotypes and values of haplotype diversity, indicating 

an even distribution of haplotype frequencies in these endemic areas.  

 

 

 
Table	4.0.1	 Estimates	of	sequence	diversity	in	the	PvMSP-7E	gene	of	P.	vivax	populations	in	Thailand. 
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Table 4.1 Estimates of sequence diversity in the PvMSP-7E gene of P. vivax 

populations in Thailand. In total, 92 samples were used to infer the population genetic 

parameters implemented in DnaSP version 5.10. All sites that postulated a gap were 

excluded in the analysis.   

	

 n M S Indel H h ± S.D. p ± S.E. 

Tak  46 191 183 9 34 0.986 ± 0.007 0.0620 ± 
0.0046 

     Tak 1996 18 182 174 9 16 0.987 ± 0.023 0.0496 ± 
0.0039 

     Tak 2008-2009 28 189 181 9 22 0.984 ± 0.013 0.0677 ± 
0.0050 

Yala-Narathiwat 24 117 116 9 3 0.540 ± 0.062 0.0514 ± 
0.0048 

Ubon Ratchathani 22 161 153 9 19 0.987 ± 0.018 0.0586 ± 
0.0047 

Total 92 194 185 9 52 0.958 ± 0.013 0.0613 ± 
0.0047 

n: number of isolates, M: number of mutations, S: number of segregating sites, Indel: 

number of insertions or deletions, H: number of haplotypes, h: haplotype diversity, p: 

nucleotide diversity, S.E.: standard error. 
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Figure	4.0.2	 PvMSP-7E	haplotypes	among	Thai	isolates.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure 4.2 PvMSP-7E haplotypes among Thai isolates. In total, 52 haplotypes 

are distributed across the major malaria endemic areas in Thailand. The distribution of 

haplotypes according to endemic areas are as follows: haplotype #1 (Ubon Ratchathani 

n=2, Yala-Narathiwat n=14), haplotype #2 (Yala-Narathiwat n=9), haplotype #3-#4 

(Tak n=3 each), haplotype #5-#12 (Tak n=2 each), haplotype #13-#14 (Ubon 

Ratchathani n=2 each), haplotype #15-#17 (Tak n=1, Ubon Ratchathani n=1), 

haplotype #18-38 (Tak n=1 each), haplotype #39-51 (Ubon Ratchathani  n=1 each), and 

haplotype #52 (Yala-Narathiwat n=1). 



	 112 

4.3.2 Sequence variation in the 5’ and the 3’ regions of PvMSP-7E 

The analysis of the complete sequence of the PvMSP-7E against the Salvador I 

reference sequence has shown two regions with relatively low nucleotide diversity 

(p=0.0224±0.0050 and 0.0273±0.0044). These conserved regions were located in the 

5’ and 3’ regions of the gene, spanning 123 and 135-136 codons, respectively (Figure 

4.3). Notably, the previous study from Colombian isolates did not analyse the 51 

nucleotides at the 5’ end and 15 nucleotides at the 3’ end of the gene (Garzón-Ospina 

et al., 2014). Closer looks into these regions, they contained four nonsynonymous 

codon changes at residues F12L, F14L, S17C and L368F. Among isolates examined 

herein, 20 and 51 nucleotide substitutions occurred in the 5’ and 3’ regions, 

respectively. Of the total 71 nucleotide substitutions, 69 were dimorphic substitutions 

and two sites at 786 and 926 at the 3’ region were trimorphic. Moreover, most of the 

Thai isolates had a deletion at codon 312 (94.6%) coding for proline in the 3’ region. 

In contrast, insertions between codons 150 and 151, and codons 215 and 216 account 

for 21 (22.8%) and 26 (28.3%) of the isolates with TTA (leucine) and GAA (glutamine). 

 

Figure	4.0.3	 Schematic	representation	of	PvMSP-7E 

	

	
	
	
Figure 4.3 Schematic representation of PvMSP-7E depicting conserved (filled 

white boxes), variable trimorphic (filled black box) and dimorphic (filled green 

box) regions. The number of codons for each region is in parentheses.   
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4.3.3 Sequence variation in the central region of PvMSP-7E 

The central region of PvMSP-7E spans between codons 124-234 of Salvador I reference 

strain (Figure 4.3). The nucleotide diversity along the central region displayed a higher 

magnitude than those at the 5’ and 3’ regions, the differences were statistically 

significant (p < 0.0001) (Table 4.2). In the analysis, 29 allelic types were observed in 

the central region. No repeat motifs were evidenced in the gene. Furthermore, the 

residues spanning 124-200 along the N-terminal of the central region displayed a 

mosaic organization of the sequences, suggesting it could have been derived from the 

genetic shuffling among three parental types. The genetic shuffling is represented in 

Figure 4.4(a) by Salvador I strain (type 1-5’), the APH5 isolate from Tak province (type 

II-5’), and an unknown strain (type III-5’). In contrast, the C-terminal within the central 

terminal could have been generated from two parental sequences (type I-3’ and type II-

3’). For this reason, nucleotide sequences spanning the N- and C- terminal of the central 

region are defined as 5’-trimorphic and 3’-dimorphic subregions, corresponding to 77-

78 and 35-37 residues, respectively (Figure 4.3). The magnitude of nucleotide diversity 

for 5’-trimorphic region and 3’-trimorphic regions were significantly different (p < 

0.005), the former exhibited higher diversity (Table 4.2).  Additionally, two sites with 

insertion/deletions were located in the central region, each at the 5’trimorphic and the 

other at 3’-dimorphic subregions, respectively. 
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Table	4.0.2	 Nucleotide	diversity	(p)	and	number	of	synonymous	(dS)	and	nonsynonymous	(dN)	
nucleotide	substitutions	per	site	in	PvMSP-7E	among	Thai	isolates 
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Figure	4.0.4	 Sequence	variation	in	the	central	region	of	PvMSP-7E. 

 

 

 

 

 

 

 

Figure 4.4 Sequence variation in the central region of PvMSP-7E. (a) Amino 

acid sequences. The boundaries of the 5’ and 3’ subregions are marked above the 

alignment. (b) Parental alleles of the 5’ and 3’ subregions. Dots are identical residues 

and dashes represent deletion/insertion. Amino acids shown under each parental 

sequence are variant residues. 

 

b	

a	
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4.3.4 Protein secondary structure prediction  

Prediction of the protein secondary structure using DeepCNF method implemented in 

the RaptorX-Property web server showed that PvMSP-7E has ten α-helical domains. 

Of these, four α-helical domains were characterised in the N-terminal whilst, six α-

helical domains were located in the C-terminal (Figure 4.5). Importantly, most of the 

non-helical regions appear to compose random coil structures. Three intrinsically 

unstructured or disordered regions were discovered by using MetaDisorder service 

implemented in the GeneSilico Metadisorder web server. These disordered regions span 

between codons 27-36, 46-102, and 121-241, the latter being the longest disordered 

structure and labelled as D1, D2, and D3. Furthermore, protein-protein binding regions 

were found spanning along the central fragment of PvMSP-7E (Figure 4.5). 

 

4.3.5 Selective pressure on PvMSP-7E  

Molecular evolution was used to determine whether the PvMSP-7E departure from 

neutrality. Analysis of patterns of substitution in the PvMSP-7E sequences by 

calculating dS and dN revealed that natural selection seems to operate differently along 

the gene. The dS rate was significantly greater than dN in both 5’ and 3’ regions (p < 

0.005). This result suggested that the 5’ and 3’ domains were under natural purifying 

selection. In contrast, dN had significantly exceeded dS in the central region, indicating 

positive selection at certain residues in this gene (p < 0.005) (Table 4.2). Likewise, the 

results were consistent when analysis focused on each parasite population (Table 4.3). 

Closer looks into the central region of the sequences, dN significantly greater than dS in 

the 3’-dimorphic (p < 0.05). Meanwhile, 5’-trimorphic did not show evidence of 

departure from neutral expectations (p > 0.05) (Table 4.2). Moreover, to discover 

whether natural selective pressure operates specifically in a region of the sequence, the 

rate of synonymous and nonsynonymous substitutions per site were identified for each 

domain in relation to the predicted protein secondary structure. Due to the number of 

mutation sites in α-helical domains excluding α-helix-I, three adjacent helical regions 

were combined in further analysis. Results from the selection test showed that dS 

significantly outnumbered dN in α-helical domains II-IV, V-VII and VIII-X, implying 

purifying selection acting in these regions (Table 4.4). Meanwhile, purifying selection 
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was also seen in the predicted disordered domain 2 (D2). The random coiled regions in 

the gene and the predicted disordered domain 1 (D1) did not achieve significant 

differences between dS and dN. By contrast, the α-helix-I domain exhibited a higher 

magnitude of dN than dS and the difference was statistically meaning (p < 0.05), 

indicating positive selection in this domain. In domain D3, although dN greater than dS, 

the difference was not significant (p > 0.05). On the other hand, positive selection was 

evidenced in the 3’ region of the D3 domain corresponding to the 3’-dimorphic 

subregion where a significantly higher rate of dN than dS was detected (Tables 4.2 and 

4.4). 

Tests for departure from neutrality were examined based on each codon as 

implemented in Datamonkey web server. Various principles of identification including 

SLAC, FEL, iFEL, REL, FUBAR and MEME revealed 2, 8, 11, 39, 12 and 20 

positively selected sites, respectively (Table 4.5). Consistently, 18 positively selected 

sites were identified by using TreeSAAP program where various physicochemical 

properties of substituted amino acids were considered in the analysis. Besides that, 

SLAC, FEL, iFEL, REL and FUBAR methods found 23, 38, 31, 30 and 24 negatively 

selected sites, respectively (Table 4.6). A consensus of positively and negatively 

selected sites with at least two methods were used for further interpretations, thereby 

account for false positive and negative results. Closer looks into the findings, 80.77% 

(21 of 26) of the positively selected sites were mapped to the α-helix-I domains and the 

predicted disordered region. However, 85.29% (29 of 34) of the negatively selected 

sites were mapped outside these regions. The distribution of positively and negatively 

selected sites between α-helical domains and intrinsically unstructured regions was 

significant difference (p < 0.0001, Fischer exact probability test).    
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Figure	4.0.5	 Predicted	protein	secondary	structure	of	PvMSP-7E 

 

 

 

 

 

 

Figure 4.5 Predicted protein secondary structure of PvMSP-7E. The structure 

was generated by DeepCNF available from RaptorX-Property web server. Secondary 

structures are represented above the sequence by red helices (α-helices) and blue lines 

(coiled). Predicted intrinsically unstructured regions were determined using the 

GeneSilico Metadisorder service (residues in green). Protein-protein interaction regions 

within the disordered regions were analyzed by ANCHOR/IUPRED web server and 

highlighted in yellow. Ten α-helices domains were identified (I-X). Three unstructured 

disorder regions that span between codons 27-36, 46-102, and 121-241 were identified 

(D1-D3).  

 

 



	 119 

Table 4.3 Nucleotide diversity (p) and number of synonymous (dS) and 

nonsynonymous (dN) substitutions per site in PvMSP-7E among P. vivax 

populations in Thailand. Nei and Gojobori’s model with Jukes-Cantor correction 

(Jukes and Cantor, 1969; Nei and Gojobori, 1986) was used to computed the rate of dS 

and dN. Standard error (S.E.) was derived from1000 pseudosamplings bootstrap method 

implemented in MEGA 6 suite (Tamura et al., 2013). 

 
 
 
 
 
 

 

 

 

 

 

Table	4.0.3	 Nucleotide	diversity	(p)	and	number	of	synonymous	(dS)	and	nonsynonymous	(dN)	
substitutions	per	site	in	PvMSP-7E	among	P.	vivax	populations	in	Thailand 

	
	
	
	
	
	
Tests of the hypothesis that dS equals dN: * p < 0.05; ** p < 0.005; *** p < 0.001 
Table 4.4 Number of synonymous (dS) and nonsynonymous (dN) substitutions 

per site in relation to protein secondary structure prediction of PvMSP-7E. The 

rate of dS and dN was estimated by Nei and Gojobori’s model with Jukes-Cantor 

correction (Jukes and Cantor, 1969; Nei and Gojobori, 1986). Standard error (S.E.)  

 

Tests of the hypothesis that dS equals dN: # p < 0.05; ## p < 0.005; ### p < 0.0001. 
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Table 4.4 Number of synonymous (dS) and nonsynonymous (dN) substitutions 

per site in relation to protein secondary structure prediction of PvMSP-7E. The 

rate of dS and dN was estimated by Nei and Gojobori’s model with Jukes-Cantor 

correction (Jukes and Cantor, 1969; Nei and Gojobori, 1986). Standard error (S.E.) was 

computed with 1000 pseudosamplings bootstrap method implemented in MEGA 6 suite 

(Tamura et al., 2013). 

 

Predicted domain Nucleotides  dS ± S.E. dN ± S.E. 

α-helix I 36 0.0000 ± 0.0000 0.0608 ± 0.0310# 

α-helices II-IV 192 0.0776 ± 0.0372# 0.0040 ± 0.0035 

α-helices V-VII 108 0.0992 ± 0.0480# 0.0005 ± 0.0005 

α-helices VIII-X 156 0.0480 ± 0.0215# 0.0051 ± 0.0029 

α-helices II-X 456 0.0699 ± 0.0184### 0.0035 ± 0.0018 

Remaining non-

helical regions 
630 0.1160 ± 0.0202 0.0967 ± 0.0101 

Disorder I 30 0.0000 ± 0.0000 0.0205 ± 0.0208 

Disorder II 171 0.2023 ± 0.0867# 0.0040 ± 0.0037 

Disorder III 369 0.1116 ± 0.0250 0.1667 ± 0.0176 

*Domains are demarcated as in Figure 4.5. 

Tests of the hypothesis that dS equals dN: # p < 0.05; ## p < 0.005; ### p < 0.0001. 

 
Table	4.0.4	 Number	of	synonymous	(dS)	and	nonsynonymous	(dN)	substitutions	per	site	in	relation	to	
protein	secondary	structure	prediction	of	PvMSP-7E. 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 121 

	
	
	
	
	
	
	
	
	
	
	
Table	4.0.5	 Codon-based	analysis	of	positive	selection	in	PvMSP-7E	
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Table 4.6 Codon-based analysis of negative selection in PvMSP-7E. Five 

methods of selection tests were used to compute the negatively selected sites as 

implemented in Datamonkey web server. The table shows that the negatively selected 

sites correspond to predicted protein secondary structure. Concordant results from 2 or 

more tests are shown. Tick marks indicate significant p values based on default option 

in the Datamonkey web server.  

	
	
	
	
	
	
	
	
	
	
	
	
	
	
Table	4.60.6	 Codon-based	analysis	of	negative	selection	in	PvMSP-7E.	
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4.3.6 Recombination 

Evidence of intragenic recombination in the PvMSP-7E locus was analysed by using 

various principles implemented in the RDP package. The methods of RDP, 

GENCONV, Bootscan, MaxChi, Chimera, Siscan, and 3Seq identified evidence of 11, 

8, 8, and 1 recombination events in isolates from Tak (the year 2008-2009), Tak (the 

year 1996), Ubon Ratchathani, and Yala-Narathiwat, respectively. Importantly, at least 

half of the recombination sites (29 of 56) were spanned along the central region of the 

sequence (Table 4.7).   

 

4.3.7 Population differentiation 

Genetic differentiation between parasite populations was estimated from the fixation 

index (Fst). The fixation index lies between 0 indicates no genetic differentiation and 1 

infers two populations are substantially distinct. The Fst values of PvMSP-7E locus 

between P. vivax populations in Thailand and Colombian were displayed in Table 4.8. 

The Fst values were significantly greatest (p < 10-5) between the populations from Tak 

(regardless year of collection) and Yala-Narathiwat (21.75%), and between Ubon 

Ratchathani and Yala-Narathiwat (19.44%), suggesting genetic differentiation or 

restricted gene flow between these endemic areas. Although the Fst value between 

Ubon Ratchathani and Tak (all samples) was low (0.82%), the differences were 

statistically meaningful (p = 0.045). Furthermore, significant deviation from zero of the 

Fst values was evidenced when Tak parasite populations were analysed according to 

the collection period in relation to Yala-Narathiwat populations. Consistently, limited 

gene flow was observed between parasite populations from Ubon Ratchathani and Tak 

collected in 1996 (p = 0.018) despite a small Fst value. By contrast, no significant Fst 

value was observed between parasite populations from Ubon Ratchathani and Tak 

collected during 2008-2009, implying the gene flow had occurred. Meanwhile, genetic 

differentiation between Tak populations collected in 1996 and during 2008 and 2009 

did not deviate from zero (p = 0.108), suggesting genetic stability of parasite population 

in Tak. 
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Table	4.70.7	 Recombination	breakpoints	in	PvMSP-7E	of	Thai	isolates.		
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Table 4.8 Interpopulation variance indices of P. vivax populations in Thailand 

inferred from PvMSP-7E. The fixation index (Fst) was estimated using Arlequin 

program version 3.11(Excoffier et al., 2005). Pairwise Fst values (lower diagonal) 

between P. vivax populations and their p values by permutation test (upper diagonal). 

Dashes indicate no comparison was done. 

 

Province 
Tak 

1996 

Tak 

2008-

2009 

Tak 

(all) 

Ubon 

Rachathani 

Yala-

Narathiwat 
Colombia 

Tak 1996  0.396 - 0.018 < 10-5 - 

Tak 2008-

2009 
0.0263  - 0.108 < 10-5 - 

Tak (all) - -  0.045 < 10-5 0.036 

Ubon 

Rachathani 
0.0108 0.0075 0.0082  < 10-5 0.027 

Yala-

Narathiwat 
0.2473 0.2328 0.2175 0.1944  < 10-5 

Colombia - - 0.0070 0.0131 0.2387  

Table	4.80.8	 Interpopulation	variance	indices	of	P.	vivax	populations	in	Thaed	from	PvMSP-7E. 
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4.3.8 Phylogeny analysis  

A maximum likelihood phylogeny was constructed using the Hasegawa-Kishino-Yano 

model and gamma distribution given the evolutionary invariable yielded the lowest BIC 

score (Figure 4.6). As observed in the phylogenetic analysis in Figure 4.5, there was no 

geographical clustering pattern for the PvMSP-7E locus between the parasite 

populations from Thailand and Colombian. Tree topology showed two major clusters 

of sequences, however, the bootstrap value was relatively low. For this scenario, the 

mosaic organization in the central region of the gene is likely to arise from the recurrent 

interallelic recombination events. Hence, that could result in the phylogenetic 

homogenization of PvMSP-7E locus. 

 

4.3.9 Predicted linear B-cell and helper T-cell epitopes 

From the analysis, the majority of the B-cell epitopes predicted to lie in the central 

region of the PvMSP-7E gene (Figure 4.7). Moreover, five predominant HLA-DRB1 

haplotypes in Thai population were considered in the analysis including DRB1*0701, 

DRB*1202, DRB1*1501, DRB1*1502 and DRB1*1602. The putative CD4+ T cell 

epitopes did not a yield specific pattern, where these epitopes scattered in all domains 

of the protein. Nevertheless, amino acid substitutions in these epitopes likely to affect 

the predicted HLA-binding scores (Table 4.9). 
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Figure	4.50.1	 Maximum	likelihood	phylogenetic	tree	of	PvMSP-7E	based	on	Hasegawa-Kishino-Yano	
model	and	gamma	distributed	with	invariant	sites.	

	
	
	
	
	
	
	
	
	
	
	
	
	
 

 

 

 

 

 

Figure 4.6 Maximum likelihood phylogenetic tree of PvMSP-7E based on 

Hasegawa-Kishino-Yano model and gamma distributed with invariant sites. The 

Tree was constructed using distinct sequences of Thai and Colombian isolates (closed 

triangle) comparing with the Salvador I strain (closed circle). Bootstrap values >50% 

are shown. 
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Figure	4.70.2	 Predicted	linear	B-cell	epitopes	in	PvMSP-7E	of	the	Salvador	I	reference	strain	and	two	
clinical	isolates	from	Thailand	(APH5	and	APH31)	
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Table 4.9 Putative CD4+ T cell epitopes in PvMSP-7E of the Salvador 1 

reference sequence and two Thai isolates (APH5 and APH31) for predominant 

HLA-DRB1 haplotypes in Thai populations. The prediction was based on the 

PREDIVAC: CD4+ T cell epitopes prediction web-server with default settings 

(Oyarzún et al., 2013). Five predominant HLA-DR alleles in Thai population were 

selected in the analysis including, DRB1*1202, DRB1*1502, DRB1*0701, 

DRB1*1501, and DRB5*1602 (Romphruk et al., 1999). 

Table	9	 Putative	CD4+	T	cell	epitopes	 in	PvMSP-7E	of	the	Salvador	1	reference	sequence	and	two	Thai	 isolates	(APH5	and	
APH31)	for	predominant	HLA-DRB1	haplotypes	in	Thai	populations  

HLA Sequence Residue Domain Score 
Haplotype 

Sal 1 APH
5 

APH
31 

DRB1*
1202 FIGQSKRKI 118-127 N-terminal 92.42  +  

 FIGQSKGKI 118-127 N-terminal 85.11 +  + 

 VADNEAQRA 131-140 Central 85.42  +  

 DTDNQAQRT 131-140 Central <70 +  + 

 VGPNGQRAA 186-195 Central 82.59 +   

 VGDNGQRVA 186-195 Central 82.59   + 

 VEANGQRVA 186-195 Central 82.59  +  

 YGFAKRHNY 338-347 C-terminal 88.22 + + + 

 YTNLLKNAI 358-367 C-terminal 86.66 + + + 
        
DRB1*
1502 FLFLFSCAS 12-21 N-terminal 86.32 +  + 

 LLLLFCCAS 12-21 N-terminal <70  +  

 LDNYDADFI 111-120 N-terminal 80.92 + + + 

 EGGFVNNRT 175-184 Central 80.62  +  

 EAGLVNTKT 175-184 Central <70 +   

 ERGFVDTRT 175-184 Central <70   + 

 YEIVKNLFN 289-298 C-terminal 85.01 + + + 

 FQAEFDNFV 326-335 C-terminal 84.40 + + + 
        
DRB1*
0701 FLFLFSCAS 12-21 N-terminal 84.30 +  + 

 LLLLFCCAS 12-21 N-terminal <70  +  

 FSCASSEKL 16-25 N-terminal 87.45 +  + 

 FCCASSEKL 16-25 N-terminal 87.45  +  

 YKLSATDNS 49-58 N-terminal 81.44 + + + 
 LSATDNSEI 51-60 N-terminal 84.99 + + + 
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HLA Sequence Residue Domain Score 
Haplotype 

Sal 1 APH
5 

APH
31 

 VTGSPNGLV 165-174 Central 81.40 +   
 VTGSPGSQI 165-174 Central 79.69  +  
 ATDRPNGVV 165-174 Central <70   + 
        
DRB1
*0701 LTATPSDAN 233-242 C-terminal 80.13  + + 

 STVTPSDAN 232-241 C-terminal <70 +   
 YEYSMNPVE 280-289 C-terminal 82.32 +  + 
 YEYSMKPVE 280-289 C-terminal <70  +  
 FKKALADET 317-326 C-terminal 84.51 + + + 
        
DRB1
*1501 MKGVTGPIC 1-10 N-terminal 81.77 + + + 

 FLFLFSCAS 12-21 N-terminal 85.77 +  + 
 LLLLFCCAS 12-21 N-terminal <70  +  
 LFLFSCASS 13-22 N-terminal 82.31 +  + 
 LLLFCCASS 13-22 N-terminal 82.31  +  
 LFSCASSEK 15-24 N-terminal 80.00 +  + 
 LFCCASSEK 15-24 N-terminal 80.00  +  
 LESEAANES 90-99 N-terminal 80.85 + + + 
 LDNYDADFI 111-120 N-terminal 86.10 + + + 
 EGGFVNNRT 175-184 Central 84.19  +  
 EAGLVNTKT 175-184 Central <70 +   
 ERGFVDTRT 175-184 Central <70   + 
 VDVFKKALA 314-323 C-terminal 81.79 + + + 
 FQAEFDNFV 326-335 C-terminal 83.71 + + + 
 LDKLYDEVL 247-256 C-terminal 81.62 + + + 
 VKNLFNVGF 292-301 C-terminal 81.12 + + + 
        
DRB5
*1602 EGGFVNNRT 175-184 Central 81.03  +  

 EAGLVNTKT 175-184 Central <70 +   
 ERGFVDTRT 175-184 Central <70   + 
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4.4 Discussion 

MSP-7 in P. falciparum undergoes first proteolytic cleavage event to generate two 

protein fragments with 20-kDa (MSP720) and 33-kDa (MSP-730). Apparently, only the 

MSP-730 fragment in the C-terminal remains associated with the primary processing of 

MSP-1 (Pachebat et al., 2007). Meanwhile, the secondary proteolytic event of PfMSP-

7 derives a 19- or 22-kDa component which was detected in the MSP-1 complex. The 

cleavage sites were found to occur in the presence of glutamine residues, for instance 

between glutamine and glutamic acid, and glutamine and serine (Kadekoppala and 

Holder, 2010). Despite the association of PfMSP-7 and PfMSP-1 in the sequential 

proteolytic processing and involvement in invasion mechanism, nothing is known about 

the PvMSP-7 whether or not it undergoes the cleavage events parallel to PfMSP-7. 

Importantly, a consensus for P. falciparum subtilisin 1 (PfSUB1) cleavage site was 

discovered in the PvMSP-7E (Figure 4.8) (de Monerri et al., 2011). For this reason, 

PvMSP-7E is likely to undergo a series of proteolytic cleavage events like PfMSP-7 

and play a pivotal role in priming the merozoite prior to host cell invasion. PfSUB1 is 

known to mediate proteolytic events of several P. falciparum antigens including, MSP-

1, MSP-6, MSP-7, and serine-repeat antigen protein (SERA) to regulate merozoite for 

its invasion process (Koussis et al., 2009). 

	
	
Figure	4.50.3	 Secondary	processing	site	in	PfMSP	and	predicted	cleavage	site	in	PvMSP-7E.	

	
Figure 4.8  Secondary processing site in PfMSP and predicted cleavage site in 

PvMSP-7E. The cleavage site is represented by down-pointing triangles and amino 

acids residues between the cleavage sites are shown in parentheses after the sequences.  

 

A study has been conducted on the nucleotide diversity of PvMSP-7E in 

Colombian population, albeit sample size was small (n=31) (Garzón-Ospina et al., 

2014). In the present study, PvMSP-7E in Thai isolates have shown comparable 

sequence diversity like those in Colombian isolates. The 5’ and 3’ regions of the gene 

were rather conserved. Although the 3’ region contained more nucleotide substitutions 

than the 5’ region, the extent of polymorphism was not statistically significant (Table 
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4.2). Purifying selection pressure was observed along the 5’ and 3’ region, suggesting 

the number of synonymous and nonsynonymous substitutions could stem from the 

structural or functional constraint of the protein. Furthermore, codon-based 

identification of deviation from neutrality also evidenced the majority of the negatively 

selected codons were found in these regions. Closer looks into the predicted protein 

secondary structure,  a tight association between the protein secondary structure and the 

natural selection pressure was observed. Purifying selection seems to act in all helical 

fragments except α-helix-I, suggesting most of the α-helical structures were under the 

constraint of maintaining structure or function of the protein. Meanwhile, α-helix-I have 

been under positive selection as evidenced by the rate of dN significantly outnumbered 

dS. The putative signal peptide of PvMSP-7E encoded α-helix-I domain is likely to be 

shed from the precursor protein and remain independent with the MSP-1 complex 

(Kauth et al., 2006). However, it is still to be explored whether the N-terminal signal 

peptide would confer immunogenicity during malaria infection. Positive selection 

spanning along the 5’ signal peptide region suggesting its role in generating immune-

evading mechanism. Amino acid substitutions at residues 12, 14, 16, and 17 of the α-

helix-I domain likely to result in a change of CD4+ T-helper cell epitopes’ predicted 

scores for peptide binding to the common HLA-DRB1 haplotypes among Thai isolates 

(Table 4.10) (Romphruk et al., 1999).  

 Recombination clearly generates the PvMSP-7E nucleotide diversity in the 

central region. Despite the recombination signals distributed along the gene, most of 

the recombination breakpoints were located within the central region. Thus, a higher 

magnitude of nucleotide diversity in the central region may represent a mechanism of 

intragenic recombination between unique alleles. Closer looks into the 5’ of the central 

region, the mosaic organisation of the sequences seem to arise from the interallelic 

recombination of three parental alleles.  Meanwhile, it is noteworthy that the 3’ 

fragment within the central region might stem from the recombination events by 

dimorphic parental alleles (Figure 4.4). This genetic organization is thought to be 

derived from distinct interallelic recombination during the sexual reproduction in 

anopheline vector and translate into sequence polymorphism at this locus. It has been 

proposed that the effective vector control may contribute to a reduction in nucleotide 

diversity among parasite population (Consortium, 2017). In addition, intragenic 

recombination may have a local impact on sequence polymorphism, where it preserves 
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adaptive traits or eliminates deleterious variants (Hughes, 2008). There is a consensus 

from the sequence analysis that the N-terminal and central polymorphic region of 

PvMSP-7E spans between predicted processing sites, similar to that of reported in 

subtilisin-like protease 1 in P. falciparum (Figure 4.7) (de Monerri et al., 2011). 

Altogether these boundaries indicate the binding domains of MSP-7 to the first 

proteolytic event of MSP-1, where the C-terminal region of PfMSP-7 facilitates the 

protein-protein interaction (Kadekoppala and Holder, 2010).  

 A very high level of polar and charged amino acids such as glycine and proline 

residues was observed in the central region of the locus. In consensus, the entire central 

domain of PvMSP-7E displayed a predicted intrinsically unstructured or disordered 

protein. Despite intrinsically unstructured protein regions were also found in two 

clusters in the 5’ domain (D1 and D2), they were relatively short spanning three α-

helical domains (α-helix-II, III, and IV). Interestingly, these intrinsically disordered 

protein regions could provide a high degree of flexibility that enables the transition to 

structurally ordered regions upon functioning (Forman-Kay and Mittag, 2013; Guy et 

al., 2015). Moreover, the N-terminal of PfMSP-7 has been identified to interact with 

host P-selectin receptors (Perrin et al., 2015). P-selectin is a cell adhesion molecule that 

deposits on the host cell surface known to mediate disease severity during malaria 

infection (Combes et al., 2004; Facer and Theodoridou, 1994). This feature on MSP-7 

suggesting that the role in this family does not limit to erythrocyte invasion. Moreover, 

purifying selection operating in the N-terminal of the locus indicating the functional 

constraint present in the region.  

The intrinsically disordered region spans along the central region of the PvMSP-

7E, implying the structural plasticity is essential for modulating the molecular 

recognition or binding regions with other proteins (Guy et al., 2015). Moreover, the 

protein binding regions were also predicted to lie within the central region of this 

protein (Figure 4.5). Meanwhile, departure from neutrality test had shown the rate of 

dN higher than dS supporting the positive selection pressure acting on the central region. 

Closer looks into the central region, the positive selection signal was exclusive to just 

the 3’ domain which is the 3’-dimorphic subregion. Therefore, the 3’-dimorphic region 

not only predicted to be a binding region to the MSP-1 complex but also essential for 

the parasite to escape the host’s immune system. Previous mice challenge model was 
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conducted using MSP-7 in P. yoelii, however, it did not confer protective immune 

responses against lethal infection (Mello et al., 2004). In the present study, the amino 

acid substitutions in PvMSP-7E could potentially reduce the predicted scores for HLA-

bindings for CD4+ T helper cell epitopes and predicted scores for linear B-cell epitopes, 

predominantly within the central region. However, these findings were predicted 

bioinformatically, the immunogenicity of PvMSP-7E in natural infection remains to be 

explored.   

The malaria prevalence in Thailand has an overall decline pattern for the past 

three decades. However, the malaria cases have been fluctuating in several areas in 

Thailand, particularly those areas along the international borders including, Myanmar, 

Cambodia, and Malaysia. Analysis of sequence diversity in PvMSP-7E revealed that 

Yala-Narathiwat population has significantly lower haplotype diversity than those 

parasite populations in Ubon Ratchathani and Tak. Yala-Narathiwat, Ubon 

Ratchathani, and Tak showed 3, 19, and 34 number of haplotypes, respectively. 

Consistently, this pattern was reported in the previous population analysis in Thailand 

including, MSP-5, AMA-1, and PvTRAP (Kosuwin et al., 2014; Putaporntip et al., 

2009b; Putaporntip et al., 2010). Malaria transmission in Yala-Narathiwat used to keep 

at the minimum until a substantial increase in the past few years due to the lack of 

control strategy, resulting in bottleneck effects. It is noteworthy that, malaria 

transmission has been under control in most parts of Thailand, but transmigration of 

malaria cases is still persisting along the Thai-Myanmar and Thai-Cambodia borders. 

Thus, bottleneck effects can be envisaged among the parasite population in southern 

Thailand. Interallelic recombination is not uncommon of, as reported by previous 

malarial antigens in Thailand (Kosuwin et al., 2014; Putaporntip et al., 2009b; 

Putaporntip et al., 2010). Analysis of recombination breakpoints in PvMSP-7E among 

Thai isolates showed between 1 (Yala-Narathiwat population) to 11 (Tak population 

collected in the year 2008-2009). Importantly, the number of recombination 

breakpoints is positively correlated with the level of haplotype diversity (r=0.941, 

p=0.059), implying intragenic recombination enhances the magnitude of haplotype 

diversity. Furthermore, the non-zero recombination breakpoints in parasite population 

from Yala-Narathiwat province further justified the bottleneck effects rather than the 

sudden clonal expansion in the area. 
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 The phylogenetic relationship did not generate specific clusters belonging to the 

sequences from each malaria endemic areas in Thailand. Likewise, no unique clade was 

observed when Colombian isolates were introduced into the phylogeny analysis. 

Moreover, pairwise comparison of genetic differentiation between P. vivax populations 

in Thailand has shown significant strong population structure. Flight range of mosquito, 

cross-movement migration, and geographic distance are factors that could influence the 

genetic diversity. Meanwhile, P. vivax isolates collected during the year 1996 and year 

2008-2009 did not yield significant population differentiation. This is consistent with 

the previous study using PvTRAP as a marker in Thailand (Kosuwin et al., 2014). P. 

vivax populations in Thailand shows spatial but not temporal variation. Strikingly, the 

population differentiation between Ubon Ratchathani and Tak collected during the year 

2008-2009 revealed a low fixation index and not statistically significant, implying gene 

flow between these two parasite populations. Malaria cases in Ubon Ratchathani were 

mainly indigenous before the illegal logging occurred at a large-scale. The illegal 

deforestation in Ubon Ratchathani during the sample collection period by locals and 

migrants from other provinces could have influenced the genetic diversity of parasite 

populations in Thailand. 

 

4.5 Conclusion 

Our results have shown that the extent of sequence polymorphism in PvMSP-7E locus 

among P. vivax populations in Thailand likely to be influenced by natural selection 

pressure and intra-allelic recombination. The levels of haplotype diversity are varied 

between endemic areas in Thailand, Yala-Narathiwat provinces revealed a low number 

of haplotypes suggesting bottleneck effects. Natural selection forces acting differently 

on the locus likely to associate with its predicted protein secondary structure. The α-

helical domains are seen to be less tolerant to molecular adaptation than intrinsically 

unstructured domains. The insights gained in the present study could contribute to the 

rational design of the functional study and potential vaccine candidate.	

	
	
	
	
	



	 136 

Chapter 5  

Clinical expression profiles of a Plasmodium vivax vaccine candidate: 

merozoite surface protein 7 (PvMSP-7) 

Abstract 

The previous chapter reveals the heterogeneous genetic diversity pattern of PvMSP-7 

multigene family, suggesting not all paralogs are functionally equivalent. The precise 

roles of the PvMSP-7 paralogs have not been established, although certain of its 

orthologous genes in P. falciparum were shown to impair erythrocyte invasion. Using 

RNA-seq technology, it will channel to a better understanding of PvMSP-7 functional 

diversity by uncovering its expression profiles in natural infection. The transcriptional 

changes of PvMSP-7 paralogs through the intraerythrocytic development cycle (IDC) 

were shown using co-expression analysis. Ten field isolates present asynchronous 

parasite composition were sequenced by RNA-seq. Ten patients were divided into four 

clusters based on the principal component analysis using genome-wide expression 

profiles. Differentially expressed PvMSP-7 genes were identified through pairwise 

comparison of patients groups. The association of PvMSP-7 genes was assessed with 

cohorts of stage-regulated genes using co-expression analysis. Three PvMSP-7 

paralogs, -7A, -7F, and -7M were shown to express constitutively in all clinical isolates. 

In contrast, PvMSP-7H and PvMSP-7I are significantly upregulated in two patients 

who experienced longer patency. These two genes demonstrated a signature co-

expression with a schizont stage marker, while negatively correlated with liver stage 

and gametocyte stage markers. All lines of evidence support the developmental 

regulation of PvMSP-7 family during the IDC. The PvMSP-7A, -7F, and -7M were 

suggested to have additional functions besides host cell invasion. Therefore, the 

PvMSP-7 paralogs are not all functionally equivalent, comparatively brief expression 

of some PvMSP-7 paralogs should be a consideration in vaccine design. 
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5.1 Introduction 

In Chapter 1 (section 1.11.3), the role of MSP-7 in Plasmodium was described. This 

role in the host-parasite interaction suggests that PvMSP-7 may have potential as a 

vaccine candidate. In this chapter, the functional distinctions among PvMSP-7 paralogs 

were examined using transcriptional profiling. To date, global transcriptional analyses 

of P. vivax have been conducted using microarray (Bozdech et al., 2008) and RNA 

sequencing (Zhu et al., 2016). Both approaches produced transcriptional profiles for 

synchronized P. vivax cell cultures across the 48-h intraerythrocytic developmental 

cycle (IDC). When the transcriptional profiles of IDC-specific genes were compared 

between P. vivax and P. falciparum, expression of syntenic genes in P. vivax was 

equally distributed across the IDC, but skewed slightly to the trophozoite-schizont 

transition, while non-syntenic genes were seen to express predominantly during 

schizont-ring stage transition  (Bozdech et al., 2008). Assuming that genes involved in 

host interaction are most dynamic and most likely to be non-syntenic, these 

observations suggest the initiation of host-parasite interaction during this transition.  

Zhu and colleagues, in their RNA-seq study further refined the findings from 

microarray data. The study reveals that expression levels of highly expressed genes tend 

to peak during the late ring stage to mid schizont stage whereas, lower expressed genes 

seem to peak at the late schizont stage (Zhu et al. 2016). This pattern suggests that 

functional differences are clearly apparent in the comparison of different developmental 

stages.  

MSP-7 transcripts were previously detected in the blood-stages of four 

Plasmodium species including P. falciparum, P. vivax, P. berghei, and P. yoelii 

(Bozdech et al., 2008; Kadekoppala et al., 2010; Mello et al., 2004; Otto et al., 2014; 

Otto et al., 2010). It is currently assumed that all the MSP-7 paralogs have the similar 

transcriptional profile across the intraerythrocytic developmental cycle. The present 

study aims to investigate the MSP-7 expression pattern directly in the clinical isolates. 

This is essential in vaccine design because malaria confers stage-specific immunity 

(Cohen, 1979). The constitutive expression of a malaria antigen is likely to target 

different life stages of the parasite, therefore, provide a larger coverage to elicit malaria 

immune responses.    
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Recently, three clinical field isolates,  composed of diverse parasite life stages, 

suggested that gene expression profiles are remarkably similar across infections (Kim 

et al., 2017), which the researchers attributed to the dominant and homogenizing effect 

of asexual stage gene expression. One of the three isolates had a higher proportion of 

gametocytes, but although a few gametocyte genes were found to be significantly 

enriched such as Pfs25, its pattern of gene expression was not significantly different 

from the two other isolates (Kim et al., 2017). However, with only three isolates, the 

study has insufficient power to draw a conclusion, although it does demonstrate the 

feasibility of transcriptional profiling direct from the blood. To examine the gene 

expression dynamics of all MSP-7 genes in P. vivax clinical isolates, and so infer 

functional differences between paralogs based on distinct patterns of developmental 

regulation, ten vivax malaria patients were recruited from the field and generated P. 

vivax RNA-seq data from blood samples.  

Co-expression analysis integrates the differential gene expression data between 

two conditions to identify the potential gene clusters. The clusters provide valuable 

indications on the genes with unknown biological functions (Dam et al., 2017)   . 

Construction of gene expression clusters with the focus on PvMSP-7 genes could, 

therefore, provide some putative functions of this family. This approach has been 

widely applied to study disease-associated markers, to the identification of P. 

falciparum genes responsible for drug resistance mechanisms and parasite survival 

(Subudhi et al., 2015). This study used co-expression analysis to elucidate the novel 

function of Cytochrome C heme-lyase in P. falciparum, based on its transcriptional 

profile, which clustered with a long chain fatty acid elongation enzyme, an 

aquaglyceroporin protein, and an acyl-CoA synythetase, which have known functions. 

Hence, co-expression analysis suggested that the Cytochrome C heme-lysae might play 

a significant role in osmotic protection during merozoite and ring stage, and therefore, 

might be a valid drug target (Subudhi et al., 2015). Another study utilised 53 time-

points of four intraerythrocytic development cycles in P. falciparum  (Yu et al., 2013). 

The analysis identified ten clusters with potential functions linked to DNA replication, 

adhesion to the host surface, and transcriptional regulation. For instance, the analysis 

found PFD0885c; a conserved Plasmodium protein clustered with three other genes 

SIP2, MAL8P1.153, and MSP-9 which potentially play a similar role in transcriptional 

regulation (Yu et al., 2013).  
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Our understanding of gene structure and allelic diversity of MSP-7 multigene 

family in P. vivax has been described in population genetic studies. However, no studies 

have addressed the extent of transcription diversity of PvMSP-7 family in natural 

infection. In the study, RNA sequencing was used to profile the gene expression 

patterns of ten vivax-malaria patients present different proportion of parasite life stages. 

In the present study, gene expression patterns of PvMSP-7 and co-expression with 

developmentally regulated markers were revealed. Ten patients were divided into four 

groups based on the genome-wide expression profiles and characterised the 

differentially expressed genes (DEGs) between each group. The DEGs were subjected 

to co-expression analysis, and multiple co-expressed gene clusters were identified. 

Using the co-expression approach, the distinct role of PvMSP-7 genes was described, 

potentially undertake in different developmental stages. Critically, the work provides 

new insight into which PvMSP-7 paralogs are highly expressed and should be the 

primary focus of malaria subunit vaccine development.  
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5.2 Methodology 

	
5.2.1 Study design and sample processing 

Ten patients were recruited from two malaria endemic areas in Thailand. Of these, five 

samples were collected from Ubon Ratchathani province located Northeast of Thailand 

along the border between Thailand and Cambodia and five samples from Yala province 

located South of Thailand along the border between Thailand and Malaysia. They were 

asked to provide information on the days of fever they had (Table 5.1). The ten patients 

involved in the study were recruited voluntarily; blood specimens were collected after 

obtaining informed consent from the participants and all research procedures were 

performed in accordance with guidelines approved by the Institutional Review Board 

in Human Research of Faculty of Medicine, Chulalongkorn University, Thailand with 

registered number IRB No. 104/59. Patient blood was screened with a light microscope 

by an experienced laboratory technician, then around 600µL of venous blood samples 

were collected from P. vivax-infected patients. Blood specimens were preserved in 

RNAlater® solution (Ambion, Grand Island, NY, USA) with a 1:1 ratio. Additionally, 

200µL of fresh blood samples without any preservative were spotted onto the 

WhatmannÔ 3MM ChR 3 filter paper (Cat. No. 3030917, Maidstone, England). 

Molecular diagnosis of all samples collected was according to the methodology 

described in Chapter 2. All blood samples were stored at -20°C until processed. RNA 

was extracted from 500 ul of blood preserved in RNALater® using a QIAamp RNA 

blood mini kit (Qiagen, Hilden, Germany). All procedures were processed as per 

manufacturer’s recommendations. First, the venous blood sample was mixed with 

buffer RLT. Then, the sample was vortexed with β-mercaptoethanol and centrifuged at 

5000 rpm for an hour at 4°C. The supernatant was transferred into the RNeasy® spin 

column. The column was washed two times with Buffer RW1. Finally, the RNA was 

eluted with to 100 uL of elution buffer. RNA samples were quantified using a 

NanoDrop spectrophotometer (NanoDrop Technologies, Delaware, USA) and Qubit® 

3.0 fluorometer (Thermo Fisher Scientific, Waltham, USA) and stored at -80°C. 
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Table	5.0.1	 Ten	patients	diagnosed	with	P.	vivax	infection	were	recruited	in	the	study	from	two	malaria	
clinics	in	Thailand:	Ubon	Ratchathani	and	Yala 

Table 5.1 Ten patients diagnosed with P. vivax infection were recruited in the 

study from two malaria clinics in Thailand: Ubon Ratchathani and Yala. The age 

of the patient varied from 14 to 50 years old. Information regarding days of patency 

was noted when patients informed the medical officers during their visit.  

Sample Age (years) Gender Province 
Days of 

patency 

UBT3086 50 Male Ubon Ratchathani 2 

UBT3087 None None Ubon Ratchathani 3 

UBT3089 41 Male Ubon Ratchathani 2 

UBT3090 14 Male Ubon Ratchathani 2 

UBT3091 37 Male Ubon Ratchathani 3 

YL3111 26 Female Yala 2 

YL3112 45 Male Yala 2 

YL3113 15 Male Yala 7 

YL3114 30 Female Yala 2 

YL3115 46 Female  Yala 7 

 

 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 142 

5.2.2 RNA sequencing  

Ten RNA samples were treated with DNase, followed by library preparation using 

Epicentre Globin-Zero Gold kit to deplete rRNA and globin transcript. The quality of 

the libraries was assessed by Agilent 2100 Bioanalyser. The RNAs appeared to have 

been degraded as smearing observed in the Bioanalyzer traces. Despite the degradation 

of RNAs, library preparation proceeded with Globin-Zero Gold kit, which is able to 

process degraded RNA effectively (Zhao et al., 2018). RNA-seq libraries were prepared 

at the Centre for Genomics Research, the University of Liverpool using the NEBNext 

Ultra Directional protocol. The modified Globin-Zero protocol began with an initial 

input of 100ng RNA. The RNA-seq libraries were sequenced on an Illumina HiSeq4000 

platform to generate approximately 30 million paired-end reads of 150 bp for each 

sample. The resulting RNA-seq data have been deposited in the ArrayExpress database 

at EMBL-EBI under accession number E-MTAB-6753 

(www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6753). 

	

5.2.3 Bioinformatics processing 

The initial processing and quality assessment of the raw reads begun with base calling 

and de-multiplexing of indexed reads using CASAVA version 1.8.2 (Illumina) to 

produce ten samples from one lane of sequence data in fastq format. The Illumina 

adapter sequences were trimmed from the raw fastq files by using Cutadapt version 

1.2.1 (Martin, 2011). The option “-O 3” was specified to trim off the 3’ end of any reads 

that matched to the adapter sequence over at least three bp. The reads were further 

trimmed to remove low-quality bases, using Sickle version 1.200 with a minimum 

window quality score of 20. Before mapping the filtered reads to the reference genome, 

reads shorter than ten base pairs (bp) were removed. Subsequently, all the filtered reads 

were mapped to the human genome (GRCH37) using TopHat2 (Kim et al., 2013). The 

unmapped reads were then aligned to the PvP01 reference genome (Auburn et al., 2016) 

using TopHat2. TopHat2 is a sophisticated aligner designed specifically for RNA-seq 

data where it can detect splice junction and generate splice alignment. Short reads were 

split into smaller fragments and mapped independently. The segment alignments were 

then joined together in the final phase to produce end-to-end reads alignments. Paired-
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end reads in the FASTQ file were used to generate the read alignment. In the alignment, 

mapped reads that have more than two mismatches were discarded and –read-realign-

edit-dist 0 was activated to map every read against genome that is detected by the 

aligner. These parameters were able to address the problems of reads spanning multiple 

exons and improve the accuracy of spliced mapping in TopHat2. Following the 

alignment of reads to the P. vivax genome, the read counts of each gene were counted 

with featureCounts (Liao et al., 2013). The read counts estimated by dividing the total 

number of mapped reads to the length of the gene then scaled the estimates to one 

million. The genome-wide coverage of each sample was determined using Qualimap 2 

(Okonechnikov et al., 2015). 

 

 5.2.4 Differential genes expression 

The read counts were estimated by featureCounts (Liao et al., 2013) as input to DESeq2 

(Love et al., 2014). DESeq2 is a Bioconductor package implemented in R to identify 

the differentially expressed genes. An assumption was made about the distribution of 

read counts where the mean of read count was equal across each sample. The program 

identifies differentially expressed genes (DEGs) by normalising the read counts per 

million (CPM). Genes with a false discovery rate (FDR) threshold below 0.05 were 

considered significantly differentially expressed. Expression correlations were 

calculated using the normalised read counts. The correlation estimation was performed 

to assess the equality of the gene expression profile among ten samples. The high 

correlation coefficient indicates the reproducibility and reliability of the gene 

expression dataset. All expression values were added one, then log-transformed (log2) 

to generate more equal variance with low read counts. Pearson correlation was 

estimated between each sample in R version 3.4.3 and corrplot (Taiyun and Viliam, 

2017). Principal component analysis (PCA) was performed using the genome-wide 

CPM per gene derived from DESeq2 in ten patients. The plot formed four clusters of 

individuals which subsequently used to estimate the DEGs in pairwise comparison 

manner (Figure 5.1). The analysis was also conducted using EdgeR (Robinson et al., 

2010) and Cuffdiff (Trapnell et al., 2012). PCA plots were generated using the genome-

wide expression values derived from EdgeR and Cuffdiff (Figure 1). Based on Figure 

5.1, EdgeR algorithms clustered ten patients into four groups consistent with DESeq2. 
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However, in Cuffdiff the patients were scattered throughout the plot and did not form a 

specific pattern. This could stem from the different approaches used in each algorithm. 

Cuffdiff uses transcript-based method whilst, DESeq2 and EdgeR use negative binomial 

model. A recent study has reported the poor performance of Cuffdiff in detecting DEGs 

owing to the uncertainty of read count using the conservative approach (Seyednasrollah 

et al., 2013). For this reason, the results from Cuffdiff were not included in the study. 

Moreover, the DEGs identified using DESeq2 and EdgeR did not deviate significantly. 

As the overall sensitivity of DESeq2 and EdgeR seemed comparable, only the results 

from DEseq2 were used for downstream analyses. 
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Figure	5.0.1	 Principal	component	analysis	(PCA)	plots	generated	using	
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5.2.5 Co-expression analysis 

Ultimately, co-expression analysis was used to  identify genes co-regulated with MSP-

7 that with clear functions that could be used to infer the potential biological functions 

of PvMSP-7 genes during a specific developmental stage. coseq, an R-based package 

was used to estimate the clusters of co-expressed genes (Rau and Maugis-Rabusseau, 

2017). The DEGs identified in DESeq2 were imported into coseq for identifying 

clusters of co-expressed genes. The pipeline relies on the Gaussian mixture models with 

clustering all the genes based on the proportion of normalised counts in each expression 

profile. The data were fitted with a Gaussian mixture model on either arcsine- or logit-

transformed normalised profiles. One hundred clusters were tested in each 

transformation with the following commands; arcsin_transformed <-coseq(counts, 

K=2:100, model=”Normal”, transformation=”arcsin”) and logit_transformed <- 

coseq(counts, K=2:100, model=”Normal”, transformation=”logit”). To choose 

accurately between two transformation models, coseq calculated the corrected 

integrated completed likelihood (ICL) values from these two models, and the number 

of clusters and preferred model-transformation is selected via the highest corrected ICL 

value.    

 

5.2.6 Enrichment analysis and pathway identification  

Gene ontology analysis was used to investigate the enriched functions in each cohort 

of co-expressed genes. The identification was carried via PlasmoDB webserver release 

35 (Aurrecoechea et al., 2008). The PlasmoDB database has plugins Gene Ontology 

(GO) (Ashburner et al., 2000) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa and Goto, 2000) which used to identify the biological processes and 

generate pathway maps for each cluster of genes. Heatmaps were generated based on 

the DEGs from each analysis. The heatmaps were divided into several sectors according 

to the clades generated in dendrograms and genes contained inside each sector were 

subject to gene ontology enrichment analysis. GO terms and pathways were considered 

significant such that the adjusted p-value below 0.05. Only unique and non-redundant 

biological and functional information was retained in the downstream interpretations. 

The GO terms derived from the same set of genes were removed from the analysis. 
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5.2.7 SNP discovery using RNA-seq samples 

The expression profiles of PvMSP-7 were conducted extensively using differential gene 

expression and co-expression analysis. It is equally interesting to address whether 

genetic variants account for differences in gene expression changes across geographical 

locations. SNP calling was used to address the question concerning the association of 

geographical locations to gene expression profiles. Each RNA-seq sample was 

subjected to SNP calling using GATK version 3.7 (McKenna et al., 2010). Reads in 

FASTQ files were processed bioinformatically and mapped to the PvP01 reference 

genome as explained in section 5.2.3. The resulting BAM files were used as the inputs 

for SNP calling based on the GATK’s best practice pipeline. The best practice pipeline 

was verified by GATK developers using large-scale human dataset and made SNP 

calling with RNA-seq technically possible and reliable. There are certainly some 

limitations present in the pipeline as the sensitivity of SNP calling can be influenced by 

short-reads, read depth, and complex regions. However, some sophisticated aligner 

such as TopHat2 (Kim et al., 2013) is designed to address the problem of spliced reads 

alignment. In the SNP calling pipeline, Split“N”Trim was used in the first step of 

processing. RNA reads were gapped by intronic regions where “Ns” filled the regions. 

For this reason Split“N”Trim was used to split reads into exon segments and remove 

the “Ns” to prevent false positives. Local re-alignment was performed to correct 

mismatches contribute by indels. Base recalibration was activated to re-estimate base 

qualities to generate more accurate base quality scores for SNP calling. Lastly, SNP 

calling was executed using HaplotypeCaller in GATK with the capability to distinguish 

the intron-exon split regions (McKenna et al., 2010). All variant sites with a Phred-

scaled confidence threshold of at least 20 were output to an initial variant dataset in 

VCF format. In total, 68,258 SNPs were identified in the initial variant calling. Hard 

filters were used to filter the resulting dataset, to avoid false-positive variants. The filter 

clusters specific to RNA-seq analysis was performed with the default setting. Filter 

cluster of at least three SNPs within a window of 35 bases was applied, to improve 

sensitivity and specificity of detecting real variant. Variant sites with Fisher strand 

values of at least 30 were retained in the dataset. Fisher strand value is useful to detect 

any strand bias such that only one variant at a specific site observes either on the 

forward or reverse strand. Variant sites with a confidence value below two were 

discarded. The confidence values were determined by the Phred score and the depth of 
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the samples.  However, as the criteria of hard filtering were very restrictive, some real 

variants could have been filtered in the process. The final dataset contained 42,988 

high-quality SNPs that used in the downstream analyses.   

 

5.2.8 Population analyses 

The approaches used for the population analyses are similar to those described in 

section 2.2.15. The phylogenetic associations between ten samples were assessed using 

PCA and phylogenetic analyses based on 42,988 biallelic SNPs derived from SNP 

calling. PCA plot was generated using SNPRelate (Zheng et al., 2012) implemented in 

R environment version 3.3.1 (R, 2016). The top two principal components were used 

to plot the PCA. Phylogeny trees were further used to infer the population structure of 

ten samples. Variants of ten samples contained within the VCF file were concatenated 

into a single FASTA file using VCF-kit (Cook and Andersen, 2017) and used as an 

input for phylogenetic analyses. Maximum likelihood tree was generated using RAxML 

with the GTR substitution model (Stamatakis, 2014). The optimum substitution model 

was determined by jModelTest, version 2.0 (Posada, 2008). A Neighbour-joining tree 

was constructed using MEGA 7.0 (Kumar et al., 2016) based on the maximum 

composite likelihood method.  
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5.3 Results 

 

5.3.1 Patient summary information   

Across 10 RNA samples, RNA-seq generated an average of 30 million paired-end reads 

with 150 bp insert sizes (Table 5.2). As the samples were collected from clinical 

patients, the reads were aligned to the human genome (GRCh37) and subsequently used 

the unmapped reads to align to the P. vivax P01 reference genome (Auburn et al., 2016). 

More than 70% of reads aligned to the human genome, while reads mapped to P. vivax 

ranged between 0.78 – 22.38%. The ten samples showed mean genome coverage of 

between 1.07X – 78.52X. UBT3089 has the highest mean coverage; 78.52X, while five 

samples had a level of coverage below 10X.  
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5.3.2 Sequencing metrics 

Table 5.2 Summary statistics of mapping for the ten samples on to human 

genome GRCh37 and P. vivax P01 genome. The illumina adapter sequences were 

trimmed using Cutadapt version 1.2.1. The reads were further trimmed to remove low-

quality bases, using Sickle version 1.2 with a minimum window quality score of 20. 

Genome-wide mean coverage was calculated using Qualimap 2.  

Sample Total read 

pair 

number1 

Pair reads 

mapped to 

human 

Percentage 

of reads 

mapped to 

human 

Pair 

reads 

mapped 

to P. 

vivax 

Percentage 

of reads 

mapped to 

P. vivax 

Mean 

Coverage 

1 UBT3086 29,157,609 24,317,087 83.40 346,899 1.19 1.82 

2 UBT3087 36,549,438 31,324,232 85.70 977,753 2.68 17.67 

3 UBT3089 30,083,802 24,588,757 81.73 3,035,144 10.09 78.52 

4 UBT3090 30,397,809 23,639,952 77.77 3,267,128 10.75 17.59 

5 UBT3091 28,550,673 19,658,903 68.86 6,388,456 22.38 42.07 

6 YL3111 29,500,938 27,008,110 91.55 580,181 1.97 3.18 

7 YL3112 32,578,915 28,978,835 88.95 913,421 2.80 4.95 

8 YL3113 26,853,921 23,042,788 85.81 209,249 0.78 1.07 

9 YL3114 31,860,822 28,820,223 90.46 350,337 1.10 1.88 

10 YL3115 32,987,343 25,882,012 78.46 3,469,628 10.52 20.13 

1After adapter and quality trimming  
Table	5.0.2	 Summary	statistics	of	mapping	for	the	ten	samples	on	to	human	genome	GRCh37	and	P.	
vivax	P01	genome 
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5.3.3 Estimation of transcript abundance values 

The sequencing reads were mapped to the human reference genome (GRCH37). The 

unmapped reads were subsequently aligned to the P. vivax P01 reference genome using 

featureCounts (Liao et al., 2013). In total, the mapped reads were counted for 6642 

genes in ten samples to reveal the expression profiles. The read count of each gene was 

fitted to the negative binomial distribution to calculate the sample variance. This step 

is important to account for the read count bias in the differential expression analysis 

(Yoon and Nam, 2017). A dispersion estimates was generated by measuring the gene 

count of all samples. In Figure 5.2, a smooth red line was observed implying the average 

expression strength. Therefore, it is sensible to assume the read count corresponds to 

each gene is gene-specific variation.   

	
	
	
	
 
	
	
Figure	5.0.2	 Principal	component	analysis	(PCA)	plots	generated	using	three	approaches.	

	
	
 
	
 
 
	

	

	

	

Figure 5.2 Dispersion estimates derived from DESeq2 and gene count 

measures between ten clinical samples. The black dot indicates the dispersion of each 

gene, the red line shows the dispersion of all samples, and the blue dot shows the 

corrected value for the gene.  
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5.3.4 Correlation of each RNA-seq sample 

To evaluate variation in data quality among isolates, Pearson’s correlation coefficient 

(r) was calculated between the corresponding transcript abundance values for each 

sample (Figure 5.3). The gene-level estimates after DESeq2 normalisation showed a 

high degree of robustness as the variability evidenced by the Pearson’s correlation 

between each isolate ranging from 0.59 to 0.91. Although a reduction in the correlation 

between sample UBT3090 and UBT3086 (r=0.59) was observed, in the downstream 

analyses this sample was grouped with other samples. Thus, individual variation among 

a group would not influence the results. The estimation was based on a set of 6,642 

genes in ten samples.  

	
	

	

	

	

Figure	5.0.3	 Correlation	of	gene	expression	patterns	between	each	sample	estimated	based	upon	
Pearson’s	correlation	coefficient	(r).	

	

	

	

 

Figure 5.3 Correlation of gene expression patterns between each sample 

estimated based upon Pearson’s correlation coefficient (r). The similarity was 

determined by the log2 transformation of normalised raw read counts derived from 

DESeq2. Highest correlation obtained was 0.91 whilst, the lowest was 0.59. Total read 

counts of 6,642 genes were used in the estimation. 
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5.3.5 Principal component analysis (PCA) 

Clinical isolates infected with P. vivax often contain mixture a composition of parasite 

developmental stages. As samples were collected from the malaria clinic in the rural 

areas, microscopic slides were not preserved. Regrettably, the proportions of parasites 

developmental stages from microscopic slides were unable to be determined. Therefore, 

the relative proportions of parasite stages were characterised indirectly, using genome-

wide expression profiles. Ten patients were separated into groups based on a principal 

component analysis of transcript abundance values. The principal component analysis 

was independent of age and days of fever. From the analysis, ten patients were clustered 

into four distinct groups using the expression profiles of 6,642 genes derived from the 

DESeq2 package (Figure 5.4). The groups were labelled from one to four with the 

respective colours. Interestingly, two patients that both experienced longer patency (i.e. 

seven days) clustered in Group 4. Days of fever experienced by the patients solely relied 

on the conversation during their visit to the malaria clinic. Patients clustered in Group 

1 to Group 3 had fever ranging from two to three days. As four distinct clusters 

separating ten patients were observed, it was of interest to know the genes that are 

significantly differentially expressed between each group, and if these could be used to 

infer the developmental state of the parasite population in a given sample, and if this 

had a specific relationship with expression of 13 PvMSP-7 paralogs. Differential gene 

expression between each group was performed in a pairwise manner. From the 

analyses, the highest number of DEGs were observed between Group 3 and Group 4, 

supporting the robustness of the data from asynchronous parasites indicating the 

expression changes between patients experienced shorter and longer days of patency.  
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Figure	5.0.4	 Principal	component	analysis	(PCA)	of	ten	patients	based	on	genome-wide	expression	
profile	(6,642	genes).	

	

	

	

	

	

	

 

Figure 5.4 Principal component analysis (PCA) of ten patients based on 

genome-wide expression profile (6642 genes). Patients were divided into four groups 

based on the PCA. Each axis represents a principal component (PC1 and PC2) with 

42% and 27% of total variance, respectively. The principal components were calculated 

from normalised read counts implemented in DESeq2. Each dot represents an 

individual, and the colour is assigned according to the groups (Group 1: sky blue, Group 

2: pink, Group 3: yellow, and Group 4: light green).    
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5.3.6 PvMSP-7 expression profiles 

To investigate the expression levels of 13 PvMSP-7 paralogs in ten patients, the 

normalised read counts from DESeq2 were manually retrieved and plotted a heat map 

(Figure 5.5). From the heatmap, only group 4 patients showed a distinct PvMSP-7 

expression profile, consistent with the PCA plot where group 4 patients formed a 

distinct cluster. The abundance of 13 PvMSP-7 paralogs was evaluated, they seemed to 

have varying expression patterns in ten patients. Interestingly, PvMSP-7A, -7F, and -

7M were seen to express constitutively in all patients whereas, PvMSP-7H and -7I have 

higher expression profiles in the two patients experienced longer days of patency. A 

closer look at the log2 transformed expression values in ten patients, PvMSP-7A, -7F, 

and -7M showed higher abundance compared to other PvMSP-7 paralogs (mean 

expression value=7.76, 7.19, and 6.28). The mean expression values of PvMSP-7H and 

-7I were 4.03 and 3.58. On the other hand, other PvMSP-7 paralogs (-7B, -7C, -7D, -

7E, -7G, -7J, -7K, -7L) were found to have relatively low expression levels with mean 

below 3.24.   

To check whether PvMSP-7 paralogs are expressed significantly different 

between each group of patients, differential gene expression analysis was performed. 

PvMSP-7H and -7I was found to be significantly differentially expressed when Group 

4 patients were involved in the pairwise analysis (S5.1). In addition, PvMSP-7L, -7K, 

and -7C were also found to be differentially expressed between Group 1 and Group 4. 

However, pairwise differential genes expression analysis between Group 1, Group 2, 

and Group 3 did not implicate PvMSP-7. 
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Figure	4.50.5	 13	PvMSP-7	paralogue	expression	profiles	in	ten	patients 

 

 

 

 

 

 

 

Figure 5.5 13 PvMSP-7 paralogs expression profiles in ten patients. The 

normalised reads from DESeq2 were log2 transformed. The clustering on the X-axis of 

the dendrogram shows the similarity of PvMSP-7 expression profile between patients. 

The branching patterns in the dendrogram organised Group 4 patients into a group. For 

the heatmap, red indicates low expression level, and black indicates high expression 

level. Group of patients is labelled in different colours underneath the dendrogram 

(Group 1: sky blue, Group 2: pink, Group 3: yellow, and Group 4: light green).    
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5.3.7 Heat map of differentially expressed genes  

Differential expression analysis was performe for the four patient groups identified by 

the PCA, to identify which transcripts uniquely defined these groups, and how this 

might relate to their MSP-7 and their developmental state. From the heat map in Figure 

5.5, PvMSP-7H and -7I are highly expressed in Group 4 patients, suggesting PvMSP-

7 paralogs could be specifically expressed at a particular developmental stage. Since 

the question relates to PvMSP-7 and only comparisons involving Group 4 showed a 

significant difference in PvMSP-7 expression, DEGs unique to Groups 1-3 were not 

evaluated in detail. 

To illustrate the DEGs expression patterns between Group 3 and Group 4, 

Group 2 and Group 4, and Group 1 and Group 4, heatmaps were plotted in Figure 5.6 

to 5.8. The heatmaps were divided into four or five sectors, grouping transcripts with 

similar expression profiles according to the dendrograms. Then, gene ontology 

enrichment analysis was performed on each sector. The genes in each sector were 

submitted to the PlasmoDB webserver release 35 (Aurrecoechea et al., 2008) to predict 

biological processes,  molecular functions, and metabolic pathways.  

In total 1493 DEGs were identified between Group 3 and Group 4 (S5.1). 

Expression profiles for these genes are plotted in a heat map (Figure 5), which shows 

that the five samples separate into two distinct clades on the X-axis of the dendrogram 

(Figure 5.6). Individual transcripts arranged on the Y-axis dendrogram have been 

subdivided according to the cladistic structure; close inspection of the transcripts in 

sectors one (n=252) and two (n=456) shows that most of these transcripts are 

downregulated in Group 4. Gene ontology analysis was performed on each sector 

showed that GO terms associated with transcripts in sector one and two are enriched 

for functions relating to RNA binding, nucleic acid binding, ATP-dependent peptidase 

activity, helicase activity, tRNA processing, nitrogen compound metabolic process, and 

RNA metabolic process. Genes in sector four (n=192) were upregulated in Group 3 

patients. Significantly enriched GO terms associated with these transcripts relate to 

macromolecular complex, eukaryotic translation initiation factor 3 complex, 

chaperonin-containing T-complex, single-organism catabolic process, small molecule 

metabolic process, protein folding, and translational initiation. Interestingly, genes in 

sector three (n=403) and five (n=190) were had higher expression values in Group 4 
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patients. The GO terms associated with these transcripts related to the rhoptry, cell 

surface, protein-DNA complex, nucleus, regulation of metabolic process, DNA 

binding, and protein binding. Five PvMSP-7 genes; -7K, -7I, -7H, -7C, and -7L were 

seen upregulated in Group 4. In summary, most of the genes expressed to a significantly 

greater extent in Group 4 relative to Group 3, are involved in erythrocyte invasion, 

which is consistent with the role of PvMSP-7 described previously.  

351 DEGs were identified in the comparison of Group 2 and Group 4 (S5.1). 

Again, the patients of each group separate clearly a heat map (Figure 5.7). Subdivision 

of the DEGs comprising the heatmap into five sectors. Transcripts within sectors one 

(n=99) and two (n=49) were associated for GO terms for Maurer’s cleft, origin 

recognition complex, host cell cytoplasm part, merozoite dense granule, and 

phosphopyruvate hydratase complex, but expression profiles in these sectors are not 

distinct in the two patient groups. By contrast, genes in sectors three (n=47) and four 

(n=142) are downregulated in Group 4 patients. These are associated with GO terms 

for purine metabolism pathway and host cell surface binding. No significant enrichment 

terms were detected in sector 5.  

251 DEGs were identified in the comparison of Groups 1 and 4 (S5.1). Figure 

5.8 shows that the two patient groups had distinct expression profiles. In sector one of 

the heat map, most of the genes have lower expression in sector four (n=125). 

Functional terms associated with these transcripts relate to the cell surface, Maurer’s 

cleft, host cell surface binding, and uridylyltransferase activity. The precise genes that 

are responsible for this cell surface association are reticulocyte binding surface protein 

(PvP01_00004240), tryptophan-rich protein (PvP01_0504200), small heat shock 

protein HSP20 (PvP01_0518800). In sector two (n=71), expression levels are higher in 

Group 1 patients. The GO terms associated with these transcripts are crystalloid, cell 

surface, and host cell cytoplasm part. Sector three (n=22) and sector four (n=33) showed 

higher expression in group four patients. The predicted functional terms associated here 

are related to cell component, Maurer’s cleft, rhoptry, cell surface, and proteolysis.   
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Figure	4.50.6	 Genes	differentially	expressed	(DEGs)	between	Group	3	and	Group	4	(n	=	1493	

Figure 5.6 Genes differentially expressed (DEGs) between Group 3 and Group 

4 (n = 1493). The heatmap was divided into five sectors. Significance GO terms and 

KEGG pathways in each sector are shown on the right. GO terms and KEGG pathways 

achieved adjusted p-value<0.05 were deemed significance from the PlasmoDB 

database. Data was generated from the log2 transformation of normalised reads in 

DESeq2. The colour scale represents the expression level of DEGs such that, red refers 

to lower expression while black refers to a higher expression. Hierarchical clusters of 

patients are represented by a vertical dendrogram on the X-axis. Group of patients is 

labelled in different colours underneath the dendrogram (Group 3: yellow and Group 

4: light green).      
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Figure	5.0.7	 Genes	differentially	expressed	between	Group	2	and	Group	4	(n	=	351).	

	

	

	

	

	

 

 

 

 

 

Figure 5.7 Genes differentially expressed between Group 2 and Group 4 (n = 

351). The heatmap was divided into five sectors. Significance GO terms and KEGG 

pathways in each sector are shown on the right. GO terms and KEGG pathways 

achieved adjusted p-value<0.05 were deemed significance from the PlasmoDB 

database. Data was generated from the log2 transformation of normalised raw reads in 

DESeq2. The colour scale represents the expression level of DEGs such that, red refers 

to lower expression while black refers to a higher expression. Hierarchical clusters of 

patients are represented by a vertical dendrogram on the X-axis. Group of patients is 

labelled in different colours underneath the dendrogram (Group 2: pink and Group 4: 

light green).      
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Figure	5.0.8	 Genes	differentially	expressed	between	Group	1	and	Group	4	(n	=	251).	

	

	

	

	

	

	

 

 

 

Figure 5.8 Genes differentially expressed between Group 1 and Group 4 (n = 

251). The heatmap was divided into four sectors. Significance GO terms and KEGG 

pathways in each sector are shown on the right. GO terms and KEGG pathways 

achieved adjusted p-value<0.05 were deemed significance from the PlasmoDB 

database. Data was generated from the log2 transformation of normalised raw reads in 

DESeq2. The colour scale represents the expression level of DEGs such that, red refers 

to lower expression while black refers to a higher expression. Hierarchical clusters of 

patients are represented by a vertical dendrogram on the X-axis. Group of patients is 

labelled in different colours underneath the dendrogram (Group 1: sky blue and Group 

4: light green).      
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5.3.8 Co-expression analysis 

From the differential gene expression analysis, at least two PvMSP-7 paralogs (7H and 

7I) were found significantly upregulated in Group 4 patients who experienced longer 

patency. This suggests that these PvMSP-7 paralogs could be developmentally 

regulated. Conversely, constitutive expression of three PvMSP-7 paralogs (-7A, -7F, 

and -7M) also indicates that functional distinctions exist between PvMSP-7 paralogs. 

To explore this further, and to identify other, stage-specific markers that were 

differentially expressed in the same manner as PvMSP-7H and PvMSP-7I, co-

expression analysis was applied using the coseq package to cluster the expression 

differences observed between Group 3 and Group 4, Group 2 and Group 4, and Group 

1 and Group 4 respectively. The analysis robustly identified DEG cohorts that were 

significantly co-expressed, that displayed the same transcriptional profile across the 

patient samples.  

Differential expression analysis between Group 3 and Group 4 identified 1493 

DEGs. These genes were used to construct the co-expression clusters (Figure 5.9). The 

analysis formed 14 clusters, of which cluster 1 contained PvMSP-7K, -7I, 7H, -7C, 

which were upregulated in Group 4 patients (Figure 5.9a, Supplementary Figure 1) 

while, PvMSP-7L increases found in cluster 13 (Figure 5.9b). The log-fold change of 

these five PvMSP-7 genes in Group 4 relative to Group 3 patients ranging from 3.64 - 

6.45 (-7K; log-fold change = 4.54, -7I; log-fold change = 4.21, -7H; log-fold change = 

4.60, -7C; log-fold change = 6.48, -7L; log-fold change = 3.64). Interestingly, they are 

co-expressed with several stage-specific markers with known function in erythrocyte 

invasion, such as early transcribed membrane protein (ETRAMP, PvP01_0618300), 

schizont egress antigen-1 (SEA1, PvP01_0607000), rhoptry neck protein 4 (RON4, 

PvP01_0916600) plasmepsin V (PMV, PvP01_1231100), merozoite organizing protein 

(MOP, PvP01_0715400), and rhoptry neck protein 5 (RON5, PvP01_0517600). Other 

stage markers were identified in other clusters including, gamete antigen 27/25 

(PvP01_0422700), sporozoite and liver stage tryptophan-rich protein (TryThrA, 

PvP01_0532600), and liver-specific protein 3 (PvP01_0405000). Two high expression 

genes that co-expressed with these stage-specific markers are shown in the Figure 5.9c, 

5.9d, and 5.9e, such as tryptophan-rich protein (TRAG36, PvP01_0119200), 

Plasmodium interspersed repeat (PIR, PvP01_0816000), heat shock protein 70 (HSP70, 
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PvP01_0515400), Plasmodium exported protein (EXP, PvP01_0300700), 

glyceraldehyde-3-phosphate dehydrogenase (GADPH, PvP01_1244000), and 

erythrocyte membrane-associated antigen (EMAA, PvP01_0103700). In Figure 5.9c, 

12 tryptophan-rich proteins and 10 PIR proteins were co-expressed in the clusters. 

Pearson’s correlation coefficient (r) was estimated for each stage-specific marker in 

relation to PvMSP-7H, demonstrating a positive correlation (r>0.90) with the 

expression of schizont-stage genes and a negative correlation (r>-0.85) with sporozoite, 

liver, and gametocyte stage markers.       

Further comparison between Group 2 and Group 4 patients revealed 351 DEGs. 

Co-expression formed seven clusters using these DEGs (Supplementary Figure 2). 

Expression patterns for PvMSP-7 genes were similar to those observed in the previous 

analysis. PvMSP-7H and -7I were upregulated in Group 4 patients with log-fold 

change, 4.68 and 3.48, respectively (Figure 5.10a). In addition, SEA1 was also 

increased its expression level (log-fold change 2.12) within Group 4. Two stage-

specific markers were detected in the analysis; liver-specific protein 3 (Figure 5.10c), 

and gamete antigen 27/25 (Figure 5.10d). The expression level of these two markers 

was reduced in Group 4 with log-fold change -3.31 and -4.64, respectively. 

Furthermore, five genes that are either schizont stage-specific markers or genes with 

known function in erythrocyte invasion, are positively correlated with PvMSP-7H 

(r>0.75). Parasite-infected erythrocyte surface protein (PIESP1, PvP01_0829800) was 

co-expressed with SEA1 in Figure 5.10b. As in the comparison with Group 3, PvMSP-

7H is negatively correlated (r between -0.44 to -0.83) with gametocyte stage and liver 

stage markers. 19 Plasmodium exported proteins and 11 tryptophan-rich proteins were 

found to co-express with these two gametocyte and liver stage-specific markers.  

The co-expression analysis between Group 1 and Group 4 patients was based 

on 251 DEGs. Six co-expression clusters were formed using coseq package 

(Supplementary Figure 3). PvMSP-7H and -7I genes were differentially expressed but 

they were placed into different clusters (Figure 5.11a and 5.11b). As with the previous 

two analyses, these two genes were upregulated in group four patients (7H; log-fold 

change = 5.31, 7C; log-fold change = 6.33). Two-stage markers; gamete release protein 

(PvP01_0115300) in Figure 5.11c and gamete antigen 27/25 in Figure 5.11d were 

downregulated in group four patients. The log-fold change was -6.25 and -7.22, 
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respectively. Two PvMSP-7 paralogs were also found to positively co-expressed 

(r>0.60) with PIESP1, PMV, rhoptry neck protein 3 (RON3, PvP01_1469200), serine-

repeat antigen-1 (SERA, PvP01_0417100), subtilisin-like protease 3 (SUB3, 

PvP01_1026800), and high molecular weight rhoptry protein 3 (RhopH3, 

PvP01_0703800). On the other hand, these two PvMSP-7 paralogs are negatively 

correlated with two gametocyte stage-specific markers (r>-0.80). In line with the 

previous two analyses, these two gametocyte stage markers are co-expressed with 64 

Plasmodium exported proteins and 12 tryptophan-rich proteins. 
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Figure	5.0.9	 Co-expression	analysis	of	five	patients	between	Group	3	and	Group	4.	
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Figure 5.9 Co-expression analysis of five patients between Group 3 and Group 

4. 1493 DEGs formed 14 clusters in co-expression analysis. The normalised reads 

derived from the DESeq2 package were used to construct co-expression analysis 

implemented in coseq. Five MSP-7 genes were found co-expressed in two clusters, 

Figure 5.9a and 5.9b. In the Figure 5.9a, PvMSP-7K, -7I, -7H and -7C are co-expressed 

with 91 genes including the ETRAMP, SEA1, and RON4 whilst, PvMSP-7L is co-

expressed with 125 genes including PMV, MOP, and RON5. Several stage-specific 

markers were also identified in Figure 5.9c, 5.9d, and 5.9e. Gamete antigen 27/25 is 

upregulated within condition three in Figure 5.9c. TryThrA is increased in expression 

within condition three with other 167 genes in Figure 5.9d. In Figure 5.9e, liver stage 

antigen 3 is upregulated in condition three. Two genes with high expression levels in 

group three patients were showed in Figure 5.9c, 5.9d, and 5.9e such as TRAG36, PIR, 

HSP70, EXP, GADPH, and EMAA. The boxplots on the left represent the patients, the 

colour depicts each condition, and the connected black lines on the boxplots indicate 

the mean expression of the genes. The line graph on the right shows the expression 

pattern of each gene in the individual sample, the lines correspond to the genes. The 

coloured lines on the line graph correspond to the specific genes labelled on the right. 

Correlations between PvMSP-7H and the selected genes showed on the right were 

assessed based on Pearson’s correlation coefficient (r). The number of genes (n) in each 

cluster was shown on the top left of each line graph.  
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Figure	5.0.10	 Co-expression	analysis	of	five	patients	between	Group	2	and	Group	4.	
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Figure 5.10 Co-expression analysis of five patients between Group 2 and Group 

4. The normalised reads derived from the DESeq2 package were used to construct co-

expression analysis implemented in coseq. In Figure 5.10a, two MSP-7 genes; -7H and 

-7I are co-expressed with 26 genes including ETRAMP, RON12, and MAEBL. In 

Figure 5.10b, SEA1 is co-expressed with 77 genes such as PIESP1 and MOP. In Figure 

5.10c, gamete antigen 27/25 clustered with 31 genes including PHIST and TRAG24, 

PvP01_1470100. In figure 5.10d, liver stage antigen 3 is clustered with 69 genes such 

as PHIST and TRAG28. Each boxplot depicts the individual patients, the colour 

represents each condition and the connected black lines on the boxplots represent the 

mean expression of each individual. The line graph on the right shows the expression 

pattern of each gene in an individual sample, the lines correspond to the genes. The 

coloured lines on the line graph correspond to the specific genes labelled on the right. 

Correlations between MSP-7H and the selected genes showed on the right were 

assessed based on Pearson’s correlation coefficient (r). The number of genes (n) in each 

cluster was shown on the top left of each line graph.	

	

	

	

	

	

	

	

	

	

	



	 169 

	

	

	

	

	

	

	

Figure	5.0.11	 Co-expression	analysis	of	four	patients	between	Group	1	and	Group	4.	
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Figure 5.11 Co-expression analysis of four patients between Group 1 and Group 

4. The normalised reads derived from the DESeq2 package were used to construct co-

expression analysis implemented in coseq. Two PvMSP-7 genes; -7C and -7H were 

found in this analysis as shown in Figure 5.11a and 5.11b, respectively. PvMSP-7C is 

co-expressed with 20 genes such as PIESP1, PMV, and RON3 whilst PvMSP-7H is co-

expressed with 12 other genes including SERA, SUB3, and RhopH3. Two gametocyte 

markers; gamete release protein and gamete antigen 27/25 were each found in the 

clusters as shown in Figure 5.11c and 5.11d. The gamete release protein is co-expressed 

with TRAG28 and PHISTc whilst, gamete antigen 27/25 is co-expressed with PHIST 

and tryptophan-rich protein 18 (TRAG18). The boxplots on the left represent the 

patients, the colour depicts each condition, and the connected black lines on the 

boxplots indicate the mean expression of the genes. The line graph on the right shows 

the expression pattern of each gene in the individual patient the lines correspond to the 

genes. The coloured lines on the line graph correspond to the specific genes labelled on 

the right. Correlations between MSP-7H and the selected genes showed on the right 

were assessed based on Pearson’s correlation coefficient (r). The number of genes (n) 

in each cluster was shown on the top left of each line graph.  

 

 

 

 

 

 

 

 



	 171 

5.3.9 SNP discovery 

PCA plot was used to investigate if the genetic variants influencing the gene expression 

of ten RNA samples. The PCA constructed using 42,988 genome-wide SNPs revealed 

population structure of ten RNA samples. In Figure 5.12, the plot of the two highest 

principal components highlight the distinct clusters of samples from Yala and Ubon 

Ratchathani province. Five samples from Yala province clustered closely with one 

another. However, samples from Ubon Ratchathani province did not cluster tightly 

together. Three individuals UBT3090, UBT3089, and UBT3091 are located away from 

the main cluster.   

The phylogeny analysis was performed to validate the result derived from PCA. 

The maximum likelihood tree was generated in Randomized Axelerated Maximum 

Likelihood, version 8 (RAxML) (Stamatakis, 2014) using all 42,988 SNPs. Bootstrap 

was set to 100-fold to increase the reliability. The best-fit model of nucleotide sequence 

was determined using jModelTest, version 2.0 (Posada, 2008). A sequence alignment 

file contained all SNPs in ten samples were passed into jModelTest, GTR substitution 

model with gamma rate variation was identified as the best selection results. The 

neighbour-joining tree was constructed in MEGA 7.0 (Kumar et al., 2016) using 1000 

bootstrap pseudoreplicates. Maximum composite likelihood method based on the 

Tamura 3-parameter model was used to construct the neighbour joining tree. The 

Maximum likelihood and neighbour-joining tree in Figure 5.13 and Figure 5.14, 

respectively corroborated finding from PCA. Two distinct clusters were observed from 

the trees with high bootstrap support values. Isolates from Yala province were separated 

from Ubon Ratchathani province. However, one sample from Yala province (YL3113) 

did not cluster with other samples from the same location in the maximum likelihood 

tree (Figure 5.13). 
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Figure 5.12 Principal component analysis of ten clinical isolates in Thailand. The 

analysis was based on the 42,988 genome-wide SNPs. The PCA plot shows 

geographical segregation of 10 clinical isolates according to their origins. Isolates from 

Ubon Ratchathani are loosely clustered. The plot was generated using SNPRelate in R 

package (Zheng et al., 2012). The colour and shape of symbol represents the respective 

malaria endemic area, blue colour and square shape: Ubon Ratchathani province, and 

red colour and circle shape: Yala province.  

Figure	0.12	 Principal component analysis of ten clinical isolates in Thailand 
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Figure 5.13 Maximum likelihood tree (midpoint rooted) of ten clinical isolates 

from Thailand. The tree was estimated by RAxML using 42,988 biallelic SNPs. GTR 

substitution model was used. Ten samples are separated into two major groups based 

on the geographical location except YL3113. Boostrap values at the nodes were 

generated from 100 replicates. Labels in blue are isolates from Ubon Ratchathani 

Province and labels in red are isolates from Yala province.	

Figure	0.13	 Maximum likelihood tree (midpoint rooted) of ten clinical isolates from Thailand 
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Figure 5.14 Neighbour-joining tree (midpoint rooted) of ten clinical isolates 

from Thailand. The tree was estimated by MEGA7 using 42,988 biallelic SNPs. 

Maximum composite likelihood method based on the Tamura 3-parameter model was 

used. Ten samples are separated into two distinct groups based on the geographical 

location. Boostrap values at the nodes were generated from 1000 replicates. Labels in 

blue are isolates from Ubon Ratchathani Province and labels in red are isolates from 

Yala province. 

Figure	0.14	 Neighbour-joining tree (midpoint rooted) of ten clinical isolates from Thailand 
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5.4 Discussion 

In this chapter, P. vivax transcriptomes were generated for 10 clinical bloodstream 

infections from naturally infected patients. These infections varied in the combination 

of parasite developmental stages that composed the parasite population, which is typical 

of clinical samples. A recent study of similar material containing asynchronous parasite 

populations suggested that parasite expression patterns remain consistent, regardless of 

the differences in parasite developmental status (Kim et al., 2017). My analysis of 

PvMSP-7expression patterns of in these clinical isolates reach a different conclusion, 

showing that developmental differences are clearly discernible among patients, 

apparently coinciding with the patent period, specifically, that there are substantial 

differences between the expression patterns of the PvMSP-7 paralogs through the IDC. 

Three PvMSP-7 members; -7A, -7F, and -7M were constitutively expressed in all 

patients, while PvMSP-7H and -7I increased in expression level in patients that had 

experienced longer patency. Co-expression analysis showed that PvMSP-7H and –7I 

co-express with a schizont stage marker but are inversely associated with sporozoite 

stage, liver stage, and gametocyte stage markers. Therefore, these findings suggest that, 

while all MSP-7 paralogs function during the bloodstream infection, some paralogs 

may be developmentally regulated within the context of the IDC. 

It is sensible, therefore, to inspect transcriptomes from synchronized parasite 

cultures for consistent differences in paralog expression profiles, although this was not 

reported in the original descriptions of P. vivax transcriptomes. The results were 

compared with previous synchronous parasite cultures in P. vivax (Bozdech et al., 

2008), P. falciparum (López-Barragán et al., 2011), and P. berghei (Otto et al., 2014). 

In Figure 5.12, the expression profile of MSP-7 in three Plasmodium species is 

illustrated using a heat map. The first P. vivax transcriptome, described in 2008, used 

microarray analysis to describe the expression abundance of the genes to capture 

transcriptional changes over 48 hours IDC of three distinct isolates from the early ring 

stage to schizont stage (Bozdech et al., 2008). A subsequent study by López-Barragán 

and colleagues applied RNA-seq to cultured parasites from ring stage to ookinete stage, 

profiling the gene expression of sexual and asexual stages in P. falciparum (López-

Barragán et al., 2011). In 2014, an extensive transcriptome of rodent malaria was 

published (Otto et al., 2014), again based on RNA-seq but applied to rodent malaria.  
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These studies focused on the global transcriptional profiles in the Plasmodium 

species but, did not highlight specifically on the expression patterns of MSP-7 genes. 

The MSP-7 expression levels were retrieved from these data and made comparisons 

between the transcriptional profiles (Figure 5.15). Note that the size of the multigene 

family differs between species: 13 genes in P. vivax, nine genes in P. falciparum, and 

four genes in P. berghei. Of the 13 genes in P. vivax, eleven paralogs had increased 

expression from the early schizont stage to late schizont stage. PvMSP-7A, -7F and -

7M were expressed constitutively over the whole IDC  (Bozdech et al., 2008). In 

contrast, PvMSP-7G and -7J were minimally expressed. In P. falciparum, all paralogs 

were upregulated within late trophozoite to schizont transition  (López-Barragán et al., 

2011). Two paralogs, PfMSP-7A and -7I maintained their expression through the IDC. 

In addition, three paralogs in P. berghei were seen to have their expression peaked at 

schizont stage, except MSP-7D which increased its transcription level at gametocyte 

stage (Otto et al., 2014). As in the other species, the expression of a subset of paralogs 

(i.e. PbMSP-7A, -7C, and -7D) was maintained throughout the bloodstream life cycle, 

from the ring stage to ookinete.  
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Figure	5.0.15	 Intra-erythrocytic	cycle	(IDC)	of	MSP-7	expression	profiles	in	Plasmodium	spp. 

	
	

	

	

Figure 5.15 Intra-erythrocytic cycle (IDC) of MSP-7 expression profiles in 

Plasmodium spp. a) 13 MSP-7 expression profiles in P. vivax. The transcriptional 

profiles were processed using microarray (Bozdech et al., 2008), b) Nine MSP-7 

expression profiles in P. falciparum across seven time-points in the life cycle (Lopez-

Barragan et al. 2011), and c) four MSP-7 expression levels in P. berghei across five life 

stages (Otto et al., 2014). All values are log2 transformed. The colour scale represents 

the expression pattern of each gene from red to black. Symbols (* and #) indicate the 

orthologous genes between three species. 
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Having observed consistent patterns across the three species, with some 

paralogs expressed throughout the IDC and others restricted to schizont or late 

trophozoite stages, the hypothesis was tested relating to that these might be stable 

phenotypes, maintained across Plasmodium species, by asking if phenotypically similar 

genes in different species were orthologs. By consulting the published gene phylogeny 

(Castillo et al., 2017; Garzón-Ospina et al., 2016), it is clear that genes orthologous 

with MSP-7A in P. vivax, (i.e. MSP-7H in P. falciparum, and MSP-7A in P. berghei) 

do not show similar expression patterns across the IDC. MSP-7A in P. vivax is 

expressed through the early ring stage to early schizont stage and peaks in abundance 

at early schizont stage, whereas in P. falciparum MSP-7H is expressed from late 

trophozoite to gametocyte II and silent after gametocyte stage V. In P. berghei, MSP-

7A expression is maintained throughout the IDC, peaking in the schizont but continuing 

at a low level in the ookinete at 16h. Similarly, the ortholog of PvMSP-7K (MSP-7C in 

P. berghei) does not have a similar expression profile; MSP-7K in P. vivax was 

abundant exclusively during early schizont stage to late schizont stage, while MSP-7C 

in P. berghei was highly expressed throughout the IDC. This evidence suggests that the 

transcriptional profiles of individual MSP-7 gene lineages are not conserved between 

Plasmodium species. Rather, the profile of individual paralogs is flexible over 

evolutionary time, indeed, differences in gene number show that paralogs may be 

gained and lost easily. Thus, while differences in expression profile among MSP-7 

paralogs is a conserved feature of Plasmodium life cycles, it is not derived from 

conservation of specific gene lineages, which perhaps points to common physiological 

demands across species, which have been met by diverse MSP-7 lineages through time.  

Closer looks into the expression patterns were seen to have elevated expression 

levels. Specific up-regulation of PvMSP-7H and -7I was observed in two patients 

(Group 4) who experienced longer patency. Co-expression analysis revealed that these 

two paralogs are co-expressed with a schizont stage marker, while negatively correlated 

with liver-stage and gametocyte-stage markers. This finding is consistent with the in 

vitro culture of P. vivax, where PvMSP-7H and -7I were upregulated during the 

schizont stage. Invasion-related genes in P. falciparum have been reported to be 

abundantly transcribed during schizont stage. The association of PvMSP-7H and -7I 

with known host cell invasion proteins such as the early transcribed membrane protein 

(MacKellar et al., 2011), schizont egress antigen-1 (Raj et al., 2014), rhoptry neck 
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protein 4 (Lebrun et al., 2005), plasmepsin V (Sedwick, 2014), merozoite organizing 

protein (Absalon et al., 2016), and rhoptry neck protein 5 (Curtidor et al., 2014), 

suggests that these two paralogs may play a specific role in erythrocyte invasion.   

MSP-7 paralogs are thought to be involved in host cell invasion (Beeson et al., 

2016; Cowman and Crabb, 2006; Garzón-Ospina et al., 2010; Garzón-Ospina et al., 

2016; Gomez et al., 2011; Kadekoppala et al., 2008; Kauth et al., 2006; Spaccapelo et 

al., 2011; Tewari et al., 2005), based mainly on the surge in its expression during the 

schizont stage. Previously, MSP-7 paralogs have been treated as functionally identical, 

or redundant at least. Garzón-Ospina and colleagues (2016) suggested that MSP-7 

paralogs were functionally divergent, based on differences in their evolutionary rates. 

Population studies also indicate heterogeneous allelic diversity among MSP-7 paralogs 

(Garzón-Ospina et al., 2014; Garzón-Ospina et al., 2012; Garzón-Ospina et al., 2011). 

My observation that three PvMSP-7 paralogs, -7A, -7F, and -7M, are most highly 

expressed in all patients, consistent with constitutive expression throughout the IDC, is 

the first evidence for stable phenotypic variation among within the MSP-7 family. 

Coupled with the fact that three paralogs have higher sequence conservation compared 

to other members (Castillo et al., 2017), suggestive of stronger purifying selection, 

these lines of evidence indicating that these three paralogs are not simply merozoite 

proteins, but have additional functions in addition to their role in invasion while 

expressed on the merozoite surface. Resolving these functions, whether or not they 

involve host-parasite interaction or recognition of host factors, such as P-selectin 

(Perrin et al., 2015) will require further experimental work. Recently, MSP-7 in P. 

falciparum showed to interact with P-selectin which known for its role in host 

immunomodulation, helping to maintain parasite survival in the longer term (Perrin et 

al., 2015). However, whether or not MSP-7 in P. vivax establishes the similar 

interaction remains to be addressed. Avidity-based extracellular protein interaction 

screening (AVEXIS) can be used to assess the host-parasite interaction, further support 

the additional role of PvMSP-7.   

The RNA-seq SNPs analysis inferred from the PCA plot and phylogeny trees 

suggesting that the geographical location is a confounding factor for population 

stratification as described in Chapter 2. Ten RNA samples were seen to cluster 

according to their geographical origin. The samples from Ubon Ratchathani province 
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were clustered into one clade (Figure 5.13 and 5.14). The other samples from Yala 

province were clustered into another clade. The clustering pattern suggesting that the 

genetic variation for each individual originated from the same geographical location 

was similar.  Strikingly, this piece of information did not coincide with patients’ length 

of patency derived in differential gene expression analysis. PCA plots generated from 

the transcriptome and RNA-seq SNPs analysis did not yield similar clustering pattern. 

Two patients experienced longer patency clustered as a group in the transcriptome PCA 

(Figure 5.4), however, no obvious separation was seen between these two patients and 

other patients from the same location in RNA-seq SNPs PCA (Figure 5.12). A study 

conducted in Kenya revealed that the stages of malaria infection significantly impact 

the gene expression pattern (Griffiths et al., 2005). Acutely ill patients infected with 

malaria had a distinct gene expression likely to derive from the immune-related 

responses and cell activity (Griffiths et al., 2005). This further suggests PvMSP-7 gene 

expression is developmentally regulated and genetic variation is independent from the 

length of patency.  

In addition, the gene expression has been suggested to influence by host genetic 

polymorphisms (De Mendonça et al., 2012; Driss et al., 2011). Multiple variants and 

mutations in human hosts might contribute to disease susceptibility. Multiple SNPs 

found in the superoxide dismutase-1 (SOD-1) enzyme was reported to impact the 

expression pattern in patients infected with malaria (De Mendonça et al., 2012). 

Moreover, expression of southeast Asian ovalocytosis has been linked with malaria 

infection (Kidson et al., 1981). Southeast Asian ovalocytosis is an inherited dominant 

trait that involves 27-pair deletion of band 3 protein in the erythrocyte membrane 

(Williams, 2006). Therefore, further investigation of patients’ medical history and host 

gene expression profile would enable a better understanding of malaria susceptibility. 

The major limitation of the study was the low read depth and low sample size which 

may have introduced biases in the analysis. Overcoming these limitations may increase 

the strength of the current study. 

The number of vaccine candidates in P. vivax lags far behind than that of P. 

falciparum, therefore, antigen discovery is crucial. MSP-7 paralogs are promising 

vaccine candidates due to their assumed presence on the merozoite surface, although 

the previous paragraph shows how this assumption might not be valid. If PvMSP-7 
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paralogs have distinct functions, not all members would be equally valuable for vaccine 

design. Potential vaccine candidates from this multigene family should have limited 

sequence polymorphism while eliciting protective immune responses against natural 

infections. Such candidates are often cell surface proteins, encoded by multigene 

families. Few studies have explicitly addressed how variation within a gene family 

could affect vaccine efficacy, but the Reticulocyte-binding protein (RBP) family, a 

promising vaccine candidate either for P. vivax (Han et al., 2016) or P. falciparum 

(Baum et al., 2009; Campeotto et al., 2017), is one case. P. falciparum reticulocyte-

binding protein homolog 5 (PfRH5) is currently under clinical trials as a vaccine target. 

It is found to be highly conserved in field isolates, essential in erythrocyte invasion, and 

shown to stimulate immunogenicity in an animal model (Baum et al., 2009; Campeotto 

et al., 2017). Of the eleven RBP gene members in P. vivax, two paralogs PvRBP1a and 

PvRBP1b are both as vaccine candidates due to their localisation at the microneme 

during schizont stage and the role in host-interaction (Galinski et al., 2000). Han and 

colleagues (2016) also reported the choice of these two paralogs as vaccine candidates 

over other gene members due to the conservation in antigenicity and proven protective 

properties in mouse models. A closer look at their expression patterns during the IDC 

shows that these genes are highly expressed in the schizont stage (Bozdech et al., 2008).  

 

5.5 Conclusion 

The analyses have addressed the PvMSP-7 gene expression in ten P. vivax patients with 

asynchronous parasite populations. The PvMSP-7 paralogs revealed different 

expression profiles within the IDC. Three members (-7A, -7F, and -7M) have a stable 

expression over the whole IDC, which suggests additional roles besides merozoite 

invasion. Two further paralogs are restricted in expression to the late schizont (i.e. 

merozoite surface) only. The presence of differential expression seems to be a 

consistent property of Plasmodium species. Therefore, from the perspective of vaccine 

design, careful evaluation of regulatory differences within multicopy gene families is 

necessary; constitutively expressed MSP-7 paralogs may make better vaccine 

candidates as they are exposed to host factors for greater periods. 
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Chapter 6  

Identification of antigenic B-cell epitopes within Plasmodium vivax 

merozoite surface protein 7 (PvMSP-7) 

Abstract 

PvMSP-7 family members are promising vaccine candidates for blood stage infection. 

Previous chapters have shown that heterogeneity in sequence variation and gene 

expression among PvMSP-7 paralogs are important considerations in vaccine 

development. In this chapter, the host immune response to the paralogous genes of 

PvMSP-7 proteins was considered. Naturally acquired antibodies to PvMSP-7 are yet 

to be characterized, so a high-density peptide microarray was used to identify 

immunodominant epitopes in PvMSP-7 proteins. 1173 different amino acid peptides 

covering the entire sequences of all 13 PvMSP-7 paralogs were spotted on to a 

microarray chip. Each peptide was 15-mer in length with an overlap of 11 amino acids 

printed in duplicate. Five pools of sera from naturally infected human patients were 

divided into age groups and used to screen for IgG reactivity against PvMSP-7. A 

higher number of differentially detected peptides was found in three younger age 

groups (0-14, 15-29, and 30-44) compared to the two older groups (45-59 and 60-74). 

14 immunogenic linear B-cell epitopes were observed that exhibited cross-reactivity in 

all age groups. Most of these epitopes are located within the intrinsically 

unstructured/disordered region and random coiled-coil structures of PvMSP-7 proteins, 

which are promising targets for antibodies. Among all PvMSP-7 paralogs, the greatest 

number of naturally acquired, cross-reactive IgG immune responses was made against 

PvMSP-7A and PvMSP-7L, indicating that differences in antigenicity among paralogs 

must be an important consideration in developing a PvMSP-7 vaccine. As a result of 

this work, the immunodominant linear B-cell epitopes found within the conserved 

domain of PvMSP-7A represent the best candidates for vaccine development. 
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6.1 Introduction 

In previous chapters, the PvMSP-7 paralogs demonstrated variation in their sequence 

polymorphism and in stage-specific expression patterns during infections. For vaccine 

development, it is important to learn about relevant epitopes of candidate antigens. Poor 

immunogenicity has been the main obstacle for malaria vaccine development 

(Matuschewski and Mueller, 2007). To identify the immunogenic epitopes across 13 

PvMSP-7 paralogs and pinpoint promising paralogs to be incorporated in vaccine 

development, serum from naturally infected hosts was screened for all linear 

immunogenic epitopes encoded by the 13 protein sequences, using a high-density 

peptide microarray. This approach is different from a conventional protein microarray 

which requires expression of recombinant protein in its soluble form and is highly 

laborious. The peptide microarray offers a highly cost-effective approach to translate 

potential peptides into vaccine development. To date, peptide microarray has been used 

to identify the immunogenic epitopes in P. falciparum schizont egress antigen 1 

(PfSEA-1A) (Nixon et al., 2017), P. falciparum erythrocyte membrane protein 1 

(PfEMP1) (Quintana et al., 2018), repetitive interspersed genes (RIFIN) (Quintana et 

al., 2018), P. falciparum surface-associated interspersed genes (SURFIN) (Quintana et 

al., 2018), and P. vivax Duffy Binding Protein (PvDBP) (Chootong et al., 2010).  

Using other studies as a guide, the immunogenic epitopes were determined and  

they may confer protective humoral immunity. Nixon et al. (2017) attempted to identify 

immunoreactive epitopes of PfSEA-1A using peptide microarray technology. The array 

was designed with 15-mers amino acid covering position 810 to 1023. Five peptides of 

273 overlapping peptides were found highly cross-reactive with infected sera from P. 

falciparum patients in Kenya. The authors further developed these five linear B-cell 

epitopes into vaccines with an adjuvant and performed challenge experiment in an 

animal model. All challenged animals responded to one or more of the immunogenic 

peptides discovered in peptide microarray. Combination of multiple epitopes showed a 

synergistic effect with a significant reduction of parasitaemia in experimental animals 

(Nixon et al., 2017). The magnitude of protection conferred by these epitopes showed 

that a peptide microarray can be highly effective in screening possible B cell epitopes 

for immunogenicity. Likewise, a similar approach was employed by Quintana et al. 

(2018) to investigate the immune responses of three gene families (PfEMP1, RIFIN, 
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and SURFIN) responsible for severe malaria in P. falciparum (Quintana et al., 2018). 

The investigation was carried out in a cohort of children from a malaria endemic area. 

A peptide microarray was designed encompassing whole surface protein families, 

which identified multiple reactive peptides. at several different locations of the antigen 

sequences. Overall, 19 epitopes were identified in PfEMP1, three epitopes in RIFIN-A, 

and eleven epitopes in SURFIN4.2, and the authors intend to characterise the role of 

these epitopes in rosette formation (Quintana et al., 2018). 

In P. vivax, a peptide microarray was designed to screen the linear B-cell 

epitopes encompassed the entire P. vivax Duffy Binding Protein (Chootong et al., 

2010). A total of 178 peptides with a 12-mer overlap were arranged into a 96-well 

format. Ten B-cell epitopes, mostly located in the central domain, displayed strong 

immune responses. This result is consistent with previous observations, in where the 

central region was suggested to be essential for receptor recognition (Hans et al., 2005). 

Antibody affinity tests using total IgG were performed on the ten immunogenic 

epitopes, showing that the ten epitopes displayed different magnitudes of inhibitory 

binding effect to erythrocyte. Strong immune responses were also observed from all 

PvDBP conserved epitopes using ELISA (Ntumngia et al., 2012). Clearly, further work 

on the protective immunity induced by these epitopes is required to design a broadly 

effective malaria vaccine, but these two studies advanced our understanding of PvDBP 

conserved epitopes and immunogenicity. Likewise, the initial identification of linear B-

cell epitopes across 13 PvMSP-7 paralogs is an essential stage and constitutes a starting 

point for vaccine development.  

Immune responses to malaria have been described in Chapter 1, section 1.14. 

Antibody-mediated immune responses prime the malaria immunity. A Gambian 

population displayed a stable total IgG antibody level to PfMSP-2, which contributed 

to sterile protective immunity in the same community (Taylor et al., 1998). No studies 

have yet investigated the PvMSP-7 epitopes involved in natural immune responses. 

Immunogenic epitopes should be readily identified in different age groups from 

naturally infected blood serum. Naturally acquired immunity is prevalent in human 

populations where malaria transmission is high. However, differences in serological 

response frequently occur with respect to age (Aponte et al., 2007; Doolan et al., 2009; 

Pinkevych et al., 2012). Most complicated malaria cases occur in young children in 
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holoendemic areas. In contrast, immune responses to malaria increase with age after a 

series of exposures (Pinkevych et al., 2012). Slower replication of malaria parasite and 

reduction of parasitaemia have both been demonstrated to correlate with age 

(Pinkevych et al., 2012). Therefore, using the high-density peptide microarray 

technology, the highly reactive PvMSP-7 peptides present in each age-group, and the 

cross-reactive peptides in all age groups will be identified.	

	

6.2 Methodology 

	

6.2.1 Human ethics statement  

The study was approved by the Institutional Review Board in Human Research of 

Faculty of Medicine, Chulalongkorn University, Thailand (IRB No. 104/59). Written 

consent was obtained from all participants or from their parents or guardians’ prior 

admission into the study. 

 

6.2.2 Human sera 

P. vivax infections were confirmed using microscopy and the same molecular approach 

as described in Chapter 2. Patients who showed complicated malaria symptoms and 

underlying immunodeficiency disorders were excluded from the study. 64 patients 

infected with vivax-malaria were recruited from two major malaria endemic areas in 

Thailand, Ubon Ratchathani province and Tak province. Of these, 15 serum samples 

from Tak province were collected in  2013, while 49 serum samples from Ubon 

Ratchathani province were collected during 2014-2016. Negative controls, i.e. malaria 

naïve donors (n=20), were recruited from non-malaria endemic areas at Chulalongkorn 

hospital. Approximately two millilitres of venous blood was collected from patients 

with single-strain P. vivax infection. Five experimental groups comprised serum from 

vivax-infected patients based on age-group (Table 6.1). A master pool of serum for each 

age –group was prepared by pooling five microliters of serum from each vivax-infected 
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patient. A similar pool of serum was prepared from 22 malaria naïve donors. The 

antibody responses from the five groups of vivax-infected patients were compared 

against the negative controls in the analysis. Pooling of serum has been demonstrated 

as a feasible approach in seroprevalence testing without affecting the sensitivity and 

specificity in human immunodeficiency virus (Cahoon-Young et al., 1989). The similar 

serum pooling approach was used in multiple antigen peptide vaccines against P. 

falciparum (Mahajan et al., 2010). All samples were preserved at -80°C until used.  

 

	
Table 6.1 The number of patients in five different age groups.                 

Group Age Number of samples (n) 

1 0-14 11 

2 15-29 22 

3 30-44 19 

4 45-59 10 

5 60-74 2 

6 Negative controls 22 

Table	6.0.1	 	The	number	of	patients	in	five	different	age	groups.																 

 

6.2.3 Microarray screening 

A custom peptide microarray was constructed using 13 PvMSP-7 paralogous 

sequences. The peptide microarray involved primary and secondary antibodies. The 

primary antibodies (infected serum) was first bound to the microarray surface and the 

specific secondary antibody (anti-human) with fluorescent dye was added to bind 

specifically to the antigen. The fluorescent signal emits from each peptide represents 

the antibody response. The microarray contains 15-mer peptides of each PvMSP-7 gene 

with an overlap of 11 amino acids, printed in duplicate. In total, 13 PvMSP-7 paralogs 

translated into 1173 different amino acid peptides (2,346 peptides in duplicate). Each 

peptide slide consisted of three identical array copies to ensure the reliability of the 

results. The peptide arrays were framed by flag anti-HA (YPYCVPDYAG, 52 spots) 

as a quality control measurement. The signal intensities of these control peptides 
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indicate the spot uniformity and binding specificities.  The peptide microarrays were 

produced by PepperPrint (Heidelberg, Germany). The peptide microarrays were coated 

with poly(ethylene glycol)-based graft copolymer with a thickness of 13.5 nm and an 

additional three amino acid linker (β-alanine, aspartic acid, and β-alanine). The addition 

of three amino acids is to ensure optimal epitope orthogonal attachment and 

presentation. All microarray slides were used within a month after delivered by 

PepperPrint. The microarray slides stored at -20°C were stable for at least six months 

without losing its reactivity. 

Before the microarray testing was conducted for each group of patients, 

optimisation of primary and secondary antibody was performed using a single subarray. 

The optimization of secondary antibody began with the lowest dilution at 1:5000 then 

1:2500 with standard buffer. Goat anti-human IgG (H+L) DyLight680 antibody was 

used as a secondary antibody. Pooled sera of vivax-infected patients were tested with 

the dilution of 1:1000, 1:500, and 1:50. Dilution of polyclonal serum at 1:50 and 

secondary antibody at 1:2500 was seen to be the optimum conditions for testing, as the 

fluorescent intensity was clearly observed on each spot (fluorescence intensity>2000). 

Subsequently, the peptide microarray was probed with vivax-infected patients’ 

polyclonal serum with goat anti-human IgG (H+L) DyLight680 antibody (Rockland 

Immunochemical, Gilbertsville, USA).  

The patients’ polyclonal serum was incubated at a dilution of 1:50 in the 

presence of goat anti-human IgG (H+L) DyLight680 antibody at a dilution of 1:2500. 

Each spot intensities were quantified on an Agilent G2565CA microarray scanner 

equipped with Agilent SureScan Technology to ensure precision microarray scanning. 

The peptides were scanned with the AgilentHD red colour single channel at 10 µm 

resolution and output to a 16-bit greyscale tiff files. The microarray analysis was 

completed with a PepSlide analyser and saved as TIF files. The PepSlide analyser 

performed global normalisation of all signal intensities between arrays to remove the 

noise in each TIF file. The mean and median of local background and foreground 

intensity values for all peptide spots were determined by the PepSlide analyser. The 

fluorescence intensity was quantified and exported into the comma separated values 

(CSV) files for further analysis. Each of the CSV files contains information about the 

location, peptide, and fluorescent intensity on each peptide spot.  
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6.2.4 Microarray incubation 

The experimental procedure of peptide microarray was performed as described by the 

manufacturer’s manual (PePperPrint, 2017). Four reagents were prepared as follows: 

i) Standard buffer: Phosphate-buffered saline (PBS) with 0.05% Tween20, pH 

7.4 

ii) Blocking buffer: Standard buffer with 1% BSA 

iii) Staining buffer: PBS with 0.05% Tween20 and 10% blocking buffer 

iv) Dipping buffer: 1mM Tris, pH 7.4 

Firstly, the peptide microarrays were treated with blocking buffer for 30 minutes at 

room temperature. The peptide microarrays were incubated with goat anti-human IgG 

(H+L) DyLight680 antibody that was diluted 1:2500 in staining buffer. Next, peptide 

microarrays were incubated with patients’ sera overnight at 4°C. The pool of serum was 

diluted 1:50 with staining buffer. The peptide microarray was washed three times with 

standard buffer using an orbital shaker at 140 rpm. The peptide microarrays were dipped 

in the dipping buffer until all contaminants were washed off from the peptide 

microarray surface. Finally, the peptide microarrays were dried by tapping the edge of 

the slide against a pad of tissue paper. The steps were repeated with Cy3 conjugated 

anti-HA control antibody supplied by PepperPrint (Heidelberg, Germany). 

 

6.2.5 Pre-processing methods 

Peptide array data, pre-processed by the PepSlide analyser and saved in CSV files, were 

used to identify the peptides producing significant responses, i.e. greater than 

background responses in controls. Plots were generated to assess the quality of the 

arrays. Background correction and intensity normalisation were performed using the 

LIMMA package (Smyth, 2005) implemented in R version 3.4.3 (R, 2017) . 

Background correction was performed on each array using the subtraction method 

(Figure 6.1). This step was performed to eliminate the effects of non-specific binding 

across the arrays. The subtraction method subtracts the local background estimates 

them from the foreground intensity and is commonly applied in microarray analysis 



	 189 

(Ritchie et al., 2007). Figure 6.1 shows the intensity level on the X-axis and the total 

number of measurement values with a given log intensity on the Y-axis. The total area 

under the pile of each array corresponds to the total number of observations. By 

comparing the measurement values before and after the background correction, is can 

be seen that the density of each experimental group became more homogenous after the 

correction. Following background correction, normalisation of intensities for between-

array variation (Figure 6.2) was conducted, before the identification of significantly 

responsive peptides. Normalisation was accomplished between-arrays using the 

quantile principle in LIMMA (Smyth, 2005). The quantile function generates a more 

uniform intensity distribution, compensating for systematic measurement errors 

between-array, leaving only the true biological differences in the dataset. Figure 6.2, 

each box shows the distribution of expression values within one array as boxplots. 

Fluorescent intensity before normalisation showed some deviation (Figure 6.2a); 

however, the median of boxplots within each experimental group was more uniform 

after normalisation. After normalisation, the data were analysed statistically using 

LIMMA.   
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Figure	6.0.1	 Diagnostic	plots	of	the	one-colour	microarray 

 

 

 

 

 

 

 

 

Figure 6.1 Diagnostic plots of the one-colour microarray. Figure a) shows the 

intensities before background correction. Figure b) displays the intensities after 

background correction using the subtraction method (Ritchie et al., 2015) implemented 

in LIMMA (Smyth, 2005). On the X-axis of each plot, it shows the log intensity of each 

peptide microarray, whilst the Y-axis implies the number of measured values with a 

given log intensity. The area under the pile of each array indicates the total number of 

observations. Each colour on the plot corresponds to the individual array. 
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Figure	6.0.2	 Boxplots	display	the	intensities	before	and	after	normalisation 

Figure 6.2 Boxplots display the intensities before and after normalisation. 

Figure a) shows the microarray log intensity without normalisation. Some deviation 

was observed before intensity was normalised within each experimental group. Figure 

b) illustrates the log-transformed normalised intensities using the quantile method. The 

mean and the range of intensity between each experimental group was more uniform 

after the normalisation. Each experimental group has a replicate which represents the 

same colour on the boxplot. The mean log2 intensity for each peptide array is shown on 

the boxplot. 

8.446 8.473 8.660 8.676 8.420 8.600
7.986 8.023 7.411 7.550 7.373 7.467

a)

b)

8.192 8.192 8.192 8.192 8.192 8.191 8.191 8.191 8.192 8.192 8.192 8.192
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6.2.6 Statistical analysis 

Statistical analysis was performed using the LIMMA package (Smyth, 2005) 

implemented in R version 3.4.3 (R, 2017) . Following the normalisation procedure, the 

data were fitted to a linear model implemented in the LIMMA package. The package 

processed the data with t-statistics. The aim of the statistical analysis was to identify 

the significantly detected peptides in all experimental groups by comparing the log 

transformation of expression intensity. After fitting the data to the linear model, a 

simple Bayesian model was used to estimate significant peptides between the 

experimental group and negative control (Smyth, 2004). This model is similar to t-

statistics except the standard errors have been moderated across peptides. The summary 

statistics were computed by the eBayes() function where a list of significantly 

responsive peptides were displayed. Benjamini and Hochberg’s method or false 

discovery rate (FDR) was used to correct the observed P-value. FDR < 0.05 were 

considered statistically significant. The outputs from the statistical analysis include log 

fold change, t-statistics, P-value, and FDR.  

 

6.2.7 Protein secondary structures, protein disordered region  

The conformation structure of the protein has been suggested to associate with 

immunogenicity (Scheiblhofer et al., 2017). The protein structure determines the 

presentation of the immunogenic epitopes on major histocompatibility complex for 

triggering immune responses (Scheiblhofer et al., 2017). Therefore, immunogenic 

epitopes of PvMSP-7 were mapped to the predicted protein secondary structure to 

evaluate the immunogenicity and enhance the vaccine development strategy. The 

protein secondary structure for 13 PvMSP-7 paralogs was predicted using JPred4 

(Drozdetskiy et al., 2015) implemented in Jalview version 2.10.1 (Waterhouse et al., 

2009). JPred4 accurately predicts the secondary structure based on the JNet algorithm. 

Overall, the accuracy of the secondary structure prediction is reported to be 82% 

(Drozdetskiy et al., 2015).  It provides three states of secondary structure predictions, 

alpha-helix, beta-strand, and coiled-coil. The predicted protein secondary structures 

were saved as an SVG image. Several leading malarial vaccines with roles in host-cell 

invasion contain an extensive intrinsically unstructured domain, and protein disordered 
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domains have been shown to affect adaptive immunity against P. falciparum (Guy et 

al., 2015). Moreover, linear B-cell epitopes are also known to be enriched along protein 

disorder domains (Guy et al., 2015), which have enhanced antibodies affinity 

(Sormanni et al., 2015). In the present study, the intrinsically unstructured domains 

spanning along the PvMSP-7 paralogs were identified. This prediction was used to 

investigate the association of PvMSP-7 immunogenic epitopes and the intrinsically 

unstructured protein domains which likely to implicate for vaccine design. The 

intrinsically unstructured or protein disordered domains were identified by using the 

GeneSilico MetaDisorder service (Kozlowski and Bujnicki, 2012). It reliably predicts 

the protein disordered regions using 13 arbitrarily disorder predictors, which were 

found to be outperformed with other primary methods.  

 

6.2.8 In silico B-cell epitopes predictions 

To evaluate the prediction accuracy of in silico B-cell epitopes prediction, the 

proportion of theoretical epitopes was compared with the experimental immunogenic 

epitopes. Bepipred linear epitope prediction (Larsen et al., 2006) implemented in the 

IEDB database (http://tools.iedb.org/bcell/) was used to predict B-cell epitopes in 13 

PvMSP-7 paralogs (Vita et al., 2014). The algorithm uses Hidden Markov models 

(HMMs), which are known to yield reliable B-cell epitopes.  Protein sequences in 

FASTA format for all PvMSP-7 paralogs were compared to the database, which 

predicted a score for each amino acid. The window size was set to 15 amino acids and 

50% specificity in all sequences in order to obtain reliable linear B-cell epitopes. 
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6.3 Result 

	
6.3.1 In silico analysis of putative linear B-cell epitopes in PvMSP-7 proteins 

The potential linear B-cell epitopes in 13 PvMSP-7 proteins were predicted using 

Bepipred linear epitope prediction (Larsen et al., 2006) implemented in the IEDB 

database (http://tools.iedb.org/bcell/). As shown in Figure 6.3, most of the putative B-

cell epitopes were distributed in the central region of the PvMSP-7 protein structure. 

All the high score linear epitopes located within the central domain with prediction 

scores of at least 2.0. Moreover, these epitopes appeared to be a long stretch of amino 

acid residues. PvMSP-7D was an exception to this trends, with the location of predicted 

epitopes in this paralog biased toward the C-terminal. The number of predicted B-cell 

epitopes was found to vary among different 13 PvMSP-7 paralogs. Certain PvMSP-7 

proteins were found to have fewer antigenic epitopes, for example, PvMSP-7D and -7J 

(Figure 6.3). Using a threshold score of 0.5, 11 PvMSP-7 showed a minimum of ten 

predicted immunogenic epitopes. The threshold score was estimated based on the 

Karplus and Schulz flexibility on each of the residue in the epitopes (Karplus and 

Schulz, 1985). The higher the score, defines the probability to be an immunogenic 

epitope. In the analysis, epitopes with a threshold score above 0.5 were considered 

immunogenic epitopes. Threshold score was set at 0.5 to achieve optimal sensitivity 

and specificity for detecting linear B-cell epitopes. Previous studies showed a low 

threshold score tends to yield high sensitivity but low specificity in detecting 

immunogenic epitopes or vice versa, leading to false positive or negative outputs (Guy 

et al., 2015).      

Protein secondary structures of PvMSP-7 were examined using JPred4 

(Drozdetskiy et al., 2015). The predicted protein secondary structures in PvMSP-7 

revealed that most of the alpha helices were located in the N- and C-terminal, while the 

central region had a predominantly random coiled-coil structure. From the analysis, 

PvMSP-7F contains only one alpha helical structure located in the N-terminal, whereas 

the remaining structure is composed of random coiled-coil. PvMSP-7M consists of the 

highest number of alpha-helices, four and five alpha-helices in the N- and C-terminal, 

respectively. Beta strands were also detected in five PvMSP-7 paralogs encoded in the 

N- and C-terminal (Figure 6.3). Overall, all predicted linear B-cell epitopes displayed 
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a specific feature, one where they span the random coiled-coil central region of PvMSP-

7, but were routinely distant from the alpha-helices and beta strands of protein 

secondary structures.  

	

	

	

	

	

	

	

	

Figure	6.0.3	 In	silico	predicted	linear	B-cell	epitopes	in	the	context	of	predicted	protein	secondary	
structure	for	the	PvMSP-7	multigene	family.	

	

 

 

 

Figure 6.3 In silico predicted linear B-cell epitopes in the context of predicted 

protein secondary structure for the PvMSP-7 multigene family. Linear B-cell 

epitopes were predicted using Bepipred linear epitope prediction (Larsen et al., 2006) 

implemented in the IEDB database. The predicted score for each amino acid residue is 

shown on the line graph, defines the probability to be an immunogenic epitope. The 

predicted values above the threshold (red line) are considered significant and likely to 

have B-cell epitopes. The threshold was set at 50% to increase the reliability of the B-

cell epitopes prediction. Predicted protein secondary structures for 13 PvMSP-7 

proteins were produced using JPred4, and are shown below each plot. Red boxes: alpha-

helix, green arrows: beta-strand, and grey lines: coiled-coil. 
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6.3.2 Mapping of PvMSP-7 linear B-cell epitopes by peptide microarray 

To date, the immunogenicity of 13 PvMSP-7 paralogs in natural infection remains 

unknown. To identify immunoreactive linear B-cell epitopes in the PvMSP-7 family, 

the peptide microarray was incubated with sera from patients with single P. vivax 

infection, pooled according to five age groups (Figure 6.4). The high-density peptide 

array consists of 1173 peptides of 15-mers spanning the complete coding sequence of 

13 PvMSP-7 paralogs. The serum peptide-reactivity profile in P. vivax patients was 

detected by goat anti-human IgG attached with a fluorophore (DyLight 680). Based on 

the fluorescent signals captured on the peptide microarray, pool of serum in the 30-44 

age group displays the strongest reactivity to IgG antibody (Figure 6.4c). The red spot 

intensities were greater compared to other experimental groups, indicating a clear 

interaction pattern. The weakest immunoreactivity was observed from the 45-59 age 

group. Fluorescence intensity in the 0-14 and 15-29 age groups showed comparable 

fluorescent intensity (Figure 6.4a and 6.4b). A pool of serum from malaria-naïve 

individuals was served as a negative control in the analysis (Figure 6.4f). Fluorescence 

signals on the negative control were observed on the array, although they appeared to 

be very weak. Each of the arrays was framed by the HA control peptides, the spot 

intensities were homogenous as seen in Figure 6.4. However, the fluorescence intensity 

of HA control peptides in Figure 6.4e was not as sharp compared to other arrays.  

 The number of naturally immunogenic peptides distributed among 13 PvMSP-

7 proteins varied. Figure 6.5 shows the distribution of significantly responsive peptides 

according to each experiment group. Five PvMSP-7 paralogs (PvMSP-7A, -7B, -7K, -

7L, and -7M) revealed a high number of antigenic peptides spanning the N-, central, 

and C-terminal. The immunogenic peptides in PvMSP-7I were biased toward the 

central and C-terminal. Six other PvMSP-7 proteins (PvMSP-7C, -7E, -7F, -7G, -7H, 

and -7J) have lower number of immunogenic peptides. Meanwhile, no antigenic 

peptides were predicted for PvMSP-7D. The relationship of immunogenic epitopes and 

predicted protein secondary structures were consistent with the in silico prediction, in 

that most of the immunoreactive epitopes were contained within the random coiled-coil 

motifs.  

Comparing the results of in silico and experimental B -cell epitope prediction 

(Figure 6.3, 6.5), there was consensus in the predicted epitope sequences for PvMP-7A, 
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-7B, -7F, -7G, -7H, -7I, -7K, -7L, and -7M, although the number of epitopes varied. 

Moreover, the length of the peptide derived from in silico prediction and experimental 

was different as peptide microarray was designed based on 15-mer amino acid residue. 

On average, the in silico prediction derived approximate 30 amino acid residues in an 

epitope.	Nevertheless, the naturally immunogenic epitopes were contained within the 

in silico predicted sequences. For instance, two predicted peptides spanning PvMSP-

7A in amino acid residue 19 – 44 and 120 – 169 were found to be significant responders 

in five experimental groups (peptide position; 10 – 25 and 158 – 173). There were some 

exceptions to the consensus between methods. While PvMSP-7A, -7B, -7I, -7K, -7L, 

and -7M displayed most of the consensus epitopes in the central region, PvMSP-7H did 

not, despite in silico analysis indicating a long epitope spanning amino acid residues 

136 – 247. The similar pattern is observed in PvMSP-7C and PvMSP-7E. Likewise, no 

immunogenic epitopes were detected in PvMSP-7D despite in silico prediction revealed 

seven antigenic peptides.	
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Figure	6.0.4	 Mapping	of	13	PvMSP-7	epitopes	by	peptide	microarray.	 	

a)  0-14
 

d)  45-59 
 

b)  15-29
 

e)     60-74 
      

c)  30-44 
 

f) Negative control 
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Figure 6.4 Mapping of 13 PvMSP-7 epitopes by peptide microarray. The 

peptide microarray was designed as spot duplicates. Six identical sub-arrays, each 

consists of 1173 amino acid peptides (2,346 peptides in duplicate). The analysis was 

conducted in five different age groups, a) 0 -14, b) 15 - 29, c) 30 - 44, d) 45 – 59, e) 60 

– 74, and f) negative controls. Incubation of the peptide microarray with the pool of 

polyclonal antibodies from vivax-infected patients at a dilution of 1:50. The procedure 

followed by staining peptide microarray with the secondary goat anti-human IgG 

antibody at a dilution of 1:2500. Control peptides (HA) were located around the border 

of each peptide array and stained with Cy3 (red) conjugated anti-HA antibody. The 

fluorescent intensity was estimated by PepSlide Analyser. Each spot on the peptide 

microarray corresponds to one peptide. The strongest responders as indicated by the 

bright red fluorescent signal are highlighted in the yellow box.  
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6.3.3 Naturally immunogenic linear B-cell epitopes within PvMSP-7 paralogs 
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Figure	6.0.5	 Schematic	diagram	of	naturally	immunogenic	linear	B-cell	epitopes	within	13	PvMSP-7	
isoforms,	and	intrinsically	unstructured/disordered	regions.		
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6.3.4 Differentially detected peptides 

The significant differentially responsive peptides in each experimental group were 

identified in the analysis. Subsequently, the analysis focused only on the novel 

immunogenic peptides that present in all age groups. The antigenic peptides contain 

within the PvMSP-7 repertoire were analysed using the LIMMA package (Smyth, 

2005). Different proportion of significant differentially responsive peptides were found 

between age groups (Table 6.2). Age group of 30-44 obtained the highest number of 

the significant differentially responsive peptides (number of peptides= 141). Followed 

by age group 0-14, 15-29, 60-74, and 45-59. Older age group (age 45-59) has the lowest 

number of differentially responsive peptides (number of significant peptides= 77). The 

number of differentially responsive peptides was in line with the fluorescence signals 

captured in the peptide microarray (Figure 6.4). From Figure 6.4, the number of spots 

and fluorescent intensity in age group 30-44 were clearer compared to other 

experimental groups. All differentially detected peptides are listed in S6.2. 

A Venn diagram (Figure 6.6) was used to illustrate the consensus peptides 

present in each experiment group. A total of 120 unique differentially responsive 

peptides were obtained in five experimental groups. The number of unique peptides 

with respect to age group ranged from 8 to 38 peptides. Age group 30-44 has a higher 

number of differentially responsive peptides, followed by 0-14, 60-74, 15-29, and 45-

59.  

Of the 1173 peptides evaluated, 14 novel antigenic peptides in all age groups 

were differentially responsive in response to IgG antibody (Table 6.3). These consensus 

antigenic peptides were found in six PvMSP-7 proteins (PvMSP-7A, -7B, -7H, -7I, -

7L, and -7M). Closer looks into the position of these novel peptides, they were 

predominantly distributed in the central domain of the gene (Figure 6.7). An exception 

was seen in PvMSP-7A, antigenic peptides encoded in three domains of the protein. Of 

the 14 novel peptides present in all five experimental groups, the majority of these 

antigenic peptides were derived from PvMSP-7A (42.86%). Six significantly 

responsive peptides were found in PvMSP-7A, one peptide located in the N-terminal, 

one peptide encoded in the central terminal, and four peptides span the C-terminal. 

Among the consensus immunogenic epitopes in PvMSP-7A, the average expression 
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value ranged from 5.521 to 10.937, which reflected the magnitude of the naturally 

acquired IgG response.  

Meanwhile, four differentially responsive peptides span along PvMSP-7L 

(Figure 6.7). Three antigenic peptides located in the N-terminal whilst one peptide 

located in the central domain. Like PvMSP-7A, the IgG response at different peptides 

was varied (average expression values ranged from 8.860 to 11.886). A higher IgG 

response was observed in 139-EAVDEEAEKEDTAVI-154. The average expression 

value across five experimental group was 11.886 (log-fold change= 5.863 ± 1.743). In 

contrast, only one consensus differentially responsive peptide present in PvMSP-7B, -

7H, -7I, and -7M. The IgG response infers from the average expression values ranged 

from 8.860 to 9.866. Closer looks into the position of these 14 novel epitopes on the 

predicted protein secondary structure (Figure 6.7). The majority located in the random 

coiled-coil motifs. Two peptides in PvMSP-7A, 10- CLLLLCAGPVLGDDD-25 and 

314-KNTLIKTFKKALYDK-329 spanned between the alpha-helices and random 

coiled-coil regions. 

	
Table 6.2 Significantly responsive peptides in five groups of patients. 

Significantly responsive peptides in each experimental group were identified using the 

LIMMA package (Smyth, 2005). Peptides with false discovery rate (FDR) below 0.05 

are considered statistically significant.  

Group Age 
Significantly responsive peptides 

(FDR<0.05) 

1 0-14 135 

2 15-29 119 

3 30-44 141 

4 45-59 77 

5 60-74 90 

	
Table	6.0.2	 Significantly	responsive	peptides	in	five	groups	of	patients	
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Figure	6.0.6	 Venn	diagram	showing	the	overlap	in	of	linear	B-cell	epitopes	predicted	by	peptide	
microarray	for	five	patient	age-groups.	 	

	
	
	
	
	
	
	
	
	
Figure 6.6 Venn diagram showing the overlap in of linear B-cell epitopes 

predicted by peptide microarray for five patient age groups. 14 peptides that gave 

significant responses in all experimental groups were observed to be present in all age 

groups. The significantly detected peptides were identified using t-statistics, pairwise 

comparison between each age group against the control. Peptides with FDR<0.05 were 

considered to be differentially detected.  

	
	
	
	
	
	
	
	
	
	
	



	 206 

Table 6.3 Sequence, parent gene and structural position of 14 PvMSP-7 

peptides that gave significant responses on the peptide microarray in all age 

groups, compared to the negative control. 

Peptide PvMSP-7 Domain Position 

CLLLLCAGPVLGDDD A N 10 - 25 

EAVQWGPATEEVVAE A Central 158 - 173 

KLLDTMLTNGQVERE A C 298 - 313 

TMLTNGQVEREKKNT A C 302 - 317 

EREKKNTLIKTFKKA A C 310 - 325 

KNTLIKTFKKALYDK A C 314 - 329 

YESIHGEDEPQVVPS B Central 178 - 193 

EEESLGHLLESEDAD H N 83 - 98 

DEIHVPPFHSKYNDF I C 272 - 287 

EDTTPKEQQEDQNVS L N 91 - 106 

QEENTQVKNVIFTEK L N 123 - 138 

EAVDEEAEKEDTAVI L N 139 - 154 

SSAESAPNEPDVNTT L Central 207 - 222 

SVKSGDDGEEEDGAT M Central 232 - 247 

N: N-terminal, Central: Central-terminal, and C: C-terminal 
Table	2.0.3	 Sequence,	parent	gene	and	structural	position	of	14	PvMSP-7	peptides	that	gave	significant	
responses	on	the	peptide	microarray	in	all	age-groups,	compared	to	negative	control 
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Consensus immunogenic epitopes in all age groups 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	6.0.7	 Schematic	diagram	of	14	naturally	immunogenic,	linear	B-cell	epitopes	present	in	all	age-
groups,	in	relation	to	predicted	protein	structure.	
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6.4 Discussion 

Using a high-density peptide microarray approach has allowed me to efficiently identify 

linear B-cell epitopes. A similar approach has been used to characterise antigenic 

epitopes in P. falciparum (Lu et al., 2015; Quintana et al., 2018). Individuals naturally 

exposed to P. vivax in malaria endemic areas of Thailand were used to identify the 

immunogenic epitopes. Five PvMSP-7 proteins (PvMSP-7A, -7B, -7K, -7L, and -7M) 

contained the most immunogenic B-cell epitopes (Figure 6.5), and14 peptide sequences 

in PvMSP-7A, -7B, -7H, -7I, -7L, and -7M were confirmed epitopes in all patient age-

groups (Figure 6.7). The high prevalence of cross-reactive IgG responses to PvMSP-7 

under conditions of natural exposure supports vaccine development, and the precise 

identification of epitopes will facilitate the further development of MSP-7 as a subunit 

vaccine against P. vivax. 

In silico B-cell epitope mapping has been used to identify potential epitopes in 

13 PvMSP-7 proteins. The prediction was performed using Bepipred linear epitope 

prediction (Larsen et al., 2006). This algorithm was used to map major vaccine 

candidates including, PvMSP-1 (Soares et al., 2014), PvMSP-9 (Rodrigues et al., 2016) 

, and PvAMA-1 (Bueno et al., 2011). Consistently, most of the predicted epitopes from 

these major vaccine candidates showed a remarkable immune response in experimental 

studies (Bueno et al., 2011; Rodrigues et al., 2016; Soares et al., 2014). It was 

determined in this study that the predicted B-cell epitopes are scattered along the genes 

in PvMSP-7 (Figure 6.3). A closer look into the B-cell epitope distribution shows that 

there is a long stretch of B-cell epitopes located within the central regions of the 

proteins. The central region of the PvMSP-7 proteins is known to display extensive 

sequence polymorphism, which strongly implies functional constraints (Cheng et al., 

2018; Garzón-Ospina et al., 2010; Garzón-Ospina et al., 2014; Garzón-Ospina et al., 

2012). Similarly, the polymorphic central domain of the circumsporozoite protein 

(CSP) was shown to encode immunodominant B-cell epitopes in P. falciparum (Zavala 

et al., 1983) and P. vivax (Arévalo-Herrera et al., 1998), and this domain has 

subsequently been used as the basis for a vaccine that elicits effective humoral and 

cellular immune responses against malaria infection (Nardin et al., 2000; Wang et al., 

1998). Based on the observations in this chapter, the central domain of PvMSP-7 

appears to be the main target of antibodies and the best region of MSP-7 for use in a 
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vaccine. Only in two cases, PvMSP-7D, and PvMSP-7E, where epitopes not found in 

the central region, however, these two proteins are relatively short in length, 176 amino 

acids and 94 amino acids, respectively. It is possible that PvMSP-7D and PvMSP-7E 

are truncated pseudogenes, which results in fewer epitopes.  

In the present study, the B-cell epitopes derived from in silico prediction were 

compared against the naturally immunogenic epitopes in PvMSP-7 proteins. Several 

consensus epitopes were found particularly in PvMP-7A, -7B, -7F, -7G, -7I, -7K, -7L, 

and -7M (Figure 6.3 and Figure 6.5). The position of naturally immunogenic B-cell 

epitopes was not located at the precise predicted position because the peptide array was 

designed with 15-mers. Nonetheless, the immunogenic epitopes in natural infection still 

seen to overlap with the in silico linear B-cell epitopes. Essentially, the in silico epitope 

prediction is able to distinguish comparable naturally immunogenic regions. Therefore, 

care should be exercised when the analysis is dependent on in silico screen alone.  

Intrinsically unstructured/disordered regions are known to associate with 

immune responses (Guy et al., 2015). Several major malaria vaccine candidates that 

have been developed for use against P. falciparum were reported to contain a long, 

intrinsically unstructured/disordered region. For example, MSP-2 (Adda et al., 2009), 

MSP-3 (Van et al., 2014) , Glutamate-rich protein (GLURP) (Feng et al., 2006), AMA-

1 (Guy et al., 2015), serine repeat antigen 5 (SERA) (Yagi et al., 2014), and CSP 

(Foquet et al., 2014) are composed of partially or completely intrinsically disordered 

regions. Moreover, the intrinsically unstructured/disordered regions of SERA5 and 

CSP have been shown to contain epitopes that induce protective immune responses 

(Foquet et al., 2014; Yagi et al., 2014). Intriguingly, increased antibody recognition of 

linear B-cell epitopes was also demonstrated along the intrinsically disordered region 

(Guy et al., 2015). This feature may be due to greater intrinsic plasticity relative to 

structural domains, which perhaps facilitates molecular recognition and interactions 

with other invasive protein targets (Uversky and Dunker, 2013; Wright and Dyson, 

2015). Consistently, a majority of the antigenic linear B-cell epitopes in PvMSP-7 

(Figure 6.5) are present along the long disordered region in the central domain. Protein-

protein interactions validated using ANCHOR have shown potential binding sites 

within all predicted disordered regions in PvMSP-7 (Rajamani et al., 2004). Although 

malaria research has not yet reported the association between protein secondary 
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structure and immune responses, dominant epitopes of Echinococcus multilocularis 

Emy162 revealed random coiled-coil regions with strong antigenicity (Li et al., 2013). 

Therefore, multiple lines of evidence suggest that linear B-cell epitopes within the 

PvMSP-7 central domain could play a role in antibody binding and mediate immune 

responses.  

Most of the PvMSP-7 paralogs (PvMSP-7A, -7B, -7C, -7E, -7H, -7I, -7K, -7H, 

and -7M) also exhibited a short segment of intrinsically unstructured/disordered region 

in the N-terminal. These disordered segments are flanked by structured regions where 

they undergo a disordered to structured transition upon functioning (Forman-Kay and 

Mittag, 2013). MSP-7 undergoes two proteolytic events where the N-terminal is 

cleaved after primary proteolysis  (Pachebat et al., 2007). The fate of the N-terminal 

after proteolysis was unclear until recently; Perrin et al. (2015) demonstrated that the 

cleaved N-terminal domain as a ligand for the host’s P-selectin. This interaction seems 

to regulate disease severity because P-selectin plays a primary role in recruiting 

leukocytes to the injury sites during an inflammatory response (Klintman et al., 2004). 

Therefore, the N-terminal of PvMSP-7 could change its structure upon contact with the 

target components and regulate pathogenicity.  

In the present study, 14 novel epitopes that were immunogenic in all 

experimental groups under conditions of natural exposure were identified (Figure 6.7). 

These 14 epitopes encoded in six PvMSP-7 paralogs have shown to elicit IgG cross-

reactivity (fold-changes= 3.307 – 6.311). It is noteworthy that, of the 14 novel epitopes, 

nine immunogenic epitopes were derived from PvMSP-7A and PvMSP-7L. The high 

log fold-change in two peptides EREKKNTLIKTFKKA (PvMSP-7A310-315) and 

EAVDEEAEKEDTAVI (PvMSP-7L139-154) are located in the conserved fragment of 

the antigens. Deletion of full-length PvMSP-7A orthologue in P. falciparum reported 

retarding the merozoites invasion of erythrocytes (Kadekoppala et al., 2008). This 

finding highlights the functional importance of PvMSP-7A, and a subunit vaccine 

incorporating the PvMSP-7A could potentially lead to immune responses that reduce 

pathogenicity. 

Sera from malaria-naïve patients served as a negative control in the study. 

Cross-reactivity was observed in peptide microarray of negative control to a lesser 

extent (Figure 6.4f). Consistently, this phenomenon was discussed in several studies 
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where malaria-naïve volunteers displayed cross-reactivity towards Plasmodium 

antigens (H. FELL et al., 1994; Wipasa et al., 2011; Zevering et al., 1992). This could 

arise from the proliferation of immune memory cells in non-exposed malaria 

individuals in response to malaria peptides (Good and Saul, 1993). Likely that the 

differentiation of memory cells are stimulated by microorganisms or other vaccine 

antigens which present the similar epitopes to malaria antigens (Wipasa et al., 2011). 

However, the present study unable to draw a conclusion about the fluorescence signals 

captured on the negative control (Figure 6.4f) as the clinical history of the malaria naïve 

individuals recruited for the study was inaccessible.   

 

6.5 Conclusion 

This study presents the first linear B-cell epitopes of PvMSP-7 in natural infection 

based on the high-density peptide microarray. This novel approach has identified 

immunodominant linear B-cell epitopes within the PvMSP-7 repertoire. Based on the 

evidence presented in this chapter, 14 novel PvMSP-7 peptides are universally targeted 

by naturally acquired IgG antibodies. Two highly immunogenic PvMSP-7 paralogs, 

PvMSP-7A and PvMSP-7L are promising vaccine candidates. The naturally 

immunogenic linear epitopes of PvMSP-7A and PvMSP-7L span along the conserved 

motif of PvMSP-7 should be prioritised in subunit vaccine development. Although the 

magnitude of IgG responses conferred by each epitope was demonstrated, the protective 

efficacy remains to be explored. A larger cohort of patients is required to validate the 

findings presented herein. 
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Chapter 7  

General discussion 

This thesis contributes significantly to the understanding of Plasmodium vivax 

merozoite surface protein 7 as a vaccine candidate. Various reverse vaccinology 

approaches were used to progress the use of PvMSP-7 in future vaccine design 

including, antigenic variation, gene expression, and identification of immunogenic 

epitopes spanning the entire PvMSP-7 repertoire.  

In Chapter 2, the extensive population structure of P. vivax was observed between 

three main malaria major endemic areas in Thailand (Tak province, Ubon Ratchathani 

province, and Yala province). This finding is consistent with the geographic distribution 

of malaria parasite in Thailand and implicates in the vaccine development strategy. In 

Chapter 3, PvMSP-7 multigene family displays heterogeneous sequence variation, 

certain paralogs are highly polymorphic, and others are rather conserved. Most of the 

positive selection signals were identified in the central region of the gene owing to the 

functional constraint. Vaccine development should prioritise the conserved paralogs 

and terminal to elicit immune responses in a larger proportion of the world population. 

In Chapter 4, PvMSP-7E exhibits comparable genetic diversity to other genetic 

markers for P. vivax. Evolutionary pressures act differentially along the locus and seem 

to be differentially affected by predicted protein secondary structure. In Chapter 5, 

three PvMSP-7 paralogs (PvMSP-7A, -7F, and -7M) have shown to express 

constitutively across the developmental stages. Interestingly, certain PvMSP-7 paralogs 

(PvMSP-7H and -7I) demonstrated stage-specific expression in patients experienced 

longer infection suggesting PvMSP-7 family is developmentally regulated. Lastly, 

Chapter 6 shows total IgG antibodies level to PvMSP-7 paralogs quantified using 

peptide microarray. In total, 14 highly immunogenic peptides were identified and 

belong to six PvMSP-7 paralogs. PvMSP-7A contains the highest number of 

immunogenic epitopes. Taking all evidence, PvMSP-7A is a plausible vaccine 

candidate in P. vivax and established a foundation for pre-clinical vaccine development.   

The major barrier in the study is the genomic coverage of P. vivax. The accuracy of 

the finding is influenced by the number of reads mapped to the genome. Patients 

recruited in the study demonstrated low parasitaemia and only a limited volume of 
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venous blood collected. Moreover, the genomic DNAs collected in the study also 

suffered from high-level human DNA contamination. The sequencing results showed 

2X to 147X genome coverage, the inconsistency in the coverage might introduce bias 

in the analysis. More patients should be recruited in the future study to validate the 

population of P. vivax in three malaria endemic areas in Thailand. The latest technology 

using selective whole-genome amplification is an alternative to achieve higher genomic 

coverage, thereby improve the data quality (Cowell et al., 2017). Furthermore, a larger 

sample size could pinpoint chromosome or genes under selective pressures for drug 

resistance surveillance. All these approaches allow the fine scale of P. vivax analysis in 

Thailand.  

As P. vivax is lacking an effective culture system, the transcriptional changes of 

PvMSP-7 were analysed based on the clinical isolates present multiple parasite life-

stages. Two genes (PvMSP-7H and -7I) were seen upregulated in the patients who 

experienced longer patency while three others (PvMSP-7A, -7F, and -7M) were 

constitutively expressed across the IDC. This suggests PvMSP-7 is developmentally 

regulated across the IDC. A larger sample size is needed to validate this novel finding. 

The coverage of the RNA-seq data also demonstrated some extent of inconsistency 

where the coverage ranged from 1X to 79X. In general, transcripts with high expression 

have a higher probability to be sequenced than those lowly expressed ones. Therefore, 

to characterise the lowly expressed transcript, higher sequencing depth is required. In 

conclusion, a larger sample size and higher genome coverage are required to fine scale 

the findings in this thesis. 

Mapping of short sequences fragments to a genome is a challenge. It is the main 

question to the research community aiming to uncover the novel mutations underlying 

diseases (Trapnell and Salzberg, 2009). The reads should be aligned without allowing 

large gaps in the alignment. A large gap can introduce alignment error. A more 

challenging problem occurs in RNA-seq where alignments can have huge gaps due to 

introns. Furthermore, the multigene families in Plasmodium species further complicate 

the read mapping. It is difficult to map reads to multiple repeated regions where the 

aligner must decide which is the true location. Currently, short-read aligners are rapidly 

growing and trained to map highly divergent regions. It has been suggested that using 
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different aligners and inspect the alignment manually represent a more sensible 

approach, although this step is often time-consuming (Tian et al., 2016).  

Variant calling is the next analysis after the alignment against the reference 

genome. Short reads may be mismapped to the reference genome and contribute to 

inaccurate SNPs especially the reads mapped to complex locations. It has a higher 

chance to introduce genotyping errors to paralogues or tandem repeat regions 

(Torkamaneh et al., 2016). As such, to minimise the impact of mismatches on variant 

calling, the SNP catalogue can be introduced using different pipelines to achieve 

concordant SNP results. The mismatches of multiple reads mapped to the positions 

were reported to be detected by some sophisticated tools such as GATK realigner where 

it can filter out false SNPs (Tian et al., 2016; Van der Auwera et al., 2013). Therefore, 

it is critical for the researchers to change multiple parameters in the SNP calling pipeline 

to enhance the outcome.  

RNA-seq was employed in the present study to identify differentially expressed 

genes between groups of patients. However, biases could have been introduced during 

the genome mapping using 150 bp paired-end reads. Recently, a group was comparing 

the effect arising from the length of reads in RNA-seq between 50 bp and 100 bp paired-

end reads (Chhangawala et al., 2015). Strikingly, the differential gene expression 

analysis did not yield substantially contrasting results. However, the length of reads had 

a significant effect on the splice junction detection (Chhangawala et al., 2015). 

Sequencing depth and sample size are two major factors affecting the differential 

expression analysis. The number of differentially expressed genes are positively 

correlated with the sequence depth (Zhao et al., 2016). As discussed previously, a 

higher sequencing depth and larger sample size will refine the study. All the solutions 

discussed above have its limitations and introduce bias in the analysis. The emerging 

of long sequence reads and more advanced alignment strategy would improve the 

precision of the findings in the study. 

This thesis has presented evidence that PvMSP-7 should be considered in malaria 

subunit vaccine development. Much of what have observed in the study compares well 

with past and present Plasmodium vaccine candidates, many of which were comparable 

multigene families, for example, the widely studied Plasmodium interspersed repeat 

(pir) gene family (Cunningham et al., 2010) . Pir is the largest multigene family in 
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Plasmodium, consisting of 68 – 838 genes (Carlton et al., 2008; Gardner et al., 2002; 

Pain et al., 2008). The pir gene family is found towards the end of all P. vivax 

chromosomes (Portillo et al., 2001). The paralogs in this family have been located on 

the erythrocyte surface implying a role in the invasion mechanism. The paralogs are 

also transcribed differentially through the IDC suggesting that distinct functions exist 

among paralogs. Some of the genes were expressed continuously through the 

erythrocytic stage (Carlton et al., 2008). Similar expression pattern of pir genes was 

observed in P. yoelii where some genes only transcribed during the erythrocytic cycle 

(Cunningham et al., 2005). This transcriptional pattern is believed to reflect different 

functions among the paralogs. Several studies have highlighted pir gene functions other 

than host-cell invasions, such as signalling, trafficking, and binding to host cells (Rénia 

and Goh, 2016; Yam et al., 2016). The transcription level pir genes in P. yoelii was also 

reported to be regulated by host immunity as shown in the mice model (Cunningham et 

al., 2005) . Consistently, PvMSP-7 paralogs have demonstrated similar transcriptional 

changes through the IDC as pir genes. However, the relationship between functional 

importance and the transcriptional changes of PvMSP-7 through the IDC still requires 

further investigation. The stage-specific expression of pir family in P. vivax found to 

have no distinct clustering in the phylogeny (Cunningham et al., 2010) . This agrees 

somewhat with the observations made for PvMSP-7 in Chapter 5, where the paralogs 

expressed constitutively (PvMSP-7A, -7F, and -7M) do not form a clade in phylogenies, 

but are instead paraphyletic. In contrast, PvMSP-7H and -7I expressed exclusively in 

patients experienced longer patency formed a cluster within the PvMSP-7 tree. This 

implies that the expression profiles of PvMSP-7H and -7I may be associated with a 

species-specific gene duplication. 

Multigene families in Plasmodium have evolved to encode variant surface antigens 

(Kyes et al., 2007). Each of the variant antigens typically retains a conserved, functional 

region, while the variation of non-conserved regions allow the parasite to evade the host 

immune responses (Rénia and Goh, 2016). Allelic variation is known to prime the 

immune responses in malaria infection (Marsh, 1992). A malaria subunit vaccine 

should ideally focus on the conserved domain, to confer cross-reactive immune 

responses (Cao et al., 2016). P48/45 is a broadly studied transmission-blocking vaccine 

candidate (Dijk et al., 2001). Several studies have reported that the conserved domain 

of P48/45 is functional, and the disruption of the gene in P. falciparum and P. berghei 
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hampered the development of male gametes (Outchkourov et al., 2008, Dijk et al., 

2001). Recently, conserved epitopes located towards the C-terminal of the antigen were 

shown to confer cross-reactive immune responses between P. falciparum and P. vivax 

(Cao et al., 2016). A challenge experiment was conducted in a mouse model and the 

immune responses were quantified by ELISA (Cao et al., 2016). However, protective 

immunity is yet to be demonstrated in populations naturally exposed to P. falciparum 

and P. vivax. 

Likewise, merozoite surface protein 2 (MSP-2) has been investigated for its 

immune response in blood-stages (Beeson et al., 2016). MSP-2 is expressed on the 

merozoite surface similar to MSP-7. Intrinsically disordered regions of MSP-2 were 

observed along the antigens (Morales et al., 2015). The central domain of MSP-2 

displays extensive antigenic variation and is flanked by conserved domains at the N- 

and C-termini (MacRaild et al., 2015). Immune responses were evaluated in the 

polymorphic (Flück et al., 2004) and conserved regions (Seow et al., 2017). The C-

terminal of MSP-2 encoded the main epitopes shown to recognised by the mouse 

monoclonal antibodies (Seow et al., 2017). A subunit vaccine based on the polymorphic 

and conserved regions was shown to reduce parasitaemia by 62% (Flück et al., 2004). 

Drawing on the experience of these past and present vaccine candidates, the conserved 

domains of PvMSP-7 are the starting point for its vaccine development. The N- and C-

terminal of PvMSP-7 are highly conserved, and in the case of the C-terminal, this is 

because it interacts with MSP-1 prior to host-cell invasion (Castillo et al., 2017; 

Kadekoppala and Holder, 2010; Kadekoppala et al., 2008). Whether the C-terminal of 

PvMSP-7 would induce selective immune responses or protective immunity still 

requires further exploration. Polymorphism in the central region could still provide a 

benefit to an experimental vaccine, as it seems to for MSP-2, but careful evaluation is 

necessary. Therefore, in line with P48/45 and MSP-2 vaccine candidates, the C-

terminal of PvMSP-7 should be prioritised in vaccine design.  

Another important aspect of vaccine design is deciding which PvMSP-7 paralogs 

should be included, if not all. In Chapters 3 and 5, the heterogeneous patterns of 

sequence diversity and transcriptional profiles were observed among PvMSP-7 

paralogs. Therefore, it seems that PvMSP-7 paralogs do not perform identical functions, 

neither are they exposed to host immunity to equal extents. The reticulocyte-binding 
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protein family has been considered as vaccine candidates in P. vivax (Han et al., 2016) 

and P. falciparum (Baum et al., 2009; Campeotto et al., 2017). Of the eleven RBP 

paralogs in P. vivax, PvRBP1a and PvRBP1b were selected in vaccine design owing to 

the expression at the microneme in schizont stage (Han et al., 2016). Moreover, 

sequence analysis of PvRBP1a and PvRBP1b displayed conservation in antigenicity 

and induced protective immune responses in the animal model (Han et al., 2016). Based 

on this evidence, PvMSP-7 paralogs that show high sequence conservation should be 

considered in vaccine development. The precise location of PvMSP-7 during blood-

stages is yet to be characterised in P. vivax. However, the orthologous gene of PvMSP-

7A in P. berghei was present on the merozoite surface (Kadekoppala et al., 2010). The 

disruption of PbMSP-7A did exhibit a significant reduction in erythrocyte invasion, 

suggesting the utility of this paralog in vaccine design (Kadekoppala et al., 2008). 

Future work should focus on the localisation of all PvMSP-7 paralogs to underpin the 

vaccine design. 

Rapid identification of novel vaccine candidates has been described using chemical 

peptide synthesis and serological screening (Valencia et al., 2011). A total of 50 P. 

vivax orthologous genes in P. falciparum were chemically synthesised and evaluated 

for their immunogenicity using ELISA (Villard et al., 2007). In the present study, a 

high-density peptide microarray was used to screen all immunogenic epitopes across 

PvMSP-7 paralogs. This state-of-art technology efficiently identified the immune 

responses against PvMSP-7 in natural infection. The technology has been used to 

identify the B-cell epitopes in P. falciparum Schizont Egress Antigen 1 (Nixon et al., 

2017). Of the five immunogenic epitopes tested, three epitopes displayed protective 

immune responses with a significant reduction in parasitaemia (Nixon et al., 2017). The 

immune response was positively correlated with the protective efficacy (Nixon et al., 

2017). Immunogenic peptides were identified in PvMSP-7, however uneven 

distribution of immunogenic peptides was observed in the family. This likely stem from 

the functional difference of each paralog. These immunogenic peptides should be 

prioritised in the immunology testing, to which whether they elicit sterile protection 

malaria.  

Although a high-density peptide microarray provides high-resolution identification 

of immunogenic epitopes, the conformational structure of the epitope should not be 
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neglected. The native state of epitope influences the antibodies binding specificity 

(Forsström et al., 2015). A recent study conducted using polyclonal sera from patients 

has revealed the antibody recognised differently with the conformational structure of 

epitopes (Forsström et al., 2015). Of the eight linear epitopes studied, antibodies 

recognised three conformational epitopes (Forsström et al., 2015).  Having said that, 

despite antibodies binding to the linear B-cell epitopes, the specificity of immune 

responses is likely to influence by the protein native state. The linear B-cell epitopes 

spanning across PvMSP-7 were characterised, but the nature of antibody response 

against the conformational structure of the epitopes warrants further investigation. This 

investigation can be accomplished using recombination protein strategy where the 

immunogenic B-cell epitopes are synthesised as recombination protein fragments. The 

binding intensity of antibody to protein fragments in relative to peptides will channel 

to the understanding of conformation-specific antibody.  

The malaria-specific antibody IgG plays a pivotal role in clearing parasites and 

reducing the risk of malaria (Dobbs and Dent, 2016). The total IgG demonstrated a peak 

in uncomplicated malaria infection, where the mean concentrations of IgG antibodies 

were significantly higher than that of IgE antibody in uncomplicated malaria conducted 

in Thai patients (Perlmann et al., 2000). A study has reported a positive correlation 

between IgG responses to the C-terminal domain of MSP-1 and subsequent reductions 

in parasite density (Branch et al., 1998; Riley et al., 1992). This evidence supports a 

role for IgG antibodies in mediating disease severity. In Chapter 6, the total IgG 

immune response was determined on a peptide microarray and found that epitopes were 

not evenly distributed between paralogs. Six PvMSP-7 paralogs have a higher number 

of epitopes and, within these, epitopes associated with the C-terminal, in a similar 

fashion to MSP-1 (Baldwin et al., 2015). For this reason, as PvMSP-7A contains a 

higher number of immunogenic epitopes in the C-terminal, it should, therefore, 

prioritised in the vaccine development.     

In Chapter 6, the total IgG antibodies response to PvMSP-7 was quantified, which 

could potentially reduce the parasite density during blood-stage infection, but without 

specifying the IgG isotypes responsible. Specific IgG subtypes do mediate protective 

immune responses in Plasmodium (Stanisic et al., 2009). The erythrocytic 

developmental stage is predominantly affected by IgG1 and IgG3 subclasses, while the 
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IgG2 and IgG4 act as antagonists (Aucan et al., 2000; Taylor et al., 1998; Weaver et 

al., 2016). In a field study, sterile protection induced by 19 kDa C-terminal of MSP-1 

was recognised by IgG1 and IgG3 antibodies (Diallo et al., 2001). Furthermore, a cross-

sectional study was carried out in West Africa where 178 individuals were assessed for 

their IgG responses to MSP-2 (Taylor et al., 1998), and the antibody response was 

predominantly conferred by IgG1 and IgG3. IgG1 antibodies level was higher in 

children below the age of ten while IgG3 antibodies primarily found in adolescents and 

adults (Taylor et al., 1998). These results suggest the subclass-specific antibodies 

influence the protective immune responses in malaria. For this reason, it will be 

necessary to characterize the cytophilic antibodies responses against PvMSP-7 to 

provide a complete understanding of protective efficacy.  

Age-dependent immune responses were demonstrated in blood-stage antigens such 

as MSP-1, MSP-2, AMA-1, and 175-kDa erythrocyte binding antigen (EBA-175) 

(Dobaño et al., 2011; Taylor et al., 1998). These studies revealed a consistent pattern 

in IgG responses where the level seems to decrease with age in early infancy and 

increases again by age 2 years. Naturally acquired immunity to malaria requires 

uninterrupted exposure to the parasite and the responses are species- and stage-specific 

(Doolan et al., 2009; Nhabomba et al., 2014; Schüffner, 1938). In the present study, 

total IgG responses to PvMSP-7 were investigated in five different age groups. Totally, 

14 cross-reactive immunogenic epitopes were detected in PvMSP-7, supporting the 

notion that these epitopes are immune targets. A difference in the number of antigenic 

epitopes was observed between each age group. The number of immunogenic epitopes 

was higher in the three groups of patients (age group 0-14, 15-29, and 30-44) while a 

drop in antigenic epitopes was seen in two older age groups (age group 45-59 and 60-

74). The increase of immunogenic epitopes in three younger age groups is consistent 

with other studies because naturally acquired immunity to malaria establishes over 

time. To our knowledge, no study so far has investigated the total IgG responses using 

a large age pooled (0-74 years old). The discrepancy in the number of immunogenic 

epitopes between age groups is likely due to the patients’ exposure to the parasite. 

Therefore, information about the exposure to the malaria parasite and immune 

responses to PvMSP-7 in each clinical patient would refine the finding.  
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Having discussed the population genetics, transcriptional patterns, and 

immunogenicity of PvMSP-7, the next section discusses possible steps to transform 

PvMSP-7 in vaccine development, with comparison to the broadly studied vaccine 

candidate in P. falciparum, RTS,S (Neafsey et al., 2015; Olotu et al., 2013; Olotu et 

al., 2016). RTS,S is a pre-erythrocytic stage vaccine candidate that has demonstrated 

partial and complete protection against infection in an experimental model (Moorthy 

and Ballou, 2009). RTS,S is made up of 19 NANP repeats and the C-terminal of the 

circumsporozoite protein (CSP) fused to the hepatitis B surface antigen (Cohen et al., 

2010). It is hypothesized that the repeat regions will enhance its recognition of the 

host’s immune system. It has been tested up to Phase III in the clinical setting where up 

to 50% of the children protected against infection upon vaccination (RTS,S, 2012)  . 

Multiple Phase II trials have supported the safety of this vaccine in all age groups 

including infants and young children in sub-Saharan Africa (Gosling and von Seidlein, 

2016). Moreover, the results from Phase II clinical trials also displayed protective 

immune responses against P. falciparum  (Gosling and von Seidlein, 2016). The 

milestones achieved during the development of the RTS,S vaccine could guide the 

development of a vaccine PvMSP-7. In similar fashion to the CSP C-terminal domain, 

the conserved regions of PvMSP-7 should be prioritised in the vaccine design as 

suggested they are likely to elicit the protective immune response in natural infection. 

Several constructs of CSP based in the central region were evaluated for their 

immune efficiency (Espinosa et al., 2013). Some candidates were well tolerated and 

highly immunogenic (Espinosa et al., 2013). Furthermore, regions of CSP that failed to 

elicit protective immune responses in Kenyan and Thai volunteers during Phase IIb trial 

were abandoned (Cohen et al., 2010). In the present study, the cross-reactive epitopes 

were detected using peptide microarray. In total 14 highly immunogenic B-cell epitopes 

should proceed further to evaluate their ability to induce protective immunity using a 

mouse model similar to that used in the CSP vaccine approach (Espinosa et al., 2013). 

The epitopes that demonstrate poor protective immunity will then be excluded. An 

expression system for PvMSP-7 would greatly benefit our ability to evaluate its 

protective effects. The appropriate expression system will produce the recombinant 

protein vaccines of PvMSP-7 to gain insights into its immune protection efficacy.  
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It will also be necessary to express the specific domains of the preferred PvMSP-7 

paralogs in recombinant form. Generating recombinant proteins through bacterial-

based systems is a challenge due to the formation of inclusion bodies and bacterial 

toxins that reduce biologically active components. However, several vaccine candidates 

have been successfully produced through bacterial-based systems using Escherichia 

coli, Saccharomyces cerevisiae, and Pichia pastoris (Gurkan and Ellar, 2005). They are 

the most effective expression hosts owning to the alcohol oxidase promoter that allows 

expression of foreign genes at ease. Recombinant proteins can be produced in several 

forms including soluble proteins, fusions antigens, lengthy artificial peptides, and self-

antigen arrays on virus-like particles (Powles et al., 2015). The RTS,S vaccine is based 

on the virus-like particle platform using the hepatitis B surface antigen (Oyarzún and 

Kobe, 2016). The C-terminal region of CSP is part of the RTS,S vaccine where it found 

to involve in the attachment to the parasite hepatocytes and demonstrated a conserved 

epitope (Wang et al., 2009). This construction was shown to elicit significant protection 

in human (Kazmin et al., 2017). 

A universal influenza virus vaccine generated using recombinant DNA protein was 

approved in 2013 (Soema et al., 2015). This highly effective vaccine was based on the 

conserved protein regions containing B-cell epitopes. Interestingly, this vaccine was 

shown to induce protective immunity and increased cross-reactivity against various 

influenza strains (Soema et al., 2015). The Multimeric-001 influenza vaccine contains 

nine conserved epitopes which translate into a single 50-kDa synthetic protein (Atsmon 

et al., 2012). The construction was based on the E. coli standard fermentation and 

purification approaches. The recombinant vaccine has proven to be safe and stimulate 

humoral and cellular immunity in patients and currently in stage III of the clinical trial 

(Atsmon et al., 2012). Thus, it may be possible to pursue a similar strategy for PvMSP-

7, combining the immunogenic and conserved regions of PvMSP-7A in a recombinant 

protein.  

Another critical consideration will be selecting the appropriate adjuvants. All 

subunit vaccines in their native form must be coupled with an adjuvant. Subunit 

vaccines include only the protective regions of the protein. The choice of adjuvant is 

important to deliver the vaccine and induce durable immunity by presenting the vaccine 

antigens to the host immune system (Pasquale et al., 2015). The RTS,S vaccine has 
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been formulated with the AS01 and AS02 adjuvant systems (Leroux-Roels et al., 2014). 

The AS01 adjuvant system contains a liposome-based adjuvant, a Toll-like receptor 4 

ligand, and QS-21 (Leroux-Roels et al., 2014). The QS-21 acts as an immune response 

enhancer (Kensil et al., 2006). RTS,S/AS01 induced a protective effect in young infants 

and children over a three to four year period (Gosling and Seidlein, 2016) . 

Administration of a booster dose prolonged the protection against infection (RTS, 

2015)  . The AS02 adjuvant system contains 3-deacylated monophosphoryl lipid and 

QS-21 oil-in-water emulsion (Ballou, 2009). In Phase I clinical trial, approximately 

32% of the population protected against the sporozoite challenge  (Ballou, 2009). Both 

AS01 and AS02 adjuvant systems demonstrated satisfying safety and immunogenicity, 

however, the AS01 has protection over 50% upon sporozoite challenge (Ockenhouse et 

al., 2015). Having said that, a suitable adjuvant system will enhance the immune 

responses and protective effect. Furthermore, the Phase II clinical trial of RTS,S/AS01 

in children from Tanzania and Kenya displayed fewer adverse complications (Bejon et 

al., 2008). After observing the vaccine efficacy from the Phase II clinical trial, 

RTS,S/AS01 was chosen to proceed further in the Phase III clinical trial. It has been 

demonstrated the importance of choosing a suitable adjuvant system in the subunit 

vaccine. Specific adjuvant systems are likely to have high purity and reduce adverse 

effects, however, it might reduce the immunogenicity (Christensen, 2016). 

This thesis represents a comprehensive study of PvMSP-7 using high-throughput 

technologies. In anticipation of further development of a PvMSP-7 subunit vaccine, 

there is a need to address the appropriate protein expression system, adjuvants, and 

epitopes that confer sterile protective responses. Based on the findings in this study, 

PvMSP-7A should be prioritised in subunit vaccine development because it shows 

greatest sequence conservation among the family members and constitutive expression 

during the IDC. In addition, six immunodominant epitopes along the PvMSP-7A 

displayed cross-reactivity in all clinical isolates. Five cross-reactive epitopes were 

identified in the N- and C-termini, which, based on previous research, is likely to 

modulate disease severity and impair parasite invasion. Therefore, PvMSP-7A is a 

promising vaccine candidate and should be developed further as a malaria vaccine 

candidate. 
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Appendix 
	
Supplementary Table 1. 48 sequences retrieved from National Center for 

Biotechnology Information (NCBI) database. NA: not available. 

No. 
Short Read 

Archive 
Identifier 

Country Location Year of 
collection 

Sequencing 
approach 

1 ERR018032 Brazil NA 2008 Illumina 

2 ERR019040 Brazil NA 2008 Illumina 

3 ERR152407 Brazil NA 2008 Illumina 

4 ERR020103 Cambodia NA 2010 Illumina 

5 ERR023039 Cambodia NA 2010 Illumina 

6 ERR023040 Cambodia NA 2010 Illumina 

7 ERR023041 Cambodia NA 2010 Illumina 

8 ERR054080 Cambodia NA 2010 Illumina 

9 ERR054082 Cambodia NA 2010 Illumina 

10 ERR152408 Cambodia NA 2010 Illumina 

11 ERR211549 Cambodia NA 2010 Illumina 

12 ERR211561 Cambodia NA 2010 Illumina 

13 ERR23042 Cambodia NA 2010 Illumina 

14 ERR054088 Malaysia NA 2011 Illumina 

15 ERR054089 Malaysia NA 2011 Illumina 

16 ERR152414 Malaysia NA 2011 Illumina 

17 ERR152415 Malaysia NA 2011 Illumina 

18 ERR527337 Malaysia NA 2013 Illumina 

19 ERR527363 Malaysia NA 2013 Illumina 

20 SRR1564966 Myanmar Kachin State 2012/2013 Illumina 

21 SRR1564977 Myanmar Kachin State 2012/2013 Illumina 

22 SRR1565050 Myanmar Kachin State 2012/2013 Illumina 

23 SRR1565088 Myanmar Kachin State 2012/2013 Illumina 

24 SRR1568013 Myanmar Kachin State 2012/2013 Illumina 
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25 SRR1568114 Myanmar Kachin State 2012/2013 Illumina 

26 SRR1568120 Myanmar Kachin State 2012/2013 Illumina 

27 SRR1568204 Myanmar Kachin State 2012/2013 Illumina 

28 ERR404246 Thailand East 2013 Illumina 

29 ERR426015 Thailand East 2012 Illumina 

30 ERR426033 Thailand East 2013 Illumina 

31 ERR428035 Thailand East 2013 Illumina 

32 ERR 111728 Thailand West 2007 Illumina 

33 ERR111709 Thailand West 2011 Illumina 

34 ERR111710 Thailand West 2007 Illumina 

35 ERR111713 Thailand West 2013 Illumina 

36 ERR111714 Thailand West 2011 Illumina 

37 ERR111716 Thailand West 2011 Illumina 

38 ERR111717 Thailand West 2006 Illumina 

39 ERR111719 Thailand West 2007 Illumina 

40 ERR111720 Thailand West 2012 Illumina 

41 ERR111721 Thailand West 2012 Illumina 

42 ERR111727 Thailand West 2011 Illumina 

43 SRR1562845 Thailand West 2012 Illumina 

44 SRR1562959 Thailand West 2013 Illumina 

45 SRR1562962 Thailand West 2012 Illumina 

46 SRR1568148 Thailand West 2013 Illumina 

47 SRR1568161 Thailand West 2012 Illumina 

48 SRR1568209 Thailand West 2013 Illumina 
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Supplementary Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 1. Co-expression analysis between Group 3 and Group 4. 

Genes are clustered into 14 groups from the coseq package implemented in R. The input 

normalised reads were derived from the DESeq2 package. The boxplot depicts each 

individual, and the colour represents each group of patients. The genes in each cluster 

are listed in S5.2. 
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Supplementary Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 2. Co-expression analysis between Group 2 and Group 4. 

Genes are clustered into seven groups from the coseq package implemented in R. The 

input normalised reads were derived from the DESeq2 package. The boxplot depicts 

each individual, and the colour represents each group of patients. The genes in each 

cluster are listed in S5.2. 
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Supplementary Figure 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 3. Co-expression analysis between Group 1 and Group 4. 

Genes are clustered into six groups from the coseq package implemented in R. The 

input normalised reads were derived from the DESeq2 package. The boxplot depicts 

each individual, and the colour represents each group of patients. The genes in each 

cluster are listed in S5.2. 
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Supplementary legends 

 
S5.1 Full table of differentially expressed genes between each group of patients. The 

spreadsheet contains DEGs of pairwise comparison between Group 1 and 2, Group 1 

and 3, Group 1 and 4, Group 2 and 3, Group 2 and 4, and Group 3 and Group 4. DEGs 

with FDR<0.05 were considered significantly differentially expressed. The DEGs were 

identified using DESeq2.  

 

S5.2 Full table of co-expressed genes in each cluster derived from a pairwise 

comparison of DEGs between Group 3 and 4, Group 2 and 4, and Group1 and 4. The 

analysis was conducted using coseq implemented in R. The table contains the identifier, 

gene name, and product description.  

 

S6.1 Full table of differentially detected peptides in five groups of patients. The 

differentially detected peptides were identified from the pairwise comparison of each 

group of patients to negative control. The analysis was performed using t-statistics 

implemented in LIMMA package. The table contains differentially detected peptides in 

each group of patients, log fold-change, average expression, and the adjusted p-value. 

The peptides with adjusted p-value < 0.05 were considered statistically significant.  


