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Motivation 

 

The Chain-Ladder (CL) is the claims reserving method most used by actuaries with data in 

triangle format. Several references in the literature highlight its role, for example, Wüthrich 

and Merz (2008) and Marcuson (2013). There is also a survey from the International 

Actuarial Association, IAA (2017), confirming the CL as the method most used by actuaries.  

 

However, a CL bias has been identified by Halliwell (2007) and this may create problems to 

the insurer’s management: the CL may not be the optimal solution to match the data and very 

often presents high prediction errors (the square root of the mean square error of prediction). 

We explain these limitations in the following two paragraphs. 

  

At least since Straub (1988), we know that the CL is not the exact solution but only an 

approximation to have the minimization of the sum of the square of the errors, when a linear 

regression is applied to the claims reserving triangles - and the CL is a linear regression, as 

Straub (1988) also showed this. Also, we know from Mack (1993a) that the CL does not 

minimize the sum of the square of the errors but minimizes the weighted sum of the square of 

the errors, which means that it assumes errors as heteroscedastic (with non-constant variance). 

With regression techniques, heteroscedasticity is a feature from cross-section models; see for 

example Fomby et al. (1984). Cross-section models have data coming from the same period 

(with claim’s triangles would be the same origin year) and from several entities (with claim’s 

triangles could be more than one development year). We also have cross-section models 

inside panel data models: cross-section models from several years. With claim’s triangles, this 

should correspond to estimate a complete triangle with regression techniques. Panel data 

models may show heteroscedasticity if the model parameters are assumed the same for all the 

entities (the same loss development factors for all the triangle columns). However, when we 

estimate the loss development factors they are not equal or similar between all the triangle 

columns. This means that we should not expect to find in claim’s triangles, in most of the 

cases, heteroscedasticity. It is possible that heteroscedasticity arises when data is irregular, as 

in such cases it will be more difficult to do prediction and the variance of the error is probably 

not going to be constant. The same may happen if we consider several lines of business with 

the same development factors, but that is not a common procedure in multivariate claims 

reserving literature, see for example Zhang (2010).  
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It is also common that actuaries mention the existence of high prediction errors when the CL 

is applied. This is confirmed, as an actuary, by the author of this thesis and may be also seen 

in several papers that present prediction errors for the stochastic CL or for the models that 

replicate the CL. One example may be seen in Mack (1993a, 1993b, and 1994). Having a high 

prediction error on a model, which is a simplification of the reality, does not give confidence 

on its results. When the prediction error is high the predictions are not close to the actual 

experience. Probably other measures for model selection, such as the errors analysis and the 

back-testing, will also present poor results. 

 

Apparently, the CL seems to show a paradox. It is known, as stated by Straub (1988), that the 

regression models minimize the sum of the square of the errors and may be used in claims 

reserving. But according to Taylor (1978), the regression techniques were always seen with 

suspicion by actuaries, even though most of them use the CL, which is a weighted-regression 

model.  

 

Our first motivation in this thesis is to present a method that assumes the use of regression 

techniques and that minimizes the sum of the square of the errors. We expect this approach to 

have better predictions than the traditional CL. Then we want this new method to be general 

and as such less dependent on the triangle considered, because it should have enough 

flexibility to adapt to each situation. As a general method, it should be able to replicate the 

results of several known methods like the CL.  

  

Having this general method will bring us a solution for two other important insurer’s 

problems: the claim’s reserves estimation dependency on payments speed (inside each 

triangle) and the estimation of several triangles at the same time (with an accurate method for 

all the triangles). These issues are very significant. The first is the recognition of a stylized 

fact of claims reserving: if we increase/decrease the speed of payments on one development 

year we decrease/increase the payments in the following years. The second oblige us to have 

accurate methods for claims reserving estimation: if the CL is not accurate to one triangle, 

applying it to several triangles at the same time will be even worse. 
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For this purpose, we will start by developing a first stochastic model like the one from Mack 

(1993a, 1993b, 1994) but considering a loss development factor, the Vector Projection (VP), 

which is a regression through the origin between two adjacent columns in the triangle. We 

expect this to bring better predictions in most triangles, when compared with the traditional 

CL. This method is based on the Mack’s framework but changes two things. Firstly, and as 

we said before, it considers the VP loss development factors, instead of the ones from the CL. 

Secondly, it considers the claim’s payments variance proportional to the square of the 

payments, as they are the weights from the VP loss development factors. The motivation of 

this method is to show that a small change in the Mack assumptions allows for a better 

prediction in most of the triangles: the VP method changes CL loss development factors but 

maintains the heteroscedastic feature from CL. However, we will change this VP last feature 

on the generalized models (see next paragraphs). 

 

We will develop a second method using regression methods, the generalized link ratios 

method that should consider the VP and the CL as particular cases. With this general method 

we will also be able to generate other methods like the Simple Average (SA). This general 

approach should improve the VP predictions even further as this new VP method will be 

homoscedastic. Due to the reasons presented in previous paragraphs, we believe that 

heteroscedasticity is not a common feature of insurer’s triangles, unless claim’s payments are 

irregular over the years.   

 

Having this generalized link ratios method, we will consider a third method with a 

multivariate approach. However, the latter will be different from the ones on the current 

literature of multivariate claims reserving. It will just have one triangle but with all the 

regressions contemporaneously correlated, giving us a multivariate regression. 

 

We will finish this thesis with a fourth and fifth method on portfolio data, which means 

several triangles estimated at the same time. Here we are going to have contemporaneous 

correlations between each triangle as happens in several methods from the literature, see for 

example Zhang (2010). However, we will introduce two differences for the methods 

presented in the literature. We use multivariate regression not just between triangles but also 

inside each triangle. Also, we do not use the CL to estimate the triangles loss development 

factors. Instead, we use either the generalized link ratios or the multivariate generalized link 
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ratios, the methods two and three. This shall improve the accuracy of the methods when 

compared with the traditional univariate methods. 

 

We want to develop for all the five method’s non-recursive formulas that will give the 

analytical solution of the mean squared error of prediction. Having the square root of that we 

get the prediction error. This will allow us to compare several methods using this criterion. It 

is an important criterion due to its relationship with the gap between prediction and 

experience. We will also try to understand if the prediction error is related with conclusions 

from other techniques for method selection, as error’s analysis and back-testing.  

 

Finally, we also want to see if some regression techniques tests (as the heteroscedasticity test, 

the serial correlation test, the equation’s correlations test and the pooled data test) can be 

useful on method selection. 

 

To summarize, we want to develop the following five methods: 

 

Methods Number of Triangles Correlations Between 

One Several Equations Triangles 

VP Yes -- No -- 

GLR Yes -- No -- 

MGLR Yes -- Yes -- 

PGLR -- Yes No No 

PMGLR -- Yes Yes Yes 
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Abstract 

 

The insurance business and the claims process features, as two sources of uncertainty and 

risk, are presented and the importance of a correct reserving to overcome this is highlighted.  

 

The claims reserving framework with data in triangle format is summarized and the main 

method used for reserving, the Chain-Ladder (CL), is explained. The assumptions of the latter 

are also presented and criticized. An attempt is made to explain why actuaries use the CL. 

 

The current methods for claims reserving are also summarized, both the deterministic and the 

stochastic. The relation of some of these methods with regression analysis is highlighted and 

an historical summary of the use of regression models in claims reserving is presented. The 

definition of the prediction error (as the square root of the mean square error of prediction) 

and the formulas for the confidence intervals are shown. Some conclusions about reserving 

models and the use of regression techniques are summarized. 

 

A first method, as an alternative to the traditional stochastic CL, Mack (1993a, 1993b, 1994), 

is presented. The new method, the stochastic Vector Projection (VP), is based on regression 

techniques with heteroscedastic errors and is shown, on the survey conducted, to produce 

lower prediction errors. A numerical analysis with regular and irregular data is performed and 

a method selection is done with errors inspection and back-testing calculations. The 

conclusions from these two tools for method selection are compared with the obtained 

prediction errors.  

 

A second method is presented, the stochastic generalized link ratios (GLR). The latter can 

replicate the VP, the CL, and the Simple Average (SA), as cases with a specific parameter. It 

also shows that other methods may be obtained through this specific parameter.  The 

parameter is defined so that we get the method with the lowest prediction error. The method is 

also able to show an alternative to the prediction error estimation from the stochastic CL, 

from Mack (1993a). This GLR method presents the prediction errors with an analytical 

formula, not recursive, as was traditional with some similar approaches, such as the one from 

Murphy (1994).  



 

ix 

 

The GLR method highlights the importance of the heteroscedasticity assumption (non-

constant variance of the errors) in some claims reserving methods. A homoscedastic (constant 

variance of the errors) GLR is also developed, the homoscedastic VP. 

 

Using this GLR method a third method is presented with stochastic multivariate regressions 

inside the claims triangle, the multivariate generalized link ratios (MGLR). This method 

considers the contemporaneous correlations between all the regressions inside the triangle and 

brings light to other issues known in practice, such as the speed of payments that affects 

reserve estimation. This approach contrasts with the methods on multivariate claims reserving 

that estimate several triangles at the same time with the traditional CL, see for example Prohl 

and Schmidt (2005), Wüthrich and Merz (2007b), and Zhang (2010). With MGLR, we just 

have one triangle and the multivariate approach comes from the contemporaneous 

correlations considered inside that triangle. Using a specific parameter (as in the GLR), the 

MGLR will also present, in particular cases, the multivariate versions from VP, CL and SA. 

Other multivariate methods may be obtained for other values from this parameter. 

Numerical results are presented for irregular and regular datasets and a survey of 114 triangles 

is summarized. Heteroscedasticity tests are conducted as well as tests on the correlations 

between triangle equations. Serial correlation inside each equation is also analysed. 

 

In a fourth and fifth method, GLR and MGLR are extended, and we will consider the 

estimation of several triangles at the same time. The new methods, the portfolio generalized 

link ratios (PGLR) and the portfolio multivariate generalized link ratios (PMGLR) consider 

the estimation of several triangles at the same time. The PMGLR allow the consideration of 

contemporaneous correlations between those triangles and between equations inside each 

triangle. The PGLR and the MPGLR will also present, in particular cases, the portfolio 

versions (univariate and multivariate) for VP, CL, and SA. As with GLR and MGLR, a 

specific parameter is used to identify these methods. Other portfolio methods may be obtained 

for other values from this parameter, following the same procedures used with GLR and 

MGLR.  

Numerical results are presented using the three triangles considered in this thesis, either as 

portfolio data (the three triangles estimated at the same time with their correlations) or as 

aggregated data (the three triangles sum in just one triangle). A test for the possibility of 

having pooled data is also conducted. 
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Finally, several general conclusions are presented about the thesis. Most of them respect the 

CL, the five alternative methods presented, and the decrease of the prediction errors when the 

latter is considered. The absence of heteroscedasticity in most insurers’ triangles is 

emphasized. The existence of heteroscedasticity in irregular data triangles is not excluded. 

The relation between prediction errors and two other method selection techniques, errors 

analysis and back-testing, is emphasized and the importance of some regression tests to help 

for method selection is also highlighted.  

The need to consider multivariate regressions in claims reserving, with correlations between 

the equations, is explained, as well as the advantage of working with portfolio data and 

triangle’s correlations.  
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Notations 

 

𝑎̂   Estimated constant on regression model. 

𝑎          True constant on a regression model. 

𝑎𝑣,𝑗         True parameter 𝑣 = 1, … on a multiple regression model equation 𝑗. 

AC      Average Cost method. 

AD      Additive method. 

b          Real slope on a regression model. 

𝑏̂          Estimated slope on a regression model. 

𝑏𝑗  Real loss development factor at column j. 

𝑏𝑥,𝑗  Generic parameter from regression on column j. If 𝑥 = 0, it is a constant. 

𝑏̂𝑗  Estimated loss development factor at column j. 

𝑏̂𝑗
𝑋𝑋  Estimated loss development factor at column j on method xx. 

BC  Best case link ratio method.  

BF  Bornhuetter-Ferguson method. 

BH      Benktander and Hovinen method. 

𝐶𝑖  Cumulative payments on origin year 𝑖. Same meaning as 𝐶𝑖,𝑗 

𝐶𝑖,𝑗  Cumulative payments on origin year 𝑖 and development year 𝑗. 

𝐶∗
𝑖,𝑗  Cumulative payments on origin year 𝑖 and development year 𝑗 scaled by a 

volume.  

𝐶𝑖̅,𝑗  Average payments on origin year 𝑖 and development year j. 

𝐶̂𝑖,𝑗       Expected cumulative payments, origin year 𝑖 and development year j. 

𝐶𝑖,𝑇−𝑖+1  Payments done so far on origin year 𝑖 from triangle with T years. 

𝐶𝑖,𝑇     Real ultimate costs on origin year 𝑖 in triangle with T years. 

𝐶̂𝑖,𝑇     Estimated ultimate costs on origin year 𝑖 in triangle with T years. 

𝐶̂𝑖,𝑇
𝑥𝑥

                Estimated ultimate costs on origin year 𝑖 on 𝑥𝑥 method. 

CC  Cape Code method. 

𝐶𝐿     Chain-Ladder method. 

CLR      Complementary Loss Ratio method. 

𝐶𝑜𝑣  Covariance operator. 

𝑐𝑗          Triangle column parameter on development year 𝑗. 

𝑐̂𝑗          Triangle estimated column parameter on development year 𝑗. 
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𝑑𝑧         Triangle diagonal parameter on diagonal 𝑧. 

𝑑𝑓       Degrees of freedom. 

𝑑𝑖𝑎𝑔      Diagonal operator, transforms vector in diagonal matrix. 

𝐷𝑙   Set of projected claims, {𝐶𝑖,𝑗: 𝑖 + 𝑗 − 1 > 𝑇}. 

𝐷𝑢   Set of the history of claims, {𝐶𝑖,𝑗: 𝑖 + 𝑗 − 1 ≤ 𝑇}. 

E  Units of exposure. 

𝔼         Expected Value. 

𝑓𝑗   Estimated ultimate factor (ultimate loss development factor) at column j. 

𝑓𝐶̅,𝑗  The ultimate factor (ultimate loss development factor) of the average payments 

on column j. 

𝑓𝑛𝑃,𝑗  The ultimate factor (ultimate loss development factor) of the number of claims 

settled on column j. 

𝐹̃ Test statistic for pooled data test. 

𝐹(𝑑𝑓1,𝑑𝑓2) Distribution F with 𝑑𝑓1 and 𝑑𝑓2 degrees of freedom. 

𝐹𝑖,𝑗+1    Link ratios between two adjacent cells in the same row 𝑖 of the triangle. 

𝑔𝑗         Grossing-up factor on column j. 

𝑔̂𝑗         Estimated grossing-up factor on column j. 

𝑔𝑖,𝑗        Grossing-up factor on triangle cell 𝑖, 𝑗. 

GLM     Generalized Linear Model. 

𝐺𝐿𝑅       Stochastic Generalized Link Ratios method. 

𝐺𝐿𝑆       Generalized Least Squares. 

GU  Grossing-up method. 

h (Time) Independent variable Time with relation with the dependent variable given by 

operator functional form h. 

𝑖𝐶𝐵,𝑖  Incurred claims benchmark for origin year 𝑖. 

𝑖𝐶𝑖,𝑗  Incurred claims on triangle cell 𝑖, 𝑗. 

𝑖𝐶𝑖̅,𝑗  Average incurred claims on triangle cell 𝑖, 𝑗. 

𝐼𝑖,𝑗        Incremental payments on incremental payments triangle cell 𝑖, 𝑗. 

𝐼∗
𝑖,𝑗       Incremental payments on incremental payments triangle cell 𝑖, 𝑗. 

𝐼𝑖,𝑗        Estimated incremental payments on incremental payments triangle cell 𝑖, 𝑗. 

𝑖  Index for origin years 𝑖 = 1, … , 𝑇. 
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𝐼𝑞  Identity matrix with size 𝑞 ×  𝑞. 

𝑰𝒒  Identity matrix from portfolio data models with size  ×  𝑞 . 

j  Index for development years, 𝑗 =  1, … , 𝑇.  

𝑙  Likelihood function. 

LM  LM statistic from White test. 

LLR  Last link ratio method. 

LR  Loss ratio method. 

𝑙𝑟 Loss Ratio, the incurred claims divided by the earned premiums (if origin year 

is the origin year) or by the premiums (if the origin year is the underwriting 

year).  

𝑙𝑟𝑥𝑥    Loss Ratio of xx method. 

𝑙𝑟𝑖
𝑢𝑙𝑡

   Ultimate Loss Ratio at origin year 𝑖. 

𝑙𝑟𝑗   Ultimate Loss Ratio at development year 𝑗. 

LRT Link Ratio method. 

𝑀     Idempotent matrix. 

𝑀𝐺𝐿𝑅    Stochastic Multivariate Generalized Link Ratios method. 

MD  Median link ratio method. 

m  Number of observations on the upper triangle. 

max       Maximization operator. 

𝑚𝑠𝑒𝑝  Mean square error of prediction. 

min       Minimization operator. 

𝑛𝐶𝑖,𝑗  Number of cumulative notified claims on cell 𝑖, 𝑗. 

𝑛𝑃𝑖,𝑗  Cumulative number of claims with payments on cell 𝑖, 𝑗. 

OLS  Ordinary Least Squares. 

P  Premiums if underwriting year and Earned Premiums if origin year. 

𝑃𝐺𝐿𝑅       Stochastic Generalized Link Ratios method on a Portfolio of triangles. 

𝑃𝑀𝐺𝐿𝑅  Stochastic Multivariate Generalized Link Ratios on a Portfolio of triangles. 

𝑝̅  Average premium per unit of exposure. 

𝑝(𝑦)     Density function of random variable 𝑦. 

𝑝(𝑦|𝑥)  Conditional density function of random variable y conditioned by x. 

𝑝𝑒   Prediction error, also called standard error. Both are the square root of msep. 

𝑞       Year from a set Q of years included on loss development factors calculations. 

𝑄       Set of years considered in the calculations of the loss development factors. 
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𝑅̂𝑖  Estimated reserve for origin year 𝑖. 

𝑅̂  Estimated reserve for all origin years. 

𝑟𝑖         Triangle row parameter on origin year 𝑖.  

𝑟̂𝑖         Triangle estimated row parameter on origin year 𝑖.  

𝑠𝑗𝑗′  Variance-covariance between multivariate regressions j and j’. 

𝑠̂𝑗𝑗′  Estimated variance-covariance between multivariate regressions j and j’. 

𝑠𝑡,𝑙𝑗  Variance-covariance between triangle t and multivariate regressions l and j. 

𝑠̂𝑡,𝑙,𝑗 Estimated variance-covariance between triangle t and multivariate regressions l 

and j. 

SA  Simple Average link ratio method. 

𝑆𝑆𝑅  Sum of the square of the errors. 

𝑆𝑆𝑅𝑗  Sum of the square of the errors on regression 𝑗. 

T  Number of origin years and development years from the triangle. 

𝑇𝑗  Number of origin years and development years from column 𝑗. 

𝑡𝑟  Trace from matrix. 

TR  Trend link ratio method. 

𝑈𝑗  Proportion of incremental payments on column j. 

𝑈̂𝑗  Proportion of incremental payments on column j. 

𝑣𝑖  Error (errors) observation 𝑖 from equation that explains the errors (errors). 

V Volume measure, an exposure measure which may be in physical units or 

monetary values. 

Var  Variance operator. 

𝑉𝑃  Stochastic Vector Projection method. 

WC  Worst case link ratio method. 

𝑊  GLR weights matrix. 

𝑊𝑥𝑥  GLR weights matrix from link ratios method xx. 

𝑊𝐹  GLR future weights matrix. 

𝑊𝐹,𝑥𝑥  GLR future weights matrix from link ratios method xx. 

𝑾  Heteroscedasticity matrix for portfolio of triangles. 

𝑾𝑥𝑥  Heteroscedasticity matrix from link ratios method xx for portfolio of triangles. 

𝑾𝐹  Heteroscedasticity future weights matrix for portfolio of triangles. 
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𝑾𝐹,𝑥𝑥 Heteroscedasticity future weights matrix from link ratios method xx for 

portfolio of triangles. 

𝑥     Generic independent variable.  

𝑥𝑖,𝑗      Independent variable on a regression of triangle with cells 𝑖, 𝑗. 

X  Matrix of independent variables of specific dimension. 

𝑋𝑘  Vector with observations from column 𝑘. 

𝑋𝐹  Matrix of future value of independent variables of specific dimension. 

X Matrix of independent variables of specific dimension for a portfolio of 

triangles. 

𝑿̃ Matrix of independent variables of specific dimension for a portfolio of 

triangles in the restricted model. 

𝑿𝑭 Matrix of future values of independent variables of specific dimension for a 

portfolio of triangles. 

𝑦     Generic dependent variable.  

𝑦𝑖,𝑗     Dependent variable on a regression of triangle with cells 𝑖, 𝑗. 

𝑦∗
𝑖,𝑗

     Transformed 𝑦𝑖,𝑗  

Y  Block vector of dependent variables of specific dimension. 

𝑌𝐹  Block vector of estimated future dependent variables of specific dimension. 

𝑌𝑘  Vector with observations from column 𝑘 + 1. 

Y  Matrix of dependent variables of specific dimension for a portfolio of triangles. 

𝑍𝑖 Variable observation 𝑖 that explain the errors evolution. 

𝑧 Index for calendar years. 

𝛼 Parameter from loss development factor general formula that defines several 

claims reserving methods. Also used in the W matrix to define the method and 

identify the level of heteroscedasticity.  

𝛽  Vector of loss development factors. 

𝜷  Vector of loss development factors on portfolio of triangles. 

𝛽̂  Estimated vector of loss development factors. 

𝜷̂  Estimated vector of loss development factors on portfolio of triangles. 

𝜷̃  Vector of loss development factors on portfolio of triangles for restricted 

model. 

𝜀𝑖  Error (or residual) from observation 𝑖. 
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𝜀𝑖,𝑗  Error (or residual) from a model in the triangle cell 𝑖, 𝑗. 

𝜀𝑃
𝑖,𝑗  Pearson error (or residual) from a model in the triangle cell 𝑖, 𝑗. 

𝜀𝑖̂,𝑗  Estimated error (or estimated residual) in the triangle cell 𝑖, 𝑗. 

𝜀  Vector of random errors (or errors) from a model. 

𝜺  Vector of random errors from a model on a portfolio of triangles. 

𝜀̂  Vector of estimated errors (or estimated errors). 

𝜺̂  Vector of estimated random errors on a portfolio of triangles. 

𝜀𝐹  Vector of future errors (future errors) from a model. 

𝜎2  Variance parameter or variance diagonal block-matrix. 

𝜎2
𝑗  Variance on regression 𝑗 or triangle column 𝑗 or variance diagonal block-

matrix. 

𝜎̂2
𝑗   Variance estimated parameter on triangle column 𝑗.  

𝜎2
𝑗,𝑘  Variance on regression or triangle column 𝑗 in cell 𝑘. 

𝝈2  Variances vector. 

Σ  MGLR errors variance and covariances. 

Σ𝑥𝑥  MGLR errors variance and covariances for claims reserving method xx. 

𝚺  PMGLR errors variance and covariance. 

Σ𝑥𝑥  PMGLR errors variance and covariance for claims reserving method xx. 

Σ𝐹  MGLR future errors variance and covariance. 

𝚺𝐹  PMGLR future errors variance and covariance. 

𝚿𝒙𝒙  PGLR errors variance-covariance matrix for claims reserving method xx. 

𝚿  PGLR errors variance-covariance matrix. 

𝚿𝐹  PMGLR future errors variance covariance matrix. 

𝜂𝑖,𝑗  Linear predictor of cell 𝑖, 𝑗 in GLM model. 

𝜇𝑖,𝑗  Mean of cell 𝑖, 𝑗. 

𝜇̂𝑖,𝑗  Estimated mean of cell 𝑖, 𝑗. 

𝜇𝑖,𝐿𝑁  Location parameter from the lognormal distribution on origin year 𝑖. 

𝜃  Location coefficient in GLM models. 

𝜙  Disp1ersion coefficient in GLM models. 

𝜌𝑗𝑗′  Coefficient of correlation between 𝑗 and 𝑗’. 

𝜔  Known constant. 

𝛾  Power parameter of the claims variance on GLM models. 
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𝛿 Murphy (1994) errors variance power-parameter to define several claims 

reserving methods. 

𝜒2  Chi-square statistic. 

′  First derivative. When used with matrices means the transpose of the matrix. 

′′  Second derivative. 
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1. Introduction 

 

This first chapter summarizes the content of all the chapters of this thesis.  

 

The second chapter will start with the presentation of the insurance business and the claims 

reserving problem. After that the insurers methodology for claims reserving is summarized 

and the main method in use by actuaries is presented, the Chain-Ladder (CL). We will 

mention CL´s main limitations and reasons for being the method most used in practice.  

 

The third chapter presents the most common deterministic methods developed in the literature 

and the fourth chapter extends this analysis to stochastic methods. In both chapters, the 

relation of some of the methods with regression models is emphasized. In the end of the third 

chapter and as a transition to the fourth chapter, we present a summary of the use of 

regression techniques in claims reserving. The definition of prediction error (the square root 

of the mean square error of prediction) is also introduced here and formulas for confidence 

intervals are also shown. We also present some conclusions about, the deterministic and 

stochastic methods on the literature and the use of regression models. 

 

In the fifth chapter, we will start by developing a stochastic method like the Mack (1993a, 

1993b, 1994) method, but considering as loss development factor, the Vector Projection (VP), 

which is the equation parameter from a regression through the origin between two adjacent 

columns in the triangle. This VP method is based on the Mack mentioned CL framework and 

is also heteroscedastic. However, the VP considers the variance on payments proportional to 

the square of the payments (the weights of the VP link ratios). These weights are different 

from the ones of the CL (which are the payments, the weights of the CL link ratios). With this 

approach, we consider the VP as heteroscedastic, a feature shared with the CL. Formulas for 

the VP prediction error are also developed. 

 

We also present a survey with 114 triangles, comparing VP and CL results when applied to 

these triangles. We will see that the VP has lower prediction errors in most triangles, when 

compared with the CL. 

 



2 

 

This chapter also presents several issues to be considered in method selection, as the errors 

analysis and the back-testing, and includes numerical examples with regular and irregular data 

from triangles used in the literature of claims reserving. It is also explained what the criterion 

was to classify a triangle as regular or irregular. Some conclusions are presented in respect of 

the CL and the VP results. 

 

In chapter six, we will develop a regression framework that will be used to derive the 

Generalized Link Ratios (GLR) and the Multivariate Generalized Link Ratios (MGLR), the 

second and third methods from this thesis. It will also be useful to develop the portfolio data 

methods from chapter seven. The GLR and MGLR methods are presented in chapter six with 

their assumptions, parameters estimation and prediction errors formulas. The MGLR method 

is like the GLR method but considers the existence of contemporaneous correlations between 

the triangle equations. By contemporaneous correlations between equations, from the same 

triangle, we mean that the error terms are correlated at the same point in time. The same point 

in time in claims reserving triangles, in the context of regression models, means the same 

origin year.  

 

Methods as the VP, CL and SA, are also presented as particular cases from the GLR, and 

correspond to a specific value from one of the parameters. The same is done using the MGLR, 

and cases will be obtained for the multivariate VP, CL and SA.  

 

Numerical results are presented for regular and irregular triangles and a survey is also 

conducted with 114 triangles. Tests are performed to study, inside each triangle, the 

heteroscedasticity, the correlations between the equations and the serial correlation. 

Conclusions are presented in the end of chapter six, with emphasis on the GLR and MGLR 

methods’ flexibility and the advantages of considering the equations contemporaneous 

correlations (at the MGLR method). 

 

Chapter seven will present two methods for portfolio data. By portfolio data modelling, we 

mean several triangles estimated at the same time. This will be done using the GLR and the 

MGLR methods from chapter six. The Portfolio Generalized Link Ratios (PGLR) is the GLR 

applied to portfolio data. The Portfolio Multivariate Generalized Link Ratios (PMGLR) is the 

MGLR applied to portfolio data. In the PMGLR method we assume contemporaneous 
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correlations between the triangles. By contemporaneous correlations between triangles, we 

mean that the triangle’s error terms are correlated at the same point in time, which means the 

same origin year. In PMGLR, we will also assume contemporaneous correlations between the 

equations inside each triangle. Method’s assumptions are defined, and parameters estimation 

is presented. Prediction error formulas are developed. A test on the use of pooled data is 

performed (test on the hypothesis of the loss development factors from each triangle being 

equal, when the development year is the same).   

 

Chapter seven finishes with some conclusions about the use of aggregate data (the sum of all 

the triangles in one triangle) compared with portfolio data (triangles estimated together). We 

also analysed the results obtained with the use of the PGLR and the PMGLR methods. 

 

Chapter eight will present the general conclusions taken from this thesis in respect to the CL 

and the alternative methods presented on chapters five, six and seven. We will emphasize the 

decrease of the prediction errors when the alternative methods are considered, and the absence 

of heteroscedasticity in most insurers’ triangles. The existence of heteroscedasticity in 

irregular data triangles is not excluded. 

 

The relation between the prediction errors and the two other method selection tools (errors 

analysis and back-testing) is also presented, namely the lower prediction errors when we have 

lower errors and stable results. The importance of some regression tests to help for method 

selection is also highlighted.  We will also summarize the benefits of multivariate methods 

and portfolio data methods and the flexibility of the generalized link ratios approach, 

whatever its variant. 
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2. Claims Reserving in Insurance 

 

This chapter is an introduction to the subject of this thesis and will allow the reader to 

understand even further the motivation beyond the development of a new approach to claims 

reserving. 

 

First, we define insurance and its main features in respect to risk and uncertainty. The latter 

will be extended with an explanation of the claims process and the importance of reserves for 

insurance companies. We will also refer to what should be the insurer’s level of reserves 

according to the current standards. 

 

The methodology for estimating reserves with data in triangular format is presented and the 

main method used by actuaries is explained: the CL technique. We will also see here the main 

limitations of the method. 

 

Having seen CL limitations, we will try to understand why actuaries are using it. For that, we 

will see the roots of claims reserving with triangle techniques and the CL method. 

 

We finish this introduction by describing our motivation to introduce a flexible claims 

reserving approach that produces lower prediction errors. 

 

2.1 The Insurance Business and the Claims Process 

 

The Oxford Dictionary (2014) defines insurance as an arrangement by which a company or 

the state undertakes to provide a guarantee of compensations for specified loss, damage, 

illness, or death in return for payment of a specified premium. We may improve this 

statement with other technical sources, in accordance with some authors, for example Rejda 

(2005). There are several definitions of insurance. This may be shown when we compare the 

insurance definition done by other professions that deal with insurance.  

 

Economists, Zweifel and Eisen, (2012), see insurance as the exchange of an uncertain loss of 

unknown magnitude for a small and known loss, the premium. Similarly, risk managers 

Vaughan and Vaughan (1995), define insurance as an economic device whereby the 
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individual substitutes a small certain cost, the premium, for a large uncertain financial loss, 

the contingency insured against, that would exist if there is no insurance. Legislators consider 

several contractual aspects of insurance, but in many jurisdictions, we do not find a definition 

of insurance. Instead, it is accepted, since many years, that there is no insurance without risk 

and the latter must be managed by insurers who use statistical laws with appropriate 

techniques (Moitinho de Almeida, 1971). 

 

Finally, actuaries, Bowers and Nesbitt (1986), state that insurance is a mechanism for 

reducing adverse financial impact of random events that prevent the fulfilment of reasonable 

expectations. 

 

Putting all these definitions together we find some common features:  

- The insured pay a certain insurance premium in advance with the start of the contract, to 

cover a future random risky event. 

- As the event is not certain, we do not know if it is going to happen. 

- And if it happens we do not know when it does and how much it will cost. 

 

This means that the insurance sector has an inverted production cycle:  

- The insurers receive the premium in advance, and just posteriori they will know if they 

need to pay something due to that. 

- It is not possible to know priori if this premium is enough to cover claims and expenses, 

because of the existence of risk and uncertainty on all this process. 

 

However, as we are going to see, the claims process also brings some extra source of 

randomness to this.  

 

A claim is a demand for compensation from an insured entity or a third party. it is the most 

visible side of insurance and should correspond to what is reasonable for the insured to 

expect, as compensation. 

 

Following the Institute of Actuaries (1989, 1999) we may see that a claim has several phases: 

- With the policy inception, an insured or a third party becomes eligible to claim against 

the insurer if the event and its notification are according to the contract wording. The 
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latter gives us information about the claims included and excluded on policy cover after 

a certain date, and the amount to be paid from the loss. 

- The wording may have some waiting period within which the insurer is not liable for 

any payment. This means that a second date must be considered, the end of the waiting 

period. 

- After this period, if it exists, there may be an event, for example an accident that in the 

beginning is only known by the insured. This means that there is information 

asymmetry as the insured knows more about the claim than the insurer. But even the 

policyholder may not have all the information after the claim. Indeed, it may take some 

time to recognize that an event arose, for example, a health problem that was the 

consequence of that accident that happened some days, months or even years ago. 

- With some delay after the claim occurrence the insured will report the accident to the 

insurance company (directly or maybe through an agent or a broker). The insurer will 

create a reserve and eventually will start making some payments, as soon it has the 

necessary information and conditions for that.  

- After a certain period, all the payments will be made, and the claim is settled and 

closed. According to the information available, the insured decides to close the claim 

because he does not expect to pay or receive anything else. 

- However, it might happen that the claim needs to be re-opened some time after, or 

because there are new payments to be made or due to the need to register some 

reimbursements (negative payments or amounts that are received by the insurer). Both 

cases represent new information that arrived and that was not available before.  

- In theory the claim is closed after some time, but it is theoretically possible that the 

claim will be reopened again due to new demands from the policyholder, a beneficiary, 

a provider of services or a third party. 

 

When a claim is opened, the insurer has an expectation about what its total cost might be. It is 

the initial cost of the claim that may be adjusted in the future according with the new 

information that will come, such as, the degree of severity of the injured people. However, 

what matters to the insurer is to know the ultimate cost, the one that will arise after the claim 

has been completely closed.  
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To know the claims ultimate cost, we need to go over all these phases, and just by 

coincidence the initial cost will be equal to the ultimate cost. This happens because there are 

time gaps between all the phases on claims settling: the occurrence, the recognition, the 

notification, the initial valuation, payments, the reimbursements, the eventual reopening and 

its final valuation. These gaps will depend on several factors, but mainly on the line of 

business, the insurer´s claims policy and the staff´s technical capabilities to anticipate the 

ultimate cost. 

 

For death cover, of life insurance and personal accident insurance, it is easy to define the 

amount to be paid: it will be the sum insured. This type of liability should be completely 

settled very fast. However, in some circumstances the insurers will decline the payment, e.g. 

the death was by suicide or self-injured action and the policy does not consider it as an 

eligible claim before a certain period. In these cases, the insurer may define the reserve as 

zero but later, due to a court action or some lawyer intervention, he may realize that he will be 

obliged to pay the sum insured. These cases should not be an important percentage of the total 

reserves. 

 

On disability cover, such as life insurance and personal accident, the valuation is sometimes 

more difficult due to the extra need to recognize, define and agree upon the percentage of 

disability. The scope for disagreement and discussion is very large, and sometimes some 

litigation arises, which postpones the definition of the ultimate cost. 

 

On property cover, like homeowner’s insurance, fire, and business interruption insurance, 

some covers should be easier to evaluate because we have a sum insured previously defined. 

However, there are several factors that might complicate the valuation:  

- The sum insured may be higher or lower than the true economic value of the building´s 

reconstruction cost or of its content, which may bring some discussion. The insurer will 

want to restrict the payment to the true economic loss and may want to apply the 

average clause (a proportional rule that restricts the claim payment to the claim value 

adjusted by a percentage, of the sum insured in respect to the sum that should have been 

insured, usually larger than the former).  
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- On some claims, the time to arrive to the ultimate cost may be longer, due to 

investigations and litigations that may arise. Court decisions may be more difficult to 

anticipate when there is a fraud but it is difficult to prove it. 

 

Some covers, like crop insurance, are even more difficult to settle and to reserve. Indeed, 

some of the affected goods may recover from the claim damages until the harvest. This means 

that a recovery percentage must also be estimated to define the true claim. The latter must be 

agreed with the farmer and some discussion may arise, which may end with litigation.  

 

On liability covers of insurance like motor, marine, aviation, land transports and general 

liability insurance, the amount of the claim is much harder to define. It will depend on a 

subjective valuation and on a negotiation with a third party. In many circumstances, it will be 

defined in court, with several subjective factors and sometimes with the influence of the 

public opinion. This also means that it might take several years to get the ultimate cost. The 

more complicated the cases are, the longer the time will be for the courts to decide. Two 

examples show this: The courts need to define if there is a liability covered by the insurance 

contract (also called the policy), that is, the liability of the insured may exist, but the policy 

may exclude those events from the cover. For example, a product liability from a policy may 

exclude events in United States of America. Finally, in case of liability and policy cover, the 

courts also need to confirm the losses to be paid by the insurer. Some of these losses are 

personal moral damages, something which is hard to value and highly discussable. An 

example of these damages is the suffering of a family due to the loss of life of a son. 

 

Other lines of business, such as credit insurance, where reimbursements are very important, 

are also hard to quantify. The insurer pays the outstanding debt for its policyholder but will 

have subrogation rights against the debtor. Insurers usually take some years to recover this 

money but that will reduce the ultimate cost, sometimes significantly. The liabilities should 

not take too much time to value (it will be a percentage of the debt), but it is more difficult to 

know how many reimbursements will arrive in the following years. The latter may take many 

years. The macroeconomic condition will also determinate how much the insurer will be able 

to reimburse. For example, when the economy performs very well, it is more likely that the 

debtors who produced a claim to an insurer in the past will be more able to pay their debts in 

the future and the insurer will be reimbursed. 



 

9 

 

 

While the claims payments are not totally finalised insurers need to have a reserve for those 

amounts and they have several ways to estimate it: 

- Doing a subjective valuation of the claim, using its experts. 

- Applying an average cost to each claim. This value might come from an actuarial 

analysis of the previous year’s average costs or by some subjective valuation. 

- Or mixing both previous approaches. One common standard is to use the average cost 

during a certain period and then moving to a subjective case reserve if the claim is still 

outstanding after that period. 

 

This reserve is called the case reserve because it is on the file. It corresponds to claims that 

had been notified to the insurer, but which are not yet settled. These reserves are defined by 

the insurer claims department on a per claim basis or using an average cost system. 

Sometimes, the case reserve is also called outstanding claims reserve. However, the 

outstanding claims reserve very often includes the case reserve and other accounting reserves 

not allocated to the files. In this thesis, we will follow this last definition. 

 

Whatever the approach, there is always a scope for differences between the initial cost 

estimation and the ultimate cost: 

- The claims have already occurred, but the notification did not arrive to the insurance 

company. This means that there is no information on the claim, but the claim already 

exists. 

- Sometimes an insurer is notified of a claim but there may be a delay before it is 

included in the information system of the company. This is a hidden cost, more 

important in valuations done during the year. Indeed, at the end of the year, insurers try 

to register all the claims in the information system. 

- The claims may be reserved but new information on the claims might come up that may 

oblige to change the reserve, increasing or decreasing the ultimate cost estimate. For 

example, the new information shows that the severity of the claim is worse than initially 

expected. 

- The claims may be reopened, which probably implies extra payments or 

reimbursements. This happens because the insurers do not usually anticipate completely 
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that possibility. The ultimate cost will be higher or lower depending on the reason for 

the claim reopening. 

 

All these cases oblige some sort of estimation to get an approximation of the ultimate cost 

from the claims. That may be done for each individual claim or for a group of claims. This 

means that when insurers receive a claim notification they must calculate a reserve for that. 

The latter added to any eventual payments done, gives us the incurred claims, but we may 

have a long way to arrive to the final ultimate cost. At the same time, the insurer also needs to 

reserve for claims that were not yet notified but have already occurred. 

 

To anticipate all these situations the insurer needs to have case reserves and two additional 

reserves: 

- The Incurred But Not Reported (IBNR) reserve, that will be used to cover two types of 

claims: those that have occurred but have not been notified to the insurer (the pure 

IBNR) and claims that were notified but not introduced in the insurer´s information 

system, the Reported But Not Registered claims (RBNR). 

- And, the Incurred But Not Enough Reported (IBNER) reserve, that will be used to 

cover new valuations on claims and the reopening of some claims. 

 

Usually these reserves, IBNR and IBNER, are not in the claims file but in the company’s 

accounts. This is done to have an actuarial estimate of the correct reserves, a need for the 

management and a requirement from regulation and accounting rules. It may also happen that 

an insurer creates a virtual claim to account for some IBNR and IBNER reserves. In these 

situations, a claim that never occurred is created on the insurer´s information system and a 

reserve is created. This reserve will be the IBNR and IBNER reserve of all the claims. 

However, this is not the best management approach. This means that the outstanding claims 

reserves that we consider in this thesis corresponds to the sum of the case reserves with the 

IBNR and IBNER reserves registered by the company on the accounts. 

 

The insurance business has an inverted production cycle: insurers receive the premiums from 

policyholders but at that time they do not know how much costs they are going to incur with 

those customers. The problem is that the claims process might increase the risk and 
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uncertainty of this feature: the insurers need to estimate the ultimate costs which are different 

from the initial estimated costs. 

 

Due to this inverted production cycle, several risks may be generated for the insurer: 

- An underwriting risk: The amount collected from the insured, the premium, may not be 

enough to pay the claims and the expenses, which will bring a loss. The calculation of 

the premiums depends on the claims data, which includes the level of reserves of those 

claims. 

- A performance risk: If the reserves are much higher than needed, the costs will seem 

higher, and this may oblige the insurer to have higher premiums to cover them, which 

will produce lower sales. 

- A tax risk: If we underestimate the reserves, the profits will be higher and the same will 

happen with the taxes. This means that we may pay taxes on profits that never existed. 

- A reputational risk: The companies that underestimate the reserves may create 

suspicions in the market about their management. 

- A reserve risk: There are IBNRs and IBNERs that need to be estimated to have an 

estimated ultimate cost, and there is some uncertainty on the calculations.  

- And, a solvency risk: The lack of good management of all the risks may produce losses 

and the deterioration of the insurer capital. 

 

2.2 Reserving Importance 

 

As we saw in section 2.1, there are differences between claims initial cost and the claims 

ultimate cost. This means that reserving is a critical issue in insurance. This conclusion 

includes non-life insurance (also called general insurance or property and casualty insurance) 

and life insurance (mainly covers for death and disability).  

 

As such differences, between initial costs and ultimate costs, are lower in life insurance, we 

may conclude that claims reserving is more critical in non-life insurance. Market figures also 

confirm that. 

 

Stakeholders at an insurance company are the entities, individuals or not, with an interest on 

the company. The Chief Risk Officer is supposed to check that the risk implicit on the 
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insurer´s strategy is compatible with the interests of all the stakeholders of the company. One 

of the risks is the insurer’s reserves. 

 

There are several stakeholders in an insurance company and all of them with an interest on the 

insurer’s reserves. For example: 

- Regulators that need to know insurer´s solvency and financial strength to fulfil its 

mission. 

- Shareholders and managers who have a concern on the level of results. 

- Internal actuaries that must be sure that reserves reported are properly calculated, 

following the professional guidance and the legislation.  

- Financial analysts that consider financial statements for their analysis. 

- Bondholders, who invest in the company giving it a loan, need to know if the company 

is solvent before making the investment. 

- Derivatives buyers also need to understand the insurer´s financial strength to be sure 

that the insurer will be able to pay any future obligations. 

- Reinsurers that need to understand how the insurer manages the company to renegotiate 

the reinsurance treaties and to anticipate their share of the claims. 

- Actuaries, that need to certify the reserves and to calculate several actuarial figures that 

depend on incurred costs, e.g. the price of each product. 

- Auditors, that needs to certify the accounts. The latter are heavily dependent on the 

figures of claims reserves. 

- Board members, that must manage and define a strategy for the company. 

- Employees, Channels of Distribution and External Providers of goods and services, that 

want to know if the company has good financial strength to honour its obligations, 

salaries, benefits, commissions, claims paid, and goods and services acquired. 

 

With so many stakeholders involved it seems clear that the reserves play a critical role in 

insurance.  

 

2.3 The Reserves Level 

 

During many years (and even today but to a less extent) there was some lack of harmonization 

between countries, on the claims reserves that insurers should have on their accounts. That 
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was recognized by a European Community document (European Community, 1999) that 

established, as a priority, the harmonization of the insurer’s technical reserves calculation on 

the framework of a new solvency regime, Solvency II. 

 

That regime was defined by a European Union directive (European Union, 2009) that defined 

as the required level of reserves, the fair value; that means the amount that would allow the 

transfer of this liability to another insurer or reinsurer on an arms-length transaction between 

two willing parties. The directive has been in force since the 1st of January 2016, but it has 

already influenced the claims reserving strategy in several countries for some time.  

 

In several countries, such as the United States and the United Kingdom, there were already 

similar risk-based capital systems in force for some years, requiring insurers, as what happens 

currently in the European Union, to regularly perform an Own Risk and Solvency Assessment 

(ORSA). This obliges insurance companies to issue their own assessment of their current and 

future risk through an internal risk self-assessment process, and it allows regulators to form an 

enhanced view of an insurer ability to withstand financial stress. The assessment also includes 

the claims reserves. 

 

In this European Union directive, it is defined that the fair value of the reserve has two 

components: 

- The best estimate that corresponds to expected value (the mean) of all the future cash-

flows.  

- And, a risk margin that allows for the inherent fluctuation of the best estimate. 

 

A term structure of risk-free interest rates should be applied to discount all these cash-flows, 

from the best estimate and from the risk margin. The term structure of risk-free interest rates 

corresponds to a set of interest rates for the different maturities and in the same currency of 

the liabilities. This means that in the Solvency II balance sheet we will have discounted best 

estimates for the reserves. Just in the IFRS (International Financial Reporting Standard) 

balance sheet the best estimates are not discounted. This means that currently insurers have 

two balance sheets according with the compulsory reporting rules: the IFRS and the Solvency 

II. 
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The risk margin corresponds to the additional value of the best estimate to arrive to the 

liability fair value. However, the legislator decided to follow a non-actuarial approach to its 

calculation, using the cost of capital concept. Accordingly, with the so-called standard method 

of the Solvency II regime, insurers must use the method of the cost of capital to calculate this 

risk margin. This methodology calculates the risk margin as the cost of the capital necessary 

to cover the best estimate volatility. The latter corresponds to 6% of the sum of all the future 

capital requirements, discounted by the risk-free interest rate. The future capital requirements 

are the capital at risk in the future years (mainly underwriting risk, credit risk and operational 

risk and non-diversifiable market risk) calculated until the maturity of all the liabilities in 

accordance with the Solvency II rules. Some proxies are also allowed to simplify these 

calculations, for more details see European Union (2015).  

 

If the regulator approves an internal model specific for the insurer, to avoid the standard 

model which is equal to all the insurers, it is possible to calculate this risk margin using 

stochastic methods, the actuarial approach to arrive to the fair value. However, this does not 

mean that stochastic claims reserving is just useful for internal models. Indeed, they are 

fundamental for the best estimate calculations of standard and internal models, because they 

provide for both a very important indicator, the prediction error (the square root of the mean 

square error of prediction). 

 

The current solution in Europe for claims reserving is not very different from the 

methodologies in force until the start of the Solvency II regime. Before this date most 

companies registered in their accounts the best estimate without discounting it (with an 

interest rate). Some companies calculated the risk margin using actuarial stochastic methods 

but just for management purposes, most of them were not considering this risk margin on 

their accounting reserves. 

 

Whatever the approach and system, it is fundamental to calculate an appropriate central 

estimate of the reserves, the best estimate when we apply discounting to the projected cash-

flows. It is important because: 

- It is the reserves expected value and the value that insurers should have in their accounts 

under the current solvency system.  
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- Its value will impact the calculation of the fair value. The latter will be a best estimate 

plus the risk margin. If the best estimate underestimates or overestimates the true 

ultimate cost, the fair value may also underestimate or overestimate the true fair value. 

- And finally, because it will also impact the calculation of the Solvency II capital 

requirements: the market risk, the underwriting risks, the credit risk and the operational 

risk depend on the claims reserves level.  

 

The legislation on risk-based capital and solvency, in Europe, the United States, and other 

countries (such as the United Kingdom and Australia among the others), not only obliges 

insurers to assess all the liabilities from all lines of business, but also requires better 

estimation for the total reserves on the entire portfolio.  Practically, this means that it is 

desirable to have estimates of reserves with as low prediction error as possible. 

 

2.4 Methodology to get the Best Estimate 

 

The techniques most in use to get best estimates (and risk margins) aggregate data on 

homogeneous groups of claims to produce a triangle of past information. Data in this triangle 

is used to estimate another triangle with the estimates of the future evolution of claims.  

 

The first year of information from this triangle must be closed, that is, its ultimate cost must 

be known. If that does not happen the actuary is obliged to consider a tail factor that allows 

the close of the year. For example, if the last cumulative payments are 1000 and the tail factor 

is 1.10, the first-year ultimate cost will be 1100. The calculation of the tail factor may be done 

subjectively or objectively with the use of a logarithmic function or with the application of 

several types of smoothers. See for example, in this respect, Booth et al. (2005). 

  

The idea of the data in triangle format is to aggregate all the information on claims on a table 

were the rows are the origin year and the columns are the development years. We will lose 

information on each claim, but we will have an overall view about all the claims.  

 

By homogenous group we mean similar cover with claims that behave in a similar way in 

respect to, notification and settling features: the liability nature (if related or not to the 

inflation), the possibility of reimbursements or reopening and the claim duration.  
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For example, it should be convenient to split motor insurance claims between material 

damages and bodily injury claims. Comparing with the former, the latter takes more time to 

be reported to the insurer, depends more on claims inflation (sometimes the courts inflation, 

which may be higher than the country´s inflation), and takes more time to develop. 

Sometimes, we are not able to create these homogeneous groups like we would like, due to 

the triangle´s low number of claims, which may produce unstable projections. In those cases, 

it may be better to work together, in the same triangle, material damages and bodily injury 

claims or to use other subjective techniques. 

 

The triangle content may be the cumulative payments or the incurred claims. The payments 

are the amounts paid to the insured and to third parties that received compensation for the 

claim, and to the providers that participate on the claims settling (hospitals, doctors, lawyers, 

experts, loss adjusters and courts). These amounts are directly allocated to each of the claims.  

The incurred claims are the sum of the claims cumulative payments with the claims case 

reserves (the IBNR and the IBNER accounting reserves should not be considered in the 

triangles).  

 

It is also possible to create triangles to estimate the number of open claims, the number of 

closed claims, the number of claims outstanding or even the reimbursements evolution. We 

may also use incremental payments instead of cumulative payments and indeed some methods 

require this. Some practitioners argue that the use of cumulative payments makes estimates 

more dependent on early experience (Booth et al., 2005). An example with cumulative 

payments could be the following Table 2.1, used by several authors in the literature of claims 

reserving, e.g. (Mack 1993a, 1993b and 1994).  
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Table 2.1: Triangle of Cumulative Payments, Mack (1993a, 1993b, 1994) 

 

 

The cumulative payments 𝐶𝑖,𝑗, where each row 𝑖 represents an origin year with 𝑖 =  1, … , 𝑇 , 

and each column 𝑗 gives us the development year with 𝑗 =  1, … , 𝑇. In this example, 𝑇 =

 10. The origin year in this example is an origin year but other criteria may be used in other 

cases, like the underwriting year or the notification year of the claim. 

 

This upper triangle 𝐷𝑢 represents the past history of claims, with 𝐷𝑢 = {𝐶𝑖,𝑗: 𝑖 + 𝑗 − 1 ≤ 𝑇} 

and the technique assumes that we may use it to forecast the future and estimate the lower 

triangle 𝐷𝑙 given by 𝐷𝑙 = {𝐶𝑖,𝑗: 𝑖 + 𝑗 − 1 > 𝑇}. Putting 𝐷𝑙 together with 𝐷𝑢 we will get a 

matrix that joins together the two triangles. The last column of the matrix gives us the 

ultimate costs of each origin year.  

 

Each diagonal represents the calendar year 𝑖 + 𝑗 − 1. The content of each cell 𝐶𝑖,𝑗 represents 

the cumulative payments made so far for on the cell of origin year 𝑖 and development year 𝑗.  

 

We are assuming, for simplification, that the first origin year is closed and that no more 

claims or payments (including reimbursements) will arise in the future.  

 

The objective is to have the right level of reserves in the insurer´s balance sheet, the claim’s 

reserves best estimates. To have these best estimates, we will estimate the last column of the 

triangle to get the ultimate costs per origin year. Subtracting to these ultimate costs the 

cumulative payments done so far (the last diagonal of the triangle), we get the estimated 

claim’s reserves. These estimated reserves will be the best estimate reserves if they are the 

1 2 3 4 5 6 7 8 9 10

1 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834

2 106 4285 5396 10666 13782 15599 15496 16169 16704

3 3410 8992 13873 16141 18735 22214 22863 23466

4 5655 11555 15766 21266 23425 26083 27067

5 1092 9565 15836 22169 25955 26180

6 1513 6445 11702 12935 15852

7 557 4020 10946 12314

8 1351 6947 13112

9 3133 5395       

10 2063
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reserves expected value. This means that the model that produced them should match the 

insurer´s experience and is probably the one with the lowest prediction error. 

If the best estimate reserves are higher than the ones that the company already has on the case 

reserves (on the files), an accounting reserve should exist for IBNR and IBNER that fills the 

gap. In that case the best estimate reserve will be equal to the sum of the case reserves and the 

IBNR and IBNER reserves. 

 

When the triangle consists of incurred claims, which means the cumulative payments plus the 

case reserves, the procedure is the same but with a different interpretation. We also estimate 

the ultimate costs per origin year. But when we subtract from them the last diagonal of the 

triangle we get the emerging reserves, and not the best estimate reserves. The emerging 

reserves, positive or negative, will be the variation we need to have on the current level of 

case reserves to obtain the claim’s reserves best estimates. This means that the reserves best 

estimates will be the sum of the current level of case reserves with the emerging reserves. 

  

To have these best estimates, we need to estimate the lower triangle, 𝐷𝑙 = {𝐶𝑖,𝑗: 𝑖 + 𝑗 − 1 >

𝑇}. One of the most used methods for that is with the calculation of the loss development 

factors. This will allow us to estimate each cell, on the lower triangle, as the product of this 

factor by the previous cell value in the same row. Before that, it is useful to see the link ratios 

(also called age-to-age factors) between adjacent cells on the upper triangle.  

 

For that we use our table 2.1 with cumulative payments. Using this matrix, we can calculate 

the link ratios 𝐹𝑖,𝑗+1 between two adjacent cells in the same row. 

𝐹𝑖,𝑗+1 =
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
                                                        (2.1) 

We get in our example from Table 2.1 the link ratios presented in the Table 2.2 

 

Table 2.2: Link Ratios arising from Table 2.1 

 

1 2 3 4 5 6 7 8 9

1 1,650 1,319 1,082 1,147 1,195 1,113 1,033 1,003 1,009

2 40,425 1,259 1,977 1,292 1,132 0,993 1,043 1,033  

3 2,637 1,543 1,163 1,161 1,186 1,029 1,026   

4 2,043 1,364 1,349 1,102 1,113 1,038    

5 8,759 1,656 1,400 1,171 1,009     

6 4,260 1,816 1,105 1,226      

7 7,217 2,723 1,125       

8 5,142 1,887        

9 1,722         
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Having this triangle, we need, for each column, to summarize all the link ratios on a single 

number, the loss development factor. The latter will allow us to estimate a cell on the lower 

triangle as the product, of the previous cell in the same row by the loss development factor 𝑏̂𝑗 

with 𝑗 =  1, … , 𝑇.  The loss development factor is a statistic that summarizes, for each 

development year (each column from the triangle), the link ratios. To get them, we need a 

statistical method, such as the CL. The CL summarizes all the link ratios from one 

development year in one loss development factor. The CL calculates the weighted average of 

all the link ratios from that column, using the payments on each cell as weights.   

 

As we assumed that the first year is closed, we just need to estimate T-1 loss development 

factors. Hence, 𝑏̂10 = 1. 

 

The loss development factor j represents, for any origin year, the evolution between two 

development years, j and j+1. This means that the technique considers this evolution at 

column j as the same, whatever the origin year is. 

 

With these loss development factors, we may estimate each cell of the lower triangle using the 

following relations 

𝐶̂𝑖,𝑗 = 𝐶̂𝑖,𝑗−1𝑏̂𝑗−1     𝑗 > 𝑇 − 𝑖 + 2 

   𝐶̂𝑖,𝑗 = 𝐶𝑖,𝑇−𝑖+1𝑏̂𝑗−1    𝑗 = 𝑇 − 𝑖 + 2                                            (2.2) 

 

We may also calculate the ultimate factor (also called ultimate loss development factor or age 

to ultimate factor). The ultimate factor 𝑓𝑖 , a figure that is multiplied by the cumulative 

payments of each origin year, the last diagonal of our triangle, gives us the ultimate cost. The 

ultimate factor, for each row 𝑖, will be the product of all the loss development factors that give 

the evolution from column 𝑗 =  𝑇 − 𝑖 + 1 until column 𝑇. 

𝑓𝑖 = ∏ 𝑏̂𝑗

𝑇

𝑗=𝑇−𝑖+1

                                                             (2.3) 

Having the ultimate factor and the last diagonal of the upper triangle with the cumulative 

payments, we have the estimated ultimate cost, 𝐶̂𝑖,𝑇 for all the origin years given by 

𝐶̂𝑖,𝑇 = 𝐶𝑖,𝑇−𝑖+1𝑓𝑖                                                             (2.4) 
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With the estimated ultimate cost and the cumulative payments, in the last diagonal, we may 

immediately get the estimated claims reserve for each origin year, 𝑅̂𝑖 

𝑅̂𝑖 = 𝐶𝑖,𝑇−𝑖+1(𝑓𝑖 − 1)                                                     (2.5) 

In (2.5), we may see that we need to have a yardstick that allows us to summarize a set of link 

ratios on a loss development factor to get an ultimate factor. Having this, we will have the 

future payments and then we will get the insurer claims reserves. The yardstick will vary 

depending on the method applied and the decision on that is not always straightforward. 

According to Brown (1993):  

“Setting loss reserves is not a job of a technician, but of a professional actuary. We cannot 

enter data into a computer software package, press a button, and accept the reserve estimate 

that results. A considerable degree of judgement is required”.  

 

The same author refers that the actuary should be able to use various methods and to reconcile 

and explain the differences. In the same line we may find other references, like Wüthrich and 

Merz (2008) that state that:  

“Only an experienced reserving actuary is able to tell us which is an accurate/good estimate 

for future liabilities for a specific data set, and which method applies to which data set”. 

 

Despite all this, it is very common to find that many people always use the same method, the 

CL, or methods that are CL based: such as the deterministic CL, the Bornhuetter-Ferguson 

(BF) with the CL, the Stochastic CL (non-parametric or parametric), and the Bootstrap CL 

(also CL based). Sometimes, it is mentioned that the Bootstrap is not a claims reserving 

method. Indeed, we may apply the Bootstrap technique to any method but it is very common 

to see in the literature the reference to the Bootstrap as a claims reserving method, see for 

example Hindley (2018). 

 

Sometimes, the CL is also used in decomposing the cumulative payments triangles, or the 

incurred claims triangle on frequency and severity triangles. We will have two triangles 

instead of one triangle. If we use payments, the severity triangle is the average payments 

(payments divided by the number of claims with payments) and the frequency triangle is the 

number of claims with payments. When we use the incurred claims, the severity is given by 

the average incurred claims (the incurred claims divided by the number of claims notified) 
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and the frequency is the number of notified claims. In this frequency-severity approach 

actuaries also apply the CL to all these triangles.  

 

We may confirm this generalized use of the CL by looking at several statements on the 

practical and theoretical literature. For instance, in the 2013 discussions about these 

techniques at the Institute and Faculty of Actuaries (Marcuson, 2013) it is explicitly written: 

“…there is a reason why established techniques such as the CL and BF are so well-

entrenched in actuarial reserving…it is because they are robust (certainly the BF, but with 

suitable care the CL as well), common-sense approach to a problem. They apply to aggregate 

data, which means we can overcome some data deficiencies, and, most importantly, they are 

relatively easy to communicate to non-actuaries”. 

  

Also, some theoretical books (Wüthrich and Merz, 2008) go in the same direction stating: 

“The CL and BF methods belong to the easiest claims reserving methods. Their simplicity 

makes the CL and the BF methods the most commonly used techniques in practice. Though 

they are simple, they often give surprisingly accurate results”. 

 

And (Straub, 1988): 

“The oldest IBNR method and by the large still the most often used one is a straightforward 

extrapolation called the CL method”. 

 

From these statements it seems one of two things: 

- Either the CL method is so flexible that it may be adjusted to any line of business and to 

any set of data.  

- Or a method is being imposed to the data when it should be the opposite, that is, the 

data should oblige to a specific method that better matches it and the professional 

reserving actuary should be able to choose the most appropriate one. 

 

Before choosing the appropriate conclusion, we will first look at the CL method and the 

assumptions beyond it.   
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2.5 The Chain-Ladder Estimation 

 

This CL method estimates the loss development factors 𝑏̂𝑗
𝐶𝐿as the ratio of the sum of two 

adjacent columns (using just the common origin years to get the same number of cells on the 

numerator and denominator). We will get the following estimator for 𝑗 = 1, … , 𝑇 − 1 

𝑏̂𝑗
𝐶𝐿 =

∑ 𝐶𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝑇−𝑗
𝑖=1

                                                          (2.6) 

Using (2.1) this is a weighted average of the triangle link ratios, where the weights are the 

payments from year j. 

𝑏̂𝑗
𝐶𝐿 =

∑ 𝐶𝑖,𝑗𝐹𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
𝑇−𝑗
𝑖=1

                                                    (2.7) 

There is an important assumption when we use this method. According to the Institute of 

Actuaries exam’s manuals on General Insurance (Acted, 2000): 

“The key assumption is that, for each origin year, the expected amount of claims, in monetary 

terms, paid in each development year is a constant proportion of the total claims, in monetary 

terms, from that origin year.” 

 

We may see this assumption defining the grossing-up factors 𝑔𝑖,𝑗 the amount of payments on 

cell with row 𝑖 and column 𝑗 in proportion to the ultimate costs. For the lower triangle cells, 

𝐷𝑙 = {𝐶𝑖,𝑗: 𝑖 + 𝑗 − 1 > 𝑇}, this factor, 𝑔̂𝑖,𝑗, is estimated by the ratio of 𝐶̂𝑖,𝑗 , expected 

payments on a cell, for 𝐶̂𝑖,𝑇, the expected ultimate cost. 

𝑔̂𝑖,𝑗 =
𝐶̂𝑖,𝑗 

𝐶̂𝑖,𝑇

   with  𝐶̂1,𝑇 = 𝐶1,𝑇                                            (2.8) 

Hence for the lower triangle 𝐷𝑙 we have  

𝑔̂𝑖,𝑗 =
𝐶̂𝑖,𝑗 

𝐶̂𝑖,𝑗𝑓𝑗

                                                                  (2.9) 

This means that we get a relation between the grossing-up factor per development year and 

the estimated ultimate factor.  

𝑔̂𝑗  =
1

𝑓𝑗

                                                                 (2.10) 

We conclude that if the 𝑗 is the same, whatever the origin year 𝑖, the proportion 𝑔̂𝑗  will have 

the same value.  The following table illustrates this situation using data on table 1 with the CL 

method to project the lower triangle. We get the same proportions of cumulative payments in 
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respect to the ultimate cost in the lower triangle columns. Also, these proportions, in each 

column, are the same as the ones obtained, on that column, for the last diagonal. The Table 

2.3 presents all these results.  These results may also be obtained if we consider incremental 

payments instead of cumulative payments on the calculation of these proportions. 

For the upper triangle cells 𝐷𝑢 = {𝐶𝑖,𝑗: 𝑖 + 𝑗 − 1 ≤ 𝑇}, we may obtain these grossing-up 

factors using the same framework but considering 𝑔̂𝑖,𝑗, as the ratio of 𝐶𝑖,𝑗 the payments on a 

cell, over 𝐶̂𝑖,𝑇, the expected ultimate cost. 

 

Table 2.3: Chain-Ladder Grossing-Up Factors 

 

 

However, in our opinion, this is not the main assumption of the CL method. The latter 

assumes that the triangle of payments is stable over time. Let us see this with another 

example.  

Assume that we have a steady growth of claims every year with a constant development 

factor, but with some diagonal effects that are cumulative year over year (e.g., claims 

inflation), see Table 2.4. In this table, we follow the same data triangle format of the previous 

examples, where the rows are the origin years and the columns are the development years. 

We get a triangle where the cumulative payments for the same development year, increase 

every origin year.  

1 2 3 4 5 6 7 8 9 10

1 27% 44% 58% 63% 72% 86% 96% 99% 99% 100%

2 1% 25% 32% 63% 82% 93% 92% 96% 99% 100%

3 14% 37% 58% 67% 78% 92% 95% 97% 99% 100%

4 20% 40% 55% 74% 82% 91% 94% 97% 99% 100%

5 4% 33% 55% 77% 90% 91% 94% 97% 99% 100%

6 8% 33% 60% 66% 81% 91% 94% 97% 99% 100%

7 3% 23% 62% 69% 81% 91% 94% 97% 99% 100%

8 6% 29% 55% 69% 81% 91% 94% 97% 99% 100%

9 20% 34% 55% 69% 81% 91% 94% 97% 99% 100%

10 11% 34% 55% 69% 81% 91% 94% 97% 99% 100%
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Table 2.4: Triangle with a Trend on Payments Increase 

 

Then, we get the link ratios presented on Table 2.5. 

 

Table 2.5: Link Ratios obtained from (2.1) for Table 2.4 

 

It is clear from Table 2.5 that there is no stability, and trends appear on all the columns.  Thus, 

the CL method estimates 3.12 for the first development factor. As we can see this estimate is 

more according with the past and does not reflect the current evolution (the same is happening 

to the other loss development factors).  Now, if there is no reason to believe that the factor 

tends to the past average, it is difficult to sustain the use of CL.  This also means that if the 

insurer increases (or decreases) their claims payments velocity, then more (or less) reserve is 

estimated by CL method.  Obviously, it is exactly the opposite of what we should expect, and 

it is difficult to trust in CL estimated reserves.  This situation happens in practice very often, 

and it is due to several reasons, such as the speed of paying and settling the claims, the 

changes in underwriting and claims policies. All of this obliges the consideration of the most 

recent experience, and not so much the one from the past.   

1 2 3 4 5 6 7 8 9 10

1 1000 1980 4039 8402 17643 37051 77066 157214 311283 591438

2 1100 2376 5251 11762 26465 59281 131012 282985 591438

3 1320 3089 7351 17643 42344 100778 235821 537671

4 1716 4324 11027 28229 71984 181401 448059

5 2402 6486 17643 47990 129572 344661

6 3603 10378 29993 86381 246187

7 5766 17643 53988 164124

8 9802 31758 102578

9 17643 60340

10 20063

1 2 3 4 5 6 7 8 9

1 1,98 2,04 2,08 2,10 2,10 2,08 2,04 1,98 1,90

2 2,16 2,21 2,24 2,25 2,24 2,21 2,16 2,09

3 2,34 2,38 2,40 2,40 2,38 2,34 2,28

4 2,52 2,55 2,56 2,55 2,52 2,47

5 2,70 2,72 2,72 2,70 2,66

6 2,88 2,89 2,88 2,85

7 3,06 3,06 3,04

8 3,24 3,23

9 3,42
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It is known, from Straub (1988), that the CL is just an approximation to the least square 

solution which means that its loss development factors does not minimize the square of the 

errors. As the CL is a regression, it is not the best fit to the data because it does not minimize 

the square of the errors. Indeed, we know from Mack (1993a) that the CL does not minimize 

the sum of the square of the errors but minimizes the weighted sum of the square of the errors, 

which means that assumes errors as heteroscedastic (with non-constant variance). With 

regression techniques heteroscedasticity is a feature from cross-section models, see for 

example Fomby et al. (1984). This means models with the data coming from the same period 

(with triangle claims, the same origin year and the same development year) and from several 

entities (for example, more than one line of business). It may also mean data from several 

origin years (to the same development year) and from more than one line of business: these 

are called panel data models (multivariate models in claims reserving literature), which mix 

time-series and cross-section models. Due to this last feature, panel data models may also 

show heteroscedasticity if the model parameters are assumed the same for all the entities (the 

same loss development factors for all the triangles in the multivariate claims reserving 

models). However, when we use regression techniques, insurer’s triangles are time-series 

equations per development year with data coming from one line of business (they are not 

cross-section or panel data models).  

 

Due to this, when we analyse one triangle, we should not expect to find, in most of the cases, 

heteroscedasticity. It is possible that heteroscedasticity arises when data is irregular, as in 

such case it will be more difficult to predict, and the variance of the error is probably not 

going to be constant. The same may happen if we consider several lines of business with the 

same development factors, but that is not a common procedure in multivariate claims 

reserving literature, see for example Zhang (2010). 

 

The CL will consider the future a weighted average of the past, but the weights are the 

payments. Straub (1988) showed that the best weight to minimize the sum of the square of the 

errors is the square of the payments. 

 

In the example provided, where the link ratios increase with the origin year, it is easy to see 

that if the weights of the link ratios where the square of the payments, instead of the 
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payments, the loss development factor would have been higher than 3.12 and closer to the 

most recent years.   

 

It is also very common on insurers data, in triangle format, to have the payments increasing 

with the origin years, not only due to the existence of claims inflation but mainly due to the 

growth of the insurers business, which brings more claims. In those cases, the CL will be 

slower to adjust to the more recent years because of the use of the payments as the weight of 

the link ratios. When we use the square of the payments, in those cases, the loss development 

factor relies more on the more recent year’s link ratios. Indeed, it is not only the most recent 

years that matter to claims reserving but usually they are very important, as they are closer to 

the way the insurer is reserving. 

 

This CL bias is known by actuaries, and Halliwell (2007) writes “over the past twenty years 

many actuaries have claimed and argued that the CL method of loss reserving is 

biased…nearly everyone who acknowledges this bias believes it to be upward”. It is also 

interesting to see that the same author writes that “to resolve this issue (the bias) basic 

regression theory will suffice, specifically the much-misunderstood concept of regression 

toward the mean”.  

 

The CL key assumption it is very strong and can only work with very stable data. If data does 

not have this feature, the prediction errors could be very high. If prediction errors are high, 

CL predictions do not match the experience and it is difficult to accept CL results. The 

reserve best estimate is not trustable and the same will happen to the fair value reserve. The 

latter depends on the best estimate, and even the risk margin may be calculated using the 

results from the best estimate. As we saw before, the bias with best estimates and risk margins 

has a tremendous impact on several insurer’s issues, and we cannot rely anymore on its 

financial statements. 

 

Other authors, such as Barnett and Zehnwirth (2000), say something similar in respect to 

methods that use the link ratios (where the CL is a special case, the most applied): 

 “Most loss arrays do not satisfy the assumptions of standard link ratios techniques.” And if 

this happens the prediction errors will be high, and we cannot say that we have the best 



 

27 

 

estimate of our reserves. If this is the case, why is CL being used and surviving for so many 

years? We need to see something about its history to understand this remarkable issue. 

 

2.6 Chain-Ladder History 

 

Some authors, for example Straub (1988), refer to the CL as being the oldest method in claims 

reserving but we cannot find an official reference for the “birth” of the method. 

 

In Tarbell’s (1934), the author did not use triangles but stated that this problem of claims 

reserving was essentially actuarial or statistical; it should be the experience of the immediate 

past to guide the calculation of the IBNR reserve. Brosius (1992) also mention loss reserving 

methods dating back to the 50’s. We know also from Masterson (1962) that in the 60’s the 

triangles were already used as a reporting tool in the United States, and that non-life insurers 

were required to do some official reserving tests on the annual statements. This author 

proposed the application of a method, based on this reporting framework, to estimate the 

reserves. It was based on the incurred claims and splitting the triangle between the number of 

claims and the average cost. 

 

Another method appeared in 1965 with R. Beard, Taylor (1986). It was based on risk theory 

and considered that claims amount could be represented by an exponential polynomial, and 

that the period of settlement was given by polynomials with negative indices (Kupper, 1967). 

 

Benedikt (1969) refers to a method like the CL. Indeed, it is almost the same. The only 

difference relies on the use of a simple average, instead of the weighted average that we have 

in the CL. It was applied to the incurred claims triangles. He also explains that his method has 

a big advantage when compared with the Masterson (1962) and Beard (Taylor, 1986) 

mentioned methods: it is based on what he calls the chain relatives and is much easier to 

apply. The latter methods are based on the analysis of economic time series from Davis 

(1941). Here, the method of link relatives, that was widely used to study time series and to 

summarize all the chain relatives with averages or medians, was presented. The chain relative 

was just the ratio of two adjacent figures. It corresponds to the link ratio summarized in (2.1). 
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At that time, there were several presentations of statistical approaches to claims reserving and 

another method came from Beard (1969); a study of twenty-eight companies showed that the 

split of reliable data between claims frequency and average costs was a practical method of 

estimating insurer’s reserves.   

 

According to Bornhuetter and Ferguson (1972), claims reserving had little attention in the 

literature of insurance and it was not common to see papers on the subject at that time. 

Indeed, if we look at the Astin Bulletin’s since it started in 1958 until the beginning of 70’s, 

we just find few papers on the subject, and the Astin is the colloquium of non-life insurer´s 

actuaries. Usually the literature on its bulletins was concentrated on risk theory, pricing and 

solvency. With this paper, Bornhuetter and Ferguson (1972) also published a new method for 

claims reserving. 

 

Also, in 1972, another publication came with triangles and statistical methods. It was the 

paper from Verbeek (1972) about the estimation of the ultimate number of claims. According 

to Verbeek (1972), moving from claims number to claims costs should not be difficult. The 

model assumed a Poisson distribution for the claims counts and required the maximum 

likelihood estimation of the parameters. A statistical method was also presented by Fisher and 

Lang (1973) without triangles and with a reporting-year base. 

 

At that time, a kind of competition was also emerging between statisticians and actuaries to 

approach the problem of claims reserving, A.D.W. (1974) – the paper was signed just with 

these initials: 

“The statistician begins with a formula and then looks for numbers to fit it, whereas the 

actuary begins with numbers and looks for a formula to fit them”  

 

Beard (1974) seems to be the first paper to present the CL on the 22nd of May 1974 at the 

Institute of Mathematics and its Applications Symposium. The methodology was similar to 

the one from Benedikt (1969) five years ago, but he used a weighted average instead of the 

simple average. With the publication of the symposium papers, the problem of estimating 

claims reserves has been comprehensively aired, for the first time in Britain, A.D.W. (1974). 
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At that time, there was the need of reconciliation between statisticians and actuaries and the 

CL did this because it was considered to provide an actuarial and statistical approach to the 

problem. More importantly, the Department of Trade considered the CL approach to be the 

best one and the one to be chosen for statutory regulations, A.D.W. (1974). 

 

Taylor (1977) presents a new method of estimation, the separation technique, and summarizes 

some of the problems in applying the CL method: 

“In the absence of exogenous influences such as monetary inflation, changing rate of growth 

of the fund, changing mix of business in a fund, the distribution of delays between the incident 

giving rise to the claim and the payment of that claim remains relatively stable in time. In this 

case the columns (or rows) of the run-off triangle are, apart from random fluctuation, 

proportional to one another. It is crucial to the logic of the underlying CL method that the 

exogenous influences should not be too great. If this assumption does not hold, then the 

conclusion that the columns of the run-off triangle are proportional goes awry too, and the 

CL method give misleading results”. 

 

However, this method was harder to apply, and even the CL was not easy, due to the absence 

of microcomputers in that time. Before the advent of the computer, loss reserving was a time-

consuming and tedious process that resulted in frequent miscalculations and errors (Fallquist 

and Jones, 1987). They stressed in this paper that only with microcomputers that it is feasible 

to start using triangles and actuarial methods for claims reserving. 

 

The first microcomputer came with Apple in 1976 but in the beginning, it had limited use, 

even corporations were still relying in mainframes with terminals. After Apple, several others 

followed like the Commodore, the Heathkit and the Radio Schack but only in 1981 we had 

the IBM microcomputer with the Microsoft operating system MS-DOS (Brookshear, 2013). 

Just after that, we saw the spread of personal computers everywhere. This means that in the 

80’s the penetration of these methods on claims reserving was not very high and some 

actuaries were using calculators or doing some programs to apply the CL. An example of this 

is the APL language, also called in the actuarial profession as the Actuaries Programming 

Language. With the spread of personal computers inside insurance companies, in the second 

half of the 80’s, actuaries started using the CL more and the technique won world recognition. 
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At the same time, actuaries and statisticians started struggling with a technical question, that 

being resolved, would allow them to calculate risk margins and confidence intervals to their 

best estimates and to know the prediction error of their calculations: which stochastic method 

was implicit in the CL calculation? 

 

The first answer was given by Thomas Mack (1993a, 1993b, 1994). The method proposed 

was independent of any probability distribution and the market acceptance was very high. 

Finally, actuaries could have the best estimate, and calculate the risk margin and the 

prediction errors. This will also give them confidence intervals to a previously specified 

degree of confidence. Even if the CL was being criticized, this non-parametric stochastic 

method gave CL a new life. 

 

The same happened four years later with a new parametric approach to the CL from Renshaw 

and Verrall (1994 and 1998). They showed that the CL stochastic method was an Over-

dispersed Poisson model. It was an important step ahead because it was an application of 

Generalized Linear Models (GLM) to reserving when the same was already being done with 

pricing. The two important issues, pricing and reserving, were using the same technique and it 

was a second recognition to the CL. It was an important jump because this application of 

GLM models shows the stochastic method beyond the CL, but also that we may have other 

alternatives to the CL (with different a different probability distribution and with other link 

functions and variance functions). 

 

One year later, the same authors published an application of the Bootstrap technique to claims 

reserving, once again using the CL (England and Verrall, 1999). The technique may be 

applied to any method and due to this, it is common to hear that it is not a claims reserving 

method. However, some literature calls the Bootstrap a model, see for example Hindley 

(2018). The technique/method had even more acceptance than the Over-dispersed Poisson and 

became a non-parametric alternative to the Mack method. The spread of these contributions 

accelerated with the publication of a practical paper on the Institute of Actuaries (England and 

Verrall, 2002).  
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All this indirect recognition of the CL promoted its practical application in several countries, 

and the existence of a stochastic CL allowed many actuaries to adjust the reserves and 

changing the confidence level of the estimate. 

 

In this CL history, it is also important to mention the BF method published by Bornhuetter 

and Ferguson (1972), just before CL presentation in 1974. The method is a mixture of 

external information, a benchmark, with the insurer internal data to calculate the loss 

development factors. The latter were calculated using averages on the link ratios of several 

origin years. However, with the implementation of the CL, this method starts substituting the 

simple average on loss development factors calculations by the former. We may see that in 

several presentations of the BF method in the literature. For instance, the Institute of 

Actuaries manual on claims reserving (1989), mentions that the authors used the Link 

Ratio/CL approach. Indeed, they used the Link Ratios approach with a simple average, but 

they never said, in the original paper, that they were using a weighted average or even the CL.  

 

This means that the professional practice and the introduction of the CL changed the original 

BF. As the above manual says, Institute of Actuaries (1989), the term CL is sometimes used 

to describe a method which uses any kind of average. It is not obligatory to use the CL 

method with the BF, but it is very common to see several studies always using the CL. Also, 

Wüthrich and Merz (2008) explain this fact very well when they state that: 

“In most practical applications one deviates from the path of the pure BF method and 

estimates the still-to-come factor from data with the CL estimates”. 

 

As we can see the CL was an important tool to actuaries. It started by substituting the more 

common standard at that time, the simple average link ratio, and became the standard for 

some regulators and “changed” the original BF that, in the original paper of Bornhuetter and 

Ferguson (1972), was using the simple average link ratio. It became a standard that in some 

cases solved an important problem to some actuaries: which method shall we apply to this 

triangle? The answer of the market in most cases was: use the CL or maybe the BF, which is 

an extension of the CL. 
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3. Deterministic Methods 

 

Actuarial methods for claims reserving may be deterministic or stochastic. The former is 

simpler to apply and produce a best estimate for the reserves. The stochastic methods, more 

complex, give us a best estimate, a confidence level to our best estimate and the reserves 

prediction error. 

 

Seeing the history of claims reserving, the deterministic methods were the first to be applied. 

Actuaries took some time to become the recognized professionals to claims reserving, and the 

only way to achieve that, with the technology of the 70’s, was by using clear and easy to 

apply methods. At the same time, to have the spread of actuarial methods for claims 

reserving, a simple technique was also important which the deterministic methods had this 

feature. 

 

Even nowadays the deterministic methods are the most used by actuaries to calculate claims 

reserves. There reason for that is because most legislations require best estimate reserves on 

accounts, which is the output from deterministic techniques. Even the Solvency II directive, 

European Union (2009), went in the same direction, imposing the deterministic methods to 

the best estimates calculation. This means that deterministic methods are important. 

 

We will present here the most well-known deterministic methods, and will show the relation 

they may have with regression techniques. To cover that objective, we will summarize: 

- The methodologies presented by the UK Institute of Actuaries (now Institute and 

Faculty of Actuaries) on its manual of claims reserving (1989 and 1999) and Acted 

(2016) and by the Casualty Actuarial Society on its non-life insurance examinations, 

CAS (2017). 

- Some variants of these methods. 

- And some other methods presented in the literature. 

 

We will mention the connection between most of the techniques that are going to be presented 

with regression models. Especial emphasis will be done to the methods that were developed 

with the explicit use of regression techniques. 
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3.1 Link Ratios 

 

As we saw before in section (2.5), we may get the insurer´s reserve by using the payments 

done so far multiplied by the ultimate factor minus one. The ultimate factor is the product of 

the loss development factors, which means that for having the estimated reserves, we just 

need two things: 

- To know the cumulative payments done by the insurer per origin year, that is, the last 

diagonal of the upper triangle. 

- And to have the loss development factors, which means data to estimate them, the upper 

triangle of cumulative payments (complete or not, as it is possible that the actuary 

decides to have just a subset of this triangle to calculate the loss development factors). 

 

We also saw how CL estimates these loss development factors in (2.6) and (2.7): doing a 

weighted average of the past link ratios. It was also clear from the history of claims reserving, 

in section 2.6, that before the birth of the CL, loss development factors were already 

calculated using simple averages. Examples may be seen with Masterson (1962) and Benedikt 

(1969). 

 

This estimation is just a statistical problem. We saw in Table 2.5 that a triangle of link ratios 

may be calculated from the triangle of cumulative payments, presented in Table 2.4. When we 

look at the columns of Table 2.5, we see that each of these columns is a time series of link 

ratios. This means a series of data points in time order, taken at successive equally spaced 

points in time. What the link ratios methods do, is estimate a statistic that summarizes all the 

link ratios in one number: the loss development factor.  

 

This means that the loss development factor can be any statistic: a weighted average with 

payments made in the past as the weights (the CL suggestion), a weighted average with 

subjective weights, a simple average of the link ratios, the lowest link ratio from all the link 

ratios in the column (an optimistic case), the highest link ratio from all the link ratios in the 

column (the worst case scenario), the last link ratio (the most recent link ratio), an average of 

the last two or three link ratios (an average of the most recent years), the median (the link 

ratio of the middle from a series of ordered link ratios) or a trend (the adjustment of a linear or 
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log linear regression against time). We may also use any of these methods excluding certain 

link ratios that are considered outliers. 

 

This shows that the link ratios method allows actuaries to choose one of several alternatives to 

estimate the loss development factors. This flexibility permits actuaries to adjust the method 

to the insurer’s circumstances: inflation, speed of claims settlement, different future 

behaviours, trends, outliers, legislation and even subjective feelings about the future. The 

following methods are examples of this flexibility.  

 

To get the CL, we do a weighted average using the payments as the weights, see (2.6) and 

(2.7). To have the Simple Average (SA) method, we just need to do the simple average of the 

past link ratios. 

𝑏̂𝑗
𝑆𝐴 =

∑ 𝐹𝑖,𝑗+1
𝑇−𝑗
𝑖=1

𝑇 − 𝑗
                                                               (3.1) 

We may follow the same approach to get the Last Link Ratio (LLR) method: 

𝑏̂𝑗
𝐿𝐿𝑅 = 𝐹𝑇−𝑗,𝑗                                                                          

Using ordinal statistics from the link ratios triangle, see for example Table 2.2, we may also 

get other alternatives: 

- The Best-Case (BC) scenario, a lower bound, would be: 

𝑏̂𝑗
𝐵𝐶 = min

𝑗
(𝐹𝑖,𝑗)                                                                           

- The Worst-Case (WC) scenario, an upper bound, would be: 

𝑏̂𝑗
𝑊𝐶 = max

𝑗
(𝐹𝑖,𝑗)                                                                        

- The Median (MD) scenario would be: 

𝑏̂𝑗
𝑀𝐷 = med

𝑗
(𝐹𝑖,𝑗)                                                                      

All these variants of the link ratios are just statistics that summarize a set of link ratios. The 

actuary needs to select one of these statistics per column. Having that, he will have the 

ultimate factors using (2.3) and the reserve best estimate using (2.5). Usually actuaries apply 

the same variant of the link ratios to all columns but that is not compulsory, and a variant may 

be applied to each column. 

 

Whatever the method is, the idea is always the same; with some judgment and some analysis 

of the results the actuary may apply these methodologies. As it is not automatic to define 
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which one is the best, some methods, like the CL, became the most used. Having defined that 

“everybody uses the CL”, a lot of time is saved, and the problem becomes simple. This 

approach is dangerous, due to the lack of accuracy it may involve, but it is indeed a practice in 

several countries. A good and recent evidence of this may be seen at IAA (2017). 

 

The link ratios approach does not give the calculation of the prediction error of any of its 

variants. However, for the upper triangle, we may see the estimated errors (also called 

estimated residuals), 𝜀̂. These are the differences between the estimated payments 𝐶̂𝑖,𝑗 and the 

real payments, 𝐶𝑖,𝑗 (that we got in the past). They are calculated backwards, starting in the last 

column of the triangle. An example may be seen in Booth et al. (2005).      

𝜀𝑖̂,𝑗 = 𝐶𝑖,𝑗 − 𝐶̂𝑖,𝑗       𝑗 ≤ 𝑇 − 𝑖 + 1                                         (3.2) 

The following variant of the link ratios is different. It considers the errors (also called 

residuals) in estimating the loss development factor and does not apply the same loss 

development factor to each cell of the lower triangle. It does one regression to each column 

from the triangle. A trend link ratio would be the result of a regression of the link ratios, 

𝐹𝑖,𝑗+1.  The latter will be explained by a constant and by time with a certain functional form, 

ℎ(𝑇𝑖𝑚𝑒). Time would be the origin year 𝑖 ≤ 𝑇 − 𝑗 + 1. The regression will use the least 

squares technique to estimate the method parameters: we will get the estimated constant 𝑎̂ and 

the estimated slope 𝑏̂𝑗
𝑇𝑅  

𝐹𝑖,𝑗+1 = 𝑎̂ + 𝑏̂𝑗
𝑇𝑅 . ℎ(𝑇𝑖𝑚𝑒)                                                            

This trend will be a linear trend if the functional form is linear 

                                                            ℎ(𝑇𝑖𝑚𝑒) = 𝑇𝑖𝑚𝑒                                                              

And will be a log linear trend if the functional form is logarithmic 

ℎ(𝑇𝑖𝑚𝑒) = log(𝑇𝑖𝑚𝑒)                                                               

 

In these two cases we, are having a linear model and we estimate the regression parameters 

using least squares. The loss development factor (and the constant if included) will be 

estimated after minimizing the sum of the square of the errors or considering, if appropriate, 

weights for each observation. Such a procedure of using weights is very common when the 

regression shows heteroscedasticity. See for example Formby et al. (1984). 

 

Other results may be obtained by changing the functional form, the equation structure (adding 

other variables, such as the speed of paying claims or omitting the constant) and the 
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estimation method (using other alternatives to the minimization of the sum of the square of 

the errors, for example, the generalized least squares). 

 

In these two cases, we had a regression model using link ratios but it is also possible to show 

that the CL and the SA may also be seen as regression models, see for example Straub (1988), 

Murphy (1994) and Barnett and Zehnwirth (2000). This is done using weighted regressions 

with the appropriate weights. It will mean that there is heteroscedasticity in the model. 

 

This also means that it is possible to do the same for the last link ratios method, just giving 

weights to the most recent link ratio. And the same could also be done, using quantile 

regressions, to the ordinal statistics link ratios, as the median link ratio. The median link ratio 

will correspond to the loss development factor and may be replicated with the minimization of 

the sum of the absolute errors (instead of the square of the errors as in the linear regressions). 

The median is not so much sensitive to outliers. 

 

We may conclude that the Link Ratios (LRT) methods may be presented by a regression 

model if we use a quantile regression. The quantile regression is out of the scope of this 

thesis, but we will replicate in chapters 5 and 6 the Link Ratios methods, the CL and the SA, 

using regression models. 

 

3.2 Grossing-Up 

 

The Grossing-Up (GU) methodology uses the grossing-up factor presented in (2.8). We saw 

already, in (2.10), that the grossing-up factor is the reciprocal of the ultimate factor. Looking 

at equation (2.5), we immediately see that we may obtain the same reserve as the link ratios if 

we calculate the GU method with the same statistic that we used for the link ratios, for 

example, a simple average (some small differences arise due to rounding up, as the number of 

operations done is not the same between the two methodologies, for example, the Excel only 

has 16 decimal places). 

 

Even though the results are similar, the GU methodology may be a good help for actuaries to 

explain their calculations to non-actuaries. The latter will understand much better a grossing-

up rather an ultimate factor. This grossing-up factor is the percentage of the payments in 
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respect to the ultimate cost in a certain development year. People in the claims department 

will understand this statement and they will know that the grossing-up factor is between 0% 

and 100%. The ultimate factor is the number that when multiplied by the current cumulative 

payments gives the ultimate cost. It is a figure more difficult to understand by the claims 

department staff.  

    

This means that with the GU method, we will get reserves as the proportion of the estimated 

ultimate cost to be paid in the future. 

𝑅̂𝑖 = 𝐶𝑖,𝑇−𝑖+1. (
1

𝑔̂𝑗
− 1) = 𝐶𝑖,𝑇−𝑖+1.

1

𝑔̂𝑗
. (1 − 𝑔̂𝑗) = 𝐶̂𝑖,𝑇 . (1 − 𝑔̂𝑗)             (3.3) 

 

As we can see in (2.10), we need an estimate of the ultimate cost for each year to be able to 

calculate each of the grossing-up factors. This means that we must do the calculation having 

the ultimate cost from all the years, not just the first one. This is done by recursion: 

- We have the first origin year closed. Using (2.8) we get, for that year, the grossing-up 

factors from all development years 𝑗 = 1, … , 𝑇 − 1. 

- Using the grossing-up factor from year 𝑖 = 1 and development year 𝑇 − 1 we estimate 

the ultimate cost of the second origin year, also using (2.8). Having this, we get the 

grossing-up factors for the second origin year to  𝑗 = 1, … , 𝑇 − 2. 

- In the third year and the ones that follow, we repeat the procedure. There is just one 

difference: now we have more than one grossing-up factor (from previous origin years 

and to the same development year) to estimate the ultimate cost. We need a statistic that 

summarizes them, for example, the simple average. Having this statistic, we proceed as 

before. 

 

As the grossing-up factor is the reciprocal of the ultimate factor, see (2.10), it is also the 

reciprocal of the product of several loss development factors, see (2.3). As the loss 

development factors may be obtained by a regression, see for example Murphy (1994), the 

grossing-up factors are the product of the outcome of several regressions. They are just a 

different way of presenting the same.  
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3.3 Average Costs 

 

We will see here two ways of considering the Average Costs (AC) method. Firstly, we will 

see the traditional method, also called the frequency-severity method. Secondly, we will see 

the AC using the operational time. 

 

The traditional approach, see for instance Hindley (2018), divides the cumulative payments 

triangle, into two triangles: one with the number of claims with payments 𝑛𝑃𝑖,𝑗 and another 

one with the average payment per claim with payments, 𝐶𝑖̅,𝑗. This average is calculated 

dividing each cell of the cumulative payments by the cumulative number of claims with 

payments. Now we have two triangles, and our initial triangle is decomposed in the following 

way. 

𝐶𝑖,𝑗 = 𝐶𝑖̅,𝑗. 𝑛𝑃𝑖,𝑗 

The method will give, as output, the ultimate number of claims with payments and the 

ultimate average costs, both per origin year. Multiplying the two outputs, per origin year, 

gives the ultimate costs per origin year.  

 

Sometimes actuaries use the number of claims settled instead of the number of claims with 

payments, but in that case, to be consistent, the average cost should be calculated per claim 

settled. 

 

It is also possible to use the incurred claims triangle to perform a frequency-severity analysis. 

The procedure is similar to the one from the cumulative payments. However, the number of 

claims must be the ones that were notified and the average cost, 𝑖𝐶̅𝑖,𝑗, should be obtained with 

the division of the incurred claims by the number of cumulative notified claims 𝑛𝐶𝑖,𝑗. This 

happens because the incurred claims are the cumulative payments plus the case reserves. As 

before with cumulative payments, now we have two triangles, and our initial triangle is 

decomposed in the following way. 

𝑖𝐶𝑖,𝑗 = 𝑖𝐶̅𝑖,𝑗. 𝑛𝐶𝑖,𝑗                                                                        

 

Having done the decomposition, whether with paid claims or with incurred claims, all the 

methods and variants of the LRT and of the GU methods are applicable and they do not need 
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to be the same in each component of the decomposition done, for example, we may apply the 

CL to the frequency triangle and the SA to the severity triangle. 

 

Using the LRT method and the paid claims, the reserve on each origin year 𝑖 will be given 

using the ultimate factors of each component: 𝑓𝐶̅,𝑗 the ultimate factor of the average payments 

on column j and 𝑓𝑛𝑃,𝑗 the ultimate factor of the number of claims settled at column 𝑗. All these 

ultimate factors are obtained in the same way we did before in (2.3). For the case where we 

use the paid claims we get, 

𝑅̂𝑖 = (𝐶𝑖̅,𝑇−𝑖+1. 𝑓𝐶̅,𝑗). (𝑛𝑃𝑖,𝑇−𝑖+1. 𝑓𝑛𝑃,𝑗) − 𝐶𝑖,𝑇−𝑖+1                               (3.4)  

 

As the traditional AC method is based on the LRT or the GU methods, we may conclude that 

it can also be presented with the use of regressions. 

 

We may also use the AC method in a different way, by changing the time scale to an 

operational time. The definition is done for closed claims, but sometimes the claims with 

payments are also used depending on the data available. The operational time is the 

proportion of claims closed and ranges between 0 (no claims closed) and 1 (when all the 

claims are closed). If the operational time is 0.1 this means we have 10% of the claims closed. 

The concept was introduced by Reid (1987) and the most known method was developed by 

Wright (1990). Its main assumption is that the average cost of claims depends on the order of 

settlement: small claims are closed faster than bigger claims. This happens because of the 

complexity of the bigger claims. See for example Wright (1990) or Booth et al. (2005). 

 

According to Wright (1990), we may use the method when we have at least one of the 

following sets of triangles (in each of the sets we have a triangle for the number of claims or 

payments and a triangle for the payments): 

- The number of claims closed and payments on all claims closed. 

- The number of payments and the paid claims.  

- The number of claims closed and the paid claims. 

 

Also, Lowe (1994) mentions that the method may be useful when the main source of 

uncertainty comes from the individual claims amounts. This may be the case with bodily 

injury claims where we have more volatility in the case estimates. Lowe (1994) also states 
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that when the speed of claims is changing, this method is more prepared to adapt to these 

changes than traditional methods.  

 

Even if the original method was stochastic, we may also see the operational time in the 

context of the deterministic average cost. For example, if we have the triangle of the number 

of payments and the paid claims triangle, we may proceed as follows:  

- The development years will be the percentiles of claims settled, for example 20%, 40%, 

60%, 80% and 100%. That is our previous 𝑗, defined in section 2.4, is now a percentile. 

- The average paid claims, for example on cell 𝑗 = 20%, will be the first 20% of all 

claims paid divided by the number of payments.  

- The number of payments will be the number of payments that corresponds to those 20% 

of claims.  

 

Having done this data change we may apply the traditional AC method described above. This 

means that changing the triangles´ data allows us to apply a regression model: the AC method 

is the product of two regression models, as we saw in this section. 

 

Another example of the use of regression models with the operational time is the one from 

Booth et al. (2005), using an average paid claims triangle and a number of claims triangle: 

- The number of claims is estimated using traditional LRT techniques. This will give the 

estimates for the future number of claims and the ultimate number of claims (the number 

of claims lower triangle).  

- They calculate the past operational time, as the ratio of the average number of claims (in 

two development years in the past) divided by the ultimate number of claims.  With this, 

they get a triangle of the past operational time.  

- A regression is then estimated between the average paid claims (dependent variable) and 

the operational time (independent variable), using all the cells from the upper triangles for 

the average paid claims and for the past operational time (obtained above). 

- Using the lower and upper triangle of the number of claims, the future operational time 

triangle is obtained (with the same methodology as with the past operational time).  

- Inserting the future operational time on the regression obtained before we get an estimate 

of the future average payments.  
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- Finally, multiplying the latter by the number of claims outstanding to be paid we get the 

ultimate cost.   

- The reserve, as before, will be the ultimate cost minus the cumulative payments. 

 

3.4 Loss Ratios 

 

We started this summary about claims reserving deterministic methods, with one triangle and 

with two methods of estimating the reserves, the LRT and the GU methods. Then we split the 

paid claims or the incurred claims in its components, the average costs and the number of 

claims and used the AC method. Another approach is to bring together more information that 

we may have in respect to each origin year, specifically the loss ratio. These are the Loss 

Ratio (LR) methods. 

 

The loss ratio is a measure of the quality from the business written. It divides the claims per 

the exposure in a certain period. We are giving examples in this thesis with yearly periods, but 

other periods may be considered, for instance quarterly periods. The calculation may be done 

using different criterions, see for example (Portugal, 2007). The most used are the following: 

- If we collect our claims data per accident year (also called occurrence year), the claims of 

that year are the payments from claims occurred on that year plus the claim’s reserves from 

claims occurred on that year. The claim’s reserves are the case reserves added of any 

eventual IBNR and IBNER reserves, all of these, in respect of claims, occurred on that 

year. The exposure of that year is the earned premiums from that year. The earned 

premiums are the premiums of that year plus the premiums of the previous years that were 

at risk in that year less the part of the premiums of that year that will be at risk on the 

following years. 

- We may also collect the data by the underwriting year. In that case, the claims will be the 

payments from claims covered by contracts underwritten on that year plus the claim’s 

reserves from claims covered by contracts underwritten on that year. The claim’s reserves 

are the case reserves added of any eventual IBNR and IBNER reserves, all of these in 

respect to claims arising from contracts underwritten on that year. The exposure of that 

year is the premiums from that year. 

- Another alternative is to collect data by calendar year. The claims of that year are the 

payments from claims occurred on any year plus the claim’s reserves variation between 
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two consecutive years. The claim’s reserves variation will be the difference on claims 

reserves between two consecutive calendar years. For the calculation of the reserve of each 

calendar year, we consider the case reserves plus IBNR and IBNER reserves from that 

calendar year. 

The exposure of that year is the earned premiums from that year.  

 

This distinction is important because we may have the data organized in triangle format with 

any of the above criterions and the loss ratio must be calculated accordingly, to match claims 

with premiums, in respect of the amounts at risk. The triangle analysis by origin year and by 

underwriting year is the most common. The calendar year criterion is used on financial 

statements. 

 

Indeed, very often actuaries know that the line of business loss ratio should be around a 

certain value. For example: 

- A value coming from market statistics produced by the regulator, the association of 

insurers or a private provider of information.  

- Subjective information from the insurance company underwriters. 

- Or even a more objective actuarial estimation, done with some data and statistical 

models.  

 

If that information exists, it may be very useful for years of origin where there is a lot of 

uncertainty in respect to the ultimate costs, probably the ones with a lower level of payments. 

It may even be more important if we do not have any payments in respect of one or more 

years of origin. 

 

With the loss ratios, we add more information to the claim’s reserves estimation. The LR 

method puts together two sources of information: 

- One is objective, the claims paid or the incurred claims triangles from the insurer. 

- The other one is subjective, the loss ratio benchmark added to the estimation. 

 

We have more information, but we also have a second source of error; the benchmark 

information may not match the reality. We will need 𝑇 − 1 benchmarks, one per origin year 

(not yet closed). We assumed before that the first year of origin is closed. 
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The use of the benchmark may oblige the actuary to do some adjustments to the premiums. 

The latter are the product of the average premium per exposure, 𝑝̅, multiplied by the number 

of units exposed to the risk, 𝐸. 

𝑃 =  𝑝̅ . 𝐸                                                                             

 

If the average premium from the benchmark is higher than the one we have, in the insurer 

being analysed, the benchmark will be distorted. Indeed, the loss ratio, 𝑙𝑟, depends on the 

incurred claims, 𝑖𝐶, but also on the premiums, 𝑃. 

𝑙𝑟 =
𝑖𝐶

𝑃
 

 

However, before using the loss ratio, we need to standardize the benchmark premiums using 

the insurer average premium. This means that we need data for that: the average premium 

from the insurer and the average premium from the benchmark. The former will substitute the 

latter to get the benchmark standardized premiums.  

 

The benchmark may also reflect different claims reserving policy and we may have a 

higher/lower loss ratio just because there are too high/low reserves inside it.  

 

The big advantage of the method is that defining a loss ratio per origin year and multiplying it 

by the earned premiums of that accident year gives us an estimate of that year´s ultimate cost. 

 

The LR methods are recommended when the triangle shows: 

- Scarce or inexistent data on payments and incurred claims. 

- Immature data not representative of the reality. 

- Experience not significant for the future. 

- Possibility of latent claims, notified with delays, that heavily transforms the level of 

reserves when they are recognized. 

 

There are several methods that use the loss ratios: Bornhuetter-Ferguson (BF), Cape Code 

(CC), and the Benktander-Hovinen (BH). The next paragraphs summarize each of them.  
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As they mix the LRT method (or the GU method) with some information about the loss ratios, 

these methods may be seen as a Bayesian regression. As we referenced before, in the sections 

3.1 and 3.2, the LR and the GU methods are regressions and adding a priori information to the 

latter give us a Bayesian regression, see for example Fomby et al. (1984), O’Hagan (1994) or 

Lee (1997). The only difference between all the loss ratios methods will be the way the loss 

ratio a priori information is calculated. The development of this Bayesian regression is out of 

the scope of this thesis.  

 

The BF method was developed by Bornhuetter and Ferguson (1972).  The method produces a 

reserve estimate per origin year. Firstly, it selects a benchmark for the incurred claims for 

each origin year, 𝑖𝐶𝑖,𝐵. Secondly, it estimates the ultimate cost of each year, 𝐶̂𝑖,𝑇, using the 

LRT method, usually the CL. Thirdly, the BF ultimate cost of each year, 𝐶̂𝑖,𝑇
𝐵𝐹

will be a 

weighted average from the  𝑖𝐶𝑖,𝐵 and the 𝐶̂𝑖,𝑇. The weights are the estimated grossing up 

factors obtained using (2.10), 𝑔̂ and 1-𝑔̂. The higher the estimated proportion of payments in 

respect to the ultimate cost 𝑔̂, the higher will be the weight given to the link ratios estimate, 

and the lower the weight given to the benchmark incurred claim.  

                                           𝐶̂𝑖,𝑇
𝐵𝐹

= 𝑔̂𝑖. 𝐶̂𝑇,𝑖 +  (1 − 𝑔̂𝑖). 𝑖𝐶𝐵                                               (3.5) 

 

The higher the ultimate factor and the more recent the year is, the lower the correction to the 

benchmark estimation will be; which means that the benchmark incurred claim is considered 

more useful when the amount of payments is low. The opposite happens if we have a low 

ultimate factor; we will rely more on the payments done so far. 

 

The reserve will be similar to the one from the CL, see (2.5). However, the payments that are 

multiplied by (𝑓𝑗 − 1) are substituted by the payments implicit on the incurred claims 

benchmark, 
𝑖𝐶𝐵,𝑖

𝑓̂𝑖
. These implicit payments are estimated using the link ratios ultimate factor, 

estimated by the LRT method (most probably CL). 

𝑅̂𝑖 = 𝑖𝐶𝐵,𝑖. (1 −
1

𝑓𝑖

) =
𝑖𝐶𝐵,𝑖

𝑓𝑖

. (𝑓𝑖 − 1)                                          (3.6) 
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In the link ratio methodology, we use an objective figure to calculate the reserves, the claims 

paid, 𝐶𝑖,𝑇−𝑖+1. In the BF, we use a subjective benchmark, the 𝑖𝐶𝐵 standardized by the 

estimated ultimate factor (which means, the level of estimated payments on the benchmark). 

 

The CC method was developed to overcome some of the CL problems. Following (Straub, 

1988) the latter is very sensitive to changes on a single number (it is not robust), does not 

consider the information given by the earned premiums (the exposure) and assumes that 

payments of one year do not influence payments of the following years (not correlated).  

 

The method is the same as the BF but with a different estimate of the benchmark loss ratio. 

The method was used by Swiss Re actuaries in the South African town of Cape Code and was 

presented by Hans Buhlmann, on an actuarial Summer School in 1983. 

 

The reserve calculation is the same as the one presented to the BF algorithm in (3.6). 

However, the benchmark ultimate cost is estimated in a different way, as the product of the 

earned premiums by a loss ratio that comes from the triangle data and the LRT method 

calculations (and not from an external estimate): 

𝑅̂𝑖 = 𝑙𝑟𝐶𝐶
𝑖 × 𝑃𝑖 (1 −

1

𝑓𝑖

)                                                (3.7) 

𝑙𝑟𝐶𝐶
𝑖 =

∑ 𝐶𝑞𝑞𝑞∈𝑄𝑖

∑ 𝑔̂𝑞𝑃𝑞𝑞𝑞∈𝑄𝑖

                                                       (3.8) 

 

This means that the CC loss ratio, the internal estimate, will be the ratio of, the known total 

payments (from the 𝑄𝑖 years decided as appropriate to each origin year 𝑖) by the total used 

earned premiums (from the same 𝑄𝑖 years). The meaning of the latter is that we just consider 

the proportion of the premiums that corresponds to the payments done so far. To have this 

proportion, we use the grossing up factors, estimated by the LRT (or even the GU method), to 

get the proportion of the known premiums that correspond to current payments. 

 

In the CC, it is crucial to define the set Qi of information. It may be all the origin years, a 

partial set of these years or even just the origin year 𝑖. In the latter case, just one origin year 

considered, it is easy to see that the estimator of the reserves corresponds to the Link Ratio 

estimate. 
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𝑅̂𝑖 = 𝐶𝑖,𝑇−𝑖+1 (1 −
1

𝑓𝑖

)                                                  (3.9) 

 

This means that the LRT method is a particular case of the CC when we just use as proxy, for 

each origin year loss ratio, the payments divided by the used earned premiums of that year. 

The estimate of the latter is done with the ultimate factor of the LRT method.  

 

In its pure form, the method presents the loss ratio as considering all the years of the triangle.  

 

Another approach was also developed after the BF and introduced by Benktander (1976) and 

Hovinen (1981). Independently, each of these two authors developed a method that gives the 

same estimated loss amount (Wüthrich and Merz, 2008). There are also references (Mack, 

2000) about the possibility of another actuary had also developed this method without 

knowing of its publication as the BH method. The method, when used in practice, is also 

known as the Iterated BF method. 

 

As we saw before, the Link Ratio family relies heavily on the payments registered in the last 

year. This is a weak point if the latter are zero, as may happen with excess loss reinsurance 

claims that just include claims above a certain threshold. It will also be a weak point if the 

payments are above or below the normal value, due to anticipations or delays on payments. 

To avoid this, the BF method substitutes the diagonal payments of the triangle by the 

benchmark payments. This may help to overcome the CL problem but relies heavily on the 

quality of the benchmark. 

 

The BH tries to get the advantages of both the CL and BF and relies on the mixture of the 

information of ultimate costs from the BF 𝐶̂𝑖,𝑇
𝐵𝐹

and the CL 𝐶̂𝑖,𝑇
𝐶𝐿

 (or any of the other Link 

Ratios alternatives) to estimate the ultimate costs. The weights will be given by the estimated 

grossing-up factors, 𝑔̂𝑖.  

𝐶̂𝑖,𝑇
𝐵𝐻

= 𝐶𝑖,𝑇−𝑖+1 + (1 − 𝑔̂𝑖). [𝑔̂𝑖. 𝐶̂𝑖,𝑇
𝐶𝐿

+ (1 − 𝑔̂𝑖). 𝐶̂𝑖,𝑇
𝐵𝐹

]                          

 

Developing this expression (Wüthrich and Merz, 2008), we get that the BH estimator of the 

ultimate cost is a mixed linear combination of the BF and CL ultimate costs. 

                 𝐶̂𝑖,𝑇
𝐵𝐻

= 𝑔̂𝑖𝐶̂𝑖,𝑇
𝐶𝐿

+ (1 − 𝑔̂𝑖). 𝐶̂𝑖,𝑇
𝐵𝐹

= [1 − (1 − 𝑔̂𝑖)
2]. 𝑖𝐶𝐵,𝑖                         
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The grossing-up factors, 𝑔̂𝑖, are estimated with the CL (or any other of the Link Ratio 

methods). The BH method does the smoothing between the CL and the BF estimate (also 

dependent on the latter). Therefore, the BH method will give an intermediate result between 

the BF and the CL. As the BF may be seen as a Bayesian regression and the CL as a weighted 

regression, we may say that the BH is the mixture of two regressions.  

    

Two other methods related with loss ratios are the Additive method (AD), also called the 

incremental loss ratio method and the Complementary Loss Ratio (CLR) method.  

 

The AD method works with incremental loss ratios per development year. These ratios are 

obtained by summing all the payments per development year and dividing them by the 

correspondent premiums. The latter are the premiums sum from the origin year of those 

payments. However, it is just a case of the BF and the CC methods, see for example Schmidt 

(2006b). The differences for the BF and the CC are: 

- The loss ratio benchmark is not obtained using some external benchmark or the 

grossing-up factors, but only considers the sum of the incremental loss ratios in all the 

development years. 

- And the proportion of the payments outstanding is not given by the grossing-up factors 

but by the variation of the incremental loss ratios.  

 

The incremental claims 𝐼𝑖,𝑗 are given by 

                                      𝐼𝑖,𝑗 = 𝐶𝑖,𝑗 − 𝐶𝑖,𝑗−1               𝑗 = 2, … , 𝑇                                 

                                                      𝐼𝑖,𝑗 = 𝐶𝑖,𝑗                              𝑗 = 1                                              (3.10)  

And incremental loss ratios are obtained as follows 

𝑙𝑟𝐴𝐷
𝑗 =

∑ 𝐼𝑖,𝑗
𝑇−𝑗+1
𝑖=1

∑ 𝑃𝑖
𝑇−𝑗+1
𝑖=1

                                                                         

Having this ratio, the incremental payments on every cell from the lower triangle will be 

estimated as 

𝐼𝑖,𝑗 = 𝑙𝑟𝐴𝐷
𝑗 × 𝑃𝑖          𝑗 > 𝑇 − 𝑖 + 1                                              

The reserves on each origin year will be the sum of the incremental payments of that year. 

The ultimate cost on each origin year will be given by the sum of the cumulative payments 

with the estimated incremental payments.  
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𝐶̂𝑖,𝑇
𝐴𝐷

= 𝐶𝑖,𝑇−𝑖+1 + ∑ 𝐼𝑖,𝑗

𝑁

𝑗>𝑇−𝑖+1

                                                           

 

The CLR method was developed by Buhlmann et al. (1983) and Straub (1988). The method 

calculates the loss ratios in the same way as the additive method, however, they get the 

cumulative loss ratios instead of the incremental loss ratios. This happens because the CLR 

method uses a triangle of cumulative payments, instead of the incremental payments. These 

cumulative loss ratios by development year 𝑗 consider all the payments and premiums until 

𝑖 = 𝑇 − 𝑗 + 1. 

 

Having obtained the loss ratios by development year, a statistical technique or the 

“underwriting judgement”, Straub (1988), is considered to have the ultimate loss ratios per 

origin year, 𝑙𝑟𝑢𝑙𝑡
𝑖. For example, if the year of origin 3 has a loss ratio of 50% at the 

development year 8, and if we know that the origin year 1 increased the ratio 10%, between 

development years 8 and 10, it may be reasonable to assume that the origin year 3 loss ratio is 

going to be 55%.   

 

If a certain year of origin 𝑖 developed until development year 𝑗 = 𝑇 − 𝑖 + 1, the loss ratio 

from that year 𝑖 is the one obtained until 𝑗, 𝑙𝑟𝐶𝐿𝑅
𝑖. Having the ultimate loss ratio per origin 

year, the loss ratio developed until the last payment and the premiums (earned if by origin 

year and gross if by underwriting year) we get the estimated reserve, 𝑅̂𝑖 per origin year 𝑖. 

                                                 𝑅̂𝑖 = (𝑙𝑟𝑢𝑙𝑡
𝑖 − 𝑙𝑟𝐶𝐿𝑅

𝑖
)𝑃𝑖                                                                 (3.11) 
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3.5 Separation Method 

 

According to the Institute of Actuaries (1989), the first development of this model was done 

by Verbeek (1972) with a stochastic approach. Some years later, Taylor (1977) applied the 

separation method as a deterministic method to the estimation of the average cost. The idea 

was to understand the effect of inflation on claims. This means that with this method the 

stochastic algorithm was developed first, and only later that the deterministic approach 

appeared (the opposite of the majority of all the methods). 

 

The method was introduced by the UK supervisors during the early years of the CL. The 

reasons for that were the high inflation at that time and some reluctance to correct the CL 

from past inflation evolution (Taylor, 2000). If we see for example the Institute of Actuaries 

(1989 and 1997) we may see that it is easy to correct inflation effects on the CL or on any 

other LRT method. However, this inflation adjusted methods were not in use at that time. 

 

Any payments (or incurred claims) triangle may split each cell 𝐶𝑖,𝑗 into three components: 

- The row effect, 𝑟𝑖, where we mainly have the exposure effect. 

- The column effect, 𝑐𝑗, which considers mostly the speed of claims settling. 

- And the calendar year effect, 𝑑𝑧, where we may have several chocks on payments, like 

the claims inflation in the diagonals of our triangle. 

 

This means that for every cell of our matrix of payments we have a multiplicative model 

𝐶𝑖,𝑗 = 𝑟𝑖𝑐𝑗𝑑𝑧                                                                           

 

However, we may avoid the row effect using average payments or loss ratios, if we divide the 

paid claims by the number of claims opened or by the earned premiums. As these exposure 

measures, V, are usually the same over each row we will have 

𝐶𝑖,𝑗
∗ =

𝐶𝑖,𝑗

𝑉𝑖
= 𝑐𝑗𝑑𝑧                                                                   

 

This means that our matrix is totally defined by the column effect and the calendar year effect 

and if we can estimate all these effects on each cell, we have our ultimate average costs or 

loss ratios, depending on the volume measure used. According to Taylor (2000b), it is 
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assumed that both effects are totally independent. Also, the column effect can be seen as the 

past inflation which means that the model is also an attempt to get the implicit claims 

inflation. The separation method represents an attempt to let the data speak for itself about 

inflation.  

 

If our matrix is an average cost or a loss ratio, applying the Separation technique or the CL 

will produce the same results. And if we want to get back to original payments, we are going 

to have, for each cell, the replication of the CL result. 

 

The interest of the Separation technique just arises when we have different inflation over the 

years and when we need an estimate of it. The CL allows the treatment about inflation but 

obliges us to have an estimate of the past and future inflation per calendar year. The 

Separation method also estimates for us the implicit past inflation. It may also be shown that 

the Separation model corresponds to the CL adjusted to the inflation if we correct the past 

inflation accordingly (Boot et al. 2004).  

 

A summary of all the steps to implement the separation technique may be seen in Hossack et 

al. (1993), and according to Goovaerts (1990) the model may also be seen as a log-log 

regression. 

 

The relation with the CL method means that if the CL assumption do not match our problem 

we will not have good estimates from the Separation technique and the implicit inflation will 

not be accurate.  However, the Separation technique may be improved if we estimate the 

calendar year effects with a regression model. That is, we estimate the z’s with a regression 

where we are going to have explanatory variables to a have a better prediction. For instance, 

in credit insurance we may use the real GDP growth as an explanatory variable, because the 

economy evolution will explain the credit insurance claims (defaults on payments) and the 

credit insurance reimbursements (money paid back by debtors). Having this relation 

estimated, the future calendar year effects (the lower triangle values) will be estimated with 

some assumptions about the future values of these explanatory variables (Luís Portugal, 

unpublished paper of 2002). A similar improvement with inflation was applied to the Over-

dispersed Poisson by Verrall and Brydon (2009). 
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3.6 Regression Models 

 

Regression models involve a dependent random variable that we want to study, with several 

observations 𝑖, for instance the claims paid on a triangle column 𝑗, 𝐶𝑖,𝑗. This dependant 

variable is a function of a certain number of independent variables (assumed very often as 

fixed, non-random) and unknown parameters (also fixed) that we need to estimate.  

 

If the relation between the variables is linear and we just have one independent variable 

𝐶𝑖,𝑗−1, the payments on the column 𝑗 − 1, a regression model may be summarized by the 

following relation, where 𝑎 and 𝑏 are the parameters to be estimated and 𝜀𝑖,𝑗 is the error (or 

residual) on each observation 𝑖 from the triangle column 𝑗. 

 

                                                        𝐶𝑖,𝑗 = 𝑎 + 𝑏. 𝐶𝑖,𝑗−1 + 𝜀𝑖,𝑗                                                         (3.12) 

 

There are several regression models, depending on the assumptions used. Ordinary Least 

Squares (OLS), see Fomby et al. (1984), assumes that: 

- The conditional expected value of the errors (on independent variables) is zero, 

𝔼(𝜀𝑖,𝑗|𝐶𝑖,𝑗−1) = 0. 

- The independent variables 𝐶𝑖,𝑗−1 are not random, which means 𝔼(𝜀𝑖,𝑗|𝐶𝑖,𝑗−1) = 𝔼(𝜀𝑖,𝑗) and 

so 𝔼(𝜀𝑖,𝑗) = 0. 

- The dependent variable is explained by a relation as (3.12), that may have more than one 

independent variable, and due to the previous assumptions, 𝔼(𝐶𝑖,𝑗) = 𝑎 + 𝑏. 𝐶𝑖,𝑗−1. 

- The errors inside each equation 𝑗 for observations 𝑖 ≠ 𝑖′ are not correlated, 

𝐶𝑜𝑣(𝜀𝑖,𝑗, 𝜀𝑖′,𝑗) = 0. 

- And the errors variance is constant on each equation 𝑗 for all observations 𝑖 (homoscedastic 

errors), 𝑉𝑎𝑟(𝜀𝑖,𝑗) = 𝜎2. 

 

Eventually it may be assumed that the errors are normally distributed about their mean, 

𝜀𝑖,𝑗~𝑁(0, 𝜎2). This assumption is needed if we want to do statistical inference and if we use a 

likelihood approach. If the errors are normally distributed, the same will happen to the 

dependent variable, in this case 𝐶𝑖,𝑗. We will develop the models in chapter 5, 6 and 7 without 
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using this assumption. One of the models to be presented in chapter 6, the Vector Projection 

(VP) with homoscedastic errors, is an OLS model. 

  

Generalized Least Squares (GLS) assumes that the errors can be either not constant 

(heteroscedastic) or correlated. GLS models may have a known heteroscedastic or correlated 

structure (the Aitken model) or an unknown heteroscedastic or a correlated structure that 

needs to be estimated (the feasible model). See Fomby et al. (1984) for more details. Some 

models presented in chapter 6 are GLS models with a known heteroscedastic structure, as the 

CL and the SA.  

 

We may also have Seemingly Unrelated Regressions (SUR) models. They will assume 

contemporaneous correlations between the equations inside each triangle. By 

contemporaneous correlations between equations, from the same triangle, we mean that the 

error terms are correlated in the same point in time. The same point in time in claims 

reserving triangles, in the context of regression models, means the same origin year. Chapter 

6 (with one triangle) will use this SUR model and we will call them multivariate claims 

reserving models.  

 

These SUR models are estimated with three steps, see for example Hill et al. (2012): 

- First the OLS is applied separately to each equation. 

- The OLS errors are used to estimate the variance and covariances of the errors. 

- Then, with these estimates, the GLS is applied to all the equations at the same time.  

 

Finally, we may have more than one triangle where we may also apply the GLS or the SUR 

models. With the latter model, we may also assume contemporaneous correlations between 

several triangles. By contemporaneous correlations between triangles, we mean that the error 

terms of each triangle are correlated in the same point in time. The same point in time in 

claims reserving triangles, in the context of regression models with more than one triangle, 

means the same origin year. 

 

We saw already in the previous sections that there are several known claims reserving models 

that may be seen as regression models. It was the case of the Link Ratios, in section 3.1, of 
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the Grossing-Up factors in section 3.2, of the Averages Costs in section 3.3, of the BF, CC 

and BH in section 3.4 and of the Separation technique in section 3.5. 

 

We introduce here, explicitly, the use of regression models. This section could be in the 

stochastic models’ chapter 4. The reason why it is included here is the way the regression 

models were used in claims reserving when they started; they were used as a deterministic 

model, giving the algorithm to the calculation of the loss development factors.  

 

In chapters 6 and 7, models are developed as regression models. The model from chapter 5 

considers the Mack (1993a, 1993b, 1994) framework with some changes using the regression 

through the origin to estimate the loss development factor.    

 

3.6.1 Applications to Claims Reserving 

 

The first known application of regression models to estimate insurer’s reserves seems to be 

from Simon (1957), but according to Taylor (1978) more than twenty years later, “regression 

models were not prevalent among actuaries”. 

 

Several events are going to contribute to change this: 

- Theoretical applications of regressions to claims reserves, Kamreiter and Straub (1973), 

Lemaire et al. (1981) and Kremer (1984). They have a feature, not common in claims 

reserving model’s literature, they implicitly assume serial correlation of the errors, that 

is, origin years are not independent.   

- The use of regression models by some known actuaries, see for example, Benjamin and 

Eagles (1986), Straub (1988), Brosius (1992), Murphy (1994), Christofides (1997) and 

Barnett and Zehnwirth (2000). 

- The new approach of bivariate and multivariate models, calculating the reserves of more 

than one triangle at each time. Some of them were based on regression models. See for 

example Zhang (2010). 

- The application of the Hachemeister regression, Hachemeister (1975), to claims 

reserving, which considers the standard regression as a particular case, Wüthrich, M. 

and Merz, M. (2008).   
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- The conscious that some of the most known models, like the stochastic CL from Mack 

(1993a, 1993b, 1994), were indeed regression models, see for example Free (2010) and 

even Mack (1993a) 

- And the development of some formulas to have the reserves prediction error, as most of 

these models were regression models, see for example, Zehnwirth (1985), Renshaw 

(1989), Verrall (1991a) and Christofides (1997). 

 

Kamreiter and Straub (1973) presented two models, using multivariate times series to explain 

the cumulative payments per development year. According to Kremer (1984), the approach 

needed to be more developed and was not considered in practice. 

 

One of the first attempts to use regression models in claims reserving was done by Jean 

Lemaire et al. (1981). They pretended to “avoid the main criticism directed against all the 

other methods (including the chain-ladder and separation methods): clearly the problem is of 

stochastic nature, and yet all methods are essentially deterministic. Time-series analysis 

introduces a new dimension in the problem by considering the payments as observations of a 

random process. This is in our opinion certainly a step in the right direction: the stochastic 

element of the process has to be introduced in the model if one hopes to be eventually able to 

compute variances and confidence intervals for the estimates of the provision. Only at that 

point can actuaries and statisticians hope to have their techniques implemented by the 

insurance companies and accepted by the control authorities.” 

 

They developed two models. The first one using only the triangle information and another one 

considering also information from other years, not included in the triangle. In both cases they 

tried to select the model that best fitted the data. A prediction error formula was not 

developed but parameters were estimated to minimize the square of the errors and an errors 

analysis was performed. The best models obtained were autoregressive, in the sense that the 

cumulative payments on any column 𝑗 were dependant, not only on the cumulative payments 

of the column 𝑗 − 1 (for the same origin year 𝑖) but also on the cumulative payments from the 

column 𝑗 for the origin years before: 𝑖 − 1 and 𝑖 − 2. This means a model with two lags. 

 

The equations were defined as autoregressive for each column 𝑗 = 1, … , 𝑇 − 1 with 𝑎0,𝑗, 𝑎1,𝑗, 

𝑎2,𝑗, 𝑎3,𝑗 being parameters to be estimated and 𝜀𝑖,𝑗 the error. 

𝐶𝑖,𝑗 = 𝑎0,𝑗 + 𝑎1,𝑗. 𝐶𝑖,𝑗−1 + 𝑎2,𝑗. 𝐶𝑖−1,𝑗 + 𝑎3,𝑗. 𝐶𝑖−2,𝑗 + 𝜀𝑖,𝑗 
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Kremer (1984) extends the autoregressive models to the general case of several years of lags. 

However, it was a pure autoregressive model as the cumulative payments on column j did not 

depend on the cumulative payments from the column 𝑗 − 1. Also, the cumulative payments 

were standardized by a general exposure measure, not defined by Kremer. 

 

The method of estimation was not any more a linear regression, as with Lemaire et al. (1981), 

but a weighted regression where the weights were the exposure measure.  

 

The methodology presented by Benjamin and Eagles (1986) was applied in the London 

Market. It was a request from Lloyd’s to have a method that could help insurers to establish 

their minimum level of reserves. The paper developed two methods for the calculation that 

became known as the methods from the London Market.  

 

The idea of the first method was to estimate a regression for each line of business and for a 

specific development year 𝑗. An annual time-series with 𝑖 observations is obtained for the 

ultimate loss ratio 𝑙𝑟𝑢𝑙𝑡
𝑖 and the loss ratio at the development year j, 𝑙𝑟𝑖. A linear regression is 

defined, where 𝜀𝑖 is the random error with the classical properties from ordinary least squares, 

see for example Fomby et al. (1984). 

                                                        𝑙𝑟𝑢𝑙𝑡
𝑖 = 𝑎 + 𝑏. 𝑙𝑟𝑖  + 𝜀𝑖                                                 (3.13) 

 

Benjamin and Eagles (1986) suggest that the ordinary least squares should be enough to 

estimate the model parameters, 𝑎 and 𝑏. Having them, a simple formula may be applied to 

obtain the ultimate loss ratio of any year of origin as a function of a known statistic, the loss 

ratio from development year 𝑗. For example, for the Marine line of business, they obtained the 

following relation between the estimated ultimate loss ratio 𝑙𝑟̂𝑢𝑙𝑡 and the loss ratio after the 

first year of development, 𝑙𝑟. 

𝑙𝑟̂𝑢𝑙𝑡 = 33.367 + 3.385. 𝑙𝑟 

Having the 𝑙𝑟 immediately they obtained the ultimate loss ratio. The method was also more 

flexible and accurate than the existing rule of that time. This rule was doing something similar 

but without a statistical estimation of the parameters, more than that, it was assuming that the 

slope of the equation was always equal to one. The method was also attractive due to its 

capability of calculating the confidence interval of the prediction, at that time by visual 

graphic analysis. 
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The second method from Benjamin and Eagles (1986) was an extension from the first 

method. The model was again a regression, as in (3.13), but now the ultimate loss ratio from 

the insurer is substituted by the ultimate loss ratios from all the Lloyd’s syndicates. In both 

methods, after having the estimated ultimate loss ratios and the premiums, it is 

straightforward to have the estimated reserves. Using (3.11) and considering 𝑙𝑟𝑖, instead of the 

CLR method loss ratio, we obtain the estimated reserves.  

 

Straub (1988) showed that the CL was a linear regression through the origin. However, he 

also demonstrated that despite this the CL was not minimizing the sum of the error’s squares. 

He also presented other alternatives of regressions. Those regressions were explaining the 

cumulative payments on a specific development year 𝑗 as a function of the cumulative 

payments on development year 𝑗 − 1 and with a constant 𝑎. 

He called the estimated regression presented in (3.14) the London Chain approached to 

straight lines.  

𝐶̂𝑖,𝑗+1 = 𝑎̂ + 𝑏.̂ 𝐶𝑖,𝑗                                                       (3.14) 

He suggested the use of the ordinary least squares to estimate the parameters 𝑎 and 𝑏.  

min ∑ (𝐶𝑖,𝑗+1 − 𝑎𝑗 − 𝑏𝑗 . 𝐶𝑖,𝑗)
2

𝑇−𝑗+1

𝑖=1

                                      (3.15) 

Straub (1988) also shows that the CL method may be obtained by this methodology 

considering the model without intercept if an approximation is done to the ordinary least 

square solution.  

𝐶̂𝑖,𝑗+1 = 𝑏̂𝐶𝑖,𝑗                                                         (3.16) 

He also shows that in this case the CL estimator is not the solution of the (3.15). Instead the 

solution for (3.13) is a regression through the origin, also called a Vector Projection (VP), see 

Gentle (2007) for the equivalence between the two concepts. The parameter 𝑏̂ is estimated by 

(here relabel as 𝑏̂𝑗
𝑉𝑃)  

𝑏̂𝑗
𝑉𝑃 =

∑ 𝐶𝑖,𝑗+1𝐶𝑖,𝑗
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

=
∑ 𝐶𝑖,𝑗

2𝐹𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

                                    (3.17) 

Straub (1988) did not give a lot of importance to this estimator, and he considers it more 

interesting to study other straight lines, not around the origin (without the constant), but 

around other generic pivots (−𝑎, 𝑎).  
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Then he minimizes the following expression to get the estimators of the parameters. 

min ∑ (𝐶𝑖,𝑗+1 − 𝑎𝑗 − 𝑏𝑗(𝐶𝑖,𝑗 + 𝑎𝑗))
2

𝑇−𝑗+1

𝑖=1

                                                  

In the 1992 exam study kit for the Casualty Actuarial Society examinations Brosius (1992) 

shows that the link ratios can be seen as a regression model.  

 

He also concludes that regression models “is often proof to be the right tool for the job, 

although a non-linear Bayesian loss development function is, in theory, preferable in some 

cases”. 

 

He mentions the use of regression models in claims reserving since the 50’s. 

 

Daniel Murphy (1994) made an extensive summary of the use of regression models to select 

the best link ratio method. He presented four possible models.  

 

Model 1 was equivalent to Straub (1988) London Chain presented in (3.14). He called the 

model the Least Squares Linear method. The loss development factors are obtained from least 

squares estimates and are considered the best estimates from Gauss Markov theorem. See 

Murphy (1994) or Fomby and Johnson (1984).   

 

In the data that Murphy (1994) used, the fitted straight line was close to zero and that 

motivated him to a model 2. In this model, Murphy (1994) considered a regression through 

the origin as Straub (1988) did with (3.16) and he obtained the same loss development factor 

presented in (3.17). Murphy (1994) called this model the Least Squares Multiplicative. 

 

Finally, he presents two more models. In model 3, the dependent variable will be the link 

ratios defined in (2.5). The link ratios are assumed to be dependent just of a constant. He calls 

this model the Simple Average Development. This happens because this model will replicate 

the simple average link ratios model that we presented with (3.1). In model 4, he presents a 

multiplicative model. The latter may be seen as the log-log version of model 1 and will give a 

geometric average of the link ratios. Despite the presentation of these two models, 3 and 4, 

the whole paper is developed just with the models 1 and 2. 
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He develops recursive formulas for the unbiased estimates of the ultimate losses and claim’s 

reserves per origin year and multiple years. He also presents recursive formulas for the 

prediction errors per origin year and multiple years. 

 

The conclusions he gets are that “loss development predictions can be improved by the use of 

least square estimators” and that “the weighted average link ratio estimator (for example, the 

CL), is always inferior to an alternative the least squares estimator”. The simulation study 

done made him recommend the use of a constant in the regression model. He expects the 

model 1 to perform better, when compared with model 2.   

 

The motivation of Christofides (1997) was to solve two CL problems:  

“these models are often over-parameterised and adhere to closely to the actual observed 

data. This process …and can lead to a high degree of instability in the values predicted from 

the model as the close adherence to the observed values results in parameter estimates which 

are very sensitive to small changes in the observed values”. 

 

He started by presenting the traditional CL with a more formal model using regression 

analysis. The results obtained for this model were very similar to CL. He presents other 

models and shows that within the class of log-linear models, changing the model just involves 

a change in one of the matrices used. In the conclusions, he highlights that regression 

techniques were beginning to dominate developments in claims reserving methodology.  

 

In the same line of thought, Barnett and Zehnwirth (2000) concluded that the link ratios can 

be regarded as weighted regressions, however, according to them, sometimes data does not 

match the linear regression assumptions. To solve this, they presented an extended link ratios 

family using regression models. In their paper, we see that modelling the error variance 

allows us to get several regression models, including the CL. 

 

They start with Murphy (1994) Least Squares Linear method which is presented with 

incremental paid claims. Then they add a new explanatory variable, the trend in each origin 

year 𝑖. The variance of the error, 𝑉𝑎𝑟(𝜀𝑖), is a function of a weighting parameter δ. For each 

origin year 𝑖 the model is defined by  

                                𝐶𝑖,𝑗+1 − 𝐶𝑖,𝑗 = 𝑎0 + 𝑎1. 𝑖 + (𝑏 − 1)𝐶𝑖,𝑗 + 𝜀𝑖,𝑗                                            (3.18) 
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                                                                 𝑉𝑎𝑟(𝜀𝑖) = 𝜎2𝐶𝑖,𝑗
𝛿                                                             (3.19)   

They mention that with this model also represents several other methods like CL (𝑎0 = 𝑎1 =

0, δ = 1) and the CC (𝑎1 = 0 and 𝑏 = 1). 

 

They also suggested the use of the use of the logarithm of the incremental payments to deal 

with changing trends. 

 

It seems that regression models, even if not explicitly used in practice by actuaries, are having 

more interest and are implicit in their work. However, some of the new developments done 

with regression models moved in another direction: mixing more than one triangle to produce 

the reserves. That may be the case when we want: 

- To estimate the reserves with simultaneous information from paid claims and incurred 

claims, like in the Munich Chain-Ladder from Quarg and Mack (2004a and 2004b). 

- And to estimate the reserves from several triangles at the same time, the so-called in the 

literature of multivariate models.  

 

The latter includes several approaches and most of them do not use regression models: the 

aggregation of unpaid loss distributions (Brehm, 2002), the calculation of correlated triangles 

using rank correlation and bootstrapping (Kirschner et al., 2002), the prediction error 

calculation, (Braun, 2004), the multivariate Chain-Ladder (Prohl and Schmidt, 2005), the 

optimal and additive reserving for dependent lines of business (Schmidt, 2006b), the 

approximate bounds for bivariate Chain-Ladder (Hurlimann, 2005), the Bayesian multivariate 

claims counts (Mildenhall, 2006), the multivariate additive modelling (Hess et al., 2006), the 

prediction errors of multivariate reserving with additive models (Merz and Wüthrich, 2007a) 

and with the Chain-Ladder (Merz and Wüthrich, 2007b) and the bootstrapping of correlated 

lines of business (Taylor and McGuire, 2007). 

 

Despite this, Zhang (2010) generalizes the multivariate Chain-Ladder with correlations and 

structural connections between triangles using regression models. These models are called 

multivariate because they have correlations between triangles. However, as we shall see in the 

chapter 8, it should be more appropriate to assume that most of them are portfolio models, 

which are not necessarily multivariate models. 
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Hachemeister (1975) developed a general regression model using credibility theory for 

ratemaking. The model considers the standard regression as a special case and was also 

implemented in claims reserving. However, the model was considered difficult to apply, see 

for example Wüthrich, M. and Merz, M. (2008). Another theoretical example from this 

technique may also be seen in De Vylder (1982). According to Shi and Hartman (2014), the 

credibility theory has not been applied very often to claims reserving, even though the BF 

method may be seen as a credibility formula. 

 

Mack (1993a) mentioned the CL connection to the weighted least squares regression, and 

Free (2010) explicitly shows that the CL is a weighted regression. Using a weighted 

regression means transforming the variables from the original regression using weights, see 

Fomby et al. (1984). These weights allow the use of the OLS model, as they remove the 

heteroscedasticity. We do not minimize the square of the errors anymore, but instead the 

weighted square of the errors. It is an alternative approach to the GLS model, where the 

variables are the originals, and the minimization is done with the square of the errors and 

assuming the heteroscedasticity. Both approaches produce the same results, but the analysis of 

the errors is not done in the same way. 

 

In chapters 5 and 6 we will follow the GLS model.   
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3.6.2 Prediction Error Calculation 

 

The first attempt to estimate the prediction errors (the square root of the mean square error of 

prediction, to be defined below) comes from Taylor and Ash (1983) and used regression 

models. Their purpose was to consider “the lack of methodology for obtaining second 

moments of outstanding claims in non-life insurance and give some arguments as to why this 

lack of generality of the models and methods currently in use in claims analysis, and we 

suggest further that some unification might be achieved through regression analysis. The 

claims analysis problem is formulated and solved in terms of regression methods.” 

 

All the following publications presented the formulas to the prediction error using regression 

models. It was the case of Zehnwirth (1985), Renshaw (1989), Christofides (1997) and 

Verrall (1991a). These models considered incremental claims following a lognormal 

distribution. Wright (1990) used generalized linear models to estimate the prediction errors, a 

development of regression models that allows distributions from the exponential family. 

Mack (1991) also used a distribution from the exponential family, the gamma distribution, to 

get the prediction errors.  

 

The mean square error of prediction (𝑚𝑠𝑒𝑝) for an origin year 𝑖 predicted incremental 

payment, that is, the reserve 𝑅̂𝑖 is the expected squared difference between the true reserve 

𝑅𝑖 and the predicted reserve.  

                                                        𝑚𝑠𝑒𝑝𝑖(𝑅̂𝑖) = 𝔼 [(𝑅𝑖 − 𝑅̂𝑖)
2

]                                                (3.20) 

Developing (3.20), we get  

            𝔼 [(𝑅𝑖 − 𝔼(𝑅𝑖))
2

] + 𝔼 [(𝑅̂𝑖 − 𝔼(𝑅̂𝑖))
2

] − 2. 𝔼[(𝑅𝑖 − 𝔼(𝑅𝑖)). (𝑅̂𝑖 − 𝔼(𝑅̂𝑖))]         

The msep (and consequently the prediction error) is the sum of two sources of error deducted 

by twice the covariance of the reserve with the predicted reserve:  

- If the covariance is positive the prediction error is reduced.  

- Otherwise is increased.  

 

If we consider that the covariance is null, or near that, the prediction error is presented as the 

sum of two sources of error: 
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- The process variance (or process error), because there is a volatility on the true reserves. 

Is the first term, 𝔼 [(𝑅𝑖 − 𝔼(𝑅𝑖))
2

] = 𝑉𝑎𝑟[𝑅𝑖]. 

- And the parameter variance (or estimation error), because we need a model to estimate 

the reserves and the model will be based in one or more parameters. We will have an 

estimation error: is the second term, 𝔼 [(𝑅̂𝑖 − 𝔼(𝑅̂𝑖))
2

] = 𝑉𝑎𝑟[𝑅̂𝑖], assuming we have 

an unbiased estimator for the reserves. 

 

Putting both sources of error together we get 

                                          𝑚𝑠𝑒𝑝𝑖(𝑅̂𝑖) ≈ 𝐸 [(𝑅𝑖 − 𝐸(𝑅𝑖))
2

] + 𝐸 [(𝑅𝑖̂ − 𝐸(𝑅̂𝑖))
2

]                               

The 𝑚𝑠𝑒𝑝 error does not consider the model error; that is, the error that may arise because the 

model does not accurately reflect the reality about the claims cost process. According to 

Hindley (2018), “Model error is very difficult to determine, and may not always receive 

detailed consideration". 

 

Merz and Wüthrich (2008) defines the conditional mean squared error of prediction as 

conditional to the available data at 𝐷𝑢, as the purpose of the msep is to see how good the 

predictor from the reserves is given the known data. Mack (1993a) also uses a similar msep 

and defines it in terms of the ultimate claims estimate, see (3.21). Indeed, we know from 

Mack (1993a) that the 𝑚𝑠𝑒𝑝 of the reserves equals the 𝑚𝑠𝑒𝑝 of the estimated ultimate claims.  

                                          𝑚𝑠𝑒𝑝(𝑅̂𝑖) = 𝑉𝑎𝑟(𝐶𝑖,𝑇|𝐷𝑢) + [𝔼(𝐶𝑖,𝑇|𝐷𝑢) − 𝐶̂𝑖,𝑇]
2
                      (3.21) 

 

Other definitions of the msep were considered in the literature, as the ones presented by, 

Renshaw and Verrall (1994) and Taylor (2000a). The prediction error is also called as the 

standard error, see for example Mack (1993a) and is very often presented in percentage of the 

claims reserves. 

 

In chapter 4 we will start by presenting the CL prediction error, following Mack (1993a, 

1993b, 1994). In chapter 5, the prediction error is presented using (3.21) in the context of 

Mack (1993a, 1993b, 1994). In chapters 6 and 7 we will develop the reserves prediction error 

general formula in the context of regression models. It will be general in the sense that 

includes several models: univariate or multivariate and with one or several triangles. Several 

prediction errors will be generated from known models, like the CL and the SA.   
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In all numerical examples the prediction error, 𝑝𝑒, will be presented as the percentage of the 

claim’s reserves 
𝑝𝑒(𝑅𝑖)

𝑅𝑖
× 100.  

 

3.6.3 Confidence Intervals 

 

We may also use the prediction error, 𝑝𝑒, to have a confidence interval for the reserves, for a 

certain confidence level. For that Mack (1993b) suggests the use of the normal distribution if 

the prediction error is not higher than 50% of the reserves. Otherwise Mack (1993a) suggests 

the use of the lognormal distribution. We remind here that the stochastic CL from Mack 

(1993a, 1993b, 1994) is related with a weighted-regression. 

 

The reserves normal distribution 95% confidence interval (which means an interval between 

2.5% and 97.5% and distribution percentiles of -1.96 and 1.96) is given by, for each origin 

year 𝑖.  

                                                         𝑅𝑖 ± 1.96√𝑚𝑠𝑒𝑝( 𝑅𝑖)                                                             (3.22) 

For the lognormal distribution, with parameters 𝜇𝑖 and 𝜎2
𝑖 for each origin year 𝑖, the general 

formula for the 95% reserves confidence interval is given by matching the mean and 

variances of the unknown distribution of 𝑅𝑖 with the lognormal distribution, see Mack 

(1993a).  

              𝑅𝑖 = exp (𝜇𝑖 +
𝜎2

𝑖

2
) 

                                                  𝑚𝑠𝑒𝑝(𝑅𝑖) = exp(2𝜇𝑖 + 𝜎2
𝑖) (exp(𝜎2

𝑖) − 1)                          (3.23) 

Using  

                                                                   𝑝𝑒(𝑅𝑖) = √𝑚𝑠𝑒𝑝(𝑅𝑖)                                             (3.24) 

And solving (3.2.3), we get  

              𝜎2
𝑖 = ln (1 +

𝑚𝑠𝑒𝑝(𝑅𝑖)

𝑅𝑖
2 ) = ln (1 +

𝑝𝑒(𝑅𝑖)

𝑅𝑖
) 

                                                                            𝜇𝑖 = ln(𝑅𝑖) −
𝜎2

𝑖

2
                                                 (3.25) 

To get the percentile 97.5th, the upper bound from the confidence interval, we need the 

percentile from the lognormal distribution, which is exp(𝜇𝑖 + 1.96 𝜎𝑖). Using (3.25) we get 

for this percentile  
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        𝑅𝑖 exp (1.96 𝜎𝑖 −
𝜎2

𝑖

2
) = 𝑅𝑖 exp (1.96√ln (1 +

𝑝𝑒(𝑅𝑖)

𝑅𝑖
) −

ln (1 +
𝑝𝑒(𝑅𝑖)

𝑅𝑖
)

2
)     (3.26) 

The lower bound of the confidence interval, the percentile 2.5th, will come from the 

development with exp(𝜇𝑖 − 1.96 𝜎𝑖). 

       𝑅𝑖 exp (1.96 𝜎𝑖 −
𝜎2

𝑖

2
) = 𝑅𝑖 exp (−1.96√ln (1 +

𝑝𝑒(𝑅𝑖)

𝑅𝑖
) −

ln (1 +
𝑝𝑒(𝑅𝑖)

𝑅𝑖
)

2
)  (3.27) 

Both the normal distribution and the lognormal distribution confidence intervals depend on 

the confidence level we want to the interval and on the proportion of the prediction error in 

respect of the reserves. The confidence level is a question of taste, or risk appetite, or of 

regulatory requirements. If we increase it, the confidence level will be wider, and the reserves 

upper percentile will be larger. However, the prediction error it will depend on the triangle 

data and on the stochastic claims reserving method used to forecast the ultimate costs, see for 

example (3.21).  

 

3.7 Conclusions 

 

We have the following types of deterministic methods in accordance with the information 

used: 

- Paid claims or incurred claims, the original raw data. It is the case of the Link Ratios 

and the Grossing Up methods. They may be seen as regression models. 

- Decomposition of original data in the number of claims and the average payments/costs. 

It is the average costs method and the operational time method. As they are a 

decomposition of the original triangle they may also be seen as regression models. 

- Mixture of other sources of information with the Link Ratios. These may be done in 

three ways and using the grossing up factors as weights: with internal information, the 

CC method, with external information, the BF and with internal and external 

information, the BH method. Some of these methods, like the BF and the CC, may also 

be seen as a Bayesian regression model. As the BH is a combination of the BF with the 

CL it may also be seen as a regression model. The AD method may be seen as a 

particular case of the CC and as such it is also a regression model.  

- And the decomposition of the original data in the row effect, the column effect and the 

calendar year effect, the separation technique. We will get the average costs when 
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standardized by the number of claims and the loss ratios when standardized by the 

premiums. The separation technique may be seen as equivalent to the CL, which means 

that we also have a regression model. Even if we do not use this relation it is possible to 

see the separation technique as a log-log regression. 

 

As the claims reserving methods may be seen as regression models we may apply them in 

several contexts: 

- Estimating just one equation, a univariate regression. For example, when we estimate 

for one triangle, independently, each of the loss development factors. That is what we 

saw in this chapter, implicitly, in several methods. We will show more regression 

models on chapter 4, about stochastic models. In chapter 5 we will develop a univariate 

stochastic method, the Stochastic Vector Projection, which is explicitly a regression 

model. 

- Estimating more than one equation at the same time, a multivariate regression, for 

example estimating simultaneously all the loss development factors from one triangle, 

considering their relations. We will do that in chapter 6 about stochastic generalized 

link ratios and stochastic multivariate generalized link ratios. 

- Or estimating the regressions on several triangles at the same time (in econometrics is 

called panel data). For example, estimating the loss development factors of several 

triangles at the same time and considering the correlations between triangles. We will 

do that in chapter 7 about portfolio data. 
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4. Stochastic Methods 

 

Even if the best estimate is the most important figure to put in the accounts, insurers need to 

know its accuracy and variability. This means that the stochastic models are important 

because they give us an answer to the accuracy and variability of the estimates, through the 

calculation of the reserves prediction error and confidence interval. 

 

4.1 First Models 

 

The first stochastic models appear in the 70’s. Erwin Straub (1971) applied the least squares 

to the triangles of the burning cost from excess-of-loss reinsurance (the total incurred claims, 

above an excess point, divided by the exposure). The model was distribution-free and 

minimized the mean squared error, giving unbiased estimators for the ultimate burning cost of 

each year. Kamreiter and Straub (1973) also suggested the use of regression models to 

calculate the insurer’s reserves with an auto-regression.  

 

In between, the use of probability distributions on claims reserving was proposed by Verbeek 

(1972). The method was applied to reinsurer data. The idea was to estimate the number of 

claims from reinsurance excess-of-loss, exceeding an excess point, using a triangle. He 

considered the number of claims as coming from a Poisson distribution with a multiplicative 

model that includes two parameters: the row parameter, the probability of a claim to be 

reported on that year and a diagonal parameter, the probability of having a claim exceeding 

the excess point. These parameters are estimated using the maximum likelihood and the 

number of expected claims is projected after the use of exponential curves over the estimated 

parameters. The severity was not specified. 

 

Since 1975, actuaries knew the relation of the Poisson distribution with the CL when applied 

to the number of claims. That was shown at the Astin Colloquium of Portimão by 

Hachemeister and Stanard (1975) but it was not published in the Astin Bulletin. A first 

publication of this relation was done in German by Kremer (1985) and finally in English by 

Mack (1991). Hachemeister and Stanard (1975) showed that the CL ultimate number of pure 

IBNR claims could be obtained by maximizing a Poisson likelihood function. 
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Some years later, De Vylder (1978) presented the use of least squares to estimate the insurer’s 

reserves, in the context of another multiplicative model. He used, as a dependent variable, the 

incremental payments 𝐼𝑖,𝑗, as defined in (3.10). The idea was to minimize the difference 

between the incremental payments on each cell of the upper triangle and the estimated 

incremental payments given by the following multiplicative model. 

𝐼𝑖,𝑗 = 𝐶𝑖 . 𝑈𝑗 . 𝜀𝑖,𝑗                                                           (4.1) 

 

In the latter, 𝐶𝑖 is cumulative paid claims until that year, 𝑖, 𝑈𝑗 is the proportion of incremental 

payments of that column 𝑗 in respect to the total claim size and 𝜀𝑖,𝑗 is a random variable with 

expected value one. He estimates the model parameters 𝐶𝑖 and 𝑈𝑗  using least squares on the 

upper triangle. Having these estimated parameters for the lower triangle, and using (4.1), he 

gets the incremental payments. The sum of the incremental payments on one origin year gives 

the estimated claim reserves of that year. 

 

Also, Buhlmann, Schnieper and Straub (1980) proposed claims reserving based on a 

probabilistic model.  

 

The stochastic approach began and after some years it will have more developments. 

 

4.1.1 Kremer Model 

 

Kremer (1982) was able to show that the reserving problem could be addressed considering it 

as a statistical problem and using the De Vylder (1978) model as a starting point. He 

transformed the multiplicative model, given by (4.1), into a linear model, applying the 

logarithm to the equation both sides. The estimators are derived from analysis of variance and 

Kremer (1982) showed that the results are related with the CL method. 

 

The Kremer model presents the log of the incremental claims on row 𝑖 and column 𝑗, log (𝐼𝑖,𝑗), 

as the sum of a constant, 𝑎 with a row effect, 𝑟𝑖, a column effect, 𝑐𝑗 and a random effect 𝜀𝑖,𝑗. 

The latter was assumed, to have a zero-expected value, a constant variance and no correlation. 

It was also assumed that the sum of all the row effects was zero and that the sum of all the 

column effects was also zero. These two zero-sum constraints are common in these models to 
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make the parameters in the model identifiable, avoiding over-parameterization (more 

parameters than cells). 

log 𝐼𝑖,𝑗 = 𝑎 + 𝑟𝑖 + 𝑐𝑗 + 𝜀𝑖,𝑗                                                 (4.2)  

 

Using linear statistical models, Kremer (1982) gets best linear unbiased estimators for all the 

parameters: 𝑎, 𝑟𝑖 and 𝑐𝑗. Having these estimators, Kremer (1982) obtained estimators for the 

multiplicative parameters from De Vylder (1978).  

 

Kremer (1982) uses this relation to show that its model results are related to the CL. It was the 

first connection between the CL and a stochastic model, a log-linear two-way analysis of 

variance model. However, no method was presented for getting prediction errors and 

confidence intervals for the reserves. Indeed, Searle (1987) reproduces a statement from a 

communication between two famous statisticians, Ronald Fisher to George Snedecor, that 

helps to understand this. The former states that: 

“The analysis of variance is (not a mathematical theorem but) a simple method of arranging 

arithmetical facts so as to isolate and display the essential features of a body of data with the 

utmost simplicity.”  

 

This also means that despite that Kremer (1982) developed a stochastic model, it was 

necessary to have more outcomes to his model to be one claims reserving stochastic model. 

This was the time of some statistical and rating applications to reserving with several 

stochastic models under development: credibility theory, Bayes theory, state space models 

and Kalman filter, see for example De Jong and Zehnwirth (1983a and 1983b) and Verrall, 

(1988, 1989 and 1990).  

 

Also, and according to Renshaw (1989), the Kremer connection between the two-way 

analysis of variance model and the CL was not developed by the literature. This happened due 

to its high level of parameters which usually brings prediction instability, Renshaw (1989).  

 

4.1.2 Renshaw Development 

 

Despite this, the Kremer (1982) paper inspired some developments. Renshaw (1989) 

presented a development to the statistical analogue of the original CL technique with different 

parameter estimation and different predicted values. Renshaw (1989) also analysed the 
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predictor instability and the possibility of correcting it. For that, Renshaw (1989) considered 

the empirical Bayes based on Verrall (1988) and the Kalman filter studied by De Jong and 

Zehnwirth (1983a). Renshaw (1989) presented results using software on generalized linear 

models. 

 

Renshaw (1989) concentrated on Kremer (1982) relation presented in (4.2) but using adjusted 

incremental payments, 𝐼∗
𝑖,𝑗. 

𝐼∗
𝑖,𝑗 =

𝐼𝑖,𝑗 × (𝐼𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
                                                 (4.3) 

The model was  

log 𝐼∗
𝑖,𝑗 = 𝑎 + 𝑟𝑖 + 𝑐𝑗 + 𝜀𝑖,𝑗                                                        (4.4) 

 

It was assumed that errors were homoscedastic with mean zero and variance 𝜎2, and with two 

other assumptions that: 𝜀𝑖,𝑗 and log 𝐼∗
𝑖,𝑗  are normally distributed and that the log 𝐼∗

𝑖,𝑗 has a 

mean equal to the parameter 𝑎 and constant variance 𝜎2. 

 

The parameters are obtained by minimizing the sum of squares of the errors with two 

constraints on two parameters, 𝑟̂1 = 𝑐̂1 = 0. 

𝑚𝑖𝑛 ∑(𝑌𝑖,𝑗 − 𝑎̂ − 𝑟̂𝑖 − 𝑐̂𝑖)
2

𝑖,𝑗

                                                             

 

Renshaw (1989) did not present the statistical background to have the numerical results 

obtained. However, the results were obtained using the incomplete design experiments 

technique when we have over-parameterized models. More details may be seen in Searle 

(1987). 

 

4.1.3 Maximum Likelihood Approach 

 

Verrall (1991a) introduced the theory of maximum likelihood to examine the properties of the 

CL parameters and to assess the accuracy of the estimate. The method uses the CL 

representation formulated by Kremer (1982).  

 

Verrall (1991a) summarized three possibilities to represent CL: 
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- The CL framework based on the cumulative payments: the origin year 𝑖 expected 

value from the payments on any cell (from the lower triangle) is obtained by 

multiplying the payments from the cell on the previous development year (and the 

same origin year) by the CL loss development factor, defined in (2.6). 

- The multiplicative model with incremental payments, see for example De Vylder 

(1978) and (4.1). 

- And the two-way analysis of variance model, with a logarithm of the incremental 

payments and an additive structure, see for example Kremer (1982), Renshaw (1989) 

or even (4.2) and (4.4). 

 

Verrall (1991a) presents the relation between the parameters of the three alternatives to 

represent CL and show that these three models are equivalent and are re-parameterisations of 

the same structure. Kremer (1982) showed that the CL and the multiplicative models are 

equivalent and that the multiplicative model is equivalent to the additive model. Verrall 

(1991a) also showed the relation between the additive model and the CL. According to 

Verrall (1991a) “The parameters of the first two (CL and multiplicative models) have 

physical interpretations, while the statistical analysis of the latter (additive model) is the 

more straightforward.” Verrall (1991a) considers the additive model, which can be estimated 

by least squares. This is equivalent to maximum likelihood estimation if the errors are 

assumed to be independently, normally distributed.  

 

It was shown with the additive model (Verrall, 1991a), that the use of the maximum 

likelihood estimation (of the development factors and the proportions of ultimate claims), 

instead of the least squares, allowed a straightforward way of getting the second moments 

estimation. The reason lies on the invariant property of likelihood estimation under 

parameters transformations.  

 

Zehnwirth (1989) also suggested the estimation of the Kremer (1982) parameters using the E-

M algorithm. Zehnwirth (1989) argued that the latter is more suitable when we have 

incomplete data, as it is the case with paid (or incurred) claims triangles. The procedure also 

used the likelihood function.   
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4.1.4 Negative Incremental Claims 

 

In several models, we get the ultimate costs starting with incremental claims, instead of the 

cumulative claims used on the traditional CL. This means that we may have some problems 

when, as normal, incremental claims are negative, e.g. with reimbursements. 

 

The problem exists because the Kremer (1982) model and the Renshaw (1989) development 

assumed positive incremental claims. The reason for this is the logarithm of incremental 

claims, see for example (4.2) or (4.4), which obliges a positive 𝐼𝑖,𝑗. In Kremer (1982), the 

assumption is qualified as not important. Kremer (1982) suggests the addition of a constant to 

all the incremental claims.  

  

Verrall and Li (1993) considered a method of choosing the constant and the sensitivity of the 

results to the constant considered. They considered the CL linear model as given by 

𝑦𝑖,𝑗 = 𝑥𝑖,𝑗𝛽 + 𝜀𝑖,𝑗                                                                  

 

The approach consists of getting a maximum likelihood estimate of one threshold parameter 𝜏 

together with the vector of parameters 𝛽. This can be done redefining 𝑦𝑖,𝑗 through 𝑦∗
𝑖,𝑗

 

𝑦∗
𝑖,𝑗

= 𝑙𝑜𝑔(𝑥𝑖,𝑗 + 𝜏)                                                               

 

Verrall and Li (1993) shows that considering this constant is equivalent to the use of a 

lognormal distribution with three parameters that will be maximized like in the standard case 

with two parameters. The expected value of each cumulative claim will be given by the 

following formula (𝜎̂2 is the scale parameter of the lognormal distribution). 

𝐸 (𝑦∗
𝑖,𝑗

) = 𝑒𝑥𝑝 (𝑥𝑖,𝑗𝛽̂ +
1

2
𝜎̂2) − 𝜏̂                                           

 

All the parameters are coming from the differentiation of a three parameters lognormal 

distribution. The method presented a solution to the negative incremental claims assuming 

that the CL method is appropriate for the data set.  
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4.2 The Distribution-Free Chain-Ladder 

 

As the deterministic CL method could be applied with negative payments there was a move to 

show a stochastic CL that could fit with this feature (without doing any transformation on 

data). 

  

It was claimed by Mack (1993a) that log-linear models were not the true stochastic model 

underlying the CL due to two reasons: 

- It deviates from the original method on the calculations. 

- And its results were more unstable. 

-   

It is shown by Mack (1993a) that there is a different distribution-free model underlying the 

CL that reproduces its original results and, in a different paper, Mack (1993b) presented the 

standard errors for the reserve’s estimates. The first paper was also published in Mack (1994).  

 

The main starting point was to use conditional expectations instead of expectations, 

something done by Schnieper (1989) that inspired Mack (1993a and 1993b) to his 

distribution-free model. The former produced approximations to the prediction errors but the 

latter deducted the prediction error of its distribution-free model. The model is also related 

with De Vylder (1978) model as demonstrated by Denuit and Charpentier (2005). 

 

The method assumes that the cumulative claims of different origin years are independent and 

for all cells, 𝑖 = 1, . . , 𝑇 and 𝑗 = 1, … , 𝑇 we will have 

𝐸(𝐶𝑖,𝑗+1|𝐶𝑖,1, … , 𝐶𝑖,𝑗) = 𝑏𝑗 . 𝐶𝑖,𝑗                                            (4.6) 

It may be show (Mack, 1993a) that for 𝑗 > 𝑇 − 𝑖 + 1 and considering the past information 𝐷𝑢 

with the loss development factors estimated by (2.6) we will get 

𝐸(𝐶𝑖,𝑗|𝐷𝑢) = 𝐶𝑖,𝑇−𝑖+1𝑏𝑇−𝑖+1 .  … . 𝑏𝑗                                      (4.7) 

This relation replicates exactly the CL reserves and the method just has 𝑇 − 1 parameters, 

which means it avoids over-parameterization problems of the log-linear models.  

 

It was also shown in (Mack, 1994) that under the above assumptions, the loss development 

factors estimators are unbiased and uncorrelated. In the same paper, it was presented a 
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formula for the reserves standard error, which is the square root from the mean squared error 

of prediction. The latter is equal to the ultimate cost mean squared error of prediction. 

𝑚𝑠𝑒𝑝(𝑅̂𝑖) = 𝐸[(𝑅̂𝑖 − 𝑅𝑖)
2|𝐷𝑢] = 𝐸[(𝐶̂𝑖,𝑇 − 𝐶𝑖,𝑇)2|𝐷𝑢] = 𝑚𝑠𝑒𝑝(𝐶̂𝑖,𝑇)         (4.8) 

 

To have this standard error, another assumption is considered about the cumulative payments 

variance: the conditional variance on payments of the link ratios given in (2.1) is inversely 

proportional to the payments 𝐶𝑖,𝑗. This means that for the parameters 𝜎𝑗
2 the conditional 

variance of the payments will be different for every development year until 𝑇 − 1:  

𝑉𝑎𝑟(𝐶𝑖,𝑗+1/𝐶𝑖,𝑗|𝐶𝑖,1, … , 𝐶𝑖,𝑗) = 𝜎2
𝑗/𝐶𝑖,𝑗    

                                                     𝑉𝑎𝑟(𝐶𝑖,𝑗+1|𝐶𝑖,1, … , 𝐶𝑖,𝑗) = 𝜎2
𝑗 . 𝐶𝑖,𝑗                                             (4.9) 

 

Mack (1993b) shows that these parameters 𝜎2
𝑗 may be obtained by the following unbiased 

estimator for 1 ≤ 𝑗 ≤ 𝑇 − 2: 

𝜎̂2
𝑗 =

1

𝑇 − 𝑗 − 1
∑ 𝐶𝑖,𝑗 (

𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏̂𝑗)

2𝑇−𝑗

𝑖=1

                                      (4.10) 

 

Mack (1993b) assumes that the first year of origin is closed,  𝜎̂2
𝑇 = 1, and suggests the 

following approach to the 𝜎̂2
𝑇−1. 

𝜎̂2
𝑇−1 = 𝑚𝑖𝑛 (

𝜎̂2
𝑇−2

𝜎̂2
𝑇−3

, 𝑚𝑖𝑛(𝜎̂2
𝑇−3, 𝜎̂2

𝑇−2))                                              

 

Mack (1993b) presents an estimator for the mean squared error of prediction for the reserves 

per origin year 

𝑚𝑠𝑒𝑝(𝑅̂𝑖) = 𝐶̂𝑖,𝑇
2

∑
𝜎̂2

𝑗

𝑏̂2
𝑗

𝐶𝐿 (
1

𝐶̂𝑖,𝑗

+
1

∑ 𝐶𝑗,𝑗
𝑇−𝑗
𝑗=1

)

𝑇−1

𝑗=𝑇−𝑖+1

                           (4.11) 

 

And for the total reserves (the sum of all origin years), 𝑅̂. 

                       𝑚𝑠𝑒𝑝(𝑅̂) = ∑ {𝑚𝑠𝑒𝑝(𝑅̂𝑖) + 𝐶̂𝑖,𝑇 ( ∑ 𝐶𝑗,𝑇

𝑇

𝑗=𝑖+1

) ∑
2𝜎̂2

𝑗/𝑏̂2
𝑗

𝐶𝐿

∑ 𝐶𝑘,𝑗
𝑇−𝑗
𝑘=1

𝑇−1

𝑗=𝑇−𝑖+1

}

𝑇

𝑖=2

        (4.12) 
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With this method, Mack (1993b) presented a completely non-parametric stochastic model. As 

non-parametric, this means that there is no probability distribution and that there is a proxy to 

the true underlying probability distribution beyond the CL. The prediction error formula 

obtained includes two sources of error, the process variance and the estimation variance. 

 

As written before, in section 3.6, Mack (1993a) mentioned the CL connection to the weighted 

least squares regression and Free (2010) explicitly shows that the CL is a weighted regression. 

  

4.3 Towards a Parametric Approach 

 

As the Mack method was non-parametric, research continued to find a parametric stochastic 

model. It was already known that the lognormal approach brought some insights, but also 

some problems when we have negative incremental payments, which were not an issue in the 

traditional CL. 

 

Another step forward was given by Renshaw and Verrall (1998), with the application of 

generalized linear models to claims reserving. This paper went back to Poisson distribution 

using the Kremer (1982) structure given in (4.2) but with a different modelling. It was 

assumed that the incremental claims 𝐼𝑖,𝑗 followed a Poisson distribution with mean 𝜇𝑖,𝑗 given 

by the same parameters as in (4.2). 

log 𝜇𝑖,𝑗 = 𝑎 + 𝑟𝑖 + 𝑐𝑗 + 𝜀𝑖,𝑗                                              (4.13) 

 

The model avoided the use of log 𝐼𝑖,𝑗 and the previous assumption of positive incremental 

claims. It just assumed that the sum of the incremental claims is positive in each column. 

 

Renshaw and Verrall (1998) suggested that this model is more appropriate for triangles of 

claims numbers and presented two results for the estimates of the number of claims: the 

likelihood function with the Poisson distribution and the conditional likelihood function with 

a multinomial distribution with the row totals as the conditioning. Both approaches give the 

same result as CL. 

 

Renshaw and Verrall (1998) concluded that using the quasi-likelihood function will also 

allow them to use this model for claim’s amounts: using just the form of the Poisson model 
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but not the distribution. Renshaw and Verrall (1998) develop it further with generalized linear 

models. 

 

Meanwhile, other models where developed using the Gamma distribution to each payments 

triangle cell. It was the case with Mack (1991). The model was very difficult to implement 

and Renshaw and Verrall (1994) showed that the same results could be more easily obtained 

with generalized linear models and a gamma distribution.  

 

Generalized linear models (GLM) may be seen on McCullagh, P. and Nelder, J. (1989). They 

extended classic linear modelling with the normal distribution to the exponential family of 

probability distributions. There were some non-normal models already at that time, such as 

the probit and logit models and the log-linear models, but GLM unified all these models in 

one general theory. After this, models such as the Poisson regression, the normal regression 

and the logistic regression become models of the GLM framework. 

  

The GLM is an extension of the regression models. The motivation for that, see for example 

Taylor and McGuire (2016), is the fact that claims data exhibits skewness, with the mass of 

the data concentrated in smaller values, and a long right tail distribution for higher values, 

with more frequency than the anticipated by the normal distribution. This situation could only 

be overcome using logs and transforming the normal distribution on the lognormal. However, 

the, lognormal distribution can only be applied to positive data and sometimes insurers have 

negative payments, like reimbursements. 

 

GLM can be used with any distribution from the exponential family such as the Poisson, the 

gamma, the normal, the inverse Gaussian and others, and we can achieve more flexibility on 

the dependent variable and independent variables relation using link functions. This allows us 

to deal with several data transformations, like the logs or the powers, and we are not restricted 

to the identity relation like in other models. 

 

This general framework of GLM applies to any distribution from the exponential family (also 

called exponential dispersion family), and not just to the normal distribution. The former, to a 

generic variable 𝑦 with parameters 𝜃 (location) and 𝜙 (dispersion), has a density function 

𝑝(𝑦|𝜃, 𝜙) of the following type 
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𝑝(𝑦|𝜃, 𝜙) = 𝑒𝑥𝑝 {
𝑦𝜃 − 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)}                                            

 

This expression includes several known distributions, and if we consider all of its 

observations (in our triangle defined by 𝑖, 𝑗) and following McCullagh and Nelder (1989), we 

get as expected value always a constant 𝜇𝑖,𝑗 and as variance a value dependent on 𝑎(𝜙) and 

on 𝑏′′(𝜃). 

𝔼(𝑦) = 𝑏′(𝜃) = 𝜇𝑖,𝑗         𝑉𝑎𝑟(𝑦) = 𝑎(𝜙)𝑏′′(𝜃)                                      

 

The expected value 𝜇𝑖,𝑗 is related with the linear predictor 𝜂 by a monotone and differentiable 

function ℎ, to each observation. The inverse of this function is called the link function, and for 

each observation from the claims reserving triangle we get 

𝜇𝑖,𝑗 = ℎ(𝜂𝑖,𝑗)            𝜂𝑖,𝑗 = 𝑔(𝜇𝑖,𝑗)                                                           

 

The 𝑏′′(𝜃)  depends on the parameter 𝜇𝑖,𝑗 and it is called the variance function, 𝑉(𝜇𝑖,𝑗).  The 

𝑎(𝜙) is usually defined by the standardized dispersion coefficient, 𝜙/𝜔, the dispersion 

coefficient divided by a known constant, 𝜔. 

 

Following Renshaw and Verrall (1998), claims reserving may be seen as a GLM problem. 

Using one link function for each row and column, we get the CL linear predictor 𝜂𝑖,𝑗, where 𝑎 

is a constant and 𝑟𝑖 and 𝑐𝑗 row and column parameters. 

𝜂𝑖,𝑗 = 𝑎 + 𝑟𝑖 + 𝑐𝑗                                                           (4.14) 

 

These functions must be associated to a probabilistic model. Having the probabilistic model, 

and as we are going to predict the lower triangle, we know that we will have a prediction 

variance, Renshaw (1989).  The process variance will come from the probability distribution 

we use. The estimation variance does not depend on the later but on the link function that we 

use.  

 

England and Verrall (2002) presented the Over-Dispersed Poisson (ODP) in the context of 

GLM models. In this model, we know that the expected value is not equal to the variance 

because the latter is proportional to the former. Considering an ODP, we have 

𝐸(𝐼𝑖,𝑗) = 𝜇𝑖,𝑗                                                        (4.15) 
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𝑉𝑎𝑟(𝐼𝑖,𝑗) = 𝜙 𝜇𝑖,𝑗                                                    (4.16) 

𝜂𝑖,𝑗 = 𝑙𝑜𝑔(𝜇𝑖,𝑗) = 𝑎 + 𝑟𝑖 + 𝑐𝑗         𝑟1 = 𝑐1 = 0                          (4.17) 

 

We also know that the quasi-likelihood from a Poisson distribution has the same structure 

from the likelihood function. England and Verrall (2002) get the following quasi-likelihood 

function 𝑙 to be maximized to get the parameters vector (the loss development factors) 

𝑙𝑜𝑔  𝑙 ∝ 𝐼𝑖,𝑗 𝑙𝑜𝑔(𝜇𝑖,𝑗) − 𝜇𝑖,𝑗                                                         

 

To get the gamma we just need to make some slight changes. Now the model will be given by 

𝐸(𝐼𝑖,𝑗) = 𝜇𝑖,𝑗                                                               (4.18) 

𝑉𝑎𝑟(𝐼𝑖,𝑗) = 𝜙 𝜇𝑖,𝑗
2                                                       (4.19) 

𝜂𝑖,𝑗 = 𝑙𝑜𝑔(𝜇𝑖,𝑗) = 𝑎 + 𝑟𝑖 + 𝑐𝑗         𝑟1 = 𝑐1 = 0                                  (4.20) 

 

Hence, the following quasi-likelihood function is obtained to be maximized and to get the 

parameters vector 

𝑙𝑜𝑔 𝑙 ∝ −
𝐼𝑖,𝑗

𝜇𝑖,𝑗
− 𝑙𝑜𝑔(𝜇𝑖,𝑗)                                                             

The ODP and Gamma models suggest a general model where we may have a general case in 

which the formers are included: 

𝐸(𝑦𝑖,𝑗) = 𝜇𝑖,𝑗                                                         (4.21) 

𝑉𝑎𝑟(𝑦𝑖,𝑗) = 𝜙 𝜇𝑖,𝑗
𝛾                                                    (4.22) 

𝜂𝑖,𝑗 = 𝑙𝑜𝑔(𝜇𝑖,𝑗) = 𝑎 + 𝑟𝑖 + 𝑐𝑗         𝑟1 = 𝑐1 = 0                           (4.23) 

 

For 𝛾 = 1 we get the ODP model and for 𝛾 = 2 we get the Gamma model. For 𝛾 = 3 we will 

get an Inverse Gaussian model. In the following equations and following England and Verrall 

(2002), we also present the mean square error of prediction in a general form 

         𝑚𝑠𝑒𝑝(𝑅̂) =   ∑ 𝜙𝜇̂𝑖,𝑗
𝛾       +

𝑇

𝑗>𝑇−𝑖+1

∑ 𝜇̂𝑖,𝑗
2

𝑇

𝑗>𝑇−𝑖+1

𝑉𝑎𝑟(𝜂̂𝑖,𝑗)                        

+ 2 ∑ 𝜇̂𝑖,𝑗1
𝜇̂𝑖,𝑗2

𝑇

𝑗>𝑇−𝑖+1,𝑗2>𝑗1

𝐶𝑜𝑣(𝜂̂𝑖,𝑗1
𝜂̂𝑖,𝑗2

)    
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As we saw before, one of the problems in claims reserving estimation with incremental data is 

the existence of negative numbers, due to reimbursements or recoveries that must be 

considered. In previous ODP and Gamma models, there are logarithms in formulas to be 

applied to payments and if they are negative something wrong will happen. This creates 

problems in most commercial software as they usually follow shortcuts to resolve the problem 

that does not correspond to the exact solution. For instance, it is the case of S-Plus with quasi-

likelihood functions as we show in Portugal (2009). One possibility to overcome this is to 

replace the deviance function by the generalized Pearson statistic. The latter corresponds to 

the Pearson errors on the ODP model and may be used with negative numbers. The function 

is a good yardstick to the model accuracy (Turkman, 2000). 

 

England and Verrall (2002) also present results for the negative binomial model that is also 

over-dispersed like the ODP model. With that, it is shown that the Mack (1993a) distribution-

free model seems to be a normal distribution approximation to the negative binomial. Indeed, 

not only the loss development factors are the same (as expected), but the dispersion 

coefficient of the negative binomial shows to be similar to the variance parameter in the 

distribution-free model. The negative binomial model may be presented with incremental and 

cumulative claims. The results are the same (England and Verrall, 2002).  

 

The GLM approach from England and Verrall (2002) also presents results for the lognormal 

and shows it is straightforward to use other linear predictors like the Hoerl curve and other 

smoothers. In a previous paper, it was also shown how to use generalized additive models as 

smoothers Verrall (1995). 

 

4.4 Bootstrapping 

 

Another alternative to get the prediction errors and confidence intervals to the estimated 

reserves is the use of the bootstrapping technique. The latter is a resampling technique that 

allows us to estimate the volatility of a certain variable. The resampling is done in the initial 

data several times and the inferences are produced from resamples done. It was introduced by 

Efron (1979) and developed with Efron and Tibshirani (1993). 

 

For example, if we need to calculate the mean squared error of prediction for the reserves, we 

may generate several triangles, where each of the latter is the sum of our triangle with 
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something else, like the errors produced on the reserves estimation. On each sample we obtain 

the reserves for that sample. All the samples together give a non-parametric distribution of the 

reserves and we will be able to obtain the mean squared error of prediction. The latter will be 

calculated doing the average of the differences between the reserves on all the samples 

obtained with its mean.  

 

It was introduced in claims reserving by Ashe (1986). In this paper, three methods are 

analysed to measure the variability of outstanding claims: the jackknife, a parametric model 

for the distribution of aggregated claims and the bootstrap technique. Ashe (1986) concluded 

that it was not possible to qualify one technique as better than the others. Taylor (1988) also 

discussed this issue and his base was a paper on aggregated losses second moments from 

Taylor and Ashe (1983).   

 

Lowe (1994) presented a first comparison of bootstrapping with the distribution-free 

technique of Mack (1993a) and the operational time of Wright (1990). Lowe (1994) 

concludes that the prediction errors are very similar, which was a good support to the use of 

this technique.  

 

Some years later, several other papers published using the bootstrapping technique in claims 

reserving. Examples of this, are England and Verrall (1999) who presented the use of this 

technique in the context of the CL, and Pinheiro et al. (2003) who used generalized linear 

models and did not restrict the bootstrap to the CL.  

 

England and Verrall (1999) use the Pearson errors 𝜀𝑃
𝑖,𝑗 on each cell 𝑖, 𝑗 to create another 

triangle where the new incremental claims amounts will be given by 

𝐼𝑖,𝑗
∗∗ = 𝜀𝑃

𝑖,𝑗√𝜇𝑖,𝑗 + 𝜇𝑖,𝑗                                                              

The model is refitted, and the statistic of interest calculated: the reserve 𝑅. The procedure is 

repeated several times. The bootstrap standard error will be the standard deviation of the 

reserve. The stored results from the sampling will give us the predictive distribution of 

reserves and its standard deviation is the prediction error. 

 

Pinheiro et al. (2003) uses the standardized Pearson errors, instead of the Pearson errors, since 

only the former can be considered identically distributed (Efron and Tibshirani, 1993). With 



80 

 

this procedure it will not be necessary to do the Pearson errors adjustment done by England 

and Verrall (1999). 

 

As Wüthrich and Merz (2008) states:  

“Efron’s bootstrap can essentially be applied to every stochastic claims reserving model that 

we have considered so far. If we have, in addition, distributional assumptions we can apply 

the parametric bootstrap method” 

 

4.5 Bayesian Models 

 

The mixture of information is used by actuarial science since 1914 (CAS, 1996) when 

American Actuaries started implementing experience rating models at workmen 

compensation premiums. It is usually said that this fact is in the origin of the Casualty 

Actuarial Society. 

 

There were some applications of credibility theory to claims reserving with the reserve 

estimate being presented as a mix of two sources of information. One of such examples is De 

Vylder (1982). Mack (1990) improved this model by changing some of its assumptions and 

getting another estimator, which is a special case of the rating Buhlmann-Straub model 

(Buhlmann and Gisler, 2005). 

 

The Bayesian theory was also applied to the log-linear models beyond CL by Verrall (1990) 

and as he stated:  

“The empirical Bayes estimates have a credibility theory interpretation, and it is interesting 

to note that De Vylder (1982) obtained credibility-type estimates by applying the linear 

empirical Bayes theory directly to the CL technique.” 

 

Gisler and Wüthrich (2008) will also present the CL stochastic method on a full Bayesian 

model. They show that if we use the exponential dispersion family of distributions, with its 

natural conjugate priors, the credibility estimators are the exact Bayesian estimates. It is a 

result similar to the one obtained on pricing (Buhlmann and Gisler, 2005). As expected, they 

also show that if we use a vague prior, without any information, we get the classical CL 

result.  
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We saw for BH method that we may linearly combine the CL and the BF reserve’s estimates 

to get a new estimate. The BH credibility factor obtained was the grossing-up factor and 

Mack (2000) obtained the credibility factor that minimizes the mean squared error. 

 

Verrall (2001) also presented a stochastic model closely related to the BF method using 

Bayesian statistics and the ODP model presented in Verrall (2000). The result shows that CL 

estimators may be obtained if we use improper priors to the row parameters. BF estimators 

will be obtained if we use strong prior information for the row parameters. These results also 

show a main assumption of the BF method, a complete knowledge about the ultimate 

benchmark behaviour. Once again, see section 3.4, this means the need for a good benchmark. 

Alai et al. (2009) also presented mean square errors of prediction for the BF method using the 

ODP model with the CL development pattern.  

 

Schmidt (2006a) and Schmidt and Zocher (2008) generalized the BF method to what they call 

the Extended Bornhuetter-Ferguson (EBF). They showed that the stochastic BF may have two 

types of prior’s estimators, one for the grossing-up factors and another one for the expected 

ultimate losses.   

 

Mack (2008) presented prediction errors analytical formulas for BF using a distribution-free 

model. The paper also shows that the appropriate development pattern of BF is not the one of 

CL. For Mack (2008) the BF method has its own development pattern and may be seen as a 

standalone method independent from CL. The idea of questioning BF development pattern 

was already approached by Mack (2006), which proposed a method to overcome some of the 

CL difficulties.  

 

Schmidt (2006a) has showed that many other stochastic models can be seen as BF predictors. 

England, Verrall and Wüthrich (2010) also concluded that Bayesian predictors may be seen as 

BF predictors. Saluz et al. (2011) also presented prediction errors analytical formulas for BF. 

 

4.6 Multivariate Models 

 

One of the recent trends in the literature on claims reserving is the development of models 

that consider more than one triangle estimation at the same time. It is the case of the bivariate 

Munich CL (Quarg and Mack, 2004) which estimates the paid and incurred claims at the same 
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time, using CL, and the so called multivariate models that estimate triangles from different 

lines of business at the same time, usually also using CL on all the triangles. 

In the first case, it is imposed that CL is appropriate for paid claims and incurred claims, even 

when prediction errors are high. In the second case, the problem was similar but applied to 

different triangles from different lines of business.  

 

At that time, it was also expected to have the aggregate CL result, from all the triangles, equal 

to the sum of the individual CL results from all the triangles. This problem was first studied 

by Holmberg (1994) who analysed the dependency between different triangles. Halliwell 

(1997) and Braun (2004) considered a bivariate model to the joint estimation of paid and 

incurred claims but estimating the loss development factor by the univariate model. Quarg 

and Mack (2004) Munich CL also developed a bivariate model but calculated the loss 

development factors within the bivariate model. Hurlimann (2006) presented bounds for the 

bivariate CL. 

 

Merz and Wüthrich (2007b) developed a multivariate CL model. They estimated the CL 

development factors using the univariate estimate, but they presented a second paper one year 

later with those factors estimated in the multivariate way (Merz and Wüthrich, 2008). It was 

shown some years before by Prohl and Schmidt (2005) and Schmidt (2006b) that the CL 

univariate estimators are not optimal when we have correlated triangles, and most of the 

multivariate models are presented with CL. Some exceptions may be seen in Hess, Schmidt 

and Zocher (2008) and (Merz and Wüthrich, 2007a) for the AD method. 

  

Zhang (2010) also presented a general multivariate CL with correlations and structural 

connections between the triangles and showed that the results from Prohl and Schmidt (2005) 

and Merz and Wüthrich (2008) models can be obtained from his model. In the same paper, 

Zhang also showed that the necessary and sufficient condition for the multivariate CL to be 

equivalent to the separate univariate CL is to have a diagonal variance-covariance matrix of 

the errors and proportional losses between the upper triangles of the different portfolios. He 

also discusses the differences between his estimators and the Munich CL results for a 

bivariate model. 
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4.7 Individual Claim Modelling 

 

The models for individual claims aim to get information about individual claims. This 

information disappears with triangles, see for example Table 2.1, because they aggregate all 

the claims by origin year and development year. For instance, Antonio and Plat (2012) argue 

that the triangles are from the time of manual calculations, and that with the current computer 

power other more computer-intensive solutions should be developed. 

 

Following Taylor et al. (2008), it seems that despite some papers from the 80’s and the 90’s 

the theoretical interest in individual claims reserving is recent: 

“It appears that Norberg (1986 and 1993) and Jewell (1989 and 1990) were the first to 

attempt to lay down a comprehensive architecture for individual claims loss modelling. This 

framework has recently been developed by Larsen (2007). Other specific individual claim 

models appearing in the literature are due to Hachemeister (1980) and Haastrup and Arjas 

(1996).” 

 

Most of these papers consider the claims as a Poisson process. Roselund (2012) presented a 

bootstrapping technique over the history of claims to generate samples that would allow 

reserving and mean squared error of prediction calculations. The method is very computer-

intensive and, in some cases, required five hours of simulation. It also demands several dates 

from claim occurrence, claim reporting and finalization and payments dates and amounts. 

Roselund (2012) assumes that claims are identically and independently distributed, and that 

the historic claims used have the same distribution as the ones we want to study. 

 

Antonio and Plat (2012) also presented a model for individual claim reserving creating a 

stochastic process to each claim phase using the Poisson process:  

“The time of occurrence of the claim, the delay between occurrence and reporting of the 

claim, to the insurance company, the occurrence of payments and their size and the final 

settlement of the claim”.  

 

Parodi (2013) argues for the need for a triangle-free methodology, stating that the triangles 

are inherently inadequate to accurately model the distribution of reserves, although they may 

be good enough to produce a point estimate of such reserves. Parodi (2014) follows pricing 
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methodologies splitting frequency from severity to mix them together with Monte Carlo 

simulation to produce the aggregate loss distribution. The claim’s reserves are obtained from 

the latter. 

 

These types of approaches, individual claim modelling, show several problems, and until now 

actuaries and the market are not using them. The reasons we see for that are the following: 

- Some of the methods do not consider the IBNR claims. 

- The implementation is too complex and running times of long hours. 

- The methods require huge amounts of data, but despite this, they do not allow actuaries 

to see trends on data. 

- With some exceptions, see Taylor (2008), the methods do not require information on 

covariates that explains the claim’s cost, which is difficult to accept if we move to an 

individual claim level. For example, the information on the injured income will explain 

the level of reserves when we have disabilities, temporary or forever. 

- Some of the information necessary to claim´s reserves, at the claim level, is 

deterministic and not stochastic, like the covariates that explain the compensation to the 

injured. 

- They analyse something, the individual claims, that it is not necessary to calculate the 

overall reserve. 

- The idea that the triangles come from the lack of computers is not accurate, as we saw 

in chapter 2, the triangles methodology just developed with the appearance of the 

microcomputers. 

- It may be a lost battle to reserve a claim without all the information on it, just using 

averages or standard deviations, when compared with a loss adjuster that has several 

pieces of information to use. 

 

However, and despite all this, this type of method may be useful for claims analysis. That 

may be the case when they are able to identify the covariates that explain the reserves and 

have a model for predicting some of its behaviour. Some practical applications of regression 

models have been done by some actuaries in some countries, using, as explanatory variables, 

the variables that explain the ultimate cost of the claim, very often in Motor insurance bodily 

injury claims. These works were never published.  
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The individual claims modelling may be important for individual claims analysis. However, 

the current state of the art ignores a lot of information from claims (everything is considered 

stochastic and there are several deterministic variables that are not considered, like the salary 

of the injured in bodily injured claims). These methods lose the forest view to just have a 

stochastic tree view. They are not substitutes from the triangle analysis and just a 

supplementary approach. 

 

4.8 Conclusions 

 

The start of the stochastic claims reserving moved away from the CL and several models were 

presented: 

- Straub (1971) and the Kamreiter and Straub (1973) models, the latter using regression 

techniques. 

- Verbeek (1972), Hachemeister and Stanard (1975) models based on the Poisson 

distribution. 

- De Vylder (1978), multiplicative model. 

- And Buhlmann and Straub (1980) probabilistic model. 

 

However, these models did not influence a lot the developments done in the following years. 

The CL influence or replication will be the path of the literature and as we saw in chapter 3 

the CL is a weighted regression. Examples of this are: 

- Kremer (1982) relation with the CL. Kremer (1982) showed that CL and multiplicative 

models are equivalent and that the multiplicative model is equivalent to the additive 

model. 

- Renshaw (1989), which is a development of Kremer (1982) model.  

- Verrall (1991a) presents the relation between the parameters of the three alternatives to 

represent CL and shows that these three models are equivalent and are re-

parameterisations of the same structure. Verrall (1991a) also showed the relation 

between the additive model and the CL. 

- Mack (1993a and 1994) argues that his distribution-free method is the stochastic 

method underlying CL. 

- Renshaw and Verrall (1998) development was done with the Poisson distribution and 

the Kremer (1982) structure within a GLM framework, which is an extension of 

regression models. 



86 

 

- England and Verrall (1999) and Pinheiro et al. (2003) developed the bootstrapping 

technique with CL model. 

- England and Verrall (2002) showed that the ODP model gives the same results as the 

CL. The paper also showed that the GLM framework may also be used to have different 

models with the probability distributions from the exponential family.  

- England and Verrall (2002) also showed that the Mack (1993a) method could be seen as 

a normal distribution approximation to the negative binomial distribution.  

- And Bayesian stochastic models are also developed around CL, see for example Verrall 

(1990) and Gisler and Wüthrich (2008). Mack (2000), Verrall (2001), Schmidt (2006a), 

Mack (2008), Alai et al. (2009) and Saluz (2011) developed stochastic models for CL 

based models, like BF and BH. We already saw in chapter 3 that they are CL based. 

 

The developments, from the last years that could be considered more important, involve the 

estimation of several triangles at the same time. However, in most of the papers the methods 

are also CL based:    

- The development of dual methods, mixing paid claims with incurred claims, but again 

using the CL in both triangles, see for example Quarg and Mack (2004). 

- The estimation of more than one triangle at the same time, with multivariate methods 

that consider contemporaneous correlations between the triangles. Examples may be 

seen in Prohl and Schmidt (2005), Schmidt (2006b), Gisler and Wüthrich (2008) and 

Zhang (2010). It is not clear, at this moment, that regulators will accept the reduction of 

the reserves from a line of business due to correlation effects between lines of business. 

- The Zhang (2010) is another example of the use of regression models on claims 

reserving. 

 

Finally, some models are triangle-free and use information from individual claims. This is a 

disruptive technique when compared with the traditional triangle approach. However, the 

individual claims technique is more important when we want to study the case reserves on the 

current files. The information from the individual files is not important when we want to have 

just one number for the best estimate of the total reserves. Due to this, we will concentrate on 

claims reserving methods that are based on triangles. 
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As we saw in chapters 3 and 4, the regression models are implicitly (and not so often 

explicitly) underlying the claims reserving models. In chapters 6 and 7, we will concentrate 

explicitly on developing claims reserving models that use regression techniques and minimize 

the prediction error.  

 

According to Antonio and Plat (2012), what is important is to create methods that produce 

good best estimates for the reserves. An attempt to do this is done in chapter 5, using Mack 

(1993a, 1993b, 1994) framework, but with two changes that help achieve this objective.   

 

We will use, in the following chapters, as the main indicator of good best estimates, the 

prediction error presented in (3.21). As we saw before, the prediction error includes the 

parameter error and the process error (but does not include the model error). We are aware 

that it is not the only indicator to consider on model selection, but it is a very important figure 

on the actuary decision. In the next chapter, other indicators will be presented for illustration 

and to complete the analysis of some of the results presented. The relation between the 

prediction error results and these other indicators conclusions is also presented. 
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5. Stochastic Vector Projection 

 

In this chapter, we investigate that it might be possible to obtain much better results, if the 

development factors considered between the two columns are calculated by the Vector 

Projection (VP) method.  

 

5.1 Vector Projection Fundamentals 

As it is known from Straub (1988), the CL is just an approximation to the least square 

solution to the loss development factor estimation1.  Straub (1988) shows that the loss 

development factor that arises from the minimization of the square of the errors is given by a 

regression without intercept.   

Following Gentle (2007), this regression, through the origin, may be seen as a vector 

projection between two adjacent columns of our upper triangle. For example, in Table 2.1, 

this could be the column 2 projected using the column 1, for both columns with origin years 1 

to 9.  

The projection of the vector y onto the vector x is a new vector that corresponds to the y 

estimate, ŷ, see for example, Gentle (2007) for more details.  

𝑦̂ =
<𝑥,𝑦>

∥𝑥∥2 𝑥        (5.1) 

< 𝑥, 𝑦 > is the inner product of 𝑥 and 𝑦, and ∥ 𝑥 ∥2 is the 2-norm of 𝑥.  This means that we 

get a new vector, which is based on the previous one, 𝑦, but now projected in the 𝑥 direction.   

This VP is a regression between two variables without an intercept term and it is an 

alternative approach to estimate any loss development factor between two development years 

(where we have at least two observations).  

For example, the first loss development factor from Table 2.1 is given by 

                                                 

1 Straub (1988) shows that the CL is just an approximation to the minimization of squares of errors.  He did it 

without having any assumptions in respect of the errors. 
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 1 2     

 x y  y . x  x^2 

1 5012 8269  41444228  25120144 

2 106 4285  454210  11236 

3 3410 8992  30662720  11628100 

4 5655 11555  65343525  31979025 

5 1092 9565  10444980  1192464 

6 1513 6445  9751285  2289169 

7 557 4020  2239140  310249 

8 1351 6947  9385397  1825201 

9 3133 5395  16902535  9815689 

10 2063       

         

   Sum 186628020  84171277 

    (a)  (b) 

       

   Loss Development Factor = (a)/(b) 

 

Following Murphy (1994) and Barnett and Zehnwirth (1999), it is known that the link ratios 

approach for reserving may also be considered as a regression without an intercept term for 

each of the loss development factors.  For each observation used in the calculation, they show 

that we have 

𝐶𝑖,𝑗+1 = 𝑏𝑗𝐶𝑖,𝑗 + 𝜀𝑖,𝑗.            (5.2) 

Murphy (1994) and Barnett and Zehnwirth (1999) assume that the (unconditional) variance of 

each residual 𝜀𝑖,𝑗 is given by a constant 𝜎𝑗
2 weighted by the 𝐶𝑖,𝑗

𝛿  on each observation, 

𝑉𝑎𝑟(𝜀𝑖,𝑗) = 𝜎𝑗
2𝐶𝑖,𝑗

𝛿 .                     (5.3) 

𝑏𝑗 is estimated from the data and corresponds to the loss development factor2, and its value 

depends on the parameter 𝛿 and on the history of payments (if 𝛿 ≠ 0).  Indeed, if 𝛿 = 1, we 

get the CL loss development factor obtained in (2.6), i.e., a weighted average of the link 

                                                 

2 Indeed, it makes a good sense to estimate the loss development factors as a regression through the origin, i.e., 

through the VP method.  The loss development factors may be seen as weighted averages of link ratios and the 

latter are the ratios of two cumulative payments from different development years.  These ratios are estimated by 

the slope of the line that summarizes the relation between the two cumulative payments.  Straub (1988) shows 

that the slope that minimizes the sum of squares of errors is not the CL, but the regression through the origin, 

i.e., the VP in our case. 
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ratios, and if 𝛿 = 2, we get the loss development factor from the SA method obtained in (3.1), 

i.e., a simple average of the link ratios.  

These results have something in common; they always have heteroscedastic3 errors when 𝛿 ≠

0, that is the variance of the errors, (5.3), is not constant on each regression.  Now, if 𝛿 = 0 is 

assumed, the ordinary least squares regression without intercept is derived, i.e., a VP with 

constant variance of the errors, 𝜎𝑗
2, across all the observations of each regression.  This result 

is different from the heteroscedastic cases where 𝛿 ≠ 0.   

Now, in VP, see Straub (1988), or Murphy (1994) or Barnett and Zehnwirth (1999), the loss 

development factors 𝑏𝑗, with 𝑗 =  1, … , 𝑇 − 1, are estimated by 𝑏̂𝑗
𝑉𝑃 

𝑏̂𝑗
𝑉𝑃 =

∑ 𝐶𝑖,𝑗𝐶𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

                     (5.4) 

The cumulative payments may be obtained, as in the CL (Mack 1993a, 1994), using the 

following relation 

𝐶̂𝑖,𝑗
𝑉𝑃 = 𝐶𝑖,𝑗−1𝑏̂𝑗

𝑉𝑃         (5.5) 

 

This means that in our example (see Tables 2.4 and 2.5), the loss development factor for the 

first column is 3.32, which is more consistent with the recent increase of the link ratios.   

Indeed, it is known that the use of the regression models has several advantages in claims 

reserving, see section 3.6 and (3.12), Taylor (1978), Barnett and Zehnwirth (1999) and Frees 

(2010).  

                                                 

3 In Murphy (1994) and Barnett and Zehnwirth (1999), the general regression through the origin by using 

assumptions to the errors is developed and they demonstrated that several models might be contacted because of 

it.  Obviously, some of the models are heteroscedastic, such as the SA and the CL.  In Murphy (1994), the VP 

method is introduced, but with homoscedastic errors.  In the present paper, as it is clear in the text, the stochastic 

VP method of Murphy (1994) with heteroscedastic errors instead is introduced to compete with Mack (1993, 

1994)’s stochastic heteroscedastic CL approach.  
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Furthermore, let us consider the situation where we use the CL method to estimate the loss 

development factors over a perfect triangle.  In such a perfect triangle, in each column, the 

link ratios are always equal to the loss development factor.  Because of this, after estimating 

the lower triangle, we get a prediction error of zero, as it is defined in Mack (1993a).  A 

triangle like this can be the one presented in Table 5.1. In this theoretical case, the loss 

development factors from CL and VP are exactly the same and the prediction error, as defined 

in (3.21), is zero. 

As we can easily verify, the VP gives the same results as the CL under some conditions. 

Indeed, this happens because the link ratios are totally stable on each development year. 

However, if this is not the case, the VP gives different results from the CL, and in some cases, 

it adapts better to the evolution of the link ratios (see the example given with Tables 2.4 and 

2.5, where the VP is closer to the more recent link ratios).   

However, as it will become clearer in the application part, we may have triangles where the 

VP approach may perform worse than CL. This will happen, as anticipated before, see section 

2.5, if we have irregular data.  

Consequently, in this chapter, see Portugal et al. (2017), we introduce an alternative to the 

distribution-free stochastic CL method of Mack (1993a), the stochastic VP, using also the 

well-known regression through the origin approach proposed by Murphy (1994), but with 

heteroscedastic errors instead, following similar arguments to the Mack (1993a, 1994) 

approach; that is, the variance is not constant over all the observations from each regression.  

This means that we will use the Murphy (1994) approach to estimate the loss development 

factors, the regression through the origin. However, we changed two things in respect of 

Murphy (1994) approach. Firstly, we consider the errors heteroscedastic. Secondly, we didn’t 

consider a recursive formula to get the prediction error formula. Instead, we developed a non-

recursive formula. As with Murphy (1994), the regression through the origin loss 

development factor comes from the least squares model.  The VP is similar to CL, indeed it 

uses Mack framework, but with different assumptions for loss development factors estimation 

and the second moments. A more general class of methods is summarised in 5.2 and 5.3. The 

author believes that delta =2 is the best candidate and should be superior to the standard CL 

method which has delta = 1.  
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Moreover, the eminent stochastic Mack distribution-free framework may be further improved 

using this technique to some particular sets of data.   

 

Table 5.1: Perfect Chain-Ladder Matrix of Cumulative Payments 

 

 

5.2 Method and Assumptions  

 

In this section, the combined technique for estimating outstanding claims based on the VP 

methodology is proposed and developed in detail.  The method is formulated on the Mack 

(1993a, 1993b, 1994) distribution-free method framework. In the first mentioned paper Mack 

(1993a) writes that the purpose of his method is “to know the standard error of the chain 

ladder reserve estimates as a measure of the uncertainty contained in the data and in order to 

see whether the difference between the results of the chain ladder method and any other 

method is significant or not”. Mack (1993a) didn’t define how he got the CL to estimate the 

loss development factors. As he mentions in the above paper “the chain ladder method is 

probably the most popular method for estimating IBNR claims reserves” and “it seems to 

work with almost no assumptions”.   Mack didn’t define the CL method; he just used the most 

popular method to estimate the loss development factors. Our purpose with this VP method is 

the same, but we use a different algorithm to get the loss development factors, the VP.  

  

We also assume, about the second moments, that the VP has heteroscedastic errors inside 

each origin year, but the errors now are proportional to the square of payments.  This 

assumption is a consequence of the way we estimate the loss development factors, i.e., a 

weighted average of the link ratios with weights given by the square of the cumulative 

payments.  In the CL, the weights are given by the cumulative payments, see for example 

(2.7) or Mack (1993a, 1993b, 1994). 

1 2 3 4 5 6 7 8 9 10

1 1000 1800 3060 4896 7344 10282 13366 16039 17643 17643

2 1100 1980 3366 5386 8078 11310 14703 17643 19408

3 1331 2396 4073 6517 9775 13685 17790 21348

4 1772 3189 5421 8674 13010 18214 23679

5 2594 4669 7937 12699 19048 26668

6 4177 7519 12782 20452 30678

7 7400 13320 22645 36232

8 14421 25958 44128

9 30913 55643

10 72890
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Thus, the cumulative payments 𝐶𝑖,𝑗 between different origin years are independent (because 

the method does not consider any dependencies between origin years) and there exist some 

loss development factors 𝑏𝑗, such that 𝑗 = 1, … , 𝑇 − 1, where we have for 1 ≤ 𝑖 ≤ 𝑇 and 1 ≤

𝑗 ≤ 𝑇: 

𝔼(𝐶𝑖,𝑗+1|𝐶𝑖,1, … , 𝐶𝑖,𝑗) = 𝔼(𝐶𝑖,𝑗+1|𝐶𝑖,𝑗)                (5.1.1) 

𝔼(𝐶𝑖,𝑗+1|𝐶𝑖,𝑗) = 𝑏𝑗𝐶𝑖,𝑗,                                               (5.1.2) 

𝑉𝑎𝑟(𝐶𝑖,𝑗+1|𝐶𝑖,𝑗) = 𝜎𝑗
2𝐶𝑖,𝑗

2 .            (5.1.3) 

 

In this method, the way that the loss development factors are estimated is changed using the 

VP approach instead of the typical CL estimator. Those loss development factors are obtained 

as in Straub (1988) and Murphy (1994), by minimizing the sum of the square of the errors.  

𝑏̂𝑗
𝑉𝑃 =

∑ 𝐶𝑖,𝑗𝐶𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

.            (5.1.4) 

 

Additionally, the conditional variance, (5.1.3), differs with the derived results of Mack 

(1993a, 1993b, 1994) distribution-free method.  Mack (1993a, 1993b, 1994) method considers 

the 𝑉𝑎𝑟(𝐶𝑖,𝑗+1|𝐶𝑖,𝑗) = 𝜎𝑗
2𝐶𝑖,𝑗 because the CL loss development factors are 𝐶𝑖,𝑗-weighted 

mean, see (2.7), of the link ratios, given by (2.1). In the VP, the loss development factors are 

𝐶𝑖,𝑗
2 -weighted mean of the same link ratios, see (3.17). Due to that, we obtain the cumulative 

payments conditional variance given by (5.1.3). 

To estimate 𝜎𝑗
2 we obtained 𝜎̂𝑗

2,𝑉𝑃
, the unbiased estimator for the VP method  

𝜎̂𝑗
2,𝑉𝑃 =

1

𝑇−𝑗−1
∑ (

𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏̂𝑗

𝑉𝑃)
2

.  
𝑇−𝑗
𝑖=1                      (5.1.5) 

 

The following result has initially been derived by Mack (1993a), and it is also valid in our VP 

approach because the result just depends on the true development factors and the cumulative 
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payments.  In other words, Lemma 5.1.1 makes it clear that (5.1.2) and the independency 

between the cumulative payments 𝐶𝑖,𝑗 in each origin year are indeed implicit assumptions of 

the VP as well as the CL method.  

Lemma 5.1.1 [Mack 1993] Under the method assumption (5.1.2) and for 𝐷𝑢 = {𝐶𝑖,𝑗: 𝑖 + 𝑗 −

1 ≤ 𝑇}, a recursive algorithm is derived for the calculation of the ultimate cost on an origin 

year 𝑖 based on the upper triangle information 𝐷𝑢: 

𝔼(𝐶𝑖,𝑇|𝐷𝑢) = 𝔼(𝐶𝑖,𝑇|𝐶𝑖,𝑇−𝑖+1) = 𝑏𝑇−1 ⋯ 𝑏𝑇−𝑖+1𝐶𝑖,𝑇−𝑖+1.   (5.1.6) 

∎ 

The VP estimator of the unknown loss development factors is given by Eq. (5.1.3), and the 

ultimate cost estimator is 

𝐶̂𝑖,𝑇
𝑉𝑃 = 𝐶𝑖,𝑇−𝑖+1𝑏̂𝑇−𝑖+1

𝑉𝑃 ⋯ 𝑏̂𝑇−1
𝑉𝑃 .       (5.1.7) 

 

5.3 Estimation  

Several properties from the VP estimator Eq. (5.1.4) are presented in the next Lemma: 

Lemma 5.1.2 For the VP estimators (5.1.4), 𝑏̂𝑗
𝑉𝑃 for 𝑗 =  1, … , 𝑇 –  1, the following 

properties are derived. 

a) They are unbiased. 

b) They are uncorrelated. 

c) Given 𝐷𝑢, the estimator of the ultimate costs is an unbiased estimator of the true 

value, 𝔼(𝐶̂𝑖,𝑇
𝑉𝑃|𝐷𝑢) = 𝔼(𝐶𝑖,𝑇|𝐷𝑢).  

d) They are weighted average of the intermediate link ratios 𝐹𝑖,𝑗+1 =
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
, with the 

weights to be given by the square of the payments. 

𝑏̂𝑗
𝑉𝑃 =

∑ 𝐶𝑖,𝑗
2 𝐹𝑖,𝑗+1

𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

. 
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e) The conditional variance of  𝑏̂𝑗
𝑉𝑃 which has minimal condition variance among all 

unbiased linear combinations of the unbiased estimators (𝐹𝑖,𝑗+1)
1≤𝑖≤𝑇−𝑗

 for 𝑏𝑗 

conditional on 𝐷𝑢 is given by  

𝑉𝑎𝑟(𝑏̂𝑗
𝑉𝑃|𝐷𝑢) = (∑

1

𝜎𝑗
2

𝑇−𝑗

𝑖=1

)

−1

. 

Similarly, the covariance is given by 

𝐶𝑜𝑣 ((
𝐶𝑖,𝑗+1

𝐶 𝑖,𝑗
, 𝑏̂𝑗

𝑉𝑃) |𝐷𝑢)  = 𝜎𝑗
2

𝐶𝑖,𝑗
2

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

. 

Proof. (a) It is straightforward to show that 𝔼(𝑏̂𝑗
𝑉𝑃|𝐷𝑢) = 𝑏𝑗 , for 𝑗 = 1, … , 𝑇 –  1 , i.e., 

𝔼(𝑏̂𝑗
𝑉𝑃|𝐷𝑢) =

∑ 𝐶𝑖,𝑗𝔼(𝐶𝑖,𝑗+1|𝐷𝑢)
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

= 𝑏𝑗 . 

(b) The proof is similar to the one obtained by Mack (1993b, 1994), so it is omitted.  A proof 

can also be found in Wüthrich and Merz (2008). 

(c) Considering  

𝔼(𝐶̂𝑖,𝑇
𝑉𝑃|𝐶𝑖,𝑇−𝑖+1) = 𝔼 (𝐶𝑖,𝑇−𝑖+1𝑏̂𝑇−𝑖+1

𝑉𝑃 ⋯ 𝑏̂𝑇−1
𝑉𝑃 |𝐶𝑖,𝑇−𝑖+1)  

= 𝑏𝑇−1𝔼(𝐶𝑖,𝑇−𝑖+1𝑏̂𝑇−𝑖+1
𝑉𝑃 ⋯ 𝑏̂𝑇−2

𝑉𝑃 |𝐶𝑖,𝑇−𝑖+1) = 𝑏𝑇−1𝔼(𝐶̂𝑖,𝑇−1
𝑉𝑃 |𝐶𝑖,𝑇−𝑖+1). 

This means that 𝔼(𝐶̂𝑖,𝑇−1
𝑉𝑃 |𝐶𝑖,𝑇−𝑖+1) = 𝑏𝑇−2𝔼(𝐶̂𝑖,𝑇−2

𝑉𝑃 |𝐶𝑖,𝑇−𝑖+1).  

Continuing the iteration, we get 

𝔼(𝐶̂𝑖,𝑇
𝑉𝑃|𝐶𝑖,𝑇−𝑖+1) = 𝑏𝑇−1𝑏𝑇−2 ⋯ 𝑏1𝔼(𝐶̂𝑖,1

𝑉𝑃|𝐶𝑖,𝑇−𝑖+1) = 𝔼(𝐶𝑖,𝑇|𝐷𝑢), 

As 𝔼(𝐶𝑖,𝑇|𝐷𝑢), does not depend on the loss development factor calculation, the result is also 

similar to the one obtained by the Mack (1993b, 1994) distribution-free method. A proof may 

also be found in Wüthrich and Merz (2008). 

(d) 𝑏̂𝑗
𝑉𝑃 =

∑ 𝐶𝑖,𝑗𝐶𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

=
∑ 𝐶𝑖,𝑗

2 𝐹𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

. 

(e) Considering the two Lemmas 3.3 and 3.4 in Wüthrich and Merz (2008), and the fact that 
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𝑉𝑎𝑟(𝐹𝑖,𝑗+1|𝐷𝑢) = 𝑉𝑎𝑟(𝐹𝑖,𝑗+1|𝐶𝑖,𝑗) = 𝜎𝑗
2, 

then 

𝑉𝑎𝑟(𝑏̂𝑗
𝑉𝑃|𝐷𝑢) = (∑

1

𝜎𝑗
2

𝑇−𝑗

𝑖=1

)

−1

=
𝜎𝑗

2

𝑇 − 𝑗
 

and the covariance is given by 

𝐶𝑜𝑣 ((
𝐶𝑖,𝑗+1

𝐶 𝑖,𝑗
, 𝑏̂𝑗

𝑉𝑃) |𝐷𝑢) =  
𝐶𝑖,𝑗

2

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

𝑉𝑎𝑟 (
𝐶𝑖,𝑗+1

𝐶 𝑖,𝑗
|𝐷𝑢) = 𝜎𝑗

2
𝐶𝑖,𝑗

2

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

. 

∎ 

Remark 5.1.1 Based on the Gauss-Markov theorem, the VP loss development factors, 𝑏̂𝑗
𝑉𝑃, 

are the best linear unbiased estimator, see Fomby et al. (1984).  Moreover, the loss 

development factor’s variances and covariance are a function of 𝜎2, and the past observations, 

thus, 𝑏̂𝑗
𝑉𝑃are the ones with a lower variance. 

Remark 5.1.2 Now, the loss development factors in (5.1.4) can also be given considering 

(3.19), the general Murphy (1994) assumption for the conditional variance i.e., 

𝑉𝑎𝑟(𝐶𝑖,𝑗+1|𝐶𝑖,𝑗) = 𝜎𝑗
2𝐶𝑖,𝑗

𝛿 . Then, the estimator is given by 𝑏̂𝑗
𝑀𝑢 =

∑ 𝐶𝑖,𝑗
1−𝛿𝐶𝑖,𝑗+1𝑖

∑ 𝐶𝑖,𝑗
2−𝛿

𝑖
. If one sets 𝛿 =

0, the VP estimator is derived, and equivalently,  𝑏̂𝑗
𝑉𝑃 ≡ 𝑏̂𝑗

𝑀𝑢.    

Lemma 5.1.3 Under the method assumptions (5.1.1), (5.1.2) and (5.1.3) the estimator which 

is given by (5.1.5) is an unbiased estimator of 𝜎𝑗
2. 

Proof. For (5.1.5) to be unbiased we need 

𝔼(𝜎̂𝑗
2,𝑉𝑃|𝐷𝑢) =

1

𝑇−𝑗−1
∑ 𝔼 [(

𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏̂𝑗

𝑉𝑃)
2

|𝐷𝑢]
𝑇−𝑗
𝑖=1 . 

Then, the expected value is provided.  It may be decomposed as follows 
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𝔼 [(
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏̂𝑗

𝑉𝑃)

2

|𝐷𝑢]

= 𝔼 [(
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏𝑗)

2

|𝐷𝑢] + 2𝔼 [(
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏𝑗) (𝑏𝑗 − 𝑏̂𝑗

𝑉𝑃)|𝐷𝑢]

+ 𝔼 [(𝑏̂𝑗
𝑉𝑃 − 𝑏𝑗)

2
|𝐷𝑢]. 

Developing the first component on the right side, 

𝔼 [(
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏𝑗)

2

|𝐷𝑢] = 𝑉𝑎𝑟 (
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
|𝐷𝑢) = 𝜎𝑗

2. 

Using Lemma 5.1.2, the second component is derived  

𝔼 [(
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏𝑗) (𝑏̂𝑗

𝑉𝑃 − 𝑏𝑗)|𝐷𝑢] = 𝐶𝑜𝑣 ((
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
, 𝑏̂𝑗

𝑉𝑃) |𝐷𝑢) = 𝜎𝑗
2

𝐶𝑖,𝑗
2

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

. 

This means that 

−2𝔼 [(
𝐶𝑖,𝑗+1

𝐶𝑖,𝑗
− 𝑏𝑗) (𝑏̂𝑗

𝑉𝑃 − 𝑏𝑗)|𝐷𝑢] = −2𝜎𝑗
2

𝐶𝑖,𝑗
2

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

. 

Because for the last component, we also get from Lemma 5.1.2 that 

𝔼 [(𝑏̂𝑗
𝑉𝑃 − 𝑏𝑗)

2
|𝐷𝑢] = 𝑉𝑎𝑟(𝑏̂𝑗

𝑉𝑃|𝐷𝑢) =
𝜎𝑗

2

𝑇 − 𝑗
. 

Adding all the three components together, we get 

𝔼(𝜎̂𝑗
2,𝑉𝑃|𝐷𝑢) =

1

𝑇 − 𝑗 − 1
∑ (𝜎𝑗

2 − 2𝜎𝑗
2

𝐶𝑖,𝑗
2

∑ 𝐶𝑖,𝑗
2𝑇−𝑗

𝑖=1

+
𝜎𝑗

2

𝑇 − 𝑗
)  

𝑇−𝑗

𝑖=1

= 

1

𝑇 − 𝑗 − 1
𝜎𝑗

2(𝑇 − 𝑗 − 2 + 1) = 𝜎𝑗
2.                                                   ∎ 
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5.4 Prediction Error  

With the following results, the calculation of the mean squared error of prediction (msep) is 

provided. First, the necessary Lemma for the connection between the msep of the estimated 

reserves and claims is given.    

Lemma 5.1.4 [Mack, 1993a] The msep of the estimated reserves and claims is equal.            ∎ 

Theorem 5.1.1 Under the assumptions (5.1.1), (5.1.2) and (5.1.3), where all the origin years 

are independent and there are unbiased estimators for the loss development factor and the 

variance parameter, the mean squared error for each origin year reserve, 𝑚𝑠𝑒𝑝(𝑅̂𝑖), can be 

estimated by using (3.21) 

𝑚𝑠𝑒𝑝(𝑅̂𝑖)
̂ = 𝐶̂𝑖,𝑇

2,𝑉𝑃 ∑
𝜎̂𝑗

2,𝑉𝑃

𝑏̂𝑗
2,𝑉𝑃 (

1

𝐶̂𝑖,𝑗
 𝑉𝑃2 +

1

𝑇−𝑗
)𝑇−1

𝑗=𝑇−𝑖+1 ,                         (5.1.8) 

where 𝜎̂𝑗
2,𝑉𝑃

, 𝑏̂𝑗
2,𝑉𝑃

 and 𝐶̂𝑖,𝑇
𝑉𝑃 are given by Eqs. (5.1.5), (5.1.4) and (5.1.7). 

Proof. Considering (3.21), the Mack (1993a) definition of the msep 

𝑚𝑠𝑒𝑝(𝑅̂𝑖) = 𝑉𝑎𝑟(𝐶𝑖,𝑇|𝐷𝑢) + [𝔼(𝐶𝑖,𝑇|𝐷𝑢) − 𝐶̂𝑖,𝑇
𝑉𝑃]

2
. 

And using the following abbreviations 

𝔼𝑖(𝑋) = 𝔼(𝑋|𝐶𝑖,1, … , 𝐶𝑖,𝑇−𝑖+1) 

𝑉𝑎𝑟(𝑋) = 𝑉𝑎𝑟(𝑋|𝐶𝑖,1, … , 𝐶𝑖,𝑇−𝑖+1) 

By the law of total variance 

𝑉𝑎𝑟(𝐶𝑖,𝑇|𝐷𝑢) = 𝔼𝑖 (𝑉𝑎𝑟(𝐶𝑖,𝑇|𝐶𝑖,1, … , 𝐶𝑖,𝑇−1)) + 𝑉𝑎𝑟𝑖 (𝔼(𝐶𝑖,𝑇|𝐶𝑖,1, … , 𝐶𝑖,𝑇−1)) 

Applying (5.1.3) to the first term and (5.1.2) to the second term, we get 

𝑉𝑎𝑟(𝐶𝑖,𝑇|𝐷𝑢) = 𝔼𝑖(𝐶𝑖,𝑇−1
2 ) + 𝑏̂𝑇−1

 2,𝑉𝑃𝑉𝑎𝑟𝑖(𝐶𝑖,𝑇−1) 

Repeated use of (5.1.6) and (5.1.7) and knowing that 𝔼𝑖(𝐶𝑖,𝑇−𝑖+1
2 ) = 𝐶𝑖,𝑇−𝑖+1

2  

𝑉𝑎𝑟(𝐶𝑖,𝑇|𝐷𝑢) = [𝜎𝑇−2
2 𝜎𝑇−1

2 + 𝑏̂𝑇−2
 2,𝑉𝑃𝜎𝑇−1

2 + 𝑏̂𝑇−1
 2,𝑉𝑃𝜎𝑇−2

2 ]𝔼𝑖(𝐶𝑖,𝑇−2
2 ) + 𝑏̂𝑇−1

 2,𝑉𝑃𝑏̂𝑇−2
 2,𝑉𝑃𝑉𝑎𝑟𝑖(𝐶𝑖,𝑇−2) 
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Knowing that 𝔼𝑖(𝐶𝑖,𝑇−𝑖+1
2 ) = 𝐶𝑖,𝑇−𝑖+1

2  and that 𝑉𝑎𝑟𝑖(𝐶𝑖,𝑇−𝑖+1
2 ) = 0 

𝑉𝑎𝑟(𝐶𝑖,𝑇|𝐷𝑢) = 𝐶𝑖,𝑇−𝑟+1
2 ∑ 𝑏̂𝑇−𝑖+1

2,𝑉𝑃 ⋯ 𝑏̂𝑘−1
2,𝑉𝑃𝜎𝑘

2𝑏̂𝑘+1
2,𝑉𝑃 ⋯ 𝑏̂𝑇−1

2,𝑉𝑃

𝑇−1

𝑘=𝑇−𝑖+1

= 𝐶̂𝑖,𝑇
2,𝑉𝑃 ∑

𝜎̂𝑗
2,𝑉𝑃

𝑏̂𝑗
2,𝑉𝑃

1

𝐶̂𝑖,𝑗
 𝑉𝑃2

𝑇−1

𝑗=𝑇−𝑖+1

. 

Moreover, considering the Mack (1993a)’s proof of the second component (we just need to 

substitute the CL loss development factors estimators by the VP), we get 

[𝔼(𝐶𝑖,𝑇|𝐷𝑢) − 𝐶̂𝑖,𝑗
 𝑉𝑃]

2
= 𝐶𝑇−𝑖+1

2 (𝑏𝑇−𝑖+1 ⋯ 𝑏𝑇−1 − 𝑏̂𝑇−𝑖+1
 𝑉𝑃 ⋯ 𝑏̂𝑇−1

 𝑉𝑃 )
2

= 𝐶𝑇−𝑖+1
2 𝐹2, 

with  

𝐹 = 𝑏𝑇−𝑖+1 … 𝑏𝑇−1 − 𝑏̂𝑇−𝑖+1
 𝑉𝑃 ⋯ 𝑏̂𝑇−1

 𝑉𝑃 = 𝑆𝑇−𝑖+1 + ⋯ + 𝑆𝑇−1, 

and 

𝑆𝑗 = 𝑏̂𝑇−𝑖+1
 𝑉𝑃 ⋯ 𝑏̂𝑗−1

 𝑉𝑃 (𝑏𝑗 − 𝑏̂𝑗
 𝑉𝑃)𝑏𝑗+1 ⋯ 𝑏𝑇−1. 

Hence  

𝐹2 = ∑ 𝑆𝑗
2 +

𝑇−𝑗

𝑗=𝑇−𝑖+1

2 ∑ 𝑆𝑖𝑆𝑗

𝑖<𝑗

= 𝔼(𝑆𝑗
2|𝐷𝑢) + 2𝔼(𝑆𝑖𝑆𝑗|𝐷𝑢). 

Following Mack (1993a), as the estimator for the loss development factor is unbiased, see 

Lemma 5.1.2, we have that 𝔼(𝑆𝑖𝑆𝑗|𝐷𝑢) = 0.   Consequently, we get 𝐹2 = 𝔼(𝑆𝑗
2|𝐷𝑢), thus we 

just need to have the variance of the estimator, see Lemma 5.1.2 e) 

𝔼 ((𝑏𝑗 − 𝑏̂𝑗
 𝑉𝑃)

2
|𝐷𝑢) = 𝑉𝑎𝑟(𝑏̂𝑗

 𝑉𝑃|𝐷𝑢) =
𝜎𝑗

2

𝑇−𝑗
. 

Following Mack (1993a) generic formula, we get now 

𝔼(𝑆𝑗
2|𝐷𝑢) =

𝑏̂𝑇−𝑖+1
2,𝑉𝑃 ⋯ 𝑏̂𝑗−1

2,𝑉𝑃𝜎𝑗
2𝑏𝑗+1

2 ⋯ 𝑏𝑇−1
2

𝑇 − 𝑗
. 

Using 𝐹2 = ∑ 𝑆𝑗
2𝑇−𝑗

𝑗=𝑇−𝑖+1 , the estimators of the loss development factors and of the variance 

parameter, we get 
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[𝔼(𝐶𝑖,𝑇|𝐷𝑢) − 𝐶̂𝑖,𝑗
 𝑉𝑃]

2
= 𝐶̂𝑖,𝑇

2,𝑉𝑃 ∑
𝜎̂𝑗

2,𝑉𝑃

𝑏̂𝑗
2,𝑉𝑃 (

1

𝑇 − 𝑗
)

𝑇−1

𝑗=𝑇−𝑖+1

. 

And finally, we have  

𝑚𝑠𝑒𝑝(𝑅̂𝑖) = 𝐶̂𝑖,𝑇
2,𝑉𝑃 ∑

𝜎̂𝑗
2,𝑉𝑃

𝑏̂𝑗
2,𝑉𝑃 (

1

𝐶̂𝑖,𝑗
 𝑉𝑃2 +

1

𝑇 − 𝑗
)

𝑇−1

𝑗=𝑇−𝑖+1

. 

This leads to the estimator stated in the Theorem.                                 ∎ 

From Theorem 5.1.1, we observe that the mean squared error of prediction given by (5.1.8), 

for each origin year, is similar to the Mack (1993a) CL prediction error, i.e., it depends on the 

level of square of estimated ultimate claims, and on the sum of the variance estimator for each 

development factor weighted by the estimator of a development factor and a multiplicative 

factor.  However, there are also some differences.  Obviously, the estimators are obtained 

through the VP instead of the CL method, and the multiplicative factor has now two different 

components.  The first component is the inverse from the square of the estimated cumulative 

payments.  In Mack (1993a, 1994) method, this component is the inverse of the estimated 

cumulative payments.  The reasoning behind this difference lies on the assumption (5.1.3) 

from the VP method, where the conditional variance of payments depends on the square4 of 

payments.  The second component is totally different between the VP and the CL methods.  In 

the former, it does not depend on the inverse of the sum of payments, as the CL does, but 

depends only on the inverse of number of years to complete the evolution of each 

development factor, i.e., 1/(𝑇 − 𝑗).  This is due to the conditional variance of the VP loss 

development factor, see Lemma 5.1.2-e.  

In the CL method, this factor is the inverse of sum of future cumulative payments.  The next 

Corollary completes the theoretical findings.   

Corollary 5.1.1 With the assumptions and notations of Theorem 5.1.1, the msep of the total 

reserve estimate for every origin year 𝑖, 𝑅̂ = ∑ 𝑅𝑖 =𝑇
𝑖=2 𝑅̂2 + 𝑅̂3 + ⋯ + 𝑅̂𝑇 can be given by 

𝑚𝑠𝑒𝑝(𝑅̂) = ∑ {𝑚𝑠𝑒(𝑅̂𝑖) + 𝐶̂𝑖,𝑇
𝑉𝑃(∑ 𝐶𝑗,𝑇

𝑇
𝑗=𝑖+1 ) ∑

2𝜎̂𝑗
2,𝑉𝑃 𝑏̂𝑗

2,𝑉𝑃⁄

𝑇−𝑗

𝑇−1
𝑗=𝑇−𝑖+1 }𝑇

𝑖=2  . (5.1.9) 

                                                 

4In the Mack (1993a, 1993b, 1994)’s model, it depends on the payments. 
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Proof. The result comes immediately following Mack (1993) using   

𝔼(𝑆𝑗
2|𝐷𝑢) =

𝑏̂𝑇−𝑖+1
2,𝑉𝑃 ⋯𝑏̂𝑗−1

2,𝑉𝑃𝜎𝑗
2𝑏𝑗+1

2 ⋯𝑏𝑇−1
2

𝑇−𝑗
.                                            ∎ 

As we saw before, the 𝑚𝑠𝑒𝑝 for the total reserve is similar to the Mack CL prediction error.  

However, the estimators of the payments, the reserves 𝑚𝑠𝑒𝑝 and the ratio of variance to the 

square of loss development factors, are all obtained using the VP results.   

Additionally, as it was the case above, the last component is totally different between the VP 

and CL methods.   

In the former, it does not depend on the inverse of the sum of payments, like the CL does, but 

just on the inverse of number of years to develop i.e., 1/(𝑇 − 𝑗).  

 

5.5 Numerical Examples 

 

We give here two types of examples with different datasets. In one of the examples, we call 

the data as with irregular development.  

 

We may see an example in Table 2.1, and in it corresponding link ratios in Table 2.2. The 

data is from Mack (1993a).  

 

If we analyse each column, we see that there is a big range from link ratios on column 1: it 

goes from 1.650 until 40.425. In column 2, these link ratios have also some variability and 

they go from 1.259 until 2.723. In all the other columns, they are between 0.993 and 1.977. 

Also, inside column 1, the variability is very high even if we skip the 40.425 outlier: the range 

goes from 1.650 until 8.759 and in some origin years it is below 2.  

 

Figure 5.1 summarizes this evolution (the second graph of the figure is equal to the first one 

without the first origin year).  
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Figure 5.1: Irregular Data Example 

 

 

 

In the other example, we have two datasets, and both are considered has regular data: Taylor 

and Ashe (1983), see Table 5.2 and Taylor and McGuire (2016), see Table 5.3. We will see 

that these two datasets are totally different from the one with irregular data.  
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Table 5.2: Triangle of cumulative payments, Taylor and Ashe (1983) 

 

Table 5.3: Triangle of cumulative payments, Taylor and McGuire (2016) 

 

 

The same analysis done for Mack (1993a) data is now done for these two datasets in the 

following Figures 5.2 and 5.3. In both cases, Taylor and Ashe (1983) data in the first 

example, and Taylor and McGuire (2016) data in the second example, there are no outliers.  

 

We may also see that, in both datasets, payments evolution is stable. Also, the first link ratios, 

in both datasets, are higher than the others because most of the payments are done in the 

second development year. However, the range of the first link ratios is much smaller than the 

one detected with irregular data (even when the outlier from irregular data is not considered). 

When we consider the other link ratios we may also see that in the irregular data they are 

between 1 and 2.7, but with the regular datasets they are between 1 and 2 and between 0.98 

and 1.1.  

 

This means that the irregular data is irregular due to the existence of an outlier but also due to 

the higher range of the link ratios. 

 

  

1 2 3 4 5 6 7 8 9 10

1 357 848 1 124 788 1 735 330 2 218 270 2 745 596 3 319 994 3 466 336 3 606 286 3 833 515 3 901 463

2 352 118 1 236 139 2 170 033 3 353 322 3 799 067 4 120 063 4 647 867 4 914 039 5 339 085  

3 290 507 1 292 306 2 218 525 3 235 179 3 985 995 4 132 918 4 628 910 4 909 315   

4 310 608 1 418 858 2 195 047 3 757 447 4 029 929 4 381 982 4 588 268    

5 443 160 1 136 350 2 128 333 2 897 821 3 402 672 3 873 311     

6 396 132 1 333 217 2 180 715 2 985 752 3 691 712       

7 440 832 1 288 463 2 419 861 3 483 130       

8 359 480 1 421 128 2 864 498          

9 376 686 1 363 294         

10 344 014          

1 2 3 4 5 6 7 8 9 10

1 45 630 68 980 71 904 73 702 75 709 76 913 78 211 78 774 79 551 80 172

2 53 025 79 491 82 320 84 068 84 800 86 224 86 623 87 160 87 500

3 67 318 109 651 107 797 110 975 114 020 117 301 120 210 122 823  

4 93 489 130 962 138 393 145 041 149 248 155 010 156 900   

5 80 517 113 578 120 441 124 769 128 772 131 122    

6 68 690 102 621 108 266 114 444 117 923     

7 63 091 95 289 104 227 111 106      

8 64 430 96 921 105 335       

9 68 548 103 914          

10 76 013
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Figure 5.2: First Regular Data Example 
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Figure 5.3: Second Regular Data Example 

 

 

 

Finally, in Figure 5.4, we compare all the datasets using the coefficient of variation. Then we 

may see that the regular data has always the link ratios coefficient of variation below 20%, 

whatever the development year is. This does not happen with the irregular data, where just 

after the fourth year of development the link ratios coefficient of variation is below 20%. 
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Figure 5.4: Comparing Regular Data with Irregular Data 

 

 

 

5.5.1. Irregular Development of Data 

In this section, cumulative payments 𝐶𝑖,𝑗 data from Table 5.1 is used to illustrate the 

comparison between the two claims reserving methodologies.  The dataset is used by Mack 

(1993a).  

Indeed, using Table 5.1, which has very irregular (extreme) development of data, we can 

observe that both the VP and CL have high prediction errors (see Tables 5.4 and 5.5).  The 

prediction errors are, 52% for the CL and 63% for the VP. 

Table 5.4: Stochastic Vector Projection with Irregular Data 
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Development Year Loss Development Factors Variance

2 2,217 192,637

3 1,569 0,243

4 1,261 0,104

5 1,162 0,005

6 1,100 0,007

7 1,041 0,003

8 1,032 0,000

9 1,016 0,000

10 1,009 0,000
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Table 5.5: Mack (1993a) Distribution-Free Method with Irregular Data 

 

 

Due to the strong irregular development of data, there is not a good fit in both methods and 

the VP does not improve the CL results. The CL estimates 19% more of reserves than the VP 

does.  This is due to the features of the triangle for the first two development years:  

- The payments were higher in the past (year 1, 3 and 4 are the ones with more payments, 

see Table 2.1) but on those years the link ratios were lower (see Table 2.2). 

- The existence of higher link ratios on more recent years (see Table 2.2) is associated with 

an outlier in the past. Figure 5.1 shows that the most recent link ratios are higher (when 

compared with the link ratios from the past).  

Origin Year Estimated Reserves Prediction Error

2 154 97%

3 593 71%

4 1 577 33%

5 2 648 33%

6 3 344 26%

7 5 013 18%

8 10 151 25%

9 9 623 24%

10 10 670 250%

  

Total 43 772 63%

Development Year Loss Development Factors Variance

2 2,999 27 883,479

3 1,624 1 108,526

4 1,271 691,443

5 1,172 61,230

6 1,113 119,439

7 1,042 40,820

8 1,033 1,343

9 1,017 7,883

10 1,009 1,343

Origin Year Estimated Reserves Prediction Error

2 154 134%

3 617 101%

4 1 636 46%

5 2 747 53%

6 3 649 55%

7 5 435 41%

8 10 907 49%

9 10 650 59%

10 16 339 150%

  

Total 52 135 52%
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As the VP gives more weight to the older link ratios, when compared with the CL, its fit is not 

so good. This happens because the VP weights with the square of payments, see Lemma 

5.1.2, and the CL with the payments, see (2.7).  

The same happens with the link ratio outlier on origin year 2, see Figure 5.1 and Table 2.2. 

The VP gives a higher weight to this link ratio (due to the use of the square of the payments as 

weights), something that does not happen so much with the CL (as just the payments are used 

as weights).  Practically, this means that the CL smooths more the effect of this link ratio 

outlier.  

In the following subsections, regular development of data is used.  

 

5.5.2 Regular Development of Data 

Example 1: Data from Taylor and Ashe (1983) 

In this subsection, we now consider a different set of data also used by Mack (1993a), and 

originally from Taylor and Ashe (1983).   

With this more regular triangle, both the VP and the CL have lower prediction errors. 

However, the VP presents a smaller prediction error than the CL, i.e., 9% for the former and 

13% for the latter, see Tables 5.6 and 5.7.  

Table 5.6: Stochastic Vector Projection with Regular Data from Example 1 

 

Loss Development Factors Variance 

3,418 0,472

1,749 0,029

1,462 0,020

1,167 0,005

1,097 0,005

1,087 0,002

1,055 0,000

1,078 0,000

1,018 0,000

Parameters
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Table 5.7: Mack (1993a) Distribution-Free Method Regular Data Example 1 

 

 

The difference of the estimated reserves, between the VP and the CL, is of -1%.   

We may use these results, see section 3.6.3, to have the reserves stochastic estimators with a 

certain confidence level, for example 99.5%. This allows us to have the estimated reserves 

Origin Year Estimated Reserves Prediction Error

2 94 634 63%

3 478 103 18%

4 723 104 12%

5 1 002 041 13%

6 1 408 034 14%

7 2 131 332 12%

8 3 885 296 10%

9 4 255 237 9%

10 4 501 720 10%

  

Total 18 479 500 9%

Loss Development Factors Variance 

3,491 160280,327

1,747 37736,855

1,457 41965,213

1,174 15182,903

1,104 13731,324

1,086 8185,772

1,054 446,617

1,077 1147,366

1,018 446,617

Parameters

Origin Year Estimated Reserves Prediction Error

2 94 634 80%

3 469 511 26%

4 709 638 19%

5 984 889 27%

6 1 419 459 29%

7 2 177 641 26%

8 3 920 301 22%

9 4 278 972 23%

10 4 625 811 29%

  

Total 18 680 856 13%
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added of a risk margin5, that is we will obtain the reserve fair value for a 99.5% confidence 

level. For this degree of confidence, we will expect a probability of 0.5% to have the reserves 

lower than the future payments.  

Following Mack (1993b) and section 3.6.3, we calculated the 99.5% confidence level upper 

bound for the VP and the CL reserves. We used the Mack (1993b) approach with the normal 

distribution to calculate the upper bound of the confidence interval. For a 99.5% confidence 

level, the VP stochastic reserve is of 22 624 853 and the same CL stochastic reserve is of 

24 984 154 money-units. This means that although the VP best estimate is just -1% lower 

than the CL best estimate, the stochastic difference, for 99.5% of confidence level, is of 

+10%. 

Example 2: Data from Taylor and McGuire (2016) 

We consider now a different set of very regular data used recently by Taylor and McGuire 

(2016).  It is even more regular than the previous one.  Under this new triangle, the VP and 

the CL have lower prediction errors.  However, the VP presents a smaller prediction error 

than the CL, 1.3% for the former and 2.9% for the latter, see Tables 5.8 and 5.9. 

Table 5.8: Stochastic Vector Projection with Regular Data from Example 2 

 

 

                                                 

5 The risk margin is important not only to give us a measure of uncertainty of our estimate, but also because it is 

one of the components of claims reserving on the new Solvency II regime when internal models are considered.  

The Fair Value of reserves is the sum of best estimate with a risk margin. 

Development Year Loss Development Factors Variance

2 1,812 0,008

3 1,260 0,000

4 1,158 0,000

5 1,088 0,000

6 1,056 0,000

7 1,039 0,000

8 1,030 0,000

9 1,025 0,000

10 1,021 0,000
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Table 5.9: Mack (1993a) Distribution-Free Method Regular Data Example 2 

 

 

We may also see that the difference of estimated reserves, between the VP and the CL, is also 

very small, but due to the low prediction error from the VP, its stochastic reserve will also be 

lower than the one from CL, about -4%. 

Remark 5.2.2.1 It should be mentioned here that the prediction error is not the only 

quantitative criterion to follow when analysing the triangle results.  Other items should also 

be addressed, such as the errors and the back-testing, when these methods are considered.  A 

recent and good example of this may be seen in Taylor and McGuire (2016).  We will analyse 

these items in the following sections. 

Origin Year Estimated Reserves Prediction Error

2 3 398 0,0%

3 8 155 0,1%

4 14 608 1,6%

5 22 719 1,8%

6 32 025 2,0%

7 45 870 1,9%

8 60 175 1,5%

9 80 926 1,4%

10 105 594 2,5%

  

Total 373 469 1,3%

Development Year Loss Development Factors Variance

2 1,815 449,408

3 1,261 22,347

4 1,158 8,575

5 1,088 7,547

6 1,055 4,294

7 1,039 1,887

8 1,030 0,576

9 1,025 0,001

10 1,021 0,000

Origin Year Estimated Reserves Prediction Error

2 3 398 0,0%

3 8 155 0,2%

4 14 579 2,8%

5 22 645 3,7%

6 31 865 4,3%

7 45 753 4,3%

8 60 093 3,8%

9 80 983 3,9%

10 105 874 8,7%

  

Total 373 346 2,9%
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5.6 Use Test 

 

In this section, to compare the conclusions derived by the previously described three 

numerical examples and to provide also a “business orientated” analysis, we select 1146 

triangles randomly7 with paid claims and 10 years of information to be comparable directly to 

the previous cases.  Table 5.10 reports the derived results.  Additionally, Figure 5.5 provides a 

comparison between the prediction errors calculated based on CL and VP methods, 

respectively.   

Among the 114 triangles studied, the VP has a lower prediction error and lower reserve 

estimation in 65 cases.  In the 32 other cases, despite the lower prediction error, the estimated 

reserve of the VP is higher.  The CL from Mack (1993a, 1993b, 1994) has a lower prediction 

error only in 17 cases and in 16 of them produced a higher level of reserves.  Thus, based on 

this data, we can conclude that the VP has a lower prediction error in 85% (97 out of 114) of 

these cases.  The VP reserves are lower in 71% (81 out of 114) of the cases, with an average 

reduction in reserves of 2%. 

Table 5.10: Summary of Results of the Use Test 

 

Moreover, we concluded that the triangles with the lower CL prediction errors have the 

following features: 

- In most of these 17 cases, there are some special situations, such as cells with zeros (five 

triangles) or cells with negative cumulative payments (nine triangles).   

                                                 

6 The data set used is from the consulting company, Actuarial Group, Lisbon Portugal.  Obviously, it is not 

possible to disclose any further information about the triangles used and their orientation.  Table 5.10 and Figure 

5.5 are for illustration properties and useful for our “business orientated” analysis.  The interested readers and 

particularly the practitioners can use their own data to evaluate and to reconfirm our findings.   

7 Practically, we mean that the dataset is chosen by using different companies and for different periods of 

businesses.  

VP Prediction Error Lower CL Prediction Error Lower Total

VP Reserves Lower 65 16 81

CL Reserves Lower 32 1 33

Total 97 17 114



 

113 

 

- There are three triangles that appear to share something similar, i.e., the payments increase 

with the origin year until a certain point and then start decreasing. 

Figure 5.5: Chain Ladder Prediction Error / Vector Projection Prediction Error 

 

 

 

5.7 Selecting a Method 

 

So far, we just considered the prediction error as a quantitative tool to compare the CL with 

the VP. Indeed, the prediction error is very important because it summarizes how well the 

method fits the experience. This feature is fundamental for the LRT methods (as we saw in 

chapter 2 and 3, the CL and the VP are LRT methods). That happens because the LRT 

methods assumes that the past helps to explain the future. If the prediction error from one 

method is lower than the prediction error from another method, this means that the former 

method fits better the experience than the latter method. Consequently, that method with a 

lower prediction error is more able to use the past to predict the future. 

 

However, there are other considerations to be made when selecting a method to predict the 

reserves. We may have qualitative and quantitative tools to choose a method.  

 

As qualitative tools we have several: 

- Purpose of the analysis: if we are calculating the reserves to satisfy regulatory 

requirements there may be methods recommended by the regulators. 
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- Line of business: for example, with credit insurance it is important to be able to have a 

good prediction of reimbursements. If a method fails to do this, it may not be 

recommended for that line of business. 

- Governance requirements: some companies may impose some constrains on method 

selection, for example, they may not accept methods not used by the market. 

- Law: for example, the Solvency II requires best estimates, which means that we should not 

consider methods that always produce an upward (or downward) estimation of the 

reserves. 

- Data requirements: if the method is supposed to be used annually and quarterly, and if we 

do not have some of the inputs for quarter reports, it may be wise to consider an annual 

method that may be used quarterly.  

- And stability: some methods are more robust to new data than others and some insurers 

prefer methods that are more stable, to avoid big changes on reserves. For instance, the 

Last Link Ratio method presented in section 3.1 is very sensitive to new data, as it just 

relies on one link ratio, the most recent one. The MED method, also presented in section 

3.1, is more robust, as we considered several link ratios and select the median of all of 

them. An additional link ratio, coming from new data, will not change necessarily the 

median. 

The CL weights the link ratios with the payments, see (2.7). If the latter increase, a new 

observation will have more weight. The same happens with the VP, but in this case, as the 

weights are the square of the payments, the weight of the recent observation with the 

payments increase is even bigger.  

 

Some quantitative tools are also available to analyse the method’s assumptions and results, 

see for example Mack (1993b). The first ones are the errors given by (3.2) and calculated 

retrospectively for the cells of the upper triangle, from development year 𝑇 until development 

year 1 and using incremental payments (instead of cumulative payments), see for example 

Booth et al. (2005). This means that we need to have, for the upper triangle, the incremental 

payments and the estimated incremental payments. The former is obtained from (3.10) but the 

latter must be calculated. They are obtained using the loss development factors estimated 

from the claims reserving method considered for the calculations. For that, we use the 

following relation that allows us to calculate the estimated payments 𝐶̂𝑖,𝑗 for the upper triangle 

where 𝑗 ≤ 𝑇 − 𝑖 + 1  
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                                   𝐶̂1,𝑇 = 𝐶1,𝑇                       𝐶̂𝑖,𝑗 = 𝐶̂𝑖,𝑗+1/𝑏̂𝑗     𝑗 ≤ 𝑇 − 𝑖 + 1                      (5.4.1) 

Then we calculate the incremental payments using (3.10). We do this calculation for the 

observed cumulative payments and for the estimated payments given by (5.4.1). Finally, we 

get the errors for the upper triangle doing the difference between the incremental payments 

and the incremental payments calculated retrospectively. 

 

Booth et al. (2005) writes that the errors: 

 “are a basic measure which can be used to test how appropriate models are, given the 

underlying data”.  

 

Errors analysis may be used to highlight regions of the upper triangle with a poor fit and is 

based on the upper triangle. In the following test, back-testing, we will do an analysis with the 

lower triangle. 

 

The back-testing is a technique for validating internal models under Solvency II, see for 

example, in this respect, European Union (2015). This allows analysing discrepancies 

between the results provided by a model and the real observations. The errors approach, 

presented before, may be seen as a back-testing but does not allow us to consider a 

requirement from the Solvency II internal models: the stability of the results over time. A 

good model should not bring too much variation on the results as new information arrives, 

because any new events not yet in data should have been already considered by the model, 

European Union (2009 and 2015).  

 

It is not common to see papers about back-testing claims reserving. Meyers and Shi (2011) 

mention:  

“That the sparsity of studies on retrospective tests might be attributed to the unavailability of 

the data on realized claims”.  

The same paper highlights that this may be overcome with Bayesian models or with the use of 

the bootstrapping technique.  

 

Following the Solvency II requirements, see European Union (2009 and 2015), we do a back-

testing analysing the results stability of a specific claims reserving method within several 

calendar years. This means estimating the ultimate costs per origin year for different sub-sets 
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of the triangle and seeing the evolution of the ultimate costs over time. We excluded from the 

analysis the first calendar year (there is just one cell in the triangle and is not possible to get 

any result) and the second calendar year (whatever the method the result is not significant and 

usually the same for all the link ratios methods). 

 

For example, we may start back-testing with the data from the first, second and third calendar 

years, that is 𝑖 = 1,2,3 and 𝑗 = 1,2,3, and estimate the ultimate costs for the second and third 

origin years (we are assuming in all the triangles that the ultimate cost from the first origin 

year is already known). Then we do the same, adding one more calendar year and get another 

estimate of the ultimate costs (now including also 𝑖 = 4). We repeat this until we have 

ultimate costs per origin year for all the calendar years. 

 

5.7.1 Mack Data 

 

Here we present the results for Mack (1993a) data using the CL and the VP. The following 

Table 5.11 presents the errors (with retrospective calculation) and Table 5.12 the same errors 

standardized by the incremental payments.   

Table 5.11: Errors with CL for Mack Data 

 

Table 5.12: Standardized Errors with CL for Mack Data 

 

We may see that the weight of the errors on incremental payments (the standardized errors) is 

high in several cells, for example, (2,1), (5,1), (7,1), (2,3), (1,4), (6,1), (5,6), (2,7) and (1,9). 

Of all these cells, two of them, (2,1) and (5,6), have very high standardized errors. The model 

has difficulty in explaining the evolution of the second and fifth year of origin but there are 

several other years with standardized errors around 0.5, that is 50% of the incremental 

payments.  

1 2 3 4 5 6 7 8 9 10

1 2 901 -964 -1 311 -1 887 -509 906 1 113 8 -257 0

2 -1 784 401 -2 423 2 777 1 108 263 -743 144 257  

3 710 184 -168 -1 293 -274 1 259 -265 -152

4 2 437 -533 -1 807 1 255 -1 260 12 -105

5 -2 151 1 989 206 2 055 341 -2 441

6 -673 561 1 169 -1 651 594

7 -1 433 -515 3 205 -1 257

8 -1 342 212 1 129

9 1 334 -1 334

10 0

1 2 3 4 5 6 7 8 9 10

1 0,579 -0,296 -0,497 -2,101 -0,294 0,343 0,609 0,014 -4,756 0,000

2 -16,829 0,096 -2,181 0,527 0,356 0,145 7,212 0,214 0,480  

3 0,208 0,033 -0,034 -0,570 -0,106 0,362 -0,408 -0,253   

4 0,431 -0,090 -0,429 0,228 -0,583 0,005 -0,107    

5 -1,970 0,235 0,033 0,325 0,090 -10,849     

6 -0,445 0,114 0,222 -1,339 0,204      

7 -2,572 -0,149 0,463 -0,919       

8 -0,993 0,038 0,183        

9 0,426 -0,590         

10 0,000          
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We may also see in the following Figure 5.6 that the CL is not producing stable estimates of 

the ultimate costs over the years: 

- In most of the origin years the CL increases the ultimate costs significantly over time. 

- After a certain year of development, the opposite happens, and the CL starts correcting 

downwards the original forecast.  

- The number of years of development, for these two effects to emerge, is not always the 

same. 

- Finally, the path described above as an inversion for the more recent year considered, 

the year 9, where we see that the first estimate of the ultimate cost is much higher than 

the current one. This is an important fact as the year 9 just has two years of 

development and is far from being closed. 

 

Figure 5.6: Back-Testing CL with Mack Data 

 

 

 

Doing the same analysis for the VP we get the following Tables 5.13 and 5.14. 
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Table 5.13: Data Errors with VP for Mack Data 

 

 

 

Table 5.14: Data Standardized Errors with VP for Mack Data 

 

 

We may see that the weight of the errors on incremental payments is high in the same cells as 

the CL. However, there are some extra cells in the first development year with high 

standardized errors, the (6,1) and (8,1). 

We may also see in the following Figure 5.7 that the VP, as the CL in Figure 5.6, is not 

producing stable estimates of the ultimate costs over the years. Also, the problems detected 

with the CL are also emerging with the VP. 

 

Figure 5.7: Back-Testing VP with Mack Data 

 

 

 

1 2 3 4 5 6 7 8 9 10

1 1 960 -457 -1 212 -1 871 -434 1 091 1 135 26 -238 0

2 -2 625 854 -2 335 2 791 1 175 429 -724 160 274  

3 -488 837 -36 -1 270 -175 1 498 -237 -129

4 1 014 251 -1 644 1 288 -1 138 300 -70

5 -3 579 2 787 379 2 094 468 -2 149

6 -1 597 1 146 1 333 -1 590 707

7 -2 250 46 3 384 -1 180

8 -2 418 1 008 1 410

9 700 -700

10 0

1 2 3 4 5 6 7 8 9 10

1 0,391 -0,140 -0,459 -2,084 -0,250 0,413 0,621 0,043 -4,405 0,000

2 -24,768 0,204 -2,101 0,530 0,377 0,236 7,025 0,238 0,512  

3 -0,143 0,150 -0,007 -0,560 -0,068 0,431 -0,365 -0,214   

4 0,179 0,043 -0,390 0,234 -0,527 0,113 -0,072    

5 -3,277 0,329 0,060 0,331 0,123 -9,550     

6 -1,056 0,232 0,254 -1,289 0,242      

7 -4,040 0,013 0,489 -0,862       

8 -1,790 0,180 0,229        

9 0,223 -0,309         

10 0,000          
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We must remember here that both the CL and the VP presented very high prediction errors for 

this data, see section 5.2.1. Putting together all the analysis done, we may conclude that with 

the irregular data considered here, Mack (1993a), both the CL and the VP do not fit properly 

the data. Because of this, there are high errors, unstable estimates of the ultimate costs and 

high prediction errors. Comparing both methods, the CL and the VP, we know that the former 

minimizes the square of the errors, Straub (1988). However, in this analysis, Straub (1988) 

did the calculation of the regression errors and not of the errors presented above (with 

retrospective calculation).  

 

Mack (1993b) showed that using a regression framework is very useful, as the usual 

regression analysis instruments become available (and the CL may be seen as a weighted-

regression). Mack (1993b) also consider for analysis the regression errors and not the errors 

calculated retrospectively. In the following tables, we present the regression errors and the 

standardized regression residual from the CL and the VP. The standardized regression errors 

are obtained dividing the regression errors obtained as in (3.2) by the observed cumulative 

payments 𝐶𝑖,𝑗. With the regression errors the VP has a sum of the square of errors of 

204 640 676 and the CL of 258 245 586.  

 

Using CL, the first regression (which errors are presented on column 2 of the Tables 5.15 and 

5.16) is the one with higher standardized regression errors, the regression errors divided by 

the observed payments, see Table 5.16. In this column, five years of origin have errors that 

represent more than 0.5 of the observed payments.  

 

Table 5.15: Regression Errors with CL for Mack Data 

 

 

 

Table 5.16: Data Standardized Regression Errors with CL for Mack Data 

 

1 2 3 4 5 6 7 8 9 10

1 0 -6 764 -2 518 -2 057 -293 1 107 1 149 0 -261 0

2 0 3 967 -1 561 3 808 1 285 254 -757 158 261  

3 0 -1 236 -726 -1 490 -177 1 355 -283 -158

4 0 -5 406 -2 994 1 229 -1 492 2 -110

5 0 6 290 307 2 043 -20 -2 718

6 0 1 907 1 238 -1 937 696

7 0 2 349 4 419 -1 597

8 0 2 895 1 833

9 0 -4 002

10 0
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With the VP, see Table 5.18, the regression of the column 2 is also the one with higher 

standardized regression errors. In this column, five years of origin have errors that represent 

more than 0.5 of the observed payments. It is the same conclusion we got from the CL.  

 

However, here the VP, for the same origin year 9, has a much lower residual, when compared 

with the CL. This happens because the link ratio from year 9, see Table 2.1, is much lower 

than the historical link ratios and the VP method gives more weight to the years with more 

payments (see Lemma 5.1.2), which is the case in year 9 for the development year 1. Giving 

more weight to this link ratio made the VP to have a better fit to this cell. 

 

Table 5.17: Data Regression Errors with VP for Mack Data 

 

 

 

Table 5.18: Data Standardized Regression Errors with VP for Mack Data 

 

 

 

5.7.2 Taylor and Ashe Data 

 

Here we present the same results as in section 5.4.1 but now for Taylor and Ashe (1983) data. 

When compared with Mack (1993a) data, Taylor and Ashe (1983) data is more regular and 

fitting the CL and the VP gave lower prediction errors, see Tables 5.4 and 5.5.  

1 2 3 4 5 6 7 8 9 10

1 0 -0,8180 -0,2309 -0,1742 -0,0216 0,0684 0,0638 0,0000 -0,0140 0,0000

2 0 0,9258 -0,2893 0,3570 0,0932 0,0163 -0,0489 0,0097 0,0156  

3 0 -0,1374 -0,0523 -0,0923 -0,0094 0,0610 -0,0124 -0,0067   

4 0 -0,4679 -0,1899 0,0578 -0,0637 0,0001 -0,0041    

5 0 0,6576 0,0194 0,0922 -0,0008 -0,1038     

6 0 0,2959 0,1058 -0,1497 0,0439      

7 0 0,5844 0,4037 -0,1297       

8 0 0,4167 0,1398        

9 0 -0,7418         

1 2 3 4 5 6 7 8 9 10

1 0 -2 844 -2 067 -1 948 -178 1 292 1 172 19 -242 0

2 0 4 050 -1 327 3 862 1 388 443 -735 174 278  

3 0 1 431 -235 -1 351 -20 1 611 -251 -133

4 0 -983 -2 363 1 387 -1 285 322 -73

5 0 7 144 829 2 202 195 -2 363

6 0 3 090 1 590 -1 820 822

7 0 2 785 4 639 -1 488

8 0 3 952 2 212

9 0 -1 552

10 0

1 2 3 4 5 6 7 8 9 10

1 0 -0,3439 -0,1895 -0,1650 -0,0132 0,0799 0,0651 0,0010 -0,0129 0,0000

2 0 0,9452 -0,2459 0,3621 0,1007 0,0284 -0,0475 0,0108 0,0166  

3 0 0,1592 -0,0169 -0,0837 -0,0011 0,0725 -0,0110 -0,0057   

4 0 -0,0851 -0,1499 0,0652 -0,0549 0,0124 -0,0027    

5 0 0,7469 0,0523 0,0993 0,0075 -0,0903     

6 0 0,4795 0,1359 -0,1407 0,0518      

7 0 0,6928 0,4238 -0,1208       

8 0 0,5688 0,1687        

9 0 -0,2876         
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Table 5.19: Errors with CL for Taylor and Ashe Data 

 

 

 

Table 5.20: Standardized Errors with CL for Taylor and Ashe Data 

 

 

 

We may see that the weight of the errors on incremental payments is higher in several cells 

until year of origin 5. The fit is better for more recent years. However, there are only four 

cells with standardized errors higher than 0.5. These results are better than those obtained for 

the irregular data set from section 5.4.1. We may also see in the following Figure 5.8 that the 

CL is producing more stable estimates of the ultimate costs over the years. However, there is 

no such stability for years of origin 5 and 8 and for the latter the results do not seem to be 

already stabilized. 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

1 87 787 94 323 -93 952 -270 498 109 976 281 827 -122 002 -42 085 -45 377 0

2 -24 007 -52 758 -47 282 133 947 -135 515 -86 478 154 072 12 645 45 377  

3 -81 818 74 483 -45 045 -22 087 175 428 -256 435 126 035 29 439

4 -56 116 194 885 -180 463 539 286 -294 249 -45 237 -158 105

5 106 873 -144 369 114 729 -168 712 -14 844 106 323

6 42 334 55 913 -75 435 -182 016 159 204

7 48 990 -128 292 109 223 -29 920

8 -110 168 -108 059 218 227

9 -13 875 13 875

10 0

1 2 3 4 5 6 7 8 9 10

1 0,245 0,123 -0,154 -0,560 0,209 0,491 -0,834 -0,301 -0,200 0,000

2 -0,068 -0,060 -0,051 0,113 -0,304 -0,269 0,292 0,048 0,107  

3 -0,282 0,074 -0,049 -0,022 0,234 -1,745 0,254 0,105   

4 -0,181 0,176 -0,232 0,345 -1,080 -0,128 -0,766    

5 0,241 -0,208 0,116 -0,219 -0,029 0,226     

6 0,107 0,060 -0,089 -0,226 0,226      

7 0,111 -0,151 0,097 -0,028       

8 -0,306 -0,102 0,151        

9 -0,037 0,014         

10 0,000          
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Figure 5.8: Back-Testing with CL for Taylor and Ashe Data 

 

 

Doing the same analysis for the VP we get the following Tables 5.21 and 5.22. 

 

Table 5.21: Errors with VP for Taylor and Ashe Data 

 

 

 

Table 5.22: Standardized Errors with VP for Taylor and Ashe Data 

 

 

We may see that the weight of the errors on incremental payments is high in the same cells as 

the CL. However, there are some extra cells with high standardized errors, the (4,1) and (6,4). 

We may also see in the following Figure 5.9 that the VP, as with the CL, see Figure 5.6, is 

producing stable estimates of the ultimate costs over the years. Also, the problems detected 

with the CL are emerging with the VP, mainly the unstable results from origin years 5 and 8 

and the current trend for the year 8 to grow. 
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1 2 3 4 5 6 7 8 9 10

1 80 871 97 257 -98 512 -281 756 123 463 299 084 -124 379 -44 973 -51 056 0

2 -33 639 -48 673 -53 633 118 268 -116 731 -62 444 150 761 8 623 37 468  

3 -91 963 77 053 -52 894 -39 292 193 133 -233 250 122 162 25 051

4 -66 463 196 557 -189 103 521 359 -277 329 -22 754 -162 268

5 97 043 -143 661 105 933 -186 092 175 126 601

6 34 085 61 717 -79 333 -194 525 178 056

7 42 244 -116 087 111 022 -37 178

8 -119 709 -96 949 216 658

9 -22 191 22 191

10 0

1 2 3 4 5 6 7 8 9 10

1 0,226 0,127 -0,161 -0,583 0,234 0,521 -0,850 -0,321 -0,225 0,000

2 -0,096 -0,055 -0,057 0,100 -0,262 -0,195 0,286 0,032 0,088  

3 -0,317 0,077 -0,057 -0,039 0,257 -1,588 0,246 0,089   

4 -0,214 0,177 -0,244 0,334 -1,018 -0,065 -0,787    

5 0,219 -0,207 0,107 -0,242 0,000 0,269     

6 0,086 0,066 -0,094 -0,242 0,252      

7 0,096 -0,137 0,098 -0,035       

8 -0,333 -0,091 0,150        

9 -0,059 0,022         

10 0,000          
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Figure 5.9: Back-Testing with VP for Taylor and Ashe Data 

 

 

We must remember here that both the CL and the VP presented lower prediction errors when 

compared with the Mack data case, see Tables 5.6 and 5.7. Putting together all the analyses 

done, we may conclude that with the regular data considered here, Taylor and Ashe (1983), 

both the CL and the VP fit the data much better when compared with the previous case with 

irregular data. Because of this, there are lower errors, more stable estimates of the ultimate 

costs and lower prediction errors. 

 

In the following tables we present the regression errors and the standardized regression 

residual from the CL and the VP. The VP has a sum of the square of errors of 1 871 805 

779 252 and the CL of 1 884 835 560 18. 

 

Using CL, the regression of the column 2 is the one with higher standardized regression 

errors, the regression errors divided by the observed payments, see Table 5.24. In these 

columns, there are three years of origin has errors that represent more than 0.2 of the observed 

payments.  

 

Table 5.23: Regression Errors with CL for Taylor and Ashe Data 
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1 2 3 4 5 6 7 8 9 10

1 0 -124 319 -230 049 -310 822 141 676 289 341 -140 072 -46 797 -48 851 0

2 0 7 034 10 087 190 688 -137 236 -73 437 172 369 15 771 48 851  

3 0 278 260 -39 563 1 872 188 375 -266 917 139 448 31 025

4 0 334 648 -284 170 558 357 -380 757 -66 348 -171 745

5 0 -410 547 142 752 -204 039 1 060 117 362

6 0 -49 524 -148 859 -192 450 186 882

7 0 -250 308 168 488 -43 606

8 0 166 325 381 315

9 0 48 431

10 0
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Table 5.24: Standardized Regression Errors with CL for Taylor and Ashe Data 

 

 

 

Using now the VP, the regression of the column 2 is the one with higher standardized 

regression errors, the regression errors divided by the observed payments, see Table 5.26. In 

these column three years of origin has errors that represent more than 0.2 of the observed 

payments. It is the same conclusion we got with the CL. 

 

 

Table 5.25: Regression Errors with VP for Taylor and Ashe Data 

 

 

 

Table 5.26: Regression Errors with VP for Taylor and Ashe Data 

 

 

 

5.7.3 Taylor and McGuire Data 

 

Here we present the same results as in sections 5.4.1 and 5.4.2 but now with data from Taylor 

and McGuire (2016). This set of data is also regular, but the prediction errors are even lower 

than the ones obtained for Taylor and Ashe (1983) data, see Table 5.8 and Table 5.9. 

 

Table 5.27: Errors with CL for Taylor and McGuire Data 

 

1 2 3 4 5 6 7 8 9 10

1 0 -0,1105 -0,1326 -0,1401 0,0516 0,0872 -0,0404 -0,0130 -0,0127 0,0000

2 0 0,0057 0,0046 0,0569 -0,0361 -0,0178 0,0371 0,0032 0,0091  

3 0 0,2153 -0,0178 0,0006 0,0473 -0,0646 0,0301 0,0063   

4 0 0,2359 -0,1295 0,1486 -0,0945 -0,0151 -0,0374    

5 0 -0,3613 0,0671 -0,0704 0,0003 0,0303     

6 0 -0,0371 -0,0683 -0,0645 0,0506      

7 0 -0,1943 0,0696 -0,0125       

8 0 0,1170 0,1331        

9 0 0,0355         

1 2 3 4 5 6 7 8 9 10

1 0 -98 275 -231 931 -318 526 157 191 306 754 -143 629 -50 241 -55 052 0

2 0 32 660 8 018 181 054 -113 781 -49 342 167 954 11 152 40 401  

3 0 299 403 -41 726 -7 977 211 003 -241 637 135 019 26 425

4 0 357 253 -286 544 548 613 -354 475 -40 790 -176 440

5 0 -378 294 140 850 -213 487 21 328 138 942

6 0 -20 694 -151 090 -202 131 207 766

7 0 -218 225 166 332 -54 349

8 0 192 487 378 937

9 0 75 846

10 0

1 2 3 4 5 6 7 8 9 10

1 0 -0,0874 -0,1337 -0,1436 0,0573 0,0924 -0,0414 -0,0139 -0,0144 0,0000

2 0 0,0264 0,0037 0,0540 -0,0299 -0,0120 0,0361 0,0023 0,0076  

3 0 0,2317 -0,0188 -0,0025 0,0529 -0,0585 0,0292 0,0054   

4 0 0,2518 -0,1305 0,1460 -0,0880 -0,0093 -0,0385    

5 0 -0,3329 0,0662 -0,0737 0,0063 0,0359     

6 0 -0,0155 -0,0693 -0,0677 0,0563      

7 0 -0,1694 0,0687 -0,0156       

8 0 0,1354 0,1323        

9 0 0,0556         
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Table 5.28: Standardized Errors with CL for Taylor and McGuire Data 

 

 

 

We may see that the weight of the errors on incremental payments is higher in several cells 

after development year 2. However, there are only seven cells with standardized errors higher 

than 0.5. The results are also better than those obtained for the irregular data set from 5.4.1 

section.  

 

Comparing with the results from section 5.4.2, we see a good fit in the first two development 

years, with low standardized errors. 

 

We may also see in the following Figure 5.10, that the CL is producing more stable estimates 

of the ultimate costs over the years. However, there is a trend to correct ultimate costs 

projection upwards on more recent years of origin, from 6 to 9.  

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

1 935 1 424 -517 -1 140 54 -698 151 -453 245 0

2 3 864 2 349 -956 -1 484 -1 417 -668 -862 -581 -245  

3 -2 154 8 252 -7 202 -1 389 9 325 1 127 1 034

4 3 586 -6 631 510 737 278 1 936 -416

5 4 264 -4 347 992 -685 670 -895

6 -1 627 -565 231 1 555 406

7 -4 934 -1 173 3 701 2 407

8 -2 767 -474 3 241

9 -1 166 1 166

10 0

1 2 3 4 5 6 7 8 9 10

1 0,020 0,061 -0,177 -0,634 0,027 -0,580 0,117 -0,805 0,315 0,000

2 0,073 0,089 -0,338 -0,849 -1,935 -0,469 -2,161 -1,081 -0,721  

3 -0,032 0,195 3,885 -0,437 0,003 0,099 0,387 0,396   

4 0,038 -0,177 0,069 0,111 0,066 0,336 -0,220    

5 0,053 -0,131 0,145 -0,158 0,167 -0,381     

6 -0,024 -0,017 0,041 0,252 0,117      

7 -0,078 -0,036 0,414 0,350       

8 -0,043 -0,015 0,385        

9 -0,017 0,033         

10 0,000          
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Figure 5.10: Back-Testing with CL for Taylor and McGuire Data 

 

 

 

Doing the same analysis for the VP we get the following tables. 

 

Table 5.29: Errors with VP for Taylor and McGuire Data 

 

 

Table 5.30: Standardized Errors with VP for Taylor and McGuire Data 

 

 

 

We may see that the weight of the errors on incremental payments is high in the same cells as 

with the CL. However, there are some extra cells with high standardized errors, the (3,2) and 

(2,3). 
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1 2 3 4 5 6 7 8 9 10

1 900 1 764 -484 -1 210 1 -813 145 -560 257 0

2 3 826 2 724 -920 -1 560 -1 474 -795 -870 -698 -232  

3 -2 197 8 787 -7 151 -1 496 -72 146 1 117 868

4 3 407 -5 999 567 591 167 1 699 -433

5 4 104 -3 814 1 041 -810 576 -1 096

6 -1 886 -128 267 1 432 314

7 -5 239 -777 3 731 2 284

8 -3 145 -120 3 265

9 -1 542 1 542

10 0

1 2 3 4 5 6 7 8 9 10

1 0,020 0,076 -0,166 -0,673 0,001 -0,676 0,111 -0,995 0,331 0,000

2 0,072 0,103 -0,325 -0,893 -2,014 -0,558 -2,179 -1,300 -0,683  

3 -0,033 0,208 3,857 -0,471 -0,024 0,044 0,384 0,332   

4 0,036 -0,160 0,076 0,089 0,040 0,295 -0,229    

5 0,051 -0,115 0,152 -0,187 0,144 -0,467     

6 -0,027 -0,004 0,047 0,232 0,090      

7 -0,083 -0,024 0,417 0,332       

8 -0,049 -0,004 0,388        

9 -0,022 0,044         

10 0,000          
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We may also see in the following Figure 5.11 that the VP, as with the CL, see Figure 5.9, is 

producing stable estimates of the ultimate costs over the years. Also, the problem detected 

with the CL is also emerging with the VP, mainly a trend to correct ultimate costs projection 

upwards on more recent years of origin, from 6 to 9. 

 

Figure 5.11: Back-Testing with VP for Taylor and McGuire Data 

 

 

 

Both the CL and the VP presented lower prediction errors when compared with the two 

previous cases, see sections 5.2.1 and 5.2.2. Putting together all the analyses done we may 

conclude that with the regular data considered in this section, Taylor and McGuire (2016), 

both the CL and the VP fit better the data when compared with the previous cases with 

irregular and regular data. Because of this there are lower errors, more stable estimates of the 

ultimate costs and lower prediction errors. 

 

In the following Tables 5.31 and 5.32 we present the regression errors and the standardized 

regression residual from the CL and the VP. The VP has a sum of the square of errors of 319 

281 386 and the CL of 322 372 956.  

 

Using CL, the regression of the column 2 is the one with higher standardized regression 

errors, the regression errors divided by the observed payments. None of the years of origin 

has errors that represent more than 20% of the observed payments.  
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Table 5.31: Regression Errors with CL for Taylor and McGuire Data 

 

 

 

Table 5.32: Standardized Regression Errors with CL for Taylor and McGuire Data 

 

 

 

Using now the VP, the regression of the column 2 is again the one with higher standardized 

regression errors. None of the standardized regression errors represents more than 0.2 of the 

observed payments. It is the same conclusion we got with the CL.  

 

Table 5.33: Regression Errors with VP for Taylor and McGuire Data 

 

 

Table 5.34: Regression Errors with VP for Taylor and McGuire Data 

 

 

 

After analysing these three datasets we may conclude that there is a relation between the 

prediction error and the errors and back-testing results obtained: 

- When the prediction error is high, as in the case of irregular data, the errors are high, 

and the back-testing shows unstable results. 

1 2 3 4 5 6 7 8 9 10

1 0 965 -639 -1 218 35 -717 151 -456 247 0

2 0 453 -1 277 -1 705 -1 517 -728 -887 -591 -247  

3 0 9 309 -7 517 -1 343 76 388 1 159 1 047

4 0 -8 390 667 844 326 1 975 -422

5 0 -6 439 997 -723 664 -918

6 0 233 345 1 637 417

7 0 1 247 4 016 2 508

8 0 883 3 408

9 0 1 738

10 0

1 2 3 4 5 6 7 8 9 10

1 0 0,0140 -0,0089 -0,0165 0,0005 -0,0093 0,0019 -0,0058 0,0031 0,0000

2 0 0,0057 -0,0155 -0,0203 -0,0179 -0,0084 -0,0102 -0,0068 -0,0028  

3 0 0,0849 -0,0697 -0,0121 0,0007 0,0033 0,0096 0,0085   

4 0 -0,0641 0,0048 0,0058 0,0022 0,0127 -0,0027    

5 0 -0,0567 0,0083 -0,0058 0,0052 -0,0070     

6 0 0,0023 0,0032 0,0143 0,0035      

7 0 0,0131 0,0385 0,0226       

8 0 0,0091 0,0324        

9 0 0,0167         

1 2 3 4 5 6 7 8 9 10

1 0 1 330 -621 -1 304 -26 -840 142 -564 259 0

2 0 877 -1 256 -1 803 -1 587 -865 -897 -712 -234  

3 0 9 847 -7 490 -1 472 -16 203 1 146 880

4 0 -7 643 700 678 207 1 733 -439

5 0 -5 795 1 026 -868 562 -1 126

6 0 783 371 1 508 323

7 0 1 752 4 041 2 383

8 0 1 398 3 433

9 0 2 286

10 0

1 2 3 4 5 6 7 8 9 10

1 0 0,0193 -0,0086 -0,0177 -0,0003 -0,0109 0,0018 -0,0072 0,0032 0,0000

2 0 0,0110 -0,0153 -0,0214 -0,0187 -0,0100 -0,0104 -0,0082 -0,0027  

3 0 0,0898 -0,0695 -0,0133 -0,0001 0,0017 0,0095 0,0072   

4 0 -0,0584 0,0051 0,0047 0,0014 0,0112 -0,0028    

5 0 -0,0510 0,0085 -0,0070 0,0044 -0,0086     

6 0 0,0076 0,0034 0,0132 0,0027      

7 0 0,0184 0,0388 0,0214       

8 0 0,0144 0,0326        

9 0 0,0220         
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- When the prediction error decreases, as we saw with the two examples of regular data, 

the same happens with errors and the back-testing shows more stable results. 

- As the prediction error of the CL is lower than the one from VP, as in the case with 

irregular data, its errors and back-testing show better results. However, we cannot say 

that the method fits properly the data because the errors are high, and the back-testing 

shows unstable results. 

- With regular data the VP shows a low prediction error than the CL. This means lower 

errors and more stability in the results. 

- The VP with regular data appears with more cases with high errors than the CL, even if 

the overall results are better with the VP. This does not happen with regression errors. 

- The errors and back-testing results obtained confirm the conclusions from the prediction 

error, when the latter is lower the former have better results. 

- However, the errors analysis and the back-testing also show some problems with the 

fitting and that is not observed with the prediction error analysis.  

 

 

5.8 Summary of the Empirical Findings 

 

We know from Straub (1988), that the classical CL does not minimize the square of the 

errors. We also saw in the previous sections 5.2 and 5.3 that CL does not provide the best fit, 

having higher prediction errors in most of the cases.   

Straub (1988) showed that the regression through the origin, i.e., the VP, minimizes the 

square of the errors. This theoretical result has been applied empirically in Section 5.2 by 

using, Mack (1993a) irregular data and regular data from Taylor and Ashe (1983) and from 

Taylor and McGuire (2016).  Thus, not only the VP has smaller prediction error than the CL 

method for both datasets with regular data, but simultaneously, we report that the CL requires 

more reserves.   

Even in the case of irregular development of data, see Table 2.1 (Mack, 1993a), the CL 

method still estimates 19% more of reserves, when compared with VP.  This is again because 

VP minimizes the square of the errors, see Straub (1988).  Without doubt, it is an important 
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fact for actuaries8 (see also our extensive discussion in chapters 1 and 2) and it should not be 

underestimated.  Obviously, actuaries should present to insurers the best estimates and the 

current Solvency II system promotes a better prediction of the reserves, asking for best 

estimates without risk margins, see European Union (2015). 

Finally, the obtained results based on the random choice of 114 triangles from different 

companies and for different periods of business using data from the consulting company, 

Actuarial Group, Lisbon, Portugal, report again a lower prediction error for the VP, and the 

only cases where that does not happen are those where their triangles have special features, 

like a lot of zeros on the cells.  

 

5.9 Conclusions 

 

The assessment of financial strength in the insurance industry includes a thorough analysis of 

outstanding claims reserves, including an assessment of possible variability in the reserves. 

As we saw in chapters 1 and 2, failure to do so might result in the insolvency or lack of 

competitiveness of some insurers.  Methods of analysis, which help with the reserve 

estimation as well as provide insight into the variability of those reserves, are according with 

the Solvency II regulation, see European Union (2015), particularly if they can reduce the 

prediction errors.  

 

We proposed the stochastic VP methodology using the regression through the origin approach 

of Murphy (1994), but with heteroscedastic errors instead, to develop it comparably with the 

Mack (1993a, 1993b, 1994) stochastic distribution-free framework and test it empirically with 

the CL method.  Interestingly, the equation for the loss development factors which is 

                                                 

8 Moreover, we should not forget that when the CL started spreading, back in 70s, there were no 

microcomputers and any methods had to be easy to apply with a calculator machine.  The CL accomplished that 

task very well and it was a good approximation to the minimum square of the errors (Straub, 1988).  Later, with 

the arrival of the stochastic methods, the CL framework was the simplest approach to start its development.  

However, after all these years, we have now more experience on the CL application and it is clear to any 

professional actuary that sometimes the CL estimates have very high prediction errors. The VP aims to solve this 

problem and to fill this gap in these cases. 
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formulated on the Mack (1993a, 1994) heteroscedastic errors framework, although, it is 

assumed that the errors are proportional to the square of payments instead, see (5.1.3), it can 

also be derived straightforwardly from the Murphy (1994) homoscedastic errors framework.  

Obviously, the prediction error is not the only measure to have when the claims reserves are 

estimated. Additionally, other items should be also addressed, such as the errors, the back-

testing and so on and so forth. However, from the datasets analysed, we conclude that when 

the prediction error is lower, the errors analysis and the back-testing also give better results.  

As we saw in chapters 1 and 2, the reserves are crucial for insurer’s management and 

solvency. Due to that it is almost impossible to tolerate a method which might have a higher 

or even very high prediction error. This means that the method does not follow the insurer 

experience and, as such, it is not a good predictor of the future. This happens because the 

triangles data format technique and the link ratios methods assume that the past may be a 

good predictor for the future. 

Finally, three commonly used empirical examples have been applied.  We observe that when 

the data has irregular developments both the CL and VP approaches generate high prediction 

errors, and thus, they cannot be considered as the best approaches to predict with this class of 

data.  Additionally, we show that the VP, with such a set of irregular data, is not able to 

outperform CL.  On the other hand, however, when more regular data is considered, like in 

Examples 1 and 2, the prediction error for both methods is improved, and the VP outperforms 

the CL.  In these regular cases, the risk margins of the Vector Projection are also lower 

comparing with those derived from the CL.  Practically, this also implies a lower fair value of 

reserves for the VP method.  The results are also tested and confirmed by using 114 triangles 

with paid claims and 10 years of information to be comparable directly to the previous cases, 

where 85% of them appear to give a lower prediction error when the VP method is used.  

Finally, it should be mentioned that in the present chapter, a direct comparison between CL 

and VP methods of the link ratio family has been provided, and a Use test is also presented, 

something not common in the corresponding literature.  The only case, as far as we are 

concerned, where such a comparison is performed is due to Verrall (2000) in the context of 

the generalized linear models. 
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As a natural continuation of this chapter, the VP homoscedastic, the multivariate approach 

and the estimation of several triangles at the same time, will be also considered in the 

following chapters 6 and 7. 
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6. Stochastic Univariate and Multivariate Generalized Link Ratios 

 

This chapter makes four major contributions to the claims reserving literature.  

First, it develops a framework that is used to introduce two methods: the Generalized Link 

Ratios (GLR) and the Multivariate Generalized Link Ratios (MGLR). In this regard, both 

methods are developed with a parameter that allow us to obtain several methods, univariate in 

the GLR and multivariate in the MGLR. The three methods obtained are the CL, the recently 

proposed Vector Projection (VP) from Portugal et al. (2017), which is a regression through 

the origin, and the SA. Moreover, several other methods may be obtained for other parameter 

values. In the literature, a similar approach was proposed by Murphy (1994) for univariate 

regressions using recursive formulas with constant variance of the errors (homoscedastic 

errors). In this case, the prediction errors were calculated with a formula for the first origin 

year and another formula to the following origin years. In our approach, we are going to 

generalize the loss development factor in such way to permit the consideration simultaneously 

of several methods that may have homoscedastic or heteroscedastic errors.9 Additionally, the 

prediction errors are calculated, both within a univariate and multivariate regression 

framework and using matrices that consider information from all the regressions inside the 

triangle. This approach allows us, simultaneously, to have the loss development factors, the 

reserves and the prediction errors over all the regressions, without utilizing recursive 

formulas. Consequently, a GLR method is obtained with homoscedastic or heteroscedastic 

errors, with method selection based on the lowest prediction error, which also corresponds to 

a certain level of heteroscedasticity (which may be a homoscedastic method if this level is 

                                                 

9 In Murphy (1994) and Barnett and Zehnwirth (1999), the general regression trough the 

origin by using assumptions to the errors was developed and they demonstrated that several 

models might be obtained because of it. Obviously, some of the models are heteroscedastic, 

such as the CL and the SA methods. Straub (1988) showed that the slope that minimizes the 

sum of squares of errors is not the CL, but the regression through the origin, i.e., the VP in our 

case. Thus, Murphy (1994) introduced the VP method, but with homoscedastic errors. 

Recently, in Portugal et al. (2017), the stochastic VP method with heteroscedastic errors is 

introduced instead to compete with Mack (1993a, 1993b, 1994) stochastic heteroscedastic CL 

approach. VP outperforms CL for most datasets.  
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zero). The output will give us either the VP or CL or SA or other methods depending on the 

level of heteroscedasticity considered. 

Second, it develops a method based on a multivariate regression framework. However, this 

time with contemporaneous correlations between the equations of the triangle. Thus, the 

MGLR method is obtained. Furthermore, we obtain again several methods for different values 

from one parameter: the multivariate VP, the multivariate CL, the multivariate SA and several 

other multivariate methods. The method selection is based on the lowest prediction error, as in 

the previous case, but now with contemporaneous correlations between the regressions. This 

is a very distinct approach from the existing claims reserving literature.  

Third, several tests on method’s assumptions, from regression techniques, will be performed: 

heteroscedasticity of the errors, correlations between equations and serial correlations of the 

errors. We will also see that testing for heteroscedasticity is also an important help for method 

selection. 

Finally, regarding the empirical part, the illustration of our theoretical findings is also 

benefited by considering10 114 triangles from different companies and for different periods of 

business using data from the consulting company, Actuarial Group, Lisbon Portugal.11 

 

The next parts of the chapter are organized as follows. In Section 6.1, the necessary up-to-date 

review of the multivariate approaches, known already in the reserving literature, is presented. 

Section 6.2 presents the generalized link ratios. In Section 6.3, the GLR method is developed 

in the claims reserving context. Thus, a universal formula for the prediction error is developed 

and with the specification of method assumptions we will be able to apply it to any of the 

methods considered in this chapter. This will help us develop the MGLR method in Section 

6.4. In Section 6.5, we provide several numerical examples obtained for both methods. We 

also present the replication results of the Mack (1993a, 1993b, 1994)’s method, with the use 

                                                 

10 Practically, we mean that the dataset includes different companies with observations from 

ten years, see Portugal et al. (2017). 

11 Obviously, it is not possible to disclose any further information about the triangles used and 

their orientation in the paper.  
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of two scenarios for the process variance. For this treatment, we use two triangles on 

cumulative payments, one with irregular and the other with much more regular development 

of data. A discussion of the empirical findings is provided on Section 6.6 based on 114 

triangles from different companies. In section 6.7 some heteroscedasticity tests are applied to 

the triangles and we show its relationship with method choice. The section 6.8 tests the 

inexistence of correlations between the equations and the section 6.9 tests the serial 

correlation of the errors. Finally, Section 6.10 concludes the whole discussion. 

 

6.1 Multivariate Approaches in the Reserving Literature 

 

In the existing reserving literature, several multivariate approaches have been considered to 

check the existence of structural connections among triangles.  

 

This includes situations, where the development of one triangle might depend upon past 

information from other triangles (Holmberg, 1994; Halliwell, 1997; Quarg and Mack, 2004; 

Merz and Wüthrich, 2006) and where joint development is considered with contemporaneous 

correlations among triangles (Braun, 2004; Pröhl and Schmidt, 2005; Kremer, 2005; Hess et 

al. 2006; Schmidt, 2006; Merz and Wüthrich, 2007, 2008, 2009; Bardis et al., 2012). Zhang 

(2010) proposed a general multivariate CL method which does not only specify 

contemporaneous correlations, but allows structural connections among triangles, 

simultaneously.  

Recently, copulas methodologies have been considered to give another dimension to the 

standard multivariate reserving approaches, see, for example, Shi (2011) and Shi and Frees 

(2014).   

 

In what follows in the next sections we present the GLR and the MGLR prediction errors with 

analytical non-recursive formulas. In the multivariate claims reserving literature there is a 

concentration on the CL method, see for example Braun (2004), Pröhl and Schmidt (2005), 

Merz and Wüthrich (2008) and Zhang (2010). As we saw before, see Chapter 2, the same 

happens with the univariate literature, with several univariate CL. For example, Mack (1993a, 

1993b, 1994), Verrall (2000), England and Verrall (2002), Brydon and Verrall (2009) among 

others. 
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6.2 Generalized Link Ratios 

 

In insurance practice, it has been confirmed that it is not always possible to apply the same 

reserving methodology for all triangles involved in the portfolio of activities, see Portugal et 

al. (2017), and the references therein. The reasoning behind it, is that higher prediction errors 

will occur, and this is a serious limitation of the existing traditional multivariate techniques.12 

This can be even worse if the method to be applied is known to produce high prediction 

errors. 

The present chapter should not just be considered as an extension of Portugal et al. (2017) 

approach presented in chapter 5, where the VP is compared with the CL method and it was 

shown that the VP produces lower prediction errors in most of the cases. Nevertheless, in this 

study, we allow the best GLR method to be anything among the VP, CL, SA or other 

methods. To choose a method we will decide based on the prediction error minimization.13 

Then, the multivariate approach will be formulated using contemporaneous correlations 

among the equations of the GLR method.  

As we are going to use regression techniques and its framework, see for example Fomby et al. 

(1984), we will do same changes in the notation for the cumulative payments. The cumulative 

payments will be designated by 𝑦𝑖,𝑗 when used as a dependent variable and by 𝑥𝑖,𝑗 when used 

as an independent variable. The dependent variable is a random variable. The independent 

variable is a non-random variable. 

                                                 

12 However, to be more precise, the existing multivariate approach may still be applied to the 

estimation of each of the implicit equations from one triangle if we consider contemporaneous 

correlations between all the equations. This will be presented in detail when the multivariate 

generalized link ratios method is discussed. 

13 Obviously, the prediction error is not the only measure to have when the claims reserves are 

estimated, additionally, other items should be equally addressed, such as the errors analysis, 

the back-testing and so on and so forth. However, in real life applications, it is almost 

impossible to tolerate a model which might have a high or even very high prediction error 

(Portugal et al., 2017). As we saw in section 5.4, better results on errors analysis and back-

testing are associated with lower prediction errors. 
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The link ratios between the triangle cells 𝐹𝑖,𝑗+1, defined in (2.1), are summarized through the 

loss development factor in one figure. To have the latter, and following Murphy (1994), 

Barnett and Zehnwirth (1999), and Bardis et al. (2012), we concentrate on the family of link 

ratios given by a generalized function. In this function, the loss development factor estimation 

depends on one parameter 𝛼.  Defining 𝛼 give us several well-known practical methods. For a 

generic triangle of claims with T origin years, with cumulative payments on origin year 𝑖 and 

development year j given by 𝑦𝑖,𝑗, we have 

𝐹𝑖,𝑗+1 =
𝑦𝑖,𝑗+1

𝑦𝑖,𝑗
  and  𝑏̂𝑗(𝛼) =

∑ 𝑦𝑖,𝑗+1𝑥𝑖,𝑗
1−𝛼𝑇−𝑗

𝑖=1

∑ 𝑥𝑖,𝑗
2−𝛼𝑇−𝑗

𝑖=1

                                    (6.1) 

Indeed, when 𝛼 = 0, we get the regression through the origin (or VP), for 𝛼 = 1, we get the 

CL, and when 𝛼 = 2, we get the SA. These loss development factors can also be seen as the 

weighted average of the link ratios, being the weights the payments to the power of 2 − 𝛼 

(Portugal et al., 2017). The here defined 𝛼 is equal to the Murphy (1994) 𝛿 presented in 

section 5.1.  

             𝑏̂𝑗(𝛼) =
∑ 𝑦𝑖,𝑗

2−α𝐹𝑖,𝑗+1
𝑇−𝑗
𝑖=1

∑ 𝑦𝑖,𝑗
2−α𝑇−𝑗

𝑖=1

                                                          (6.2) 

The equation (6.2) might suggest an upper bound for the parameter 𝛼. Indeed, if 𝛼 becomes 

higher than two, in practice, the results might be considered as problematic and unexplained 

by actuaries, as very high/low weights are given to the link ratios if the associated cumulative 

payments used at (6.2) are very different.14 Bardis et al. (2012) also showed that the value of 

𝛼 should not be negative. Putting these conclusions together we expect 0 ≤ 𝛼 ≤ 2.  

Practically, this means that we may have several methods inside this generalized approach 

that differ from the typical ones, i.e., the VP, CL and SA. Moreover, for each 𝛼, we get a 

different weight for the link ratios, and a different estimator for the loss development factor, 𝑏 

(not necessarily the VP, the CL or the SA). The prediction error is developed from this 

method using a regression framework. In this regard, we may choose the best parameter 𝛼 

that minimizes the prediction error. 

As we saw already in section 3.6, link ratios methods may be seen as a set of regressions, 

where each loss development factor may be estimated through a regression, see for example 

                                                 
14 See the case study of 114 triangles (Section 6.6).  
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Mack (1993a) or Murphy (1994). Using regressions, a triangle may be seen as a set of 

individual regressions to calculate the loss development factors. However, the estimation of 

the parameters of each regression and specifically the loss development factor is done without 

considering the calculations of the parameters from the other regressions. This means that the 

loss development factors obtained by a link ratios method for one triangle are independent of 

each other. 

Obviously, this helps the calculations, but introduces a very strong assumption on it: any 

regression from one triangle may be individually estimated without considering the estimation 

of the other regressions. However, the regressions may be correlated and if that happens the 

calculation of its parameters depends on those correlations, see for example Fomby et al. 

(1984).  

In this chapter, we also consider the generalized link ratios presented above with 

contemporaneous correlations between the regressions. Under this framework, we consider a 

regression method that becomes multivariate due to this feature and using seemingly 

unrelated regressions (SUR) (Zellner, 1962, 1963; Zellner and Huang, 1962; Srivastava and 

Giles, 1987). Manipulating the GLR method within the SUR framework, it allows us to have 

a multivariate method, the MGLR method. We will also select the best method as the one 

corresponding to the parameter 𝛼 that produces the lowest prediction error.  

Our approach considers the case of homoscedastic as well as heteroscedastic errors. Before 

we start to present the mathematical framework for our treatment, it should be mentioned that 

the heteroscedastic feature in claims reserving is crucial and in the traditional link ratios 

methods there is an implicit assumption on it (Taylor, 2000). Moreover, regression models 

offer a good opportunity to explore these issues since many years, see for example Taylor 

(1987):  

“However, it seems that the regression models have not been prevalent in claims analysis 

leading to loss reserving. The scarcity arises from the suspicion with which many actuaries 

regard such models … Despite this it appears that regression techniques have a definite place 

in the actuarial repertoire.” 
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6.3 Stochastic Univariate Regression Method 

 

In a regression framework, the loss development factor 𝑗 is estimated by a linear regression 

with (or without) intercept between two adjacent columns, 𝑗 + 1 and  𝑗. In this method, main 

attention is provided for the case without intercept.  

 

6.3.1 General Univariate Method 

 

Data considered on each of the 𝑘 = 1, … , 𝑇 − 1 regressions has 𝑇 − 𝑘 elements and the 

calculations will be provided simultaneously with the 𝑦𝑖,𝑗 explained by the adjacent triangle 

column, 𝑥𝑖,𝑗−1. This means that the payments on column 𝑗, 𝑦𝑖,𝑗 are a function (a regression 

through the origin) of the payments on column 𝑗 − 1, 𝑥𝑖,𝑗−1. Both variables represent the 

cumulative payments but 𝑦𝑖,𝑗 is a random variable and 𝑥𝑖,𝑗−1 is a non-random variable 

(because when we want to estimate 𝑦𝑖,𝑗 we know 𝑥𝑖,𝑗−1). That is why the notation on 

cumulative payments, from the last chapters, was changed. 

The 𝑗 loss development factor 𝛽𝑗 is the slope of each of the 𝑘 = 1, … , 𝑇 − 1 regressions, 𝜀𝑖,𝑗 is 

the error of each regression 𝑗 on each observation 𝑖, and 𝑦𝑖,𝑗 is given by  

                𝑦𝑖,𝑗 = 𝛽𝑗𝑥𝑖,𝑗−1 + 𝜀𝑖,𝑗    𝑖 = 1, … , 𝑇 − 𝑗  𝑎𝑛𝑑 𝑗 = 2, … 𝑇          (6.3.1) 

Now, in a matrix form and considering all the equations implicit in the triangle of cumulative 

payments, our method (6.3.1) will be given by 

𝑌 = 𝑋𝛽 + 𝜀                                                     (6.3.2)   

𝑌 is a block-vector with dimension 𝑚 × 1, where 𝑚 =
𝑇×(𝑇−1)

2
, that includes the block-vectors 

𝑌𝑘 for  𝑘 = 1, … , 𝑇 − 1. Analytically, we have  

                                                             𝑌 = [
𝑌1

…
𝑌𝑇−1

]  

where the generic 𝑌𝑘 = [

𝑦1,𝑘+1

…
𝑦𝑇−𝑘,𝑘+1

] includes the random variables 𝑦𝑖,𝑘+1 for  𝑖 = 1, … , 𝑇 − 𝑘.  
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𝑋 is defined by a diagonal block matrix with all the 𝑋𝑖,𝑗 used as explanatory variables and 

considered as non-random. For each diagonal element 𝑋𝑘, we have a column vector with the 

number of observations to be equal to 𝑇 − 𝑘. The matrix 𝑋 has dimension  𝑚 × (𝑇 − 1), and 

it can be represented by  

                                       𝑋 = [
𝑋1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑋𝑇−1

]   

where each element  𝑋𝑘 = [

𝑥1,𝑘

…
𝑥𝑇−𝑘,𝑘

] 

We also define the 𝑇 − 1 loss development factors, 𝛽𝑗, 𝑗 = 1, … , 𝑇 − 1, and the (𝑇 − 1) × 1 

vector of the loss development factors which is given by   

                                              𝛽 = [
𝛽1

…
𝛽𝑇−1

] 

Indeed, we know from Straub (1988) and Murphy (1994) that the 𝛽𝑗 are the loss development 

factors from a link ratios method.  

Finally, the errors vector is a block matrix of size 𝑚 ×  1, and it is given by 

                                             𝜀 = [

𝜀1

…
𝜀𝑇−1

]  

where 𝜀𝑘=[

𝜀1,𝑘+1

…
𝜀𝑇−𝑘,𝑘+1

]  

We define the true unknown future observations of the dependent variables as  

𝑌𝐹 = 𝑋𝐹𝛽 + 𝜀𝐹 

where 𝑋𝐹 and 𝜀𝐹 are the future values of 𝑋 and the future errors, respectively.  

𝑌𝐹 is a block vector with size 𝑚 ×  1 and given by 
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𝑌𝐹 = [
𝑌𝐹

1

…
𝑌𝐹

𝑇−1

] 

with each element 𝑌𝐹
𝑘 = [

𝑦𝐹
𝑇−𝑘+1,𝑘+1

…
𝑦𝐹

𝑇,𝑘+1

] for 𝑘 = 1, … , 𝑇 − 1.  

𝑋𝐹 is given by the current diagonal of payments and by the estimated payments of the lower 

triangle. It is block matrix with size 𝑚 × (𝑇 − 1) given by  

                                           𝑋𝐹 = [
𝑋𝐹

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑋𝐹

𝑇−1

]    

where each element  𝑋𝐹
𝑘 = [

𝑥𝑇−𝑘+1,𝑘

…
𝑥𝑇,𝑘

] for 𝑘 = 1, … , 𝑇 − 1.                                             

𝜀𝐹 is a block vector with size 𝑚 ×  1 and given by 

𝜀𝐹 = [

𝜀𝐹1
…

𝜀𝐹 𝑇−1

] 

with each element 𝜀𝐹𝑘
= [

𝜀𝐹 𝑇−𝑘+1,𝑘+1
…

𝜀𝐹 𝑇,𝑘+1

] for 𝑘 = 1, … , 𝑇 − 1. 

The estimated values of the dependent variables are obtained from  𝑌𝐹̂ = 𝑋𝐹𝛽̂ due to the 

assumption to be introduced in (6.3.3.). The 𝑋𝐹 matrix has two types of elements: 

- The 𝑥𝑇−𝑘+1,𝑘, which are on the last diagonal of the upper triangle. 

- And, the 𝑥𝑖>𝑇−𝑘+1,𝑘 which are on the lower triangle. They are obtained after estimating all 

the cells of the lower triangle using 𝑌𝐹̂ = 𝑋𝐹𝛽̂.    

 

6.3.2 Assumptions 

 

Having defined the method at section 6.3.1, we present in this section its assumptions.  



142 

 

Proposition 6.3.1 Considering the method given by (6.3.2), that allows for heteroscedasticity 

of the errors inside each equation, we assume for our GLR method 

                                                        𝔼(𝜀|𝑋) = 𝔼(𝜀) = 0                                                    (6.3.3) 

                                                𝔼(𝜀𝜀′) = 𝜎2𝑊                                                        (6.3.4) 

                                                                 𝔼(𝜀𝐹𝜀𝐹′) = 𝜎2𝑊𝐹                                                     (6.3.5) 

where W is a 𝑚 × 𝑚-diagonal weighting matrix, which depends on the parameter 𝛼. W is 

given by (6.3.6), where the 𝑑𝑖𝑎𝑔 operator transforms one vector on a diagonal matrix. The W 

diagonal elements are given by the elements of the transformed vectors 

𝑊 = 𝑑𝑖𝑎𝑔(𝑋𝛼  ) =   [
𝑑𝑖𝑎𝑔(𝑋1

𝛼) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝑋𝑇−1

𝛼)
] = [

𝑥1,1
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇−1,𝑇−1

𝛼
].       (6.3.6) 

The matrix 𝑊𝐹 is the future 𝑊 and has the same structure as 𝑊. However, its elements are 

the 𝑋𝐹
𝛼 instead of 𝑋𝛼. 

𝑊𝐹 = 𝑑𝑖𝑎𝑔(𝑋𝐹
𝛼 ) = [

𝑑𝑖𝑎𝑔(𝑋𝐹,1
𝛼) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝑋𝐹,𝑇−1

𝛼)
] = [

𝑥𝑇,1
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇,𝑇−1

𝛼
]    (6.3.7) 

The 𝜎2is a diagonal block matrix of size 𝑚 × 𝑚 with 𝑗 = 1, … , 𝑇 − 1 blocks 

                                          𝜎2 = [
𝜎2

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

𝑇−1

]                                            (6.3.8) 

where each block  𝜎2
𝑗 = 𝑑𝑖𝑎𝑔 [

𝜎2
𝑗,𝑘

…
𝜎2

𝑗,𝑇−1

] for 𝑘 = 1, … , 𝑇 − 1 and with 𝜎2
𝑗,𝑘 = ⋯ = 𝜎2

𝑗,𝑇−1.        

Matrix 𝑊 of size 𝑚 × 𝑚 corresponds to a specific structure of heteroscedasticity through the 

choice of parameter α. If α is zero, we will get homoscedastic errors.  

The way this matrix is defined will provide us with several methods for estimating the loss 

development factors. Analytically, we get the VP for 𝛼 = 0, the CL for 𝛼 = 1, the SA for 

𝛼 = 2, and other methods for different values of 𝛼. To have them, we just need to change 𝛼 to 
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get a different W matrix. We will have homoscedastic errors for the VP and heteroscedastic 

errors for the CL and the SA.  

 

6.3.3 Estimation 

 

The following Lemmas allow us to get estimators from the parameters presented in (6.3.2) 

and (6.3.8). 

Lemma 6.3.1 Following, Fomby et al. (1984), we may get the estimation of the 𝛽, the loss 

development factors of all the equations. 𝛽̂ is obtained using the Aitken generalized least 

squares and it is the best linear unbiased estimator of 𝛽.   

𝛽̂ = (𝑋′𝑊−1𝑋)−1𝑋𝑊−1𝑌                                            (6.3.9) 

Lemma 6.3.2 Following Fomby et al. (1984), we may estimate 𝜎2using the equation sum of 

square of the errors, 𝑆𝑆𝑅𝑗 , divided by the equation degrees of freedom, the number of 

observations 𝑇𝑗 from equation 𝑗 minus the number of parameters from the equation, in this 

case one. 

                                                                 𝜎̂2
𝑗 =

𝑆𝑆𝑅𝑗

𝑇𝑗−1
                                                       (6.3.10) 

The parameter α from (6.3.6) and (6.3.7) will be estimated as the one that minimizes the 

prediction error. This α parameter is a method choice parameter and we selected the 

prediction error as the criterion for method choice. This is due to the following reasons: 

- It is an important practical criterion for actuaries, as it summarizes in one figure the error 

implicit in the reserve’s forecasts, from a specific claims reserving method. 

- And as we saw already in the numerical results presented in section 5.4, a lower prediction 

error is usually associated with good indicators from other tools used for method selection, 

for example, errors analysis and back-testing.  

 

6.3.4 Prediction Error 

 

Regression models, using matrices, allow us to develop very quickly a general non-recursive 

formula to have the prediction errors (the square root of the mean square error of prediction, 

very often presented as a percentage of the estimated reserves). 
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Theorem 6.3.1 The mean square error of prediction (msep) from the method presented in 

section 6.3.1 is given by. 

                     𝑚𝑠𝑒𝑝 = 𝔼[𝑋𝐹(𝛽̂ − 𝛽)(𝛽̂ − 𝛽)′𝑋′𝐹] + 𝔼(𝜀𝐹𝜀𝐹)′ .                          (6.3.11) 

The first term is the estimation variance and is given by 

                  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑋𝐹(𝑋′𝑊−1𝑋)𝑋′𝑊−1𝔼(𝜀𝜀′)𝑊−1𝑋(𝑋′𝑊−1𝑋)𝑋′𝐹         

and the second term is the process variance given by 

                                                 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝔼(𝜀𝐹𝜀𝐹′)                     

All together means that the msep is given by  

           𝑚𝑠𝑒𝑝 = 𝑋𝐹(𝑋′𝑊−1𝑋)−1𝑋′𝑊−1𝔼(𝜀𝜀′)𝑊−1𝑋 (𝑋′𝑊−1𝑋)−1𝑋𝐹′ +  𝔼(𝜀𝐹𝜀𝐹′)       (6.3.12) 

Proof. We know that 𝑌𝐹̂ = 𝑋𝐹β̂ and 𝑌𝐹 = 𝑋𝐹𝛽 + 𝜀𝐹. Using this, we may develop the 𝑚𝑠𝑒𝑝 

such as 

                𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝔼(𝑋𝐹𝛽̂ − 𝑋𝐹𝛽 − 𝜀𝐹)(𝑋𝐹𝛽̂ − 𝑋𝐹𝛽 − 𝜀𝐹)′. 

This means that the right-hand side of the above equation is rewritten as 

𝔼(𝑋𝐹(𝛽̂ − 𝛽) − 𝜀𝐹)(𝑋𝐹(𝛽̂ − 𝛽) − 𝜀𝐹)
′

= 𝔼(𝑋𝐹(𝛽̂ − 𝛽) − 𝜀𝐹) ((𝛽̂ − 𝛽)′𝑋𝐹′ − 𝜀𝐹′). 

Developing this product, we get that 

𝔼 (𝑋𝐹(𝛽̂ − 𝛽)(𝛽̂ − 𝛽)
′
𝑋𝐹

′ + 𝜀𝐹𝜀𝐹
′ − 𝑋𝐹(𝛽̂ − 𝛽)𝜀𝐹

′ − 𝜀𝐹(𝛽̂ − 𝛽)
′
𝑋𝐹

′ ). 

Applying the expected value operator, which is linear, to all parts, the following equation 

yields?  

𝔼 (𝑋𝐹(𝛽̂ − 𝛽)(𝛽̂ − 𝛽)
′
𝑋𝐹

′ ) + 𝔼(𝜀𝐹𝜀𝐹
′ ) − 𝔼 (𝑋𝐹(𝛽̂ − 𝛽)) 𝔼(𝜀𝐹

′ )

− 𝔼(𝜀𝐹)𝔼 ((𝛽̂ − 𝛽)
′
𝑋𝐹

′ ). 

Since the expected value of the errors, current or future, is zero, then we get the msep as a 

sum of the estimation variance with the process variance, 



 

145 

 

𝔼 (𝑋𝐹(𝛽̂ − 𝛽)(𝛽̂ − 𝛽)
′
𝑋𝐹

′ ) + 𝔼(𝜀𝐹𝜀𝐹
′ ). 

We may develop a little bit further the estimation variance, i.e., the left-hand side term of the 

last equation, using (6.3.2) and (6.3.3) that allow us to have 𝛽̂ − 𝛽 = (𝑋′𝑊−1𝑋)−1𝑋′𝑊−1𝜀, 

𝔼((𝑋𝐹(𝑋′𝑊−1𝑋)−1𝑋′𝑊−1𝜀)(𝜀′𝑊−1𝑋 (𝑋′𝑊−1𝑋)−1𝑋𝐹′)). 

Applying the expected value operator and knowing that X is not random, and it is independent 

of the random errors, we get 

𝑋𝐹(𝑋′𝑊−1𝑋)−1𝑋′𝑊−1𝔼(𝜀𝜀′)𝑊−1𝑋 (𝑋′𝑊−1𝑋)−1𝑋𝐹′. 

Our estimation variance will be dependent on what we assume to be the variance covariance 

matrix of the current and future errors. The current errors are coming from the estimation 

variance and the future errors from the process variance 

𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 

𝑋𝐹(𝑋′𝑊−1𝑋)−1𝑋′𝑊−1𝔼(𝜀𝜀′)𝑊−1𝑋 (𝑋′𝑊−1𝑋)−1𝑋𝐹′ + 𝔼(𝜀𝐹𝜀𝐹′). 

∎ 

Following the results of Theorem 6.3.1, and seeing (6.3.12) we realize that we need to have 

the following to have the prediction error of this generalized link ratios:  

- We need the parameter α to have the 𝑊, (6.3.6). Our decision was to choose the α that 

minimizes the prediction error. 

- The 𝑊 will give the vector of the loss development factors, given by (6.3.9), to have 

𝑋𝐹.  

- With the first two steps we will have the 𝑊𝐹 matrices, see (6.3.7). 

- And finally, we need 𝔼(𝜀𝜀′) and 𝔼(𝜀𝐹𝜀𝐹′), which implies some assumptions about the 

method that will use 𝑊 and 𝑊𝐹, see Proposition (6.3.1). 

 

The following proposition is very useful in what follows. Its proof is omitted as it derives 

straightforwardly from Theorem 6.3.1. 

Proposition 6.3.2 Following, (6.3.12), assumptions (6.3.4) and (6.3.5) and knowing that 

𝜎2and 𝑋′𝑊−1 are diagonal matrices that may commute, the msep is given by 
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                  𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′𝑊−1𝑋)−1𝜎2𝑋′𝐹 + 𝜎2𝑊𝐹.                  (6.3.13) 

As our regressions estimate the lower triangle cells, the ultimate losses are obtained in the last 

column and we know already that the msep of the estimated reserves equals the msep from the 

ultimate claims, see Lemma 5.1.4. This means that (6.3.13) equals the msep of the reserves, 

(and we know that its root is the prediction error).  

 

6.3.5 Particular Univariate Methods 

 

Thus, the main advantage of our approach is that we choose the alpha, 𝛼, which minimizes the 

prediction error. With 𝛼 different from 0, 1 and 2, we get other distinct methods. Moreover, 

the choice of the weights of the link ratios is obtained such as the prediction error is 

minimized.  

In the Proposition 6.3.1, the level of the heteroscedastic errors is given by the matrix 𝑊, 

which depends on 𝑋𝑖𝑗 that yields from the triangle data, and on the parameter 𝛼. Here, we use 

(6.3.13), i.e., the msep minimization, to get 𝛼.  

Homoscedastic errors arise if 𝑊 = 𝐼, the identity matrix. As we saw in section 3.6 and on 

section 6.1 each development year 𝑗 >  1 may be seen as a dependent variable explained by a 

non-random independent variable, given by the previous development year 𝑗 − 1. 

Heteroscedasticity may appear on each regression for reasons such as: an increase/decrease of 

claims on particular origin years, an increase/decrease of the speed of paying claims on 

certain origin years for the same development year, the presence of outliers (which should be, 

if possible, previously removed), a bad specification of the method that may be more severe 

in certain origin years, for example, we may need other variables to explain method (6.3.1) or 

to have a different functional form between the dependent and the independent variables.  

All the link ratios methods considered here, see next corollaries (6.3.1), (6.3.2), depend on 𝛼 

which represents the level of heteroscedasticity. We want to choose 𝛼 that minimizes the 

prediction error. As we saw in section (5.4), the lower the errors and the better the back-

testing, the lower is the prediction error.  
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Particular cases of the method are considered with the next three corollaries. Obviously, the 

proofs of those corollaries are linked with (6.36), Theorem 6.3.1 and Proposition 6.3.1, and 

they are omitted.   

Corollary 6.3.1 If 𝛼 = 0 , 𝑣ariances are homoscedastic, and we get, see (6.3.4) and (6.3.5) 

𝔼(𝜀𝜀′) = 𝔼(𝜀𝐹𝜀𝐹′) = 𝜎2𝐼, 

Here 𝐼 is a diagonal identity matrix with size 𝑚 × 𝑚. With 𝛼 =0, the loss development factors 

are equal to the ones from the VP, 𝛽̂𝑉𝑃 = (𝑋′𝑋)−1𝑋𝑌, see (6.3.9) with 𝑊 = 𝐼 . Then, the 

msep is given by, see (6.3.13) 

𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′𝑋)−1𝜎2𝑋′𝐹 + 𝜎2                  (6.3.14) 

Corollary 6.3.2 If 𝛼 = 1, variances are heteroscedastic, and we get 

𝔼(𝜀𝜀′) = 𝜎2𝑊𝐶𝐿 

and  

𝔼(𝜀𝐹𝜀𝐹′) = 𝜎2𝑊𝐹,𝐶𝐿, 

with 

𝑊𝐶𝐿 =  [

𝑥1,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇−1,𝑇−1

]     and    𝑊𝐹,𝐶𝐿 = [

𝑥𝑇,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇,𝑇−1

]. 

With 𝛼 =1, the loss development factors are equal to the ones from the CL, see (6.3.6) and 

(6.3.9). Then, the msep is given by, see (6.3.13), 

            𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′𝑊𝐶𝐿
−1𝑋)−1𝜎2𝑋′𝐹 + 𝜎2𝑊𝐹,𝐶𝐿 .           (6.3.15) 

Corollary 6.3.3 If 𝛼 = 2, variances are heteroscedastic, and we get  

𝔼(𝜀𝜀′) = 𝜎2𝑊𝑆𝐴, 

and 

𝔼(𝜀𝐹𝜀𝐹′) = 𝜎2𝑊𝐹,𝑆𝐴, 
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with 

𝑊𝑆𝐴=[
𝑥1,1

2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇−1,𝑇−1

2
]       and       𝑊𝐹,𝑆𝐴 = [

𝑥𝑇,𝑇
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑚,𝑚

2
]. 

With 𝛼 =2, the loss development factors are equal to the ones from the SA, see (6.3.6) and 

(6.3.9). Then, the msep is given by, see (6.3.13) 

       𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′𝑊𝑆𝐴
−1𝑋)−1𝜎2𝑋′𝐹 + 𝜎2𝑊𝐹,𝑆𝐴.              (6.3.16) 

Remark 6.3.1: In Portugal et al. (2017), Mack (1993a, 1994)’s framework with 

heteroscedastic variances was considered. In that context, the variance of the payments was 

proportional to the weights of the link ratios. Here, we consider a regression method with the 

homoscedastic and heteroscedastic cases and the VP emerges as the homoscedastic model.  

In this GLR method we may see from (6.3.6) that we assume no correlations between the 

errors of the equations. This means that we may estimate the method by doing univariate 

independent regressions or using the framework presented in this section.  

The reason why we developed the framework above was to have a more flexible and 

integrated approach and to have the multivariate method, the MGLR. This method will be 

presented in the following section and will be developed using the GLR framework, but with 

different assumptions. 

 

6.4 Stochastic Multivariate Generalized Link Ratios 

 

A general multivariate method is presented in this section. Some particular multivariate 

methods are also identified. The methods are a continuation of the methods presented in 

section 6.3 but now with a multivariate framework, as summarized in section 6.1. 

 

6.4.1 General Multivariate Method 

 

The method considered here is the same presented in section 6.3.1. However, we will 

introduce a more complex structure with the errors of all the equations correlated and with the 

possibility of having a homoscedastic or heteroscedastic structure. Following Srivastava and 
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Giles (1987): “we are going to assume that the equations may be linked statistically, even 

though not structurally”. 

 

This was called by Zellner (1962) the Seemingly Unrelated Regressions (SUR) method. A 

SUR method may be needed when the method does not consider all the variables that explain 

the dependent variable (in our case the insurer´s payments in each development year). If that 

is the case, then the error of that regression will show the impact of that missing variable. As 

all the regressions of the method are missing the same variables, it is possible that the 

equations, even if not structurally linked, have some statistical link.  

The MGLR method will become multivariate as a SUR and may also use the homoscedastic 

or heteroscedastic structure from any 𝛼 from the GLR, including also the VP, the CL and the 

SA. The development of the method is easily done with the framework developed in section 

6.3. In this MGLR method, we are going to maintain the entire framework presented in 

section 6.3 but we are going to change the assumptions (6.3.4) and (6.3.5). We are going to 

assume contemporaneous correlations between the errors of the different equations and we get 

a multivariate method. The method is still based on (6.3.2) and even (6.3.3) will be similar. 

 

6.4.2 Assumptions 

 

Σ is a block matrix of block-size 𝑇 − 1 × T − 1 that summarizes the variances and the 

covariance between 𝑗 = 1, … , 𝑇 − 1 regressions. Expanding each block, we get a matrix of 

dimension 𝑚 × m 

                                                   Σ = [

Σ1,1 ⋯ Σ1,𝑇−1

⋮ ⋱ ⋮
Σ𝑇−1,1 ⋯ Σ𝑇−1,𝑇−1

].                                          (6.4.1) 

The generic component of (6.4.1), Σ𝑗,𝑗 is given by a matrix of size (𝑇 − 𝑗) × (𝑇 − 𝑗) 

                                                 Σ𝑗,𝑗 = s𝑗,𝑗 [

𝑥1,𝑗
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇−𝑗,𝑗

𝛼
]                                        (6.4.2) 

The generic component of (6.4.1), Σ𝑙,𝑗 with 𝑙 ≠ 𝑗 is given by a matrix of size (𝑇 − 𝑗) × (𝑇 −

𝑗), where 𝐼𝑇−𝑗 is an identity matrix of size 𝑇 –  𝑗. 
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                                                                     Σ𝑙,𝑗 = s𝑙,𝑗𝐼𝑇−𝑗                                                (6.4.3) 

Σ𝐹 is a block matrix of block-size 𝑇 − 1 × T − 1 that summarizes the future variances and 

the covariances between 𝑗 = 1, … , 𝑇 − 1 regressions. Expanding each block, we get a matrix 

of dimension 𝑚 × m 

                                                  Σ𝐹 = [
Σ1,1

𝐹 ⋯ Σ1,𝑇−1
𝐹

⋮ ⋱ ⋮
Σ𝑇−1,1

𝐹 ⋯ Σ𝑇−1,𝑇−1
𝐹

].                                        (6.4.4) 

The generic component of (6.4.4), ∑𝑗,𝑗
𝐹  is given by a matrix of size (𝑇 − 𝑗) × (𝑇 − 𝑗) 

                                                 Σ𝑗,𝑗
𝐹 = s𝑗,𝑗 [

𝑥𝑇,𝑗
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇+𝑗𝑗,𝑗

𝛼
]                                     (6.4.5a) 

The generic component of (6.4.4), Σ𝑙,𝑗 with 𝑙 ≠ 𝑗 is given by a matrix of size (𝑇 − 𝑗) × (𝑇 −

𝑗) 

                                                                   Σ𝐹
𝑙,𝑗 = s𝑙,𝑗𝐼𝑇−𝑗                                              (6.4.5b) 

Proposition 6.4.1 Considering a multivariate method that allows for heteroscedasticity of the 

errors inside each equation and contemporaneous correlations between these equations, we 

assume for our MGLR method 

                                                        𝔼(𝜀|𝑋) = 𝔼(𝜀) = 0                                                    (6.4.6) 

                                                𝔼(𝜀𝜀′) = Σ                                                              (6.4.7) 

                                                                  𝔼(𝜀𝐹𝜀𝐹′) = Σ𝐹                                                         (6.4.8) 

 

6.4.3 Estimation 

 

The parameters estimation may be obtained by the following Lemma 6.4.1. 

 

Lemma 6.4.1 Following, Zellner (1962) or Srivastava and Giles (1987), we may get the 

estimation of the 𝛽, that is the estimation of the loss development factors from all the 

equations. The 𝛽̂ is obtained using the SUR generalized least squares and it is the best linear 

unbiased estimator of 𝛽.   
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𝛽̂ = (𝑋′Σ−1𝑋)−1𝑋Σ−1𝑌                                            (6.4.9) 

We also need an expression for the prediction error which is given by the following section. 

Lemma 6.4.2 Following Zellner (1962), the estimators for the parameters of variance and 

covariance matrix from a multivariate regression are given by    

                                       𝑠̂𝑗,𝑗 =
1

𝑇−1
𝑆𝑆𝑅𝑗                 𝑠̂𝑖,𝑗 =

1

𝑇
𝑆𝑆𝑅𝑗                                         (6.4.10) 

The 𝑆𝑆𝑅𝑗 (the sum of the square of the residuals from equation j) are calculated using for 

each regression 𝑗 the Ordinary Least Squares (OLS) sum of the square of the errors (also 

called residuals). This means that we need to run a second regression using the OLS method, 

that is (6.4.9) considering Σ given by an identity matrix of equal size. 

 

6.4.4 Prediction Error 

 

The next theorem is similar to Theorem 6.3.1 and gives us a general non-recursive formula to 

have the prediction error, here for the method (6.3.2). 

Theorem 6.4.1 The mean square error of prediction from the method presented in (6.3.2) is 

given by. 

  𝑚𝑠𝑒𝑝 = 𝑋𝐹(𝑋′Σ−1𝑋)−1𝑋′Σ−1𝔼(𝜀𝜀′)Σ−1𝑋 (𝑋′Σ−1𝑋)−1𝑋𝐹′ +  𝔼(𝜀𝐹𝜀𝐹′)         (6.4.11) 

 

The proof follows directly from Theorem 6.3.1 when (6.4.4), (6.4.5) and (6.4.6) are 

considered. 

 

Following the results of Theorem 6.4.1, the procedures are like the ones from the univariate 

method, presented on section 6.3. In the MGLR we need to do the following: 

- We must get the 𝑠̂𝑙,𝑗
2  and 𝑠̂𝑗,𝑗

2  to estimate the ∑ matrix, which implies to have an extra 

regression, with OLS, to get the sum of the square of the errors. 

- Then we need the parameter α to have the Σ, (6.4.2) and the Σ𝐹 (6.4.3) matrices. Our 

suggestion is to choose the α that minimizes the prediction error. 

- We will also have from α the vector of the loss development factors, given by (6.4.9), to 

have 𝑋𝐹.  
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- Having ∑ and Σ𝐹 we have 𝔼(𝜀𝜀′) and 𝔼(𝜀𝐹𝜀𝐹′) and we will get the minimum prediction 

error.  

Proposition 6.4.2 Following (6.3.12) and assumptions from Proposition (6.4.1) the msep is 

given by 

                  𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′Σ−1𝑋)−1𝑋′𝐹 + Σ𝐹.                  (6.4.12) 

Clearly, the parameters s𝑗,𝑗 and s𝑗,𝑗 are not known and must be estimated using (6.4.10). 

As in the univariate method from section 6.3, we choose the 𝛼 which minimizes the 

prediction error. Analytically, we do not get anymore the loss development factors from, the 

VP for 𝛼 = 0, the CL for 𝛼 = 1 and the SA for 𝛼 = 2. The reason is the consideration of 

contemporaneous correlations between the regressions that change the loss development 

factors, indeed, the (6.4.9) equation is not equal to (6.3.9). However, we may say that, when 

𝛼 = 0 we get a Multivariate VP, when 𝛼 = 1 we get a Multivariate CL and when 𝛼 = 2 we 

get a Multivariate SA. The argument for this is the heteroscedasticity level and its relation 

with these methods. 

What defines and differentiates these three methods are the weights given to the link ratios 

and the weights also define of the heteroscedasticity level. In the VP is zero, 𝛼 = 0, in the CL 

is one, 𝛼 = 1 and in the SA is two, 𝛼 = 2. We may say that the heteroscedasticity level may 

be defined by 𝛼, the weights of the link ratios, see (6.2), where given by 2 − 𝛼. This means 

that the homoscedastic case is a particular case of the heteroscedastic methods when the level 

of heteroscedasticity is zero. These levels of heteroscedasticity are maintained in the 

multivariate approach. 

As with the univariate method, we will get other methods for different 𝛼’s, as they give other 

weights to the link ratios (and other levels of heteroscedasticity). As with the univariate 

method from section 6.3 the optimal 𝛼 is the one that minimizes the prediction error. 

In the Proposition 6.4.1, the level of the heteroscedastic errors and of correlation is given by 

the matrix Σ. The latter depends on the variance-covariance parameters 𝑠𝑙𝑗  and 𝑠𝑗𝑗, on 𝑋𝑖𝑗 

(that comes from the triangle data) and on the parameter 𝛼. Here, we use (6.4.11), i.e., the 

msep minimization, to get 𝛼. Homoscedastic errors may also arise also here if Σ𝑙,𝑗 = 𝐼. The 

univariate method is a particular case of the multivariate method when 𝑠𝑙𝑗 = 0. Correlations 
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between regressions appear on the data for several reasons such as an increase/decrease of 

claims on some development years or an increase/decrease of the speed of paying claims on 

certain development years.  

 

6.4.5 Particular Multivariate Methods 

 

Particular cases of the method are considered with the next three corollaries. Obviously, the 

proofs of those corollaries are linked with (6.3.6), Theorem 6.4.1 and Proposition 6.4.1, and 

they are omitted.   

Corollary 6.4.1 If 𝛼 = 0, variances are homoscedastic, and the regressions correlated, we 

get the Multivariate VP 

𝔼(𝜀𝜀′) = Σ𝑉𝑃 

and  

𝔼(𝜀𝐹𝜀𝐹′) = Σ𝑉𝑃
𝐹  

where Σ𝑉𝑃 and Σ𝑉𝑃
𝐹  are, respectively, Σ and Σ𝐹 as defined in (6.4.1) and (6.4.4) with  

Σ𝑗,𝑗 = s𝑗,𝑗 [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] 

Σ𝑗,𝑗
𝐹 = s𝑗,𝑗 [

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] 

With 𝛼 =0, the loss development factors are equal to the ones from the multivariate VP. Then, 

the msep is given by 

𝑋𝐹(𝑋′Σ−1𝑋)−1𝑋′𝐹 + Σ𝐹 

𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′Σ𝑉𝑃
−1𝑋)−1𝑋𝐹′ + Σ𝑉𝑃

𝐹            (6.4.14) 

Corollary 6.4.2 If 𝛼 = 1, variances are heteroscedastic, and the regressions correlated, we 

get the Multivariate CL 
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𝔼(𝜀𝜀′) = Σ𝐶𝐿 

and  

𝔼(𝜀𝐹𝜀𝐹′) = Σ𝐶𝐿
𝐹  

where Σ𝐶𝐿 and Σ𝐶𝐿
𝐹  are, respectively, Σ and Σ𝐹as defined in (6.4.1) and (6.4.4) with  

Σ𝑗,𝑗 = s𝑗,𝑗 [

𝑥1,𝑗 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇−𝑗,𝑗

] 

Σ𝑗,𝑗
𝐹 = s𝑗,𝑗 [

𝑥𝑇,𝑗 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇+𝑗,𝑗

] 

With 𝛼 =1, the loss development factors are equal to the ones from the multivariate CL. Then, 

the msep is given by 

                                     𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′Σ𝐶𝐿
−1𝑋)−1𝑋′𝐹 + Σ𝐶𝐿

𝐹                  (6.4.15) 

Corollary 6.4.3 If 𝛼 = 2, variances are heteroscedastic, and the regressions correlated, we 

get the Multivariate SA 

𝔼(𝜀𝜀′) = Σ𝑆𝐴 

and  

𝔼(𝜀𝐹𝜀𝐹′) = Σ𝑆𝐴
𝐹  

where Σ𝑆𝐴 and Σ𝑆𝐴
𝐹  are, respectively, Σ and Σ𝐹 as defined in (6.4.1) and (6.4.4) with 

Σ𝑗,𝑗 = s𝑗,𝑗 [

𝑥1,𝑗
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇−𝑗,𝑗

2
] 

Σ𝑗,𝑗
𝐹 = s𝑗,𝑗 [

𝑥𝑇,𝑗
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑇+𝑗,𝑗

2
] 
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With 𝛼 =2, the loss development factors are equal to the ones from the multivariate SA. Then, 

the msep is given by 

                                   𝔼(𝑌𝐹̂ − 𝑌𝐹)(𝑌𝐹̂ − 𝑌𝐹)
′

= 𝑋𝐹(𝑋′Σ𝑆𝐴
−1𝑋)−1𝑋′𝐹 + Σ𝑆𝐴

𝐹                    (6.4.16) 

 

6.5 Numerical Results 

 

To have some comparable numerical results we considered two triangles of cumulative 

payments, used already in section 5.2.1 and 5.2.2.  

As we saw in these sections, the payments in the first triangle are irregular and in the second 

triangle they are regular.  

We will see that, in both cases, the conclusions confirm the ones we presented in Portugal et 

al. (2017). Additionally, a use test was conducted with 114 paid claims triangles and with 10 

years of information, as we did in section 5.3.  

 

6.5.1 Irregular Development of Data 

 

In this section we consider the Mack (1993a) irregular data used in section 5.2. The 

explanation of why is the data considered irregular, see Table 2.1, was already given in 

section 5.2. 

 

6.5.1.1    Replication of Mack (1993b, 1994) Results 

 

The GLR method for 𝛼 = 1 replicates Mack (1993a, 1993b, 1994)’s results, i.e., the loss 

development factors, the variance, and the prediction error (see Table 6.1).15 We are able to 

obtain Mack’s results with a prediction error of 52% when we consider that the process 

variance equals 𝜎2𝑊𝐶𝐿 instead of 𝜎2𝑊𝐹,𝐶𝐿, see Corollary 6.4.2. In other words, the Mack’s 

                                                 

15 This one with a difference of 1%, due to the number of operations performed with the 

associated rounding. 
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stochastic distribution-free method is replicated when the prediction error formula assumes 

that the process variance depends on current weights, that is 𝑊𝐶𝐿. As we saw before the 

weights of the link ratios are related with the heteroscedasticity level, see Corollaries 6.4.1, 

6.4.2 and 6.4.3.  

 

When we consider the process variance as given by 𝜎2𝑊𝐹,𝐶𝐿, see Corollary 6.4.2, the Mack 

method prediction error increases to 99% (see Table 6.2).  

 

Table 6.1: Mack (1993, 1994)’s results with irregular data 

 

 

 

Table 6.2: Replication of Mack (1993, 1994)’s results for irregular data 

 

 

 

 

Development Year Loss Development Factors Variance

2 2,999 27 883,479

3 1,624 1 108,526

4 1,271 691,443

5 1,172 61,230

6 1,113 119,439

7 1,042 40,820

8 1,033 1,343

9 1,017 7,883

10 1,009 1,343

Development Year Estimated Reserves Prediction Error

2 154 287%

3 617 138%

4 1 636 177%

5 2 747 135%

6 3 649 80%

7 5 435 146%

8 10 907 115%

9 10 650 150%

10 16 339 129%

Total 52 135 53%

Future Heteroscedasticity Our Model Mack Model

Current 53% 54%

Estimated from Future Payments

Zellner (1962) estimator)
99%
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6.5.1.2    Generalized Link Ratios 

 

Here we estimate the parameter 𝛼 that minimizes the prediction error on the GLR. 

Numerically, this may be achieved straightforwardly using a simple toolbox like the Excel 

Solver by defining the prediction error, see (6.3.1.3), as an objective function and the 

parameter 𝛼 as the variable to be changed. Thus, as it is shown in Figure 6.1, for 𝛼 = 0, we 

get a prediction error of 36.1% and we confirm the VP as the ones that minimize the 

prediction error. This compares with 53% to the CL (𝛼 = 1). Indeed, it seems that we do not 

have significant heteroscedastic errors in this triangle. We also report that, as soon we leave 

the low values of 𝛼, the prediction error increases in a non-linear way (see Figure 6.1). 

 

Figure 6.1: Prediction error: Generalized Link Ratios irregular data 

 

 

Table 6.3: Generalized Link Ratios α=0 for irregular data 

 

 

Column Reserves per Column Prediction Error Prediction Error %

2 2 511 3 773 150%

3 5 672 5 359 94%

4 7 501 6 627 88%

5 7 867 7 021 89%

6 7 208 5 801 80%

7 4 283 6 015 140%

8 4 412 4 488 102%

9 2 620 4 421 169%

10 1 698 2 074 122%

Total 43 772 15 811 45 579 36,1%
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The reserves estimated are of 43 772, and they are reported in Table 6.3, which compare with 

the CL with 52 135 (see Table 6.1). This result confirms that we may improve the CL with 

other methods like the VP estimated through the GLR, and here, with homoscedastic errors. 

  

6.5.1.3    Multivariate Generalized Link Ratios 

 

In this section, the same procedure is followed as in the previous method, but now we 

minimize the prediction error using the MGLR method instead, i.e., by using (6.4.11). The 

method is multivariate and assumes contemporaneous correlations between the equations that 

exist inside the triangle. As before, the Excel Solver is used to estimate the parameter 𝛼 that 

minimizes the prediction error.  For 𝛼 = 0, we get a prediction error of 17.5.%. This is 

comparable with 22.1%, when we have 𝛼 = 1, i.e., the heteroscedastic structure from the 

multivariate CL (Figure 6.2).  

Once again, we report an improvement over the CL when the VP is used. But here, we may 

also see that the multivariate method also improves the prediction error in both the VP and the 

CL. 

Figure 6.2: Prediction error: Multivariate Generalized Link Ratios irregular data 

 

 

The reserves estimated are of 45 638, and they are reported in Table 6.4, which compare with 

the GLR reserves of 43 772. The results show that we may improve the GLR considering the 

method as multivariate. 
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Table 6.4: Multivariate Generalized Link Ratios α=0 irregular data 

 

 

6.5.2 Regular Development of Data 

 

In this section, we consider the set of data from Taylor and Ashe (1983), also used in section 

5.2 and presented in Table 5.2.  

We start by replicating Mack (1993b, 1994) results.  

 

6.5.2.1    Replication of Mack (1993b, 1994) Results with Regular Data 

 

Again, the GLR method for 𝛼 = 1 replicates Mack (1993b, 1994) results with Taylor and 

Ashe (1983) data. The replication includes, the loss development factors, the variance, and the 

prediction error (see Table 6.5.).16 Additionally, here, we approximate Mack (1993b, 1994) 

prediction error of 13%. Our prediction error was of 10% (assuming that the future weights 

matrix, 𝑊𝐹,𝐶𝐿, equals to the current weights matrix, 𝑊𝐶𝐿). This means that the Mack’s method 

is replicated when the prediction error calculation assumes that the process variance is given 

by 𝜎2𝑊𝐶𝐿. Considering Corollary 6.4.2, which considers that the process variance is given by 

𝜎2𝑊𝐹,𝐶𝐿, the prediction error increases to 15% and stays 2 percentage points above Mack’s 

results (see Table 6.6). 

                                                 

16 This one also with a difference of 3 percentage points, probably due to the number of 

operations performed with the associated rounding. 

Development Year Estimated Reserves Prediction Error

2 154 126%

3 694 65%

4 1 623 54%

5 2 787 27%

6 3 715 48%

7 5 163 50%

8 10 531 12%

9 9 267 61%

10 11 706 87%

Total 45 638 17,5%
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Table 6.5: Mack (1993, 1994)’s results for Regular Data 

 

 

Table 6.6: Replication of Mack (1993, 1994)’s results for Regular Data 

 

 

 

6.5.2.2    Generalized Link Ratios 

 

Here we estimate the parameter 𝛼 that minimizes the prediction error on the GLR using again 

the Excel Solver. For 𝛼 = 0, we get a prediction error of 9.7%. This compares with 15.1% to 

the CL (𝛼 = 1). It seems that we do not have heteroscedastic errors (Figure 6.3). 

 

Figure 6.3: Prediction error: Multivariate Generalized Link Ratios regular data 

 

 

Loss Development Factors Variance 

3,491 160280,327

1,747 37736,855

1,457 41965,213

1,174 15182,903

1,104 13731,324

1,086 8185,772

1,054 446,617

1,077 1147,366

1,018 446,617

Parameters

Future Heteroscedasticity Our Model Mack Model

Current 10% 13%

Estimated from Future Payments

Zellner (1962) estimator)
15%
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The reserves estimated are of 1 789 811 (see Table 6.7) which compares with the CL 

estimated reserves of 2 822 035. The results show that we may improve the CL with other 

methods like the VP. 

 

Table 6.7: Generalized Link Ratios: α=0 for regular data 

 

 

6.5.2.3    Multivariate Generalized Link Ratios 

 

In this section, we follow the same procedure as previously, but now we will minimize the 

prediction error in the MGLR, i.e., by using (6.4.11). For 𝛼 = 0, we get a prediction error of 

5.4%. This compares with 8.1%, when we have 𝛼 = 1, the heteroscedastic structure from the 

multivariate CL.  

Once again, an improvement is observed over the CL when the VP is used (Figure 6.4). We 

may also see that the VP is the method that minimizes the prediction error of our multivariate 

method. Finally, the multivariate approach also presents lower prediction errors, both in the 

CL and VP multivariate methods, when compared with the univariate versions.  

The reserves estimated are of 1 065 939, and they are reported in Table 6.8, which compare 

with the GLR optimum of 1 789 811.  

 

 

 

 

 

 

Row Reserves per Row Prediction Error Prediction Error %

2 94 634 242 020 256%

3 478 103 349 855 73%

4 723 104 478 207 66%

5 1 002 041 570 839 57%

6 1 408 034 660 893 47%

7 2 131 332 837 597 39%

8 3 885 296 700 641 18%

9 4 255 237 715 968 17%

10 4 501 720 571 014 13%

Total 18 479 500 1 789 811 9,7%
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Figure 6.4: Prediction error: Multivariate Generalized Link Ratios regular data 

 

The results show that we may improve the GLR considering the method as multivariate. We 

also have a significant drop of the reserves. 

 

Table 6.8: Multivariate Generalized Link Ratios: α=0 regular data 

 

 

 

6.6 Use Test 

 

In this subsection, to interpret better the results derived by the previously presented numerical 

examples and to also provide a “business orientated” analysis, as in Portugal et al. (2017), we 

select 114 triangles with paid claims and 10 years of information to be comparable directly to 

the previous cases. Thus, the parameter 𝛼 that was selected to minimize the prediction error is 

derived. Note that it was not possible to have a solution for 8 triangles due to the existence of 

several zeros on the triangle cells thus we decide to exclude them from the analysis.  
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Prediction Error as a Function of Alpha

Row Reserves per Row Prediction Error Prediction Error %

2 94 634 242 020 256%

3 519 654 324 937 63%

4 765 334 555 500 73%

5 1 127 046 535 655 48%

6 1 563 631 589 963 38%

7 2 323 548 630 746 27%

8 4 106 477 155 152 4%

9 4 502 111 249 467 6%

10 4 664 560 488 305 10%

Total 19 666 994 1 065 939 5,4%
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Observing Table 6.9, we conclude the following for the GLR: 75% of the 106 triangles 

considered have 𝛼 = 0, which confirms again the preference of VP against other methods 

(Portugal et al. 2017), however here with homoscedastic errors.  

This also means that just 25% of the cases seem to show heteroscedastic errors. However, in 

total, 89% of the remaining 106 cases have 𝛼 less or equal to 0.5. What is more, only 9% of 

the cases are in the CL zone, i.e., 𝛼 ∈ [0.5, 1.5], and just 2% are in the SA zone. Interestingly, 

the only method where parameter 𝛼 receives an exact number is the VP method, i.e. 𝛼 = 0. 

Both the CL and SA methods, with 𝛼 = 1 and 𝛼 = 2, respectively, are never confirmed.  

The conclusions are similar for the MGLR, but the number of cases with 𝛼 = 0 is reduced to 

45% (Table 6.10). However, when we sum up the number of cases including 𝛼 = 0.1, the 

proportion is quite like the GLR, i.e., 75%.  

It seems that the fact that we assume dependencies between the regressions obliges a small 

increase of the heteroscedasticity. 

Table 6.9: Values for parameter α: Generalized Link Ratios 

Number of cases % of all cases

0 80 75%

[0, 0.5] 94 89%

[0, 1] 99 93%

[0, 1.5] 104 98%

[0, 2] 105 99%

[0, 3] 106 100%
 

 

Table 6.10: Values for parameter α: Multivariate Generalized Link Ratios 

Number of cases % of all cases

0 45 42%

[0, 0.5] 87 82%

[0, 1] 88 83%

[0, 1.5] 91 86%

[0, 2] 97 92%

[0, 3] 106 100%
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6.7 Testing for Heteroscedasticity 

 

As we saw before, in chapters 5 and in current chapter 6, the main methods considered, VP, 

CL and SA, can be replicated by a regression model. However, in such a model in this 

chapter, the VP method assumes that there is homoscedasticity (no heteroscedasticity) and the 

CL and the SA assumes there is heteroscedasticity. In this section, we use a known regression 

test to verify the existence of heteroscedasticity. Finally, we compare its results with the 𝛼 

obtained when the prediction error is minimized. 

 

The literature presents several heteroscedasticity tests; see for example Fomby et al. (1984) or 

Hill et al. (2012).  

 

A first test that may be done is the residual plot analysis for all the regressions. We may plot 

the errors against the cumulative payments and check if there is any visible pattern. For 

example, if the errors are growing/decreasing with the payments that may be a sign of 

heteroscedasticity. Otherwise, if there is not any pattern this means that we should have 

homoscedasticity.  

 

The problem with visual tests is that they are not a statistical test. To do a statistical test we 

have several alternatives.  

 

The first one is the Lagrange Multiplier Test, also called Breusch-Pagan test, see Hill et al. 

(2012). It’s a large sample test and as the triangles we are using, see Tables (2.1) and (5.19), 

have 𝑇 =  10, it’s not the best approach for analysis when we want to analyse the errors per 

regression (even knowing that putting all the regressions together we get 𝑚 =  45). Also, 

very often, insurers work with triangles with 𝑇 <  10. Due to all these reasons, we decide not 

to apply this test.  

 

The second possibility are the Goldfeld-Quandt test and the Chow test, see Fomby et al. 

(1984). The tests are designed for two groups of data with possibly different variances. This 

means that for each regression we need to have two regressions, one for lower variances and 

another one for higher variances. The consequence of this on claims reserving triangle will be 

a reduced number of observations on each regression, for instance for 𝑇 =  10 the first 
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regression, which just uses 9 observations from this 10, will be split in two regressions, one 

with 4 observations and another one with 5 (or maybe one with 3 observations and the other 

one with 6). The degrees of freedom to estimate the regressions will be low and for this 

reason we do not apply this test. 

 

The third test, White (1980) test, see Hill et al. (2012), is more feasible to apply to claims 

reserving triangles: for each equation from the payments triangle, for example, Table 2.1, we 

just need to use OLS to each regression. For each of these regressions we estimate the errors 

squared 𝜀𝑖̂
2
 as a function of the independent variables that explains the errors behaviour, 

𝑍1,𝑍2, ... and its cross-products. For regressions without a constant, as we are considering, 

Baltagi (2013) suggests to only use 𝑍1
2. 

 

There will be also an error term 𝑣𝑖 which sum of squared of the errors will be minimized to 

obtain 𝑎 and 𝑏, the parameters from equation (6.6.1). This error has the usual OLS properties, 

see White (1980) and Hill et al. (2012). 

                                                          𝜀𝑖̂
2 = 𝑎 + 𝑏𝑍1

2 + 𝑣𝑖                                                 (6.6.1) 

 

In claims reserving triangles, when they are considered a regression model, the errors, what 

we cannot explain on origin year 𝑖 from a specific column 𝑗, may be explained by several 

factors that we may use as explanatory variables. Indeed, considering 𝑍 the level of payments, 

should reflect several factors that may affect the errors. For example:  

- If in one cell the payments are too high, compared with other origin years, the error may be 

higher, because the method may not be able to capture that feature for that cell. The 

residual, the difference from the true payments and the forecasted payments will be 

positive. 

- With the same argument, if in one cell the payments are too low, the error may be lower. 

The residual, the difference from the true payments and the forecasted payments will be 

negative. 

 

In (6.6.1) the payments will also act like a proxy that may summarize several other factors, 

like the speed of paying claims or the higher/lower frequency of claims in some years. There 

is also an advantage in using just one explanatory variable: the degrees of freedom do not 
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decrease so much (something always important in triangles claims reserving due to the low 

number of observations at some development years). 

 

In applying the White test, we used the information available from the datasets to explain the 

errors. We did two tests. In the first, we will test the method (6.6.1) for regressions 1 to 7. The 

regressions 8 to 9 are excluded due to the small number of observations. In a second test, we 

will apply the White test to all the regressions at the same time (including data on regressions 

1 to 9).  

 

The White test is performed as an F-test, see Hill et al. (2012), and test the null hypothesis 

that the parameter 𝑏 from the regression is zero against the alternative hypothesis that the 

parameter 𝑏 from the regression is different from zero. If we reject the null hypothesis we will 

have an indication of heteroscedasticity.  

 

We reject the null hypothesis if the statistic 𝜒2 is higher than the 5% critical value 

𝜒2
1−0.05,𝑑𝑓

, where 𝑑𝑓 means the degrees of freedom. The latter are the number of regressions 

without constant, which is 1 for the first test and 9 to the second test. The statistic 𝜒2 is the 

product of the regression number of observations by its R-squared. The latter summarizes 

how close the data is from the fitted regression.  

 

From the Chi-Square distribution table and for one degree of freedom we get 𝜒2
0.95,1

= 3.84. 

For nine degrees of freedom we get 𝜒2
0.95,9

= 16.9. More details on the statistic may be seen 

in Hill et al. (2012).  

 

The following analysis is done for the GLS univariate method but using OLS errors. These 

are necessary to test for heteroscedasticity (the GLS errors already include heteroscedasticity). 

The GLS is a method that considers heteroscedasticity for 𝛼 ≠ 0. The case of 𝛼 = 0, the VP, 

corresponds to an OLS model.  

 

For the MGLR, another analysis will be done in section 6.8, testing the possibility of having 

(6.4.3) a diagonal matrix that is  ∑ showing absence of correlations between the triangle 

equations. 
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We will analyse the two datasets considered in the previous numerical analysis. 

 

6.7.1 Irregular Development of Data 

 

In this section, we consider the same irregular data used on section 5.2 from Mack (1993a, 

1993b, 1994). On section 5.2 it was explained why the data is considered irregular. 

 

6.7.1.1    Regression Error’s Plots 

 

In Figure 6.5 we analyse the first three regressions, 𝑘 = 1,2,3. We may see in regressions 

𝑘 =  1 and 𝑘 =  2  plots that the payments increase, and the errors are also increasing.  

 

However, the range of the errors is mostly, between -4000 and 4000 for equation 1, between -

3000 and 3000 for equation 2 and between -2000 and 2000 for equation 3. There is just one 

case, on each equation, outside the respective equation range. 

 

Figure 6.5: Regression Error’s Plots for Individual Regressions 1 to 3 
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For the remaining regressions 𝑘 = 4, … ,9 the analysis is more difficult to be done, as the 

number of observations is smaller but the plots for equations 4 and 5 are presented in Figure 

6.6.  

 

As some regressions have less observations we did also an analysis with the data from all the 

regressions in the same plot, Figure 6.7.  
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Figure 6.6: Regression Error’s Plots or Individual Regressions 4-5 

 

 

 

 

As expected, the previous conclusion of Figure 6.6 is also on the plot of Figure 6.7: the range 

of the errors is between -4000 and 4000. We also see a different range of values for payments 

until 5 000. 
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Figure 6.7: Regression Errors Plot for all the Regressions with Payments 

 

 
 

 

In section 6.5.1 we saw that both the prediction errors from the CL and the homoscedastic VP 

were high, respectively, 56% and 36%. In section 5.2 we got a prediction error for the 

heteroscedastic VP of 63%. 

 

As we can see, the homoscedastic VP has a better prediction error than the CL (which is a 

heteroscedastic method). Also, the homoscedastic VP has a lower prediction error than the 

heteroscedastic VP. Thus, for this irregular data, when we assume homoscedasticity of the 

errors, the prediction error is lower. Although, these results are not good enough (36% is still 

a high prediction error).  

 

However, when we compare the two methods with heteroscedasticity, the CL and the 

heteroscedastic VP, the CL has a lower prediction error. This happens because some 

heteroscedasticity was detected on payments up to 5 000 and the level of heteroscedasticity 

from the CL is higher than the level of heteroscedasticity from the VP.  

 

So far, we assume that the regression errors are comparable with the payments, but other 

relations may be more appropriate. We show this with another plot where we compare 

regression errors with the square of the payments.  
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Figure 6.8: Regression Error Plot for all the Regressions with Squared Payments 

 

 

The change for the square of the payments did not change the conclusions obtained before. 

Now we may say that, for this triangle, the variance of the errors does not seem to have a 

strong relation with the payments and the square of the payments.  

 

The same analysis was also done for the errors when explained by the fitted payments and we 

may see that the conclusions are like the ones obtained with the payments. 

 

Figure 6.9: Regression Error Plot for all the Regressions with Fitted Payments 
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errors squared in relation to the fitted payments, but with one outlier and four observations 

above the range.  

 

Figure 6.10: Regression Squared Error Plot for all the Regressions with Fitted Payments 

 

 

The visual analysis shows some trend to homoscedastic errors with some heteroscedasticity 

until fitted payments of 7 000. The following Figure 6.11 shows the origin of those deviations 

with the same plots done for regressions 1, 2 and 3. 

 

Figure 6.11: Squared Error Plot for Regressions 1-3 with Fitted Payments 
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There is an outlier on regressions 1, 2 and 3, but one outlier does not justify the existence of 

heteroscedasticity. However, the payments until 5000 from regression 1 show a different 

range from those after 5000. Visually, it is not possible to conclude if this is evidence of a 

significant heteroscedasticity.  

 

To completely understand if this fact is enough to classify the regressions as heteroscedastic 

we will perform, in the following section, the White test. See Hill et al. (2012), for more 

details on the test. 
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6.7.1.2    White Test 

 

We start by applying the test for regression 1 to 7. The results are presented in the following 

table 6.11 and show, for all the regressions, that we should not reject the null hypothesis that 

the 𝑏 parameter from (6.6.1) is null. This means that we should not reject the hypothesis that 

the errors are homoscedastic. This conclusion, for this irregular data set, does not reject the 

homoscedastic VP results and does not confirm the CL heteroscedastic method. 

 

Table 6.11: White 5% Test of Heteroscedasticity for Regression 1 to 7 

 

 

 

Then we applied the test for all the regressions, considering all the cells from the upper 

triangle of the data and calculating the R-squared of all the set of regressions.  

 

Now we have nine regressions, which means nine degrees of freedom.  

 

The critical value is now 16.9. Table 6.12 summarizes the results of the White Test. 

 

Table 6.12: White 5% Test of Heteroscedasticity for all the Regressions 

 

 

The results obtained show that we should not reject the null hypothesis that the 𝑏 parameter 

from (6.6.1) is null in both methods. This means that we should not reject the hypothesis that 

the errors are homoscedastic. This conclusion, for this irregular data set, does not reject the 

homoscedastic VP results and does not confirm the CL heteroscedastic method. 

 

 

 

1 2 3 4 5 6 7

Chi-Square Statistic 1,9 1,2 3,2 0,1 1,6 2,4 0,1

Critical Value 3,8 3,8 3,8 3,8 3,8 3,8 3,8

Reject Null Hypothesis? No No No No No No No

Regression

 

Chi-Square Statistic 6,9

Critical Value 16,9

Reject Null Hypothesis? No

All the Regressions as one Regression
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6.7.2 Regular Development of Data 

 

In this section, we consider the same regular data used on section 5.2 from Taylor and Ashe 

(1983).  

On section 5.2 it was explained why the data is irregular. The analysis is like the one 

performed in section 6.6.1 but the data is now regular. Regular data was defined in section 

5.4.  

 

6.7.2.1    Regression Error’s Plots 

 

In Figure 6.12 we analyse the first three regressions 𝑘 = 1,2,3. We may see in regressions 

𝑘 =  1 and 𝑘 =  2  plots that the payments increase, and the errors are also increasing.  

 

However, the range of the errors is mostly between -400 000 and 400 000 for all three 

equations and there are no values and outliers outside this range. It is a more regular triangle. 

 

 

Figure 6.12: Regression Error’s Plots for Individual Regressions 1 to 3 
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As in section 6.6.1, for the remaining regressions 𝑘 = 4, … ,9 the analysis is more difficult to 

be done, as the number of observations is smaller. Despite this, the plots for equations 4 and 5 

are presented on Figure 6.13. 

 

As some regressions have less observations we did also an analysis with the data from all the 

regressions in the same plot, Figure 6.14.  
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Figure 6.13: Regression Error’s Plots or Individual Regressions 4-5 

 

 

 

 

As expected, the previous conclusion of Figure 6.12 is also on the plot of Figure 6.14: the 

range of the errors is between -400 000 and 400 000. There is just one value outside this 

range. We also see that the errors are not related with the payments. 
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Figure 6.14: Regression Errors Plot for all the Regressions with Payments 

 

 
 

 

In section 6.5.2, we saw that both the prediction errors from the CL and the homoscedastic 

VP were low, 15% and 10%, respectively. In section 5.2 we got a prediction error for the 

heteroscedastic VP of 9%.  

 

As we can see the homoscedastic VP has a better prediction error than the CL (which is a 

heteroscedastic method). Also, the homoscedastic VP has a similar prediction error to the 

heteroscedastic VP.  

 

Thus, for this regular data, when we assume homoscedasticity of the errors, the prediction 

error is lower. So far, we assume that the regression errors are comparable with the payments, 

but other relations may be more appropriate. As we did for irregular data, we show this with 

another plot, Figure 6.15, where we compare the regression’s errors with the square of the 

payments.  
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Figure 6.15: Regression Error Plot for all the Regressions with Squared Payments 

 

 

 

The change for the square of the payments did not change the conclusions obtained before. 

Now we may say that, for this triangle, the variance of the errors does not have any relation 

with the payments and the square of the payments.  

 

The same analysis was also done for the errors when explained by the fitted payments, Figure 

6.16, and we may see that the conclusions are like the ones obtained with the payments, see 

Figure 6.13. The same already happened before with the irregular data, on section 6.6.1. 

 

Figure 6.16: Regression Error Plot for all the Regressions with Fitted Payments 
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Finally, we analysed the square of the errors when compared with the fitted payments. The 

results confirm what we saw in previous figures from this section. A constant range of the 

errors squared in relation to the fitted payments. There is just one outlier.  

 

Figure 6.17: Regression Squared Error Plot for all the Regressions with Fitted Payments 

 

 

We may conclude from all these figures that this triangle or regular data shows homoscedastic 

errors. This means that we should promote the method with such a feature, namely the 

homoscedastic VP.  

 

6.7.2.2    White Test 

 

As before, we start by applying the test for regression 1 to 7. The results are presented in the 

following table 6.13 and show, for all the regressions, that we should not reject the null 

hypothesis that the 𝑏 parameter from (6.6.1) is null. This means that we should not reject the 

hypothesis that the errors are homoscedastic.  

 

This conclusion, for this regular data set, does not reject the VP homoscedastic results and 

does not confirm the CL heteroscedastic model. 
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Table 6.133: White 5% Test of Heteroscedasticity for Regression 1 to 7 

 

 

Then we applied the White test for all the regressions, considering all the cells from the upper 

triangle of the data and calculating the R-squared of all the set of regressions. Table 6.14 

summarizes the results of the White Test. 

 

Table 6.14: White 5% Test of Heteroscedasticity for all the Regressions 

 

 

The results obtained for both methods show, as expected from the plots analysis on section 

6.7.2.1, that we should not reject the null hypothesis that the 𝑏 parameter from (6.6.1) is null.  

This means that we should not reject the hypothesis that the errors are homoscedastic. This 

conclusion, for this regular data set, does not reject the homoscedastic VP results and does not 

confirm the CL heteroscedastic method. 

 

6.8 Test of Correlations between Equations 

 

In this section, we test for the existence of correlations between the equations. That may be 

done considering as null hypothesis ∑ as a diagonal matrix against the alternative hypothesis 

of one or more off-diagonal elements of ∑ are non-zero. 

 

Two tests may be used for this, the LR test (the log-likelihood ratio test) and the Breusch and 

Pagan test with the LM statistic, see Pesaran (2015). The tests are recommended, see Pesaran 

(2015), for situations where the number of equations is not large, and the number of 

observations is large. The tests are asymptotically equivalent. 

  

We concentrated on the Breusch and Pagan test, as it is easier to apply in practice.   

 

1 2 3 4 5 6 7

Chi-Square Statistic 1,9 1,2 3,2 0,1 1,6 2,4 0,1

Critical Value 3,8 3,8 3,8 3,8 3,8 3,8 3,8

Reject Null Hypothesis? No No No No No No No

Regression

 

Chi-Square Statistic 12,1

Critical Value 16,9

Reject Null Hypothesis? No

All the Regressions as one Regression
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The LM statistic is given by 

                                                         𝐿𝑀 = 𝑚 ∑ ∑ 𝜌𝑗𝑗′
2𝑗′−1

𝑗=1
𝑇−1
𝑗′=2                                          (6.8.1) 

Where 𝜌𝑗𝑗′ is the pair-wise correlation coefficient of the OLS errors from regression equations 

𝑗 = 1, … 𝑇 − 1 and 𝑗′ = 1, … 𝑇 − 1. The covariance and the variance of the errors are obtained  

using (6.4.10). 

 

We will test as null hypothesis ∑, as a diagonal matrix, against the alternative hypothesis of 

one or more off-diagonal elements of ∑ are non-zero. If we reject the null hypothesis we will 

have an indication of correlations between equations.  

 

We reject the null hypothesis if the statistic 𝜒2 is higher than the 5% critical value 

𝜒2
1−0.05,𝑑𝑓

, where 𝑑𝑓 means the degrees of freedom. The degrees of freedom are given by 

(𝑇 − 1)(𝑇 − 2)/2 = 36. From the Chi-Square distribution table and for 36 degrees of 

freedom we get 𝜒2
0.95,36

= 51. More details on the statistic may be seen in Pesaran (2015).  

 

The results obtained are presented in Table 6.15 and confirm that we should reject the null 

hypothesis that ∑ is a diagonal matrix. This means that we have an indication, in the two 

triangles tested (with irregular and regular data), that there are correlations between equations 

inside each of these triangles. That is, we have an indication supporting the MGLR (6.4.1) 

assumption.  

 

Table 6.15: White 5% Test of Correlations between Regressions 

 

 

 

6.9 Testing Serial Correlation of the Errors 

 

Serial correlations are a feature from time-series and the regressions we are considering are 

based on time-series (by accident year). It arises when we have omitted variables from the 

method or when the dependent variable is related with the explanatory variable measured on 

other periods. It may happen, when modelling payments, that we did not consider all the 

Irregular Data Regular Data

LM Statistic 262,7 278,2

Critical Value 51,0 51,0

Reject Null Hypothesis Yes Yes
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relevant explanatory variables, for instance the change in legislation or the new policy of 

speeding up the claims payments.  

 

It is not expected, for the same development year, that the errors in one origin year are related 

with errors in the previous origin year and most of the methods, see for example Mack 

(1993a, 1993b, 1994), consider that these origin years are not correlated. A reason for this is 

that what an insurer pays in one year is related with what the same insurer paid in other 

development years (the correlation studied in the multivariate method and tested on section 

6.8). However, it is not expected that the payments in one origin year will influence the 

payments in the following origin year for the same development year. 

 

As it was assumed in the methods defined in sections 6.3 and 6.4, see (6.6) and (6.7), that the 

errors inside each equation are not correlated, we decide to apply the Durbin-Watson statistic 

to the regressions with more than 5 observations and also to the case where all the regressions 

are estimated as one regression, see Fomby et al. (1984) for more details.  

 

As the method defined in section 6.3.1 does not have an intercept, the Fairbrother table was 

applied, together with the Savin-White tables due to the existence of regressions with less 

than 15 observations. 

 

All the tests done to a 5% significance were inconclusive to the existence or not of first order 

serial correlation. Indeed, this is one of the problems from the Durbin-Watson test: there is a 

range of the test values where it’s not possible to accept or reject the assumption of the errors 

serial correlation. 

 

Due to this we did a regression, per equation 𝑗, of the errors obtained as a function of the 

errors from the previous origin year, a first order correlation, with parameter 𝜌 and with an 

error 𝑣𝑖,𝑗 following the OLS properties.  

                           𝜀𝑖,𝑗 = 𝜌𝑗𝜀𝑖−1,𝑗 + 𝑣𝑖,𝑗    𝑖 = 2, … , 𝑇 − 𝑗 + 1  and 𝑗 = 2, … 𝑇       (6.4.17) 

 

The conclusion for all the regressions, for the regular and irregular data, was that the 

parameter 𝜌𝑗 was not statistically significant for a 5% T-test. 
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It’s difficult to imagine a reason to have higher order correlations (the payment of one origin 

year to depend on the payments of two or three origin years ago) and due to that those cases 

were not tested.  

 

The test of correlation is important. If there is serial correlation of the errors, of first order, the 

𝑌𝐹̂ ≠ 𝑋𝐹𝛽̂ because 𝔼(𝜀|𝑋) = 𝔼(𝜀) ≠ 0. The true relation will depend on the structure of the 

serial correlation. If we consider, as structure of the serial correlation, the one on (6.4.17), we 

will have,  

𝔼(𝜀) = 𝜌 𝜀∗ 

where 𝜀∗ is the 𝜀 vector with a lag of one origin year. This means that if the correlation 

coefficient of the errors, 𝜌, is high as well as the errors, the estimated payments may be 

significantly different from the ones forecasted by 𝑌𝐹̂ = 𝑋𝐹𝛽̂. 

 

Clearly, the methods developed and analysed, GLR and MGLR, assumes that there is no 

serial correlation of the errors. 

   

6.10 Conclusions 

 

In the insurance industry, the analysis of outstanding claims reserves plays a core role in the 

assessment of financial strength and solvency of a company. Failure to do so might result in 

the insolvency or lack of competitiveness of some insurers, see chapters 1 and 2. Furthermore, 

the flexibility to control the prediction errors level is very much appreciated.  

The framework presented is very flexible and allows us to have several methods with the 

same general formulas, including the one for the prediction error. We may generate new 

methods and replicate other known methods. Also, we may have the prediction error method 

with the lowest prediction error for a set of LRT stochastic methods.  

In this chapter, the main conclusions can be summarized as follows. 

First, heteroscedasticity is an important feature of insurers’ triangles to be analysed and may 

arise in some circumstances. There is a clear connection between its level, and the method 

selected from the LRT methods, when the prediction error is minimised. 
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Second, the GLR method replicates the loss development factors, the variance parameter, and 

the prediction error of the Mack (1993a, 1993b, 1994)’s method, when the structure of the 

future heteroscedasticity is assumed to be equal to the current one. Otherwise, the method 

shows that the prediction error increases significantly. This means that the traditional 

stochastic CL may have even higher prediction errors. Moreover, a generalized approach to 

the link ratios using the heteroscedasticity level as parameter optimized allows us to have a 

solution that is not necessarily the one from the traditional LRT methods presented on chapter 

3.1. Other weights for the link ratios may arise that are not necessarily the ones from the VP, 

CL or SA methods. The criterion used in our method was the minimization of the prediction 

error in a univariate and a multivariate framework. The results obtained show a lower 

prediction error when homoscedastic errors or a low level of heteroscedasticity are 

considered. The formula yields for the prediction error is computationally easy, it can be 

applied using the Excel Solver, and allows the implementation of the GLR method when the 

lowest prediction error is required. 

Third, implementing correlation of the errors between the triangle equations, a MGLR 

method, reduces even further the prediction error. It also brings the possibility of considering 

several methods with heteroscedastic errors, including the structure of well-known methods 

from the LRT techniques. Using the same examples as in Portugal et al. (2017), we confirm 

that lower prediction errors are obtained when the VP is used instead of the typical CL. 

Additionally and as in the univariate methods, it is also shown that between the latter and the 

former, there are several other methods obtained if other values of the heteroscedasticity 

parameter are considered. 

Fourth, the survey conducted with 114 triangles seems to show, as more frequent, the 

inexistence of heteroscedasticity in the GLR. Some cases arise with a low level of 

heteroscedasticity, and the possibility to have the CL and SA methods as the best ones is very 

low. When we use the MGLR the conclusions are similar, but we notice a small increase of 

the heteroscedasticity level. 

Fifth, the heteroscedasticity is a feature assumed from claims reserving methods like the CL 

and the SA but most of the triangles show indications of homoscedasticity. The 

heteroscedasticity may be easily tested using the White test. If the test does not reject the null 

hypothesis we have an indication to select methods with homoscedastic errors, like the VP 

and to be careful in selecting methods with heteroscedastic errors, like the CL and the SA. 
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The existence or not of heteroscedasticity may, in some cases, be detected just with a plot of 

the errors vs the payments (or the square of the payments). 

Sixth, the correlation between equations, inside each triangle, may be easily tested. The 

triangles used in this chapter show statistical evidence of correlation between the equations of 

each triangle. This is an important indication towards the use of multivariate techniques. 

Finally, the LRT methods seem to rely on the determination of an appropriate level of 

heteroscedasticity in the methods (permitting also the possibility of homoscedastic errors). 

However, it is also shown that the consideration of a multivariate method with 

contemporaneous correlations in the errors may improve the results of the method, while it 

also defines the correct level of heteroscedasticity. Regarding the multivariate case, the 

MGLR method, the method changes the level of heteroscedasticity obtained in the GLR 

method. This appears to be very interesting, since it may be an indication that in the univariate 

context, the level of heteroscedasticity may be hidden because dependencies are not 

considered in the method.  
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7. Stochastic Portfolio Claims Reserving 

 

The framework presented in the last chapter may be extended to the situation where we have 

more than one triangle to be estimated at the same time. In the literature, as we saw, for 

example in Merz and Wüthrich (2007), this is called a multivariate approach. However, this 

just happens due to the consideration of correlations between the triangles. Indeed, in such 

cases that we see in the literature, there is the absence of correlations between the regressions 

inside each triangle. Since we are considering, in one of the methods of this chapter, 

correlations between each triangle regressions and simultaneously correlations between the 

triangles, it is more appropriate to call these methods something different than multivariate.  

 

A first possibility is to call it multivariate claims reserving with panel data, sometimes also 

called longitudinal data, see for example Frees (2010). Panel data, see Fomby et al. (1984) or 

Hill et al. (2012), consists of 𝑁 cross-sectional units (for example people, countries, firms, 

lines of business) who are observed over 𝑇 years when those cross-sectional units are the 

same in all the points in time. There are several types of panel data, see for example Hill et al. 

(2012): 

- “Long and narrow”, where 𝑇 > 𝑁. 

- “Wide and short”, where 𝑁 is much larger than 𝑇. 

- “Long and wide”, where both 𝑇 and 𝑁 are large. 

 

Insurer’s triangles, when considered correlated, are the same over each period of the 𝑇 years 

considered. It is not common to have a large 𝑇, for example 20 years, although is not 

impossible with lines of business like credit insurance, general liability and inward 

reinsurance (see section 2.1). Also, it is not common to have N much larger than T. Putting all 

this together, insurer’s triangles seem to be more of the type “Short and Narrow”, with a short 

𝑇 and a low number of 𝑁 triangles, which is not matching the types presented by Hill et al. 

(2012).   

 

Due to this, a second possibility was considered and we decided to call it portfolio claims 

reserving (univariate or multivariate). Indeed, the methods to be presented in the following 

sections are to be applied to a portfolio of claim’s triangles (without or with correlation 

effects). 
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Working with a portfolio of triangles shows the importance of having data split, by lines of 

business and covers, to get homogeneous triangles. Just in particular cases may be indifferent 

to have either aggregated data or data split in several triangles. The following Lemma 7.0 

shows that.  

 

Lemma 7.0 The reserves estimated when using an aggregated triangle are equal to the ones 

obtained when considering that triangle split in two or more triangles if the individual 

triangles ultimate factors (see 2.3) are equal to the one from the aggregated data triangle. If 

that is not the case, different levels of reserves will arise - a similar Lemma with incremental 

data may be seen at Radtke et al. (2010). 

Proof. We know that to have equivalence between the triangles aggregate reserves and the 

sum of the individual triangles reserves we need to have (the bold identifies the aggregated 

triangle variables and parameters and the 𝑓𝑗,𝑡 are the ultimate factors from the triangle 𝑡 =

1, … , 𝑁). 

𝑪̂𝑖,𝑇 . 𝒇̂𝑗 = 𝐶̂𝑖,𝑡−𝑖+1,1. 𝑓𝑗,1 + ⋯ + 𝐶̂𝑖,𝑡−𝑖+1,𝑁. 𝑓𝑗,𝑁 

This means that 

𝑪̂𝑖,𝑇 = 𝐶̂𝑖,𝑡−𝑖+1,1.
𝑓̂𝑗,1

𝒇̂𝑗
+ ⋯ + 𝐶̂𝑖,𝑡−𝑖+1,𝑁.

𝑓̂𝑗,𝑁

𝒇̂𝑗
. 

If the ratios of the individual triangles ultimate factors to the aggregated triangle ultimate 

factor are equal to one, we get the requested equivalence. In that case we may say that the 

speed of arrival to the ultimate cost is the same in all the triangles, the individual ones and the 

aggregate one. This means that all the triangles behave in the same way and we do not lose 

anything in aggregating the triangles. However, this situation of having the same ratios above 

is probably rare, even if we considered those ratios as similar.  

 

Finally, having a portfolio means that we may have correlations between the portfolio 

triangles. For example: 

- The increase of payments on some triangles may be a consequence of measures taken for 

all the lines of business, which may originate some anticipation of payments, in the same 

direction, in several triangles.  
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- Increase on claim’s payments in one triangle may have a correlation with different 

triangles, if the driver of the payment is the same, e.g., courts decisions or inflation (even if 

with a different impact on each triangle). 

- Some triangles may show payments adverse movements when others show the opposite (or 

even not show anything). 

 

Due to all these reasons, aggregating triangles may not be a good procedure. Also, not 

considering the correlation between them implies losing information about claims patterns. 

This means, that it may be important to have a portfolio analysis, with the same triangles 

estimated at the same time. The next sections develop two different methods for that. 

 

Baltagi (2013) identifies six good reasons and four problems in using panel data (our portfolio 

data). The good reasons identified are the following: 

- Controlling for heterogeneity. Claims features, see section 2.1, suggests that triangles are 

heterogeneous. This may happen, for example, if we do not split motor insurance data 

between bodily injury claims and material damage claims. 

- We will have more information, more variability, less collinearity among variables, more 

degrees of freedom and more efficiency. Multicollinearity is not an issue with triangle’s 

regressions when we just have one explanatory variable (as in the regression methods of 

chapters 6 and 7), but the degrees of freedom is an important aspect of claims reserving. 

Some of the columns of the triangles have a low number of observations. With more data, 

from several triangles, we have more information, for example about certain development 

years where the link ratios are not so much stable.  

- It is easier to understand the dynamics of the variables under study. With more than one 

triangle we may understand if the claims paid are related or not with claims paid in other 

triangles. 

- We may identify what is not clear on pure time-series data or pure cross-section data. 

Indeed, correlations between several triangles will allow understanding the true overall 

reserves and not just the reserves from one triangle (the sum of the reserves estimated from 

several triangles is not, necessarily, the true overall reserve). 

- It is possible to construct and test more complex behaviour. For example, material 

damages claims evolution when bodily injured claims payments increase. 
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- Bias coming from aggregated data is eliminated. We saw already the disadvantages of 

aggregated data with Lemma 7.0.  

 

But there also some problems with this portfolio approach. Baltagi (2013) identifies the 

following problems, but we will see that most of them do not exist in insurer’s triangles: 

- Design and data collection problems. Indeed, to apply portfolio analysis we need to have 

triangles for all the lines of business and with the same number of years of origin and 

development. This usually happens with insurers. 

- Distortions and measurement errors. This is a disadvantage from panel data as they rely on 

the information of several individuals surveyed. However, in insurance, data is not 

collected by survey and insurers are used to have data in triangle format. Also, the 

European Union (2015) oblige insurers to have quality on the data. 

- Selectivity problems arise in panel data due to the absence of response in some surveys. 

This problem does not exist with insurers, as all the information is registered in the 

information system. Even if the RBNR’s are not there, see chapter 2, they will be estimated 

inside IBNR and IBNER estimation. Eventually, we may have some triangles without 

payments, for example, in the first development year. These triangles may require a 

different approach from the other triangles (to avoid the zeros on the triangle first column 

we may aggregate the first two development years) and we may avoid this problem. 

- Short time-series dimension. Indeed, the same may happen with insurers if the triangles 

just have a few years of information, in which case the T is much lower than the N. In such 

a case, the first year of origin may not be closed, which brings other type of problems, with 

the need to have a tail factor (see section 2.4). 

   

There are several types of panel data models, see for example (Frees 2010): 

- Fixed effects model, which consider the slope of the regression as the same in all the 

subjects of the regression (the subjects would correspond to the triangles). These models 

consider an extra parameter to attend to the differences over the subjects: a variable 

constant (one-way fixed effects model and two-way fixed effects model) or a second 

variable constant, to attend differences over time (two-way fixed effects model). It is 

difficult (or impossible) to justify the same slope in all the insurer’s triangles for the same 

development year.  
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- Variable coefficients model, which allows the slope of the regression to vary over the 

subjects (the triangles in our case), a typical situation from the insurer’s triangles. 

- Serial correlation models, which consider correlations over time between the errors. We 

saw already in section 6.9 that this is not an issue in insurer’s triangles (or seem not to be 

an issue). 

- And random effects models, where the subjects of the regression (the triangles), are 

randomly selected from a population. Insurer´s triangles are not selected randomly. 

 

Clearly the panel data model of interest to the extension of the GLR and MGLR methods is 

the variable coefficients model. This is the one we will develop here. 

 

Firstly, in section 7.1 we develop the Portfolio Generalized Link Ratios (PGLR), which uses 

the GLR presented on chapter 6 in the context of a portfolio of triangles. Secondly, in section 

7.2 we develop the Portfolio Multivariate Generalized Link Ratios (PMGLR), which uses the 

MGLR presented on chapter 6, also in the context of a portfolio of triangles. 

Some numerical examples are presented in section 7.3 and some tests are done in section 7.4. 

The final section 7.5, presents the conclusions that we got from this chapter.   

 

7.1 Portfolio Generalized Link Ratios 

 

We have now data from 𝑡 = 1, … , 𝑁 triangles. On each of these triangles we will have 𝑘 =

1, … , 𝑇 − 1 equations (regressions) and on each of these equations we have 𝑇 − 𝑘 

observations (years of origin).  

 

The estimations for the t triangles will be provided simultaneously with the 𝑦𝑡,𝑖,𝑗 explained by 

the adjacent triangle column 𝑥𝑡,𝑖,𝑗−1. This means that the claim’s payments on column 𝑗 from 

triangle t, 𝑦𝑡,𝑖,𝑗 are a function (a regression through the origin) of the claim’s payments on 

column 𝑗 − 1 from triangle t, 𝑥𝑡,𝑖,𝑗−1. Both variables represent the cumulative payments, but 

𝑦𝑡,𝑖,𝑗 is a random variable and 𝑥𝑡,𝑖,𝑗−1 is a non-random variable. We follow the same notation 

from chapter 6. 

 

The following model is based on GLR method presented in section 6.3 but considering 𝑡 =

1, … , 𝑁 triangles at the same time with 𝑘 equations on each triangle. 
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We define 𝛽𝑡,𝑗 as the slope (loss development factor) of the 𝑗 equation from the triangle 𝑡. 

Also, each  𝜀𝑡,𝑖,𝑗 is the error from year of origin 𝑖, development year j and triangle 𝑡. For, 𝑡 =

1, … , 𝑁,  𝑖 = 1, … , 𝑇 − 𝑗 + 1  and 𝑗 = 2, … 𝑇, the cumulative payments dependent variable 

𝑦𝑡,𝑖,𝑗 is given by  

𝑦𝑡,𝑖,𝑗 = 𝛽𝑡,𝑗𝑥𝑡,𝑖,𝑗−1 + 𝜀𝑡,𝑖,𝑗                                            (7.1.1) 

 

7.1.1 Portfolio Univariate Model 

 

In a matrix format and considering all the triangles 𝑡 = 1, … , 𝑁 and all the 𝑇 − 1 equations 

implicit in each triangle of cumulative payments, the model is similar from the one in 

equation (6.2). The difference is the size of each of its components, as now we have 𝑁 

triangles. To differentiate the two models, here we consider the same notation as before but 

now in bold. 

𝒀 = 𝑿𝜷 + 𝜺,                                                     (7.1.2)   

𝒀 is the block-vector that includes the previous Y from the GLR method of section 6.3.1 but 

now for 𝑁 triangles. 𝒀 as dimension (𝑚 × 𝑁) × 1. The 𝑌 from the GLR method is now 𝒀𝑡 

and 𝑡 = 1, … , 𝑁 

𝒀 = [
𝒀1

…
𝒀𝑁

] , 

The 𝒀𝑡 =  [

𝑌𝑡,1

…
𝑌𝑡,𝑇−1

] represents the dependent variables of the set of 𝑇 − 1 equations (see 7.1.1) 

on the triangle 𝑡, where the generic equation 𝑌𝑡,𝑘 = [

𝑦𝑡,1,𝑘+1

…
𝑦𝑡,𝑇−𝑘,𝑘+1

] includes the random variables 

𝑦𝑡,𝑖,𝑘+1 for 𝑡 = 1, … , 𝑁, 𝑘 = 1, … , 𝑇 − 1 and 𝑖 = 1, … , 𝑇 − 𝑘.  

𝑿 is defined by a diagonal block matrix which includes the previous X from the GLR method 

of section 6.3.1 but now for 𝑁 triangles. 𝑿 has dimension (𝑚 × 𝑁) × [𝑁 × (𝑇 − 1)], and it 

can be represented by  
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𝑿 = [
𝑿1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑿𝑁

] 

𝑿𝑡 = [

𝑋𝑡,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑋𝑡,𝑇−1

], where each generic element  𝑋𝑡,𝑘 = [

𝑥𝑡,1,𝑘

…
𝑥𝑡,𝑇−𝑘,𝑘

] belongs to equation 𝑘 

and includes the non-random variables 𝑥𝑡,𝑖,𝑘 for 𝑡 = 1, … , 𝑁, 𝑘 = 1, … , 𝑇 − 1 and 𝑖 =

1, … , 𝑇 − 𝑘.  

𝜷 is defined by a block-vector that includes the previous 𝛽 from the GLR method of section 

6.3.1 but now for 𝑁 triangles. 𝜷 has dimension [𝑁 × (𝑇 − 1)] ×1, and it can be represented 

by  

𝜷 = [
𝜷1

…
𝜷𝑁

] 

𝜷𝑡 =  [

𝛽𝑡,1

…
𝛽𝑡,𝑇−1

] where the generic 𝛽𝑡,𝑘 is the non-random parameter that represents the slope 

(loss development factor) from triangle 𝑡 = 1, … , 𝑁 and equation 𝑘 = 1, … , 𝑇 − 1.  

𝜺 is the block-vector that includes the previous 𝜀 from the GLR method of section 6.3.1, but 

now for 𝑁 triangles. 𝜺 as dimension (𝑚 × 𝑁) × 1. The 𝜀 from the GLR method is now 𝜺𝑡 and 

𝑡 = 1, … , 𝑁 

𝜺 = [

𝜺1

…
𝜺𝑁

] , 

The 𝜺𝑡 =  [

𝜺𝑡,1

…
𝜺𝑡,𝑇−1

] where the generic 𝜺𝑡,𝑘 = [

𝜀𝑡,1,𝑘+1

…
𝜀𝑡,𝑇−𝑘,𝑘+1

] includes the random variables 

𝜺𝑡,𝑖,𝑘+1 for 𝑡 = 1, … , 𝑁, 𝑘 = 1, … , 𝑇 − 1 and 𝑖 = 1, … , 𝑇 − 𝑘.  

We define the true unknown future observations of the dependent variables as 𝒀𝑭 = 𝑿𝑭𝜷 +

𝜺𝑭, where 𝑿𝑭 and 𝜺𝑭 are, respectively, the future values of 𝑿 and the future errors.  

𝒀𝑭 is a block-vector with size (𝑁 × 𝑚) ×  1 given by 
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𝒀𝑭 = [
𝒀𝑭

1

…
𝒀𝑭

𝑁

], 

with each element 𝒀𝑭
𝑡 = [

𝒀𝐹
𝑡,1

…
𝒀𝐹

𝑡,𝑇−1

]  and the generic  𝒀𝐹
𝑡,𝑘 = [

𝑦𝐹
𝑡,𝑇−𝑘+1,𝑘+1

…
𝑦𝐹

𝑡,𝑇,𝑘+1

] for 𝑡 = 1, … , 𝑁 

and 𝑘 = 1, … , 𝑇 − 1.  

𝑿𝑭 is given by the current diagonal of payments from each triangle and by the estimated 

payments of the lower triangle from each triangle. It is a block matrix given by  

𝑿𝑭 = [
𝑿𝐹

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑿𝐹

𝑁

] 

where each element 𝑿𝐹
𝑘 = [

𝑋𝐹
𝑡,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑋𝐹

𝑡,𝑇−1

] and 𝑋𝐹
𝑡,𝑘 = [

𝑥𝑡,𝑇−𝑘+1,𝑘

…
𝑥𝑡,𝑇,𝑘

] for 𝑡 = 1, … , 𝑁 

and 𝑘 = 1, … , 𝑇 − 1.                                             

𝜺𝑭 is a block-vector with size (𝑁 × 𝑚) ×  1 given by 

𝜺𝑭 = [

𝜺𝑭1
…

𝜺𝑭𝑁

], 

with each element 𝜺𝑭𝑡
= [

𝜺𝐹
𝑡,1

…
𝜺𝐹

𝑡,𝑇−1

]  and the generic  𝜺𝐹
𝑡,𝑘 = [

𝜀𝐹
𝑡,𝑇−𝑘+1,𝑘+1

…
𝜀𝐹

𝑡,𝑇,𝑘+1

] for 𝑡 = 1, … , 𝑁 

and 𝑘 = 1, … , 𝑇 − 1.  

The estimated values of the dependent variables are obtained from  𝒀𝑭̂ = 𝑿𝑭𝜷̂.  

The 𝑿𝑭 matrix has two types of elements (in all the t triangles): 

- The 𝑥𝑡,𝑇−𝑘+1,𝑘, which are on the last diagonal of the upper triangle. 

- And the 𝑥𝑡,𝑖>𝑇−𝑘+1,𝑘 which are on the lower triangle. They are obtained starting with the 

𝑥𝑡,𝑇−𝑘+1,𝑘  (from the last diagonal) multiplied by the estimated loss development factors. 
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This will give us another diagonal and we will repeat the procedure to get the remaining 

ones. 

 

 

7.1.2 Assumptions 

 

Having defined the method given by equation 7.1.2, we present in this section its 

assumptions. 

Proposition 7.1.1 Considering the method given by (7.1.2), that allows for heteroscedasticity 

of the errors inside each equation we assume for our PGLR method 

                                                      𝔼(𝜺|𝑿) = 𝔼(𝜺) = 𝟎                                                     (7.1.3) 

                                                       𝔼(𝜺𝜺′) = 𝝈2𝑾 = 𝚿                                                    (7.1.4)            

                                                         𝔼(𝜺𝑭𝜺𝑭′) = 𝝈𝟐𝑾𝑭 = 𝚿𝑭                                                (7.1.5) 

Where 𝟎 is a vector of zeros of size (𝑁 × 𝑚) ×  1, W is a (𝑁 × 𝑚) × (𝑁 × 𝑚) diagonal 

weighting matrix, which depends on the parameter 𝛼 on each non-zero cell. W is given by 

equation (7.1.6) where the 𝑑𝑖𝑎𝑔 operator transforms one vector on a diagonal matrix. The W 

diagonal elements are given by the elements of the transformed vectors 

𝑾 = 𝑑𝑖𝑎𝑔(𝑿𝛼 ) =   [
𝑑𝑖𝑎𝑔(𝑿1

𝛼) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝑿𝑁

𝛼)
] = [

𝑥1,1,1
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇−1,𝑇−1

𝛼
]      (7.1.6) 

The matrix 𝑾𝐹 is the future 𝑾 and has the same structure as 𝑾. However, its elements are 

the 𝑿𝑭
𝛼 instead of 𝑿𝛼. 𝑾 corresponds to a specific structure of heteroscedasticity through 

the choice of parameter α, and 𝑾𝑭 has the same structure as 𝑾 but is based on the predicted 

payments. 

𝑾𝑭 = 𝑑𝑖𝑎𝑔 (𝐗) = [

𝑑𝑖𝑎𝑔(𝑿𝑭1
𝛼) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝑿𝑭𝑁

𝛼)
] = [

𝑥1,𝑇,1
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇,𝑇−1

𝛼
]       (7.1.7) 

The 𝝈2 is diagonal block matrix with N blocks and of 𝑠𝑖𝑧𝑒 (𝑁 × 𝑚) × (𝑁 × 𝑚), when 

expanded. 
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                                   𝝈𝟐 = [
𝝈𝟐

𝟏,𝟏 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝝈𝟐

𝑵,𝑵

]                                               (7.1.8) 

where each block 𝝈𝟐
𝒕,𝒕 = 𝑑𝑖𝑎𝑔 [

𝜎2
𝑡,𝑘

…
𝜎2

𝑡,𝑇−1

] for 𝑡 = 1, … , 𝑁 and 𝑘 = 1, … , 𝑇 − 1.  

Seeing (7.1.7) with (7.1.8) we understand that the method will be homoscedastic in each 

triangle when α = 0. Otherwise, it will be heteroscedastic.  

However, being homoscedastic at each triangle level doesn’t imply that the method is 

homoscedastic when all the triangles are considered and the estimated variances between 

triangles are different (see 7.1.8). 

 

7.1.3 Estimation 

 

The following two Lemmas allow us to have estimators for 𝜷 and for 𝝈𝟐. 

 

Lemma 7.1 Following, Fomby et al. (1984), we may get the estimation of the 𝜷, the loss 

development factors vector of all the equations from all the triangles. The 𝜷̂ is obtained using 

the Aitken generalized least squares method with 𝚿 as weights matrix and it is the best linear 

unbiased estimator of 𝜷.   

                                                        𝜷̂ = (𝑿′𝚿−𝟏𝑿)−𝟏𝑿𝚿−𝟏𝒀                                          (7.1.9) 

The parameter α from (7.1.6) and (7.1.7) will be estimated as the one that minimizes the 

prediction error. This α parameter is a method choice parameter and as in chapter 6 we 

selected the model with the prediction error minimization. The reasons were already given in 

6.1.3. 

Lemma 7.1.2 Following Srivastava and Giles (1987) we may estimate  𝜎̂2
𝑡,𝑘 using the 

equation k (from triangle t) sum of square of the errors, 𝑆𝑆𝑅𝑡,𝑘, divided by this equation 

degrees of freedom, the number of observations 𝑇𝑡,𝑘 from this equation minus the number of 

parameters from the equation, in this case one. 

                                                           𝜎̂2
𝑡,𝑘 =

𝑆𝑆𝑅𝑡,𝑘

𝑇𝑡,𝑘−1
                                                      (7.1.10) 



 

197 

 

7.1.4 Prediction Error 

 

We also need an expression for the prediction error which is given by the following theorem. 

 

Theorem 7.1.1 Knowing that the prediction error (i.e., the root of the mean square error) is 

given by the root of the expected value of 𝒀𝑭̂ − 𝒀𝑭 and its transpose, 𝐸(𝒀𝑭̂ − 𝒀𝑭)(𝒀𝑭̂ − 𝒀𝑭)
′
, 

we get it as the root of the sum of the estimation variance with the prediction variance. 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝔼[𝑿𝑭(𝜷̂ − 𝜷)(𝜷̂ − 𝜷)′𝑿′𝑭] + 𝔼(𝜺𝑭𝜺𝑭)′       (7.1.11) 

The estimation of variance is given by 

𝐸𝑠𝑡. 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒. = 𝑿𝑭(𝑿′𝚿−1𝑿)𝑿′𝚿−1𝔼(𝜺𝜺′)𝑿(𝑿′𝚿−1𝑿)𝑿′𝑭 

and the process variance comes as 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑉𝑎𝑟. = 𝔼(𝜺𝑭𝜺𝑭′) . 

All together means that the msep is given by  

                             𝑿𝑭(𝑿′𝚿−1𝑿)−1𝑿′𝚿−1𝔼(𝜺𝜺′)𝑿(𝑿′𝚿−1𝑿)𝑿′
𝑭 + 𝔼(𝜺𝑭𝜺𝑭′)                    (7.1.12) 

Proof. This can be done following the same steps of the GLR and MGLR case. 

 

Proposition 7.1.2 Following (7.1.12), assumptions (7.1.4) and (7.1.5) the msep is given by 

                             𝑚𝑠𝑒𝑝 = 𝑿𝑭(𝑿′𝚿−1𝑿)−1𝑿′𝑿(𝑿′𝚿−1𝑿)𝑿′
𝑭 + 𝚿𝑭                             (7.1.13) 

 

 

7.1.5 Particular Portfolio Univariate Methods 

 

As in the case of the GLR and the MGLR, from sections 6.3 and 6.4, and following the results 

of Theorem 7.1, we need to know which weighting matrices we are using, in the method of 

this section 7.1 this means 𝚿 and 𝚿𝑭. For the latter, we need the parameter α and we may 

obtain it, as before, searching for the α that minimizes the prediction error presented in 

(7.1.13). 
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The parameter α also corresponds to a specific structure of heteroscedasticity. If α is zero, we 

will get homoscedastic errors inside each triangle. This means, as in the GLR and MGLR 

methods, that the way 𝚿 is defined will provide us with several claims reserving methods for 

estimating the loss development factors.  

Analytically, we get the VP for 𝛼 = 0, the CL for 𝛼 = 1, the SA for 𝛼 = 2, and other 

methods for different values of 𝛼. To have them, we just need to change 𝛼 to get a different 𝚿 

matrix. For the VP, we will have homoscedastic errors, for the CL and the SA we will have 

heteroscedastic errors. 

Thus, the main advantage of this approach is that we choose 𝛼 that minimizes the prediction 

error for 𝑁 triangles at the same time. With 𝛼 different from 0, 1 and 2, we get other distinct 

methods: the optimal choice of the weights of the link ratios is obtained as the prediction error 

is minimized.  

All the link ratios methods considered here, see next corollaries (7.1.1), (7.1.2) and (7.1.3), 

depend on 𝛼 which represents the level of heteroscedasticity and we want to choose 𝛼 that 

minimizes the prediction error. As we saw in section 5.4, the lower is the prediction error, the 

better the errors analysis and the back-testing results.  

Particular cases of the method are considered with the next three corollaries. Obviously, the 

proofs of those corollaries are linked with, Theorem 6.3.1, equation (7.1.13), Theorem 7.1.1 

and Proposition 7.1.2. Due to this they are omitted.   

Corollary 7.1.1 If 𝛼 = 0, the triangle’s variances are homoscedastic, and we get, see (7.1.4) 

and (7.1.5) 

𝔼(𝜺𝜺′) = 𝝈2𝑰(𝑁×𝑚)×(𝑁×𝑚) = 𝚿𝑽𝑷 

𝔼(𝜺𝑭𝜺𝑭′) = 𝝈2𝑰(𝑁×𝑚)×(𝑁×𝑚) = 𝚿𝑽𝑷,𝑭 

Here 𝑰(𝑁×𝑚)×(𝑁×𝑚) is a diagonal identity matrix with size (𝑁 × 𝑚) × (𝑁 × 𝑚). With 𝛼 =0, 

the loss development factors are the ones from the VP applied with a portfolio context, the 

Portfolio Vector Projection (PVP), see (7.1.9), where 𝚿𝑽𝑷 𝑖𝑠 𝚿 with W=𝑰(𝑁×𝑚)×(𝑁×𝑚)  

𝜷̂𝑃𝑉𝑃 = (𝑿′𝚿𝑽𝑷
−𝟏𝑿)

−𝟏
𝑿𝚿𝑽𝑷

−𝟏𝒀 
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Then, the msep is given by, see (7.1.13), where 𝚿𝑽𝑷,𝑭 𝑖𝑠 𝚿 with 𝑾𝑭=𝑰(𝑁×𝑚)×(𝑁×𝑚) 

                  𝔼(𝒀𝑭̂ − 𝒀𝑭)(𝒀𝑭̂ − YF)
′

= 𝑿𝑭(𝑿′𝚿𝑽𝑷
−1𝑿)−1𝑿′𝑿(𝑿′𝚿𝑽𝑷

−1𝑿)𝑿′
𝑭 + 𝚿𝑽𝑷,𝑭  (7.1.14) 

Corollary 7.1.2 If 𝛼 = 1, the triangle’s variances are heteroscedastic, and we get 

𝔼(𝜺𝜺′) = 𝝈2𝑾𝐶𝐿 = 𝚿𝐶𝐿 

𝔼(𝜺𝑭𝜺𝑭′) = 𝝈2𝑾𝐶𝐿,𝐹 = 𝚿𝐶𝐿,𝐹 

with 

𝑾𝐶𝐿 =  [

𝑥1,1,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇−1,𝑇−1

]     and    𝑾𝐶𝐿,𝐹 =[

𝑥1,𝑇,1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇,𝑇−1

]. 

With 𝛼 =1, the loss development factors are the ones from the CL applied in a portfolio 

context, the Portfolio Chain-Ladder (PCL), see (7.1.9), where 𝚿𝑪𝑳 𝑖𝑠 𝚿 with W=𝑾𝐶𝐿.  

𝜷̂𝑃𝐶𝐿 = (𝑿′𝚿𝑪𝑳
−𝟏𝑿)

−𝟏
𝑿𝚿𝑪𝑳

−𝟏𝒀 

Then, the msep is given by, see (7.1.13), where 𝚿𝑪𝑳,𝑭 𝑖𝑠 𝚿 with 𝑾𝑭=𝑾𝐶𝐿,𝐹 

          𝔼(𝒀𝑭̂ − 𝒀𝑭)(𝒀𝑭̂ − 𝒀𝑭)
′

= 𝑿𝑭(𝑿′𝚿𝐶𝐿
−1𝑿)−1𝑿′𝑿(𝑿′𝚿𝐶𝐿

−1𝑿)𝑿′
𝑭 + 𝚿𝐶𝐿,𝐹      (7.1.15) 

Corollary 7.1.3 If 𝛼 = 2, the triangle’s variances are heteroscedastic, and we get  

𝔼(𝜺𝜺′) = 𝝈𝟐𝑾𝑆𝐴 = 𝚿𝑆𝐴 

𝔼(𝜺𝑭𝜺𝑭′) = 𝝈2𝑾𝑆𝐴,𝐹 = 𝚿𝑆𝐴,𝐹 

with 

𝑾𝑆𝐴 =  [
𝑥1,1,1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇−1,𝑇−1

2
]     and    𝑾𝑆𝐴,𝐹 =[

𝑥1,𝑇,1
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇,𝑇−1

2
] 

With 𝛼 =2, the loss development factors are the ones from the SA, see (7.1.3), applied in a 

portfolio context, the Portfolio Simple Average (PSA), see (7.1.9), where 𝚿𝑺𝑨 𝑖𝑠 𝚿 with 

W=𝑾𝑆𝐴.  
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𝜷̂𝑃𝑆𝐴 = (𝑿′𝚿𝑺𝑨
−𝟏𝑿)

−𝟏
𝑿𝚿𝑺𝑨

−𝟏𝒀 

. Then, the msep is given by, see (7.1.13) 

         𝔼(𝒀𝑭̂ − 𝒀𝑭)(𝒀𝑭̂ − 𝒀𝑭)
′

= 𝑿𝑭(𝑿′𝚿𝑆𝐴
−1𝑿)−1𝑿′𝑿(𝑿′𝚿𝑆𝐴

−1𝑿)𝑿′
𝑭 + 𝚿𝑆𝐴,𝐹         (7.1.16) 

 

Following the results of Theorem 7.2.1, the procedures are like the ones from the univariate 

GLR method, presented on section 6.3. In the PGLR we need: 

- The 𝜎̂2
𝑡,𝑗,𝑘 using OLS, see Lemma (7.1.2.). 

- The parameter α to have the 𝑾, (7.1.6) and the 𝑾𝐹 (7.1.7) matrices. Our decision was 

to choose the α that minimizes the prediction error. 

- The latter will give the vector of the loss development factors, given by (7.1.9), to have 

𝑿𝐹. 

- And finally, we need 𝔼(𝜺𝜺′) and 𝔼(𝜺𝑭𝜺𝑭′), which implies some assumptions about the 

method. 

 

7.2 Portfolio Multivariate Generalized Link Ratios 

 

In this section, we develop the section 7.1 method to the case where there are 

contemporaneous correlations between equations inside the same triangle and between 

triangles. It is a development similar to the one done on the previous chapter section 6.4 but 

now including correlations between triangles. 

 

7.2.1 Portfolio Multivariate Method 

 

The method considered here is the same presented in section 7.1.1. However, we will change 

the assumptions introducing a more complex structure for the errors: the SUR method.  

 

The method will become multivariate as a SUR and may also use the heteroscedastic structure 

from the GLR, including also the VP, the CL and the SA. In this PMGLR method, we are 

going to maintain all the framework presented in section 7.1 but we are going to change the 

assumptions (7.1.4) and (7.1.5).  
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We are going to assume contemporaneous correlations between the errors of the different 

equations and between the triangles. To do that, we get a portfolio multivariate method. The 

method is still based on (7.1.2) and even (7.1.9) will be similar. 

 

7.2.2 Assumptions 

 

𝚺 is a block matrix of block-size [𝑁 × (𝑇 − 1)]  × [𝑁 × (𝑇 − 1)] that summarizes the 

variances and the covariances between, 𝑘 = 1, … , 𝑇 − 1 regressions in each of the 𝑡 =

 1, … , 𝑁 triangles and also between each triangle, for observations in the same origin year. 

Expanding each block, we get a matrix of dimension (𝑁 × 𝑚) × (𝑁 × 𝑚) 

                                                      𝚺 = [

𝚺1,1,1 ⋯ 𝚺𝑁,1,𝑇−1

⋮ ⋱ ⋮
𝚺1,𝑇−1,1 ⋯ 𝚺𝑁,𝑇−1,𝑇−1

]                                   (7.2.1) 

The generic component of (7.2.1), 𝚺𝑡,𝑘,𝑘 is given by a matrix of size [𝑁 × (𝑇 − 𝑘)]  ×

[𝑁 × (𝑇 − 𝑘)]  and by s𝑡,𝑘,𝑘, the variance parameter from triangle 𝑡 and regression 𝑘.  

                                               𝚺𝑡,𝑘,𝑘 = s𝑡,𝑘,𝑘 [

𝑥1,1,𝑘
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇−𝑘,𝑘

𝛼
]                              (7.2.2) 

The generic component of (7.2.1), 𝚺𝑡,𝑘,𝑗  with 𝑘 ≠ 𝑗 is given by a matrix of size [𝑁 × (𝑇 −

𝑘)]  × [𝑁 × (𝑇 − 𝑘)] and by s𝑡,𝑘,𝑗, the covariance parameter for triangle 𝑡 between regression 

𝑘 and 𝑗, where 𝑘 ≠ 𝑗. 

                                                              𝚺𝑡,𝑘,𝑗 = s𝑡,𝑘,𝑗𝑰𝑁×(𝑇−𝑘)                                           (7.2.3) 

 

𝚺𝐹 is a block matrix of block-size [𝑁 × (𝑇 − 1)]  × [𝑁 × (𝑇 − 1)] that summarizes the future 

variances and the covariances between 𝑘 = 1, … , 𝑇 − 1 regressions. Expanding each block, 

we get a matrix of dimension (𝑁 × 𝑚) × (𝑁 × 𝑚) 

                                                𝚺𝐹 = [
𝚺1,1,1

𝐹 ⋯ 𝚺𝑁,1,𝑇−1
𝐹

⋮ ⋱ ⋮
𝚺1,𝑇−1,1

𝐹 ⋯ 𝚺𝑁,𝑇−1,𝑇−1
𝐹

]                                      (7.2.4) 

The generic component of (7.2.4), 𝚺𝑡,𝑘,𝑘
𝐹 , is given by a matrix of size [𝑁 × (𝑇 − 𝑘)]  ×

[𝑁 × (𝑇 − 𝑘)] 
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                                              𝚺𝑡,𝑘,𝑘
𝐹 = s𝑡,𝑘,𝑘 [

𝑥1,𝑇,𝑘
𝛼 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑁,𝑇+𝑘,𝑘

𝛼
]                               (7.2.5) 

The generic component of (7.2.4), 𝚺𝑡,𝑘,𝑗
𝐹  with 𝑘 ≠ 𝑗, is given by a matrix of size [𝑁 × (𝑇 −

𝑘)]  × [𝑁 × (𝑇 − 𝑘)] 

                                                                  𝚺𝐹
𝑡,𝑘,𝑗 = s𝑡,𝑘,𝑗𝑰𝑁×(𝑇−𝑘)                                     (7.2.6) 

Proposition 7.2.1 Considering a multivariate method that allows for heteroscedasticity of the 

errors inside each equation and contemporaneous correlations between these equations, we 

assume for our PMGLR method 

                                                        𝔼(𝜺|𝑿) = 𝔼(𝜺) = 0                                                   (7.2.7) 

                                                𝔼(𝜺𝜺′) = 𝚺                                                             (7.2.8) 

                                                                 𝔼(𝜺𝑭𝜺𝑭′) = 𝚺𝐹                                                         (7.2.9) 

Our assumptions for the PMGLR are going to reflect the existence of correlations between 

each of the regressions and also between triangles. We now have as new assumptions for 

errors the following weighting matrix given by 𝚺. 

Inside this method we may also have three specific cases for correlations:  

- We may assume correlations between triangles and correlations between each regression 

equation, which is the method presented with Proposition 7.2.1.  

- We may assume correlations between triangles and no correlations between each 

regression equation. In this case we will have, 

𝚺 = [

𝚺1,1,1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝚺𝑁,𝑇−1,𝑇−1

] 

and 

𝚺𝐹 = [
𝚺1,1,1

𝐹 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝚺𝑁,𝑇−1,𝑇−1

𝐹
] 

- And we may assume correlations between each regression equation and no correlations 

between triangles.  
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7.2.3 Estimation 

 

The parameters estimation may be obtained by the following Lemma 7.2.1. 

 

Lemma 7.2.1 [Srivastava and Giles (1987)] We may get the estimation of the 𝜷, that is the 

estimation of the loss development factors from all the equations. The 𝜷̂ is obtained using the 

SUR generalized least squares for panel data with heteroscedasticity and contemporaneous 

correlations and is the best linear unbiased estimator of 𝜷.   

𝜷̂ = (𝑿′𝚺−1𝑿)−1𝑿𝚺−1𝒀                                            (7.2.10) 

We also need an expression for the prediction error which is given by the following section. 

Clearly, the parameters s𝑗,𝑗 and s𝑗,𝑗 are not known and must be estimated. Thus, with the 

following Lemma, the estimators ŝ𝑗,𝑗 and ŝ𝑙,𝑗 are provided. 

Lemma 7.2.2 [Srivastava and Giles, 1987] Estimators for the parameters of variance and 

covariance matrix from a multivariate regression with panel data are given by    

                                       𝑠̂𝑡,𝑘,𝑘 =
1

𝑇−1
𝑆𝑆𝑅𝑡,𝑘                𝑠̂𝑡,𝑘,𝑗 =

1

𝑇
𝑆𝑆𝑅𝑡,𝑘                             (7.2.11) 

𝑆𝑆𝑅𝑡,𝑘 are to be calculated using for each equation t the regression 𝑘 Ordinary Least Squares 

(OLS) sum of the square of the errors.                                        

  

7.2.4 Prediction Error 

 

The following theorem follows from Theorem 7.2.1 and gives us a general non-recursive 

formula to have the prediction error. 

Theorem 7.2.1 The mean square error of prediction from the method presented in (7.1.2) is 

given by. 

            𝑚𝑠𝑒𝑝 = 𝑿𝐹(𝑿′𝚺−1𝑿)−1𝑿′𝚺−1𝔼(𝜺𝜺′)𝚺−1𝑿 (𝑿′𝚺−1𝑿)−1𝑿𝐹′ +  𝔼(𝜺𝐹𝜺𝐹′)         (7.2.11) 

The proof follows directly from Theorem 6.3.1 when (7.2.7), (7.2.8) and (7.2.9) are 

considered. 
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Following the results of Theorem 7.2.1, the procedures are like the ones from the univariate 

method, presented on section 7.1. In the PMGLR we need: 

- We must get the 𝑠̂𝑡,𝑗,𝑗 and 𝑠̂𝑡,𝑙,𝑗  to estimate the 𝚺 matrix, which implies to have a first 

regression, with OLS, to get the sum of the square of the errors.  

- We need the parameter α to have 𝚺, (7.2.1) and the Σ𝐹 (7.2.4) matrices. Our suggestion 

is to choose α that minimizes the prediction error. 

- This will also give us the vector of the loss development factors, given by (7.2.10) and 

with that we will have 𝑿𝑭. 

- Having 𝚺 and 𝚺𝐹 we have 𝔼(𝜺𝜺′) and 𝔼(𝜺𝑭𝜺𝑭′) and we calculate the prediction error.  

 

Proposition 7.2.2 Following (7.2.12) and assumptions from Proposition (7.2.1) the msep is 

given by 

                  𝔼(𝒀𝐹̂ − 𝒀𝐹)(𝒀𝐹̂ − 𝒀𝐹)
′

= 𝑿𝐹(𝑿′𝚺−1𝑿)−1𝑿′𝐹 + 𝚺𝐹.                  (7.2.12) 

 

7.2.5 Particular Portfolio Multivariate Methods 

 

As in the univariate method from section 7.1 we choose 𝛼 that minimizes the prediction error. 

Analytically, we do not get anymore the loss development factors from, the VP for 𝛼 = 0, the 

CL for 𝛼 = 1 and SA for 𝛼 = 2. The reason is the consideration of contemporaneous 

correlations between the regressions that change the loss development factors, see (7.2.9) 

which is different from (7.1.9).  

However, we may say that, when 𝛼 = 0 we get a Portfolio Multivariate VP, when 𝛼 = 1 we 

get a Portfolio Multivariate CL and when 𝛼 = 2 we get a Portfolio Multivariate SA. The 

argument for this is the heteroscedasticity level. What defines and differentiates these three 

methods is the weights given to the link ratios and the former define of the heteroscedasticity 

level. In the VP is zero, 𝛼 = 0, in the CL is one, 𝛼 = 1 and in the SA is two, 𝛼 = 2. As in 

chapter 6, we may say that the heteroscedasticity level may be defined by 𝛼. These levels of 

heteroscedasticity are maintained in the multivariate approach. 

As with the univariate portfolio data method, we will get other methods that give other 

weights to the link ratios through the 𝛼 selection. As with the univariate method from section 

7.1, the optimal 𝛼 is the one that minimizes the prediction error. 
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In the Proposition 7.2.1, the level of the heteroscedastic errors and of correlation is given by 

the matrix 𝚺, which depends, on 𝑠𝑡,𝑙𝑗, 𝑠𝑡,𝑗𝑗, 𝑿𝑖𝑗 (that is given from the triangle data), and on 

the parameter 𝛼. Here, we use (7.2.12), i.e., the msep minimization, to get 𝛼. Homoscedastic 

errors in the portfolio multivariate method, PMGLR, may also arise if 𝚺𝑡,𝑙,𝑗 = 𝑰𝑁×(𝑇−𝑗). The 

univariate method, PGLR, is a particular case of the multivariate method, PMGLR, when 

𝑠𝑡,𝑙𝑗 = 0 when 𝑙 ≠ 𝑗.  

Correlations between regressions appear on the data for several reasons such as an 

increase/decrease of claims on some development years or an increase/decrease of the speed 

of paying claims on certain development years.  

Corollary 7.2.1 If 𝛼 = 0, the variances are homoscedastic and the regressions correlated. 

We get  

𝔼(𝜺𝜺′) = 𝚺𝑽𝑷 

𝔼(𝜺𝐹𝜺𝐹′) = 𝚺𝑽𝑷,𝑭 

𝚺𝑽𝑷 and 𝚺𝑽𝑷,𝑭 are the 𝚺 defined in (7.2.1) with the following relations 

   𝚺𝑡,𝑗,𝑗 = s𝑡,𝑗,𝑗𝑰𝑁×(𝑇−𝑗)                                           

    𝚺𝑡,𝑙,𝑗 = s𝑡,𝑙,𝑗𝑰𝑁×(𝑇−𝑗)                                                

Here 𝑰𝑁×(𝑇−𝑗) is a diagonal identity matrix with size 𝑁 × (𝑇 − 𝑗). With 𝛼 =0, the loss 

development factors are the ones from the VP within a portfolio multivariate context (PMVP). 

Also, the 𝚺 = 𝚺𝑽𝑷.  

𝜷̂𝑃𝑀𝑉𝑃 = (𝑿′𝚺𝑽𝑷
−1𝑿)

−1
𝑿𝚺𝑽𝑷

−1𝒀 

Then, the msep is given by 

𝔼(𝒀𝐹̂ − 𝒀𝐹)(𝒀𝐹̂ − 𝒀𝐹)
′

= 𝑿𝐹(𝑿′𝚺𝑽𝑷
−1𝑿)−1𝑿′𝐹 + 𝚺𝑽𝑷,𝑭.           (7.2.13) 

Corollary 7.2.2 If 𝛼 = 1, the variances are heteroscedastic and the regressions correlated. 

We get 

𝔼(𝜺𝜺′) = 𝚺𝑪𝑳 
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𝔼(𝜺𝐹𝜺𝐹′) = 𝚺𝑪𝑳,𝑭 

The 𝚺𝑪𝑳 and  𝚺𝑪𝑳,𝑭 are respectively the 𝚺 and the 𝚺𝑭 defined in (7.2.1) and (7.2.4) with  

𝚺𝑡,𝑗,𝑗 = s𝑡,𝑗,𝑗 [

𝑥1,1,𝑗 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑡,𝑇−𝑗,𝑗

] 

𝚺𝑡,𝑗,𝑗
𝐹 = s𝑡,𝑗,𝑗 [

𝑥1,𝑇,𝑗 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑡,𝑇+𝑗,𝑗

] 

With 𝛼 =1, the loss development factors are the ones from the CL within a portfolio 

multivariate context (PMCL). 

𝜷̂𝑃𝑀𝐶𝐿 = (𝑿′𝚺𝑪𝑳
−1𝑿)

−1
𝑿𝚺𝑪𝑳

−1𝒀 

Then, the msep is given by 

                              𝔼(𝒀𝐹̂ − 𝒀𝐹)(𝒀𝐹̂ − 𝒀𝐹)
′

= 𝑿𝐹(𝑿′𝚺𝑪𝑳
−1𝑿)−1𝑿′𝐹 + 𝚺𝑪𝑳,𝑭                 (7.2.14) 

Corollary 7.2.3 If 𝛼 = 2, the variances are heteroscedastic and the regressions correlated. 

We get 

𝔼(𝜺𝜺′) = 𝚺𝑺𝑨 

𝔼(𝜺𝐹𝜺𝐹′) = 𝚺𝑺𝑨,𝑭 

The 𝚺𝑺𝑨 and 𝚺𝑺𝑨,𝑭 are respectively the 𝚺 and the 𝚺𝑭 defined in (7.2.1) and (7.2.4) with  

𝚺𝑡,𝑗,𝑗 = s𝑡,𝑗,𝑗 [

𝑥1,1,𝑗
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥𝑡,𝑇−𝑗,𝑗

2
] 

𝚺𝑡,𝑗,𝑗
𝐹 = s𝑡,𝑗,𝑗 [

𝑥1,𝑇,𝑗
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑥1,𝑇+𝑗,𝑗

2
] 

With 𝛼 =2, the loss development factors are the ones from the SA within a portfolio 

multivariate context (PMSA).  
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𝜷̂𝑃𝑀𝑆𝐴 = (𝑿′𝚺𝑺𝑨
−1𝑿)

−1
𝑿𝚺𝑺𝑨

−1𝒀 

Then, the msep is given by 

                              𝔼(𝒀𝐹̂ − 𝒀𝐹)(𝒀𝐹̂ − 𝒀𝐹)
′

= 𝑿𝐹(𝑿′𝚺𝑺𝑨
−1𝑿)−1𝑿′𝐹 + 𝚺𝑺𝑨,𝑭                 (7.2.15) 

 

7.3 Numerical Results 

 

We consider for the numerical results the three paid claims triangles used before, three of 

them on chapter 5 and two on the chapter 6. We call them triangle 1, triangle 2 and triangle 3: 

- Triangle 1, Mack (1993a). 

- Triangle 2, Taylor and Ashe (1983). 

- And Triangle 3, Taylor and McGuire (2016). 

 

The results obtained, once again, confirm the VP as the method that minimizes the prediction 

error.  

 

We present results for the PGLR and the PMGLR methods estimating simultaneously the 

above three triangles. For the PMGLR we give two results. One result with correlations 

between all the equations, from each triangle and between the triangles, and another one just 

with correlations between the triangles. 

 

We also compare these results with the ones obtained from an aggregated triangle. Such one 

will result from the sum of the three triangles and it is a good illustration of a practical 

problem that all the actuaries face: sometimes it is not possible to split the data, from a certain 

line of business, in more than one triangle or if it is, then it is not possible to trust the split due 

to the lack of quality on data. 

 

7.3.1 Portfolio Generalized Link Ratios 

 

We obtained the results presented in the Table 7.1 for the portfolio of three triangles. The α 

that minimizes the prediction error was zero, confirming once again the VP as the best 

solution, according with this criterion.  
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The prediction error obtained was of 8.9% and the total reserves estimated was of 18 896 187, 

see Table 7.1. 

Table 7.1: Portfolio Generalized Link Ratios Results 

 

 

 

Had we considered just one triangle that corresponds to the sum of the three triangles, the 

results would have been the ones presented in Table 7.2.  

 

Table 7.2: Generalized Link Ratios Aggregated Triangle Results 

 

 

 

When compared with Table 7.1 results, the aggregated triangles results are similar: the 

prediction error increases to 9.4% and the reserves decrease to 18 804 158. The differences 

are small but we must be aware that the triangle 2 has 98% of the level of the total reserves. 

 

As expected, the reserves obtained in Table 7.1 correspond to the reserves sum from the three 

triangles when the GLR method is applied to each triangle, see Table 7.3.  

 

 

Column Reserves per Column Prediction Error Prediction Error %

2 869 981 240 331 28%

3 1 952 143 347 595 18%

4 3 435 107 475 663 14%

5 2 419 986 567 808 23%

6 2 021 461 658 827 33%

7 2 319 736 837 251 36%

8 1 847 867 698 526 38%

9 3 141 606 594 305 19%

10 888 300 321 286 36%

Total 18 896 187 1 675 306 8,9%

Column Reserves per Column Prediction Error Prediction Error %

2 865 608 230 665 27%

3 1 937 534 334 062 17%

4 3 397 751 459 846 14%

5 2 406 814 553 000 23%

6 2 016 933 657 000 33%

7 2 309 872 837 757 36%

8 1 844 373 700 222 38%

9 3 138 605 712 769 23%

10 886 667 571 490 64%

Total 18 804 158 1 772 148 9,4%
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Table 7.3: Portfolio Generalized Link Ratios Results - Totals from the 3 Triangles 

 

 

 

The only thing that changes is the prediction error: now, instead of three prediction errors, we 

have one prediction error.  

 

This same level of total reserves happens because we did not consider any correlations 

between triangles (neither between equations regressions). We just used portfolio data to 

estimate all the regressions and triangles at the same time.  

 

The prediction error obtained is a weighted average from the prediction errors of the three 

triangles. The weights are the reserves estimated. 

 

The individual results from the three triangles are presented in Table 7.4. Here we may see 

that the 9.0% prediction error obtained is a weighted average from those in the individual 

triangles: 

 

9.0% =
43 772 × 35.8% +  18 479 500 × 9.1% + 372 915 × 4.6%

18 896 187
 

 

Also, the sum of the prediction error from all the triangles (in monetary units), see Table 7.4, 

is equal to the same indicator obtained from Table 7.1:  

 

1 707 793 = 15 651 + 1 675 147 + 16 995 

 

 

 

 

 

Column Reserves per Column Prediction ErrorPrediction Error %Prediction Error %

2 869 981 244 074 28%

3 1 952 143 360 140 18%

4 3 435 107 491 128 14%

5 2 419 986 585 065 24%

6 2 021 461 668 160 33%

7 2 319 736 846 658 36%

8 1 847 867 706 287 38%

9 3 141 606 600 946 19%

10 888 300 324 446 37%

Total 18 896 187 1 707 793 9,0%
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Table 7.4: Portfolio Generalized Link Ratios Results from the 3 Triangles 

 

 

 

7.3.2 Portfolio Multivariate Generalized Link Ratios  

 

We start the PMGLR method by having the results from Proposition 7.2.1, that is, with 

correlations between triangles and between equations inside each triangle. 

 

Triangle 1

Column Reserves per Column Prediction Error Prediction Error %

2 2 511 3 773 150%

3 5 672 5 359 94%

4 7 501 6 627 88%

5 7 867 7 021 89%

6 7 208 5 801 80%

7 4 283 6 015 140%

8 4 412 4 488 102%

9 2 620 3 957 151%

10 1 698 1 775 105%

Total 43 772 15 651 35,8%

 

Triangle 2  

Column Reserves per Column Prediction Error Prediction Error %

2 831 767 240 301 29%

3 1 901 782 347 477 18%

4 3 373 994 475 532 14%

5 2 363 113 567 670 24%

6 1 970 809 658 792 33%

7 2 276 227 837 223 37%

8 1 806 584 698 504 39%

9 3 102 951 594 286 19%

10 852 273 321 278 38%

Total 18 479 500 1 675 147 9,1%

 

Triangle 3  

Column Reserves per Column Prediction ErrorPrediction Error %Prediction Error %

2 35 703 0 0%

3 44 689 7 304 16%

4 53 611 8 969 17%

5 49 007 10 373 21%

6 43 445 3 567 8%

7 39 225 3 420 9%

8 36 871 3 295 9%

9 36 035 2 703 7%

10 34 329 1 393 4%

Total 372 915 16 995 4,6%
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For this method, the PMGLR, we also got, as the lowest prediction error, α = 0. The 

prediction error of 2.7% represents an important decrease in respect of the PGLR result (8.9% 

and also with α = 0). The reserves increase to 23 619 959 (they were 18 896 187 with PGLR). 

See Table 7.5 for the PMGLR (and Table 7.1 for the PGLR case). 

 

Table 7.5: Portfolio Multivariate Generalized Link Ratios Results 

 

 

Using an aggregate triangle would decrease the reserves to 19 889 001, but with an important 

increase of the prediction error to 5.3%, see Table 7.6.  

 

Table 7.6: Multivariate Generalized Link Ratios Aggregated Triangle Results 

 

 

 

The reason for the increase of the reserves level between the PGLR and the PMGLR lies in 

the change of the loss development factors, 𝜷, mainly the ones from the triangle 2, as the 

latter weights 98% on the total reserves.   

 

Column Reserves per Column Prediction Error Prediction Error %

2 806 936 240 633 30%

3 1 992 818 347 132 17%

4 2 452 163 588 011 24%

5 3 162 513 521 512 16%

6 3 675 198 557 398 15%

7 3 838 679 695 253 18%

8 1 886 760 240 575 13%

9 2 338 183 151 203 6%

10 3 463 709 109 640 3%

Total 23 616 959 630 782 2,7%

Column Reserves per Column Prediction Error Prediction Error %

2 858 647 230 665 27%

3 1 971 159 327 504 17%

4 3 421 429 557 641 16%

5 2 426 784 529 668 22%

6 2 098 779 583 189 28%

7 2 765 878 624 811 23%

8 1 898 505 155 946 8%

9 3 542 188 225 593 6%

10 905 634 488 026 54%

Total 19 889 001 1 052 298 5,3%
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Several loss development factors increase and some of them decrease but the increase of 5% 

from the one correspondent to j = 9 has 5% impact on all the ultimate factors from all the 

origin years and justifies the increase of reserves of around 25%.   

 

The change of the loss development factors is a consequence of the change of the weights 

matrix as the latter is now considering the contemporaneous correlations between the 

triangles. The changes of these factors are presented on the Table 7.7. 

 

Table 7.7: Changes in Loss Development Factors with PMGLR 

 

 

Finally, we present another result for a variant of the PMGLR: we assume that there are 

correlations between triangles but that there are no correlations between each triangle 

equations. This should correspond to the PGLR method. However, the results will be different 

as the PGLR and the PMGLR methods estimate the correlations between triangles in a 

Triangle

Number Number Variation

1 1 99,1%

1 2 12,8%

1 3 17,8%

1 4 -8,1%

1 5 -38,6%

1 6 -19,2%

1 7 -6,1%

1 8 6,1%

1 9 0,1%

2 1 -4,4%

2 2 0,9%

2 3 -9,1%

2 4 6,0%

2 5 7,8%

2 6 4,7%

2 7 -0,3%

2 8 -2,3%

2 9 5,0%

3 1 -19,8%

3 2 19,0%

3 3 -2,9%

3 4 -0,9%

3 5 1,7%

3 6 0,8%

3 7 0,0%

3 8 -0,2%

3 9 0,2%

Loss Development Factors
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different way, see Lemmas 7.1.2 and 7.2.2. Despite this we may compare the PMGLR results 

with this calculation without correlations between equations of each triangle. 

 

We can see in Table 7.8 that the prediction error increases from 2.7% (see Table 7.5) to 6.4%. 

We conclude from these figures that, with these triangles, the correlations between equations 

are more important than the correlations between triangles. Also, the level of estimated 

reserves drops from 23 616 959 to 19 114 443. 

 

Table 7.8: PMGLR with no correlations between Equations of each Triangle 

 

 
 

7.4 Test of Pooled Data 

 

If we have several triangles, a question that may arise is the possibility of aggregating all the 

triangles in just one. This could save some working time and, in some circumstances, where 

we do not have credible information (not enough claims), may be a way of handling this 

problem of insufficient claims in some triangles. Aggregating triangles means having more 

claims and more credible information but also means mixing covers, which may bring 

heterogeneity and unstable projections. 

 

Baltagi (2013), presents a test for aggregation, also called pool-ability test. This tests the 

hypothesis that the slopes of the equations between different entities are the same. Applied to 

the insurer’s triangles this means that we test the hypothesis of the loss development factors 

for the same development year being equal between the triangles analysed. If the slopes are 

equal, we may aggregate the triangles. 

 

Column Reserves per Column Prediction Error Prediction Error %

2 890 992 240 214 27%

3 1 935 591 324 597 17%

4 3 492 070 515 633 15%

5 2 367 356 549 370 23%

6 1 907 664 640 951 34%

7 2 191 227 662 738 30%

8 1 839 764 187 908 10%

9 3 292 299 61 799 2%

10 1 197 480 128 837 11%

Total 19 114 443 1 225 642 6,4%
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To do the test we need to compare two methods. One method, the restricted method, assumes 

that, for the same development year, all the loss development factors from the different 

triangle are equal. This means that the restricted method is given by (7.4.1) 

𝒀 = 𝑿̃𝜷̃ + 𝜺,                                                     (7.4.1)   

𝑿̃ = [
𝑿1

…
𝑿𝑁

] 

𝜷̃ = [
𝛽1

…
𝛽𝑘

] 

The unrestricted method will be the method summarized with (7.1.2). 

 

The test has one version for OLS methods and a second version to GLS methods. The latter is 

the former applied to a transformed method where each variable was multiplied by 𝑾−𝟏/𝟐. 

After this transformation the method satisfies the assumptions from the traditional OLS 

method, Baltagi (2013), and we may apply the OLS test.   

 

As we do the test for the case of α = 0, that is the VP that got the lowest prediction errors, we 

do not need to change the variables and we may apply the OLS test directly. We saw in 

Corollaries 6.3.1 and 7.1.1 that the homoscedastic VP is an OLS method. Had we applied the 

CL or the SA, would require the use of the test for GLS methods. As we saw in Corollaries 

6.3.2, 6.3.3, 7.1.2 and 7.1.3, the CL and the SA are GLS methods. 

                                                                

The null hypothesis is 𝜷 = 𝜷̃ and it may be shown that under this hypothesis, the SSR is the 

pooled OLS SSR, see Baltagi (2013). The test statistic is given by 

𝐹̃ =

(𝑅𝑆𝑆𝑅 − 𝑈𝑅𝑆𝑆)

𝑡𝑟(𝑀̃) − 𝑡𝑟(𝑀)

𝑈𝑅𝑆𝑆
𝑡𝑟(𝑀)

~𝐹[(𝑁 − 1)(𝑇 − 1), 𝑁] 

Where RSSR is the restricted method errors sum of squares and URSS is the unrestricted 

method errors sum of squares. 𝑀 and 𝑀̃ are idempotent matrices, respectively, for the 

unrestricted and the restricted methods, given by 

𝑴 = 𝑰𝑁𝑇 − 𝑿(𝑿′𝑿)−𝟏𝑿′ 
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𝑴̃ = 𝑰𝑁𝑇 − 𝑿̃(𝑿̃′𝑿̃)
−𝟏

𝑿̃′ 

𝑰𝑁𝑇 is the identity matrix of size 𝑁 × 𝑇. The test is F distributed with [(𝑁 − 1)(𝑇 − 1), 𝑁] 

degrees of freedom. Working with 5% of significance level and with the triangles used in 

section 7.3 we get  𝐹5%,(18,3) = 8.675. We also obtain as test statistic 𝐹̃ = 0.015. 

 

This means that we do not reject the null hypothesis that, for the same development years, the 

loss development factors are the same in the three triangles. The reason for this is the 

enormous weight of the triangle 2 on the future payments, 98%. 

 

Table 7.9: Testing Aggregation 

     

 

 

We saw in section 7.3, that using aggregated data increases the prediction error by just 0.5%. 

This small deterioration of the prediction error is the price to be paid for the aggregation, we 

have loss development factors specific from each triangle and correlations between the 

triangles that are not used anymore. 

 

7.5 Conclusions 

 

From these methods with portfolio data, in this case with three triangles estimated at the same 

time, we got several conclusions: 

- The use of a portfolio of triangles confirms the use of the VP as the solution that 

minimizes the prediction error. This happens both in the univariate (PGLR) and in the 

multivariate case (PMGLR). 

RSSR 1 972 740 041 457

126

URSS 1 872 256 901 279

27

F 0,015

Significance 5%

N 3

T 10

Critical Value 8,675

Accept H0 Yes

tr(𝑀̃)

tr(𝑀)
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- When we use the PMGLR, the prediction error decreases when compared with the 

PGLR. It seems that it worth to work with more information to predict the reserves. 

- However, using such information also produces an increase of the level of reserves 

due to the correlations between triangles. 

- As expected the level of reserves is not the same as the one that arises when we have 

all the triangles aggregated. The aggregation of the triangles in just one triangle, gives 

us a lower level of estimated reserves but the prediction errors are higher. This is a 

good example of the danger of not using homogeneous triangles in claims reserving, 

even if the prediction error is low. 

- A pooled data test may help us decide if we shall or not aggregate triangles. If the loss 

development factors are not statistically different that may be an indication to work 

with aggregated that if the covers are not significantly different.  
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8. General Conclusions 

 

The CL was very important to the insurance sector to understand the risk and the uncertainty 

in the claims process. It gave more importance to actuaries as being the best professionals to 

use this method with care and professionalism. It allowed also the development of other 

methods for claims reserving. 

 

However, the method does not minimize the prediction error. The latter is not the only factor 

to consider on method selection but when is minimized is associated with better results on 

other common analysis, for example: lower errors, lower volatility of the errors and better 

performance when back-testing is performed. We also understood that the CL, very often, has 

very high prediction errors when applied to the triangles. Despite all this most of the actuaries 

use the CL. 

 

The literature produced several methods on claims reserving but several methods are also CL 

based or mixtures with the CL. Some of them are also replications of the CL. 

 

It was shown in this work that the homoscedastic and the heteroscedastic VP’s, both 

regression through the origin, produces better results than the CL when the prediction error is 

analysed. This is a very important issue to insurers to manage the companies as it is now 

compulsory to them to have better estimates of the reserves, due to the implementation of the 

Solvency II systems in Europe (and of the risk-based systems already in force in other 

countries). 

 

Considering claims reserving in a regression context opened the door to have other methods 

and to replicate known methods like the CL and the SA. The minimization of the prediction 

error, of these methods, shows to us, once again, that the VP is the best one to achieve this 

objective. It also highlighted that the stochastic CL was presented in the literature considering 

has process error the past errors obtained by a regression. A proper approach, with the future 

errors, show to us that the CL prediction errors are usually higher. But more than this, we 

could see that despite the objection of some actuaries in using regression analysis, the 

stochastic CL and the SA are also a regression, but with an approximation to the minimization 

of the square of the errors, due to the inexistence of significant heteroscedastic errors in the 

triangles. 
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It was also shown that with a simple test we may confirm or not the existence of 

heteroscedasticity, the main assumption from CL and SA when presented as regression 

methods. In the triangles considered in this work the tests exclude the possibility of 

heteroscedasticity. 

 

Although methods as the CL and the SA may be important if the regressions exhibit 

heteroscedasticity. The CL assumes a lower heteroscedasticity than the SA. 

 

We could also develop a multivariate regression in the sense that we estimate all the triangle 

regressions at the same time and considering contemporaneous correlations between all the 

regressions. This is an important practice issue, due to the relation between the cumulative 

payments in one column with the payments we do in the following columns. Having this extra 

information, allowed us to have the previous methods on a multivariate framework, reducing 

even further the prediction errors. The VP on a multivariate framework was once again 

confirmed as the one that minimizes the prediction error. 

 

The tests performed to test the non-existence of correlations between the equations confirmed 

that we should reject this hypothesis, giving an indication of the need to consider multivariate 

regressions.  

 

We also developed a general method for a portfolio of triangles. The previous framework was 

extended, and the results obtained confirmed once again the VP has the best method to 

minimize the prediction error. The portfolio method was presented with the previous 

univariate and multivariate framework and confirmed several things.  

- We may have an improvement of the results if we consider several triangles at the same 

time.  

- We may see the importance of having homogeneous triangles when we compared their 

results with the aggregate triangle result, where we put in one triangle all the other 

triangles: despite the lower level or reserves from the aggregate triangle the prediction 

error is higher when we compare it with the portfolio of triangles univariate or multivariate 

analysis.  

- The correlations between triangles are important and even more when mixed with 

correlations between equations inside each regression. 
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Claims reserving techniques using regression models seem to confirm four things, which are 

important for modelling:  

- Heteroscedasticity may exist in some triangles but does not seem to be an issue in most of 

the insurer’s triangles. If it exists, is on irregular data triangles but in this case the method 

with heteroscedasticity may present a high prediction error. 

- Serial correlation does not seem to be important in claims reserving, confirming the 

independence of origin years.  

- Issues like correlations between equations and triangles seem to be important for claims 

reserving.  

- Probably the most important issue in claims reserving is the method error, not considered 

in the prediction error calculations. Several variables, important to explain insurer’s 

payments, are omitted from the methods. However, regression methods may be useful to 

fill this gap as it is very easy, on the methods that we developed, to have other explanatory 

variables, and not just the payments from the previous development year. 

 

All these together seem to confirm the need for insurers and actuaries to switch from the 

traditional CL that has a fantastic history of implementation worldwide, to the VP, promising 

the best estimates that we need to manage and to know the health of an insurance company. 

The VP implementation done so far promises that.  

 

Regression models are a useful tool to implement the VP in all the variants we saw in this 

thesis: univariate, multivariate, univariate portfolio or multivariate portfolio. They will also be 

useful in developing other claims reserving techniques: Bayesian regression and quantile 

regression may also play a role here, respectively, with LR methods and LRT when the link 

ratio is an ordinal statistic. 
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