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1 Introduction

Calogero-Moser Hamiltonian is a famous example of an integrable system [1-3] which is
related to a number of mathematical areas (see e.g. [4]). Generalised Calogero-Moser sys-
tems associated with an arbitrary root system were introduced by Olshanetsky and Perelo-
mov [5, 6]. N = 2 supersymmetric quantum Calogero-Moser systems were constructed
in [7] and considered further in [8]. They were generalised to classical root systems in [9]
and to an arbitrary root system in [10].

A motivation for construction of N/ = 4 Calogero-Moser system goes back to the
work [11] on a conjectural description of near-horizon limit of Reissner-Nordstrom black
hole where appearance of su(1,1]|2) superconformal Calogero-Moser model was suggested.
Though we also note more recent different considerations of near extremal black holes
in [12]. Another motivation to study supersymmetric (trigonometric) Calogero-Moser-
Sutherland systems comes from the relation of these systems with conformal blocks and
possible generalisation of these relations to the supersymmetric case [13].

Wyllard gave an ansatz for N' = 4 supercharges in [14]. In general Wyllard’s ansatz
depends on two potentials F' and W. He constructed su(1,1]2) N particle Calogero-Moser
Hamiltonian for a single value of the coupling parameter ¢ = 1/N as bosonic part of his
supersymmetric Hamiltonian with W = 0. Wyllard argued that his ansatz does not produce
superconformal Calogero-Moser Hamiltonians for general values of ¢. Necessary differential
equations for F' and W were derived in [14]. Thus potential F' satisfies generalised Witten-
Dijkgraaf-Verlinde-Verlinde (WDVV) equations (in the form of [15]) as it was pointed out
n [16]. Wyllard’s potential F' has the form

F=> (y,2)*log(v, ), (1.1)
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where A is the root system Ay_;. Examples based on root systems A = G, By were also
considered in [14]. Solutions F' to WDVV equations of this type appear also in Seiberg-
Witten theory [15] and in theory of Frobenius manifolds [17].

More generally, Veselov introduced the notion of a V-system in [18]. V-systems form
special collections of vectors in a linear space, which satisfy certain linear algebraic condi-
tions. A logarithmic prepotential (1.1) corresponding to a collection of vectors A satisfies
WDVYV equations if A is a V-system. The class of V-systems contains Coxeter root sys-
tems, deformations of generalized root systems of Lie superalgebras, special subsystems in
and restrictions of such systems [19, 20]. A complete description of the class remains open
(see [21] and references therein).

Several attempts have been made to construct supersymmetric mechanics such that the
corresponding Hamiltonian has bosonic potential of Calogero-Moser type with a reasonably
general coupling parameter(s). Wyllard’s ansatz for N' = 4 supercharges was extended to
other root systems in [22, 23] where solutions for a small number of particles were studied
both for W = 0 and W # 0. In particular, su(1,1|2) superconformal Calogero-Moser
systems related to A = A1 & G, Fy and subsystems of Fy were derived. Superconformal
su(1,1]|2) Calogero-Moser systems for the rank two root systems were derived in [24] via
suitable action in the superspace. For the WDVV equations arising in the superfield
approach we refer to [25].

A many-body model with D(2, 1; «) supersymmetry algebra with o = —% was consid-
ered in [26]. This model was obtained by a reduction from matrix model and it incorporates
an extra set of bosonic variables (“U(2) spin variables”) which enter the bosonic potential
of the corresponding Hamiltonian. One-dimensional version of such a model was consid-
ered in [27] and, for any «, in [28, 29]. A generalisation of the many-body classical spin
superconformal model for any value of the parameter « was proposed in [30]. Within
D(2,1; o) supersymmetry ansatz of [30] a class of bosonic potentials was obtained in [31].
The potential F' has the form (1.1) for a root system A. Then W is a twisted period of
the Frobenius manifold on the space of orbits corresponding to the root system A. Such
polynomial twisted periods were described in [31], they exist for special values of parameter
«. Although the corresponding bosonic potentials are algebraic this class does not seem to
contain generalised Calogero-Moser potentials associated with .A.

Recently a construction of type An_; supersymmetric (classical) Calogero-Moser
model with extra spin bosonic generators and N'N? fermionic variables (for any even N\)
was presented in [32]. The ansatz for supercharges is more involved and extra fermionic
variables appear due to reduction from a matrix model. A related quantum N = 4 super-
symmetric spin Ay_; Calogero-Moser system was studied recently in [33]. Furthermore,
a simpler ansatz for supercharges for the spin classical Ay_; Calogero-Moser system was
presented in [34]. This model has AN (N + 1) fermionic variables and the supersymmetry
algebra is 0sp(N]2). Most recently classical supersymmetric osp(N|2) Calogero-Moser sys-
tems were presented in [35]; these models have nonlinear Hermitian conjugation property
of matrix fermions and supercharges are cubic in fermions.

In the current work we present two constructions of supersymmetric N' = 4 quantum
mechanical system starting with an arbitrary V-system. In the case of a Coxeter root system



A the bosonic part of the Hamiltonian is the Calogero-Moser Hamiltonian associated with
A introduced by Olshanetsky and Perelomov in [6], which we get in two different gauges:
the potential and potential free ones. In the latter case the Hamiltonian is not formally
self-adjoint; this gauge comes from the radial part of the Laplace-Beltrami operator on
symmetric spaces [6, 36, 37]. The superconformal algebra is D(2,1;«) where o depends
on the V-system and is ultimately related with the coupling parameter in the resulting
Calogero-Moser type Hamiltonian. We use original ansatz for the supercharges [14, 22]
based on the potentials F';, W and we take W = 0. In the special case when a@ = —1
the superalgebra D(2,1; —1) contains the superalgebra su(1,1|2) as its subalebra, and our
first ansatz on the su(1,1]|2) generators reduces to the one considered in [22, 23]. It was
emphasised in [23] that such quantum models with W = 0 are non-trivial with bosonic
potentials proportional to squared Planck constant, though they were not considered in
more detail in [23]. Thus we extend considerations in [23] for W = 0 to the case of
superconformal algebra D(2,1;«), and we get in this framework quantum Calogero-Moser
type systems associated with an arbitrary V-system, which includes Olshanetsky-Perelomov
generalisations of the Calogero-Moser system with arbitrary invariant coupling parameters.

We also consider generalised trigonometric Calogero-Moser-Sutherland systems related
to a collection of vectors A with multiplicities. We include these Hamiltonians in the
supersymmetry algebra provided that extra assumptions on A are satisfied which are similar
to WDVYV equations for the trigonometric version of the potential F. We show that these
assumptions can be satisfied when A is an irreducible root system with more than one orbit
of the Weyl group, that is BCy, Fy and G cases. A related solution of WDVV equations
for the root system By was obtained in [38].

The structure of the paper is as follows. We recall the definition of the Lie superal-
gebra D(2,1; ) in section 2. We give two types of representations of this superalgebra in
sections 3, 4. Starting with any V-system we get two corresponding supersymmetric Hamil-
tonians. In section 5 we present them explicitly. We consider supersymmetric trigonometric
Calogero-Moser-Sutherland systems in section 6.
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2 The D(2,1; ) Lie superalgebra

Let us recall the definition of the family of Lie superalgebras D(2,1;«), which depends on
a parameter a € C (see e.g. [39, section 20]). The algebra has 8 odd generators Q®° and 9
even generators 7% = Tbe [ — [ba jab — jba (g b ¢ = 1,2). Elements 7%, 1% and J
generate three pairwise commuting sl(2) algebras.



Let €41, €* be the fully anti-symmetric tensors in two dimensions such that e;o =€e?! =1.
Then all the relations of the superalgebra D(2,1; a) take the following form:

{Qace7 def} — _2(€ef6chab+a6abechef_ (Oz—l—l)ﬁabEefICd), (2'1)

[Tab’ TCd] — —i(Eachd+€deac), (22)

a) [Jab, ch] _ —i(fachd+6deac), b) [Iab,ICd] _ _i(ﬁachd_i_edeac)’ (2'3)

a) [Tab7chf] _ iec(aQb)df’ b) [Jab’ chf] _ ’ief(aQ|Cd|b), C) [Iab’chf} _ ied(aQ|c|b)f7 (2'4)

where we symmetrise over two indices inside (... ) with indices inside | . .. | being unchanged.
For example, ef(“Q|Cd|b) = %(ef“QCdb + ebeCda).

We also have relations
[T, 1°%) = [1°¢, J°T] = [T, J/] = 0, (2.5)

for all a,b,c,d,e, f =1,2. Let us rename generators as follows:
Qa _ _Q21a Qa _ _Q22a e — Qlla Sva —_ Q12a a=1.2
K =7t H — 722 D= _T2_ _p21

We will use €q, and € to lower and raise indices, e.g. Q® = €™Qyp, Q% = €**Qy.
We consider N (quantum) particles on a line with coordinates and momenta (z;, p;),

j=1,...,N to each of which we associate four fermionic variables {¢% &g\a =1,2}. We
will also write z = (x1,...,2Nn), p = (P1,---,PN)-
We assume the following (anti)-commutation relations (a,b=1,2;j,k=1,...,N):
, o 1. . o
(ool = b, {0} = =S80, {0 = (Pl gt =0 (26)
Thus one can think of py as pr = —i%.
We introduce further fermionic variables by
Vi = e, PV = ey, (2.7)
They satisfy the following useful relations:
. 1 o 1. . 1.
{wéu ¢bk} = §5jk527 {waju ¢bk} = §€]k€ab, {wéu ¢§} = iajkﬁba- (28)

We will be assuming throughout that summation over repeated indices takes place
(even when both indices are either low or upper indices) unless it is indicated that no
summation is applied.

Let F = F(x1,...,znN) be a function such that

errjk = —(2a + 1)5jk7 (29)
where F.j, = #yg%m for any r,j,k =1,..., N. We assume that all the derivatives F};j
are homogeneous in x of degree -1. Furthermore, we assume that F' satisfies the following
Witten-Dijkgraaf-Verlinde-Verlinde equations (WDVV) equations

Frjk’kan = rmka:jna (210)

for any r,j,k,m,n=1,..., N.



The following relations for arbitrary operators A, B, C' will be useful:

[AB,C] = A[B,C] +[A, C)B, (2.11)
[AB,C] = A{B,C} — {A,C}B, (2.12)
{AB,C} = A[B,C] + {A,C)}B. (2.13)

We are going to present two representations of D(2,1; «) algebra using F'.

3 The first representation

Let the supercharges be of the form
Q" = prY™ + iFrjk <¢brwi&ak>’ (3'1)
Qc = P + iFimn (Dgp L), (3.2)
where the symbol (...) stands for the anti-symmetrisation. That is given N operators A;,

(1=1,...,N) we define

1
<A1 ce AN> = ﬁ Z SgH(O')AU(l) cee AU(N)' (33)

geSN

Note that we have by (2.6), (2.8) and (3.3)

r. 7. 7.0 1 r1J.7.a 7.a T 1] T 7a j j 7.a T
(WU pt) = S U 4 20 g — T gty
1 r 1 J.7a Ta r ] T 7a j 1 ik ar rk,aj
= (WP G — T 4 5 (7R — 7h)
L 1 1 1 . .
_ wbrwlj)wak o 75rkwa] _ 75jk:¢ar + 7(5]kwar _ 5rk¢a]).
6 3 12
Note that Frjk(éjkw‘“" — 0"kp@7) = 0 since §7F4p" — §F4p% is anti-symmetric under the
interchange of k£ and r. Note also that Frjkzb“j ok = Frjkd)‘“”éj k. Therefore

v J.7a T 1J 00 1 ar 5j
(" ) = Foj <wb Yt — S 6J’“> : (3.4)
Similarly,
7Ldm ) n L rdm,n 1~ nm
Fiynn ("™ 2) = Fimn (wgwd Ve — 5%l ) (3.5)
Let also
N
j=1
1 1 IN
I = i, 12 = g, 1 = L ) (38)
Jb = gba — 24q(adybi) (3.9)
S = 220", S, = 2z (3.10)



Remark 3.1. Ansatz (3.1), (3.2), (3.6), (3.7), (3.9), (3.10) with F satisfying (2.9) at « = —1
matches considerations in [22] (see also [14, 23]), where su(1, 1|2) superconformal mechanics
was considered. Note that superalgebra su(1,1]2) generated by Q%¢, 7%, J% is a subal-
gebra in the superalgebra D(2,1;—1). Thus lemmas 3.2, 3.4 below can be deduced from
considerations in [22]. We include these lemmas so that to have complete derivations for
reader’s convenience.

Let us firstly check relations (2.3), (2.4) involving generators J% and I%.
Lemma 3.2 (cf. [22]). Let J% be given by (3.9). Then relations (2.3a) hold.
Proof. We consider the commutator
[T qpeabR] = 03 [T ek dR] | [ypad ek k) gbi
_ %ecbwaj,(zdj + %Edaqz)cj,([}bj’
which implies the statement. O

We will use the following relations:
W% wdg) = 9, Wl vp) = vy (3.11)
Lemma 3.3. Let 1% be given by (3.8). Then relations (2.3b) hold.
Proof. The relations (2.3b) read
[111’122] — 22’1’127 [1117[12] — iIll, [1227112] — —i[22.

We have

(11, 1%2) = [hp™ ). (3.12)
By applying (2.11), (2.12) we rearrange expression (3.12) as

[T, 172) = 3 [ ™ p] + [Wh, 9" gy

= G0 + T = gt — ]

= 2%I'2,
as required. Moreover, using the Jacobi identity we have

1. . - 1 - S

(T, 1) = =S e, [, 970 = 5 [, (9, wdu™)).

Thus by using the first relation in (3.11)

[, 112] = kb = 4111,
Similarly,

1 _ .. _ 1 -
[1227 Ilz] - §[¢a]"¢é7 [wl]fa ¢bk“ - _i[wbka [wa]wgw wl])g“

Hence, by using the latter relation in (3.11)

[122’112} — &bk&g — —i[22,

and hence the statement follows. O



In what follows, we will use the following relation:
[0 ) — _%Eb%bal‘ (3.13)
By formulae (2.11), (2.12) we also have
R e e e L R R A T
= — P, )+ O Y + [T, e
_ %Ecawdlwcrln&bn + %wbld)am&cn + %¢bmwallﬁcn_ (3.14)
Lemma 3.4 (cf. [22]). Let Q%, J% be as above. Then the relations (2.4b) hold.

Proof. Firstly let us note that the sum of the last two terms in (3.14) is anti-symmetric in
a and b and J% = J%@ Therefore we have by applying (3.14)
i

2

1

S . (3.15)

[Jab’ F}mnwdlwg@@cn] — ecaﬂmnwdlwg@&bn +

Then
[Jab, QZlC] _ _[Jab7 Qc] _ _[Jabapl¢6l] o ilemn[Jab, <¢dlw&n¢_}cn>]

Therefore we get from (3.13) and (3.15) that

a c i C a, ac - ca m,,bn . _C m,jan
[, Q%) = S (PP + iy — i€ By () — i Fyn (W07 0")) - (3.16)
_ —%(ECan + EcaQb) _ iec(aQ|21\b)’
as required in (2.4b). Further, we consider

1

[Jab’ SC] — _le[Jab7wcl] — ixl(ebcwal + 6acwbl) — 5

(echa + 6CULSb) — ,l-ec(aQ|11|b)7

which coincides with the corresponding relation in (2.4b). The remaining relations can be
proven similarly. O

Lemma 3.5. Let Q%, 1% be as above. Then relations (2.4c) hold.
Proof. Let us first consider [I'', Q?'9]. Using formulae (2.11), (2.12) we have
e ™ W] = W g™ 0 =~y (3.17)
It follows that Fj,,, [wgwdr, wblwg” )] = 0 and hence
[, Q1) = ifwgu™, Q) = ilwgu ™, ™) = 0, (3.18)

as required for (2.4c).
Let us now consider [122,Q%!4]. We have

(122, 9] = [y, v = —ig®, (3.19)



and hence
[ i W) = — [y bl

e R R AR O

— g — g, (3.20)
By reordering terms in (3.20) we obtain

59 M ] = (G + gy g8 (= L)
— g = S 4 g — Gl — el
Therefore
Eian [0 5 0" 09" = —2Fm Gy (3.21)

Note that Fj,,,plp®)p™ = 0 if ¢ is fixed such that ¢ # a. Hence (3.21) can be rearranged
as —2Flmniﬁflvf)“md}a” which is also equal to —Flmn&éd;bmd)“". Therefore

[I2Q7Q21a] — —i[iszlljg, Qa] = 4 <_plwal + i Fln <_wéwbmwan + ;wal(snm)> _ Z'Qa’
(3.22)

as required for (2.4c).
Further, let us consider [I12, Q%19] = i[¢71% Q?]. Then by (3.14) we have
1

[ M) = Ut

Therefore, with the help of (3.13) we get

. B 1 .
[112’ Q21a] — % <pl,¢al + iEFpnn <,¢blwl7)n¢zm _ 2¢al5mn>) —_ %Qa7 (3‘23)
which matches with (2.4c).

Let us now consider the generator Q!¢. Firstly, it is immediate that [I', Q%] = 0,

as required. In addition, we have by (3.19) that

[IQQ,QHG] _ i[&dr@g,sa] _ _22~xj[&dr1;2,,¢aj} — _iga,

and
[11275«1] — _i[wg,&drjsa} — i.Tjwaj — _%Sa7
as required for (2.4c). The remaining relations in (2.4c) can be checked similarly. O



Let A;, B; (i =1,2,3) be operators. In the following theorem we will use the identity

{A1A2A3,B1 By B3} = A1 A2{ A3, B1} BoB3+ A1 Ay B1 Bo{ B3, A3} — A1 Ao B1{ B3, A3} B3 —
—Ai1{As,B1}ByB3As— A1 B1Bo{Bs, A2 } A3+ A1 B1{ B, A2 } Bo A3

+{A1,B1}ByB3 Ay A3+ B Bo{ B3, A1 } Ag As— B1{ B2, A1 } B3 A2 A3.
(3.24)

We will use the following relations. We have by (2.11) and (2.13)

_, - _ _ 1- 1-
{war’wéwdmd}?} — wé[wdmwgb’ war] + wdmd}?{wé’war} — _§wal,¢g61ﬂm _ §wam¢g5rl7

(3.25)
and similarly,
_ o 1 1
{06, 9™} = =S — Sylyhe. (3.26)
Theorem 3.6. For all a,b = 1,2 we have {Q%, Qp} = —2H6Y, where the Hamiltonian H
s given by
2 H.F. o N 1. 1 il o
H=%-=5" (w’”w{,wéwd’“ — Uit 45”5lk) + g bk Fonnd™ 0% (3.27)
with p* = ZZ]\LI p?.
Proof. Let us consider {Q%, Q.}, where
A B A/ B/

— = — _ — =
Qa = Pﬂbar + iFrjk<¢bT¢z],wak>a Qc = pﬂ/Ji + ZFlmn <¢fi¢dm¢?> .

We have
(4,4} = oo
Further on, by (3.5) we have
{Av B/} = i{wmpr, Eimn <1Z](lﬂ/;dmw?>}
. ar 7L dm,n 4 nm ar 7
= i{Y " Pr, Fimn Va0 } = 508" et Fimntc}
= Z'Tl}a”/_)éﬁ_)dmlb? [pr» ﬂmn] + Z-{¢ar’ &é&dmw?}ﬂmnpr*
- %5nm¢arl/;é[29r, Emn] + iénmégFrmnpr-
By (3.25) we have
Emn{warv ¢fj¢dm¢?} = _-Flmnwalwgérm'
Therefore,
car, L dm, i n - gal,n Z‘nmar_ Z'nma
{AaB/} = W lbiﬂ/}d % [pra Emn] —W l¢c Enrpr_ 55 1/} wi[me‘lmn} +15 6@ Frmnpr-
(3.28)



Similarly, using (3.26) we obtain

- ;- o i k- i
(B, A"}y = i) ™ o, Frje] — 00" Fragpy — 5070 i, Frge] + 0708 Fyjipr.
(3.29)

Note that &alquﬂwpr + @DZ@Z“kFrkjpj = %5l"5acFlmpr. Then, after canceling out terms
and simplifying we have

[A B} + (B, A} = 0, Fi (0 Sl ™l + Sl i) + 10, Find™ 5762 (3.30)
In particular, we note that using the symmetry of Fj;; we have that
Or Fijpt ™ b "] = 0, Fygi (W 0l ™ + 0T h8Y), (3.31)
and
O Fyjibed " ™ = 0, Fyjpc (0l ™ — i 8Y). (3:32)
Note that if a # ¢, we have
YUYs =™, and QUYL= =gyl Y™ = gy (3.33)
Using the symmetry 0, Fjji, = OjFyj, and Fyji, = Fj it follows from (3.31), (3.32) and (3.33)

that the sum of expressions in (3.31) and (3.32) vanishes if a # c¢. Therefore we get
from (3.31), (3.32), (3.33) that

0y Fyjr (0 Db ™pd 4+ Pl pdp®*) = 0, i (0 Il 4 Pl gl — prap kst e,

(3.34)
Note that
WYL =Yg, and QU = O, (3.35)
here @ # a. Therefore the right-hand side of (3.34) equals
Or Fi (0 G i ™ — b6V (3:36)
Therefore in total expression (3.30) becomes
(A B+ (B, Ay = 0, P (W ™ — w300 4 107+ o2
Finally, let us consider the term {B, B'}. We first show that
C 1= Fpjp Flnn {07 0™ b} = 0. (3.37)

~10 -



By using (3.24) we obtain
€ = o Fomn (W0 G40 ™ i, 64} — 0Pt o] iy}
e O B R T (R R DG T (TR )
= gt Fi (G028 SO+ S G
T )
Then using the symmetry of Fj,,, under the swap of [ and m we obtain
€ = gt Fi, 000 0" 4 1G5 4 7).
Note that by (2.6), (2.8) we have
YOI = UL — L, (338)
and

Pt =~ e
= Pyt — CgIgRs g geks (3.39)

Further on by (2.10) we have Frji Frmn = FrpiFrmy and therefore some terms in the right-
hand side of (3.38), (3.39) enter the relation

_ . 1
Frijrmnw?wakémj -

_ 1 .
5 rijjmnwgwak(smn + iFrijrmnwgwakémn’ (340)

Then by using (3.38)—(3.40) and the symmetry of F}.;, under the swap of r and j we obtain
1an r, 13,70, 7.dm il,,br,m,7m, Ta r i m,7m, Ta
C = Frj Fomn (2605 S — S — S ’“)
1 o . o
= FrjiFimn <2636”’w’”wzwéwdm - 25%%%%“’“) :

Note that for ¢ # a we have C' = 0, since Frjkﬂmnéj%brqﬁ?i)g”iak = 0 by using (2.10).
Further on, if ¢ = a then by using (2.10) we have

1 L o
C = FrjFrim <2w%gwgwdm - wbwawéwm) : (3.41)
Note that for b # a, Fm-kwbwg = 0. Hence

Frjt Frgm 0P 0™ = Frjp Frim ™ il ™™, (3.42)

- 11 -



which is equal to iFrijklmwbrwgz/?szﬁdm because of relations (3.35). This proves that
C = 0. Then the term {B, B’} takes the following form:

1nm v J.7ak 7. 1 7l 7dm,n ar 1‘nm ar 7.
{B, B} = FyjtFimn (26 o e} + 8 e, Ty = 7 ,wé}>-
By using formulae (3.25), (3.26) and (2.10) we obtain
! 1 r rak snm gjl Jal, nsmr sjk 1 ik snm srl sa
{BvB } - _5 T'J'kﬂmn lbc?b oy’ + 1/105 6" — iéj ) 60
1 : - 1 ,
= _5 rij’lmndnm(sjl{wZa ¢ak} + gFrjkﬂmndjkénm(srlég
1 .
= —gprjkﬂmnanméﬂy’ﬂag.
Therefore, the statement follows. O

Lemma 3.7. Let T??> = H be given by theorem 3.6. Let TV' = K and T'?> = —D be given
by (3.6), (3.7). Then relations (2.2) hold.

Proof. Firstly, we have that [K, H] = 1[22,p?] = £{z,,p,} = —2iD, as required. Moreover,
since H is homogeneous in x of degree —2 it follows that [H, D] = iH as required. Further
on, [K, D] = —3[z3,2;p;] = iK, which is the corresponding relation (2.2). O
Lemma 3.8. Let Q%¢, 1%, T  J% be as above. Then relations (2.1) hold.

Proof. Firstly let us consider

{Q21a,Q11f} — —{Qa,Sf}.
Note that
{pr@baraxld}ﬂ} — _iwarwfr — _ieaawg\d)fr’
where @ is complimentary to a. Note that we can assume now that @ = f. Therefore
. i
{prtb™ gy = —ie gl = Ly
Further,
., 1 ,
Frje{ " g, 'y = iﬁaf i Fr gt
Therefore by formula (2.9)
{6221(17 Qllf} — _ieafwgwdr + ieakaFkrng¢dj — 2(0[ + 1)€af111’ (343)

as required for the corresponding relation (2.1).
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Further on, consider {Q?'% Q'?*} = —¢*{Q? S;}. Now, by using formula (3.26) we have
(Q.50) = 200" ol 2o (10,04 = ol )
= 2000V + 2,08 + i Fjabp* — %5jk(5§xTFm-k
= 2T 4 2, pr0G — 20 (20 4+ 1) + Z.%gN(Qoz +1).
Therefore

- _ab

{Q21a7Q12b} _ _22~¢ar&br + prreab + 21(20( + 1)wbr&ar + 267

SN@a+1).  (3.44)

Let us now note that
o ) — .. N
% = =S [9g, "] = —i <w%“ — My — 2) :

Hence the right-hand side of (2.1) for {Q?'?, Q'?*} is

N _ o . N
Z,pre® — %eab + dionparpbr) — 2i(1 + a)e® (¢2J¢1] — i — 2) . (3.45)
By considering various values of a,b € {1, 2}, expression (3.45) takes the form
; -ab _
Zrpre® + 262 N(2a +1) — 20 P + 2i(2a + 1), (3.46)

which is equal to (3.44) as required, so the corresponding relation (2.1) follows.
Further on, let us consider relation {Q*'%, Q?'} = {Q?, Q°}. By using (2.6) and (2.8)
we have

{Q%, Q%Y = i{pt)™, Finp ™7™} + i{ppp, Frjpp " 4plp %} —
— Frnn B i L (0™, (7] k) ).
Note that by (2.12), (2.13) we have

{Prt)™", Fln ™7™} = by oy, Finn] + {00, 0790} Fippr
= — iy YN PIGD, Fyy 4+ {00, b YD Py

4 - 1
= — i Y T O, Fi — 5 U Py

Note also that ¥* %9, F},,, = 0 using the symmetry of 9, F},,,, under the swap of r and
I. Then @), F,y, = 0 and hence

- 1
™, Fomnt 050"} = =2 € iy pr 00 (3:47)

Similarly,
o ' o 1 :
{pi, By plp™ ) = —ippbpl ™ o, F, . — §6acFrjkpk¢bT¢1])

1 .
— _ieac kPR (3.48)
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Note that terms in (3.47) and (3.48) cancel. Further, we have

P Fre{ (M), (0™ } = Fryn Frgp {9 07 07 07 0% }
L Fh Fogt 4 1 Py it (3.49)
= Flon Frjp {00 7 b+,
since the last two terms in (3.49) cancel. Note that by (3.24) we have
(W g™ Wy = YR (P O} = P ] )
+ Y] (D, U} — MR, )
= S (IS TSGR g (T ) e

Therefore using the symmetry of F}.;; under the swap of j and r, and that of Fj,,,, under
the swap of [ and m we obtain

Finn Frji (Mg 07 07 0™y = = Fign Frje (W4 078"+ P g'a™™). (3.50)
Further, note that for any b € {1,2} we have by using (2.10) that Flm,,FerZJdlwg"”wbj =0.
Hence the right-hand side of (3.50) vanishes. Therefore it follows that

EmnFrjk{<wdlw(Tinlﬁcn>a <”¢br¢£”&ak>} =0

and hence that {Q%, Q"} = 0 as required.
Further on it is easy to see that {Q'® Q'1°} ={Q'2% Q'*} =0. By theorem 3.6 we have
{Q?' Q??"} = —2H b, The remaining relations (2.1) can be shown in a similar way. O

Lemma 3.9. Let T%, Q% be as above. Then relations (2.4a) hold.

Proof. Firstly, it is easy to see that [T, Q%% = —[K,Q%] = —2iz,4* = iS% and
[T, QM) = [K,5% = 0, and [T'3,Q'%] = —[D, S = —Q"* Moreover, we have
[T12, Q%% = [D,Q%] = %Qma as Q% is homogeneous in x of degree —1. This gives rela-
tions (2.4a) for commutators between K, D and Q%, S®.

Further, we have
T am 1 r 1.3 7al skm Tak ¢lm
[ g™, ) = U (Ot + e,
therefore
Or P [ W 0lap ™ )™ = Oy Fjim " ™. (3.51)
Note also that
1

arﬂlk[wngjbjélkvwam] = §8T—F1lmk7/}aT61k‘ (352)
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Hence we get from (3.51) and (3.52) that

L . _ 1
O Fji "y b ™ — 0%, 4™ = 0y Fyum )" 60" — 20 Fignpt) ™ 8"

= OnFrp (0" 0"),
in view of (3.4). Therefore

[H, Sa] = ipMZJaT + l’mamFrjl <T/)br¢2¢_1al>
= iph®™ — Fpjy (i)
= iQ",

(3.53)

(3.54)

as required for (2.4a). Further on, by theorem 3.6 we have 722 = H = —%{Qa, Q.}. Since
(Q*)? = 0 we get that [H,Q%] = 0 as required. The remaining relations (2.4a) can be

shown in a similar way.

Lemma 3.10. Let T, 1%, J% be as above. Then relations (2.5) hold.

Proof. Let us firstly consider [I%,.J!]. We have by (2.11) and (3.11) that

[, e ®] = AEaeh,
Therefore
(1M, J*) = 2[gfy, pFP] = 0,
as required. Further, we have by (2.11), (2.12) that

([, 9], pFpTh] = 2[apdap™  pF ]
21 [0, pF Y] 4 [, pF IR
2

Therefore,

(12, 7 = [[9pd, @], 3p (kM) = 0,

(AP, 7} — P [ pl}) = 0.

O]

which is the corresponding relation (2.5). In addition we have by (2.11) and (3.11) that

59 = g
Therefore,
(172, J°1) = —2[p*948, p(*p™] = 0,

as required.
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Let us now consider relations [I%°,7°4, (a,b,c,d = 1,2). It is easy to see that for
T2 = —D and T" = K relations (2.5) hold. Further, we have 7% = H = —1{Q°, Q.}.
Then by (2.11) we obtain

1 H) = — (117, Q°Q) + 1, Q)
= QT Q + 17 Q1Q + QulI. Q] + 1, Q")
= QeI Q)+ 1, Q1@ + QulI™, @] ~ (1™ 71Q0),
where ¢ is complimentary to ¢. Then by lemma 3.5 we have
1,QF) = —[1, Q7] = — L@+ QM) and (17, Q] = — L(Q* + Q).

Therefore by considering various values of a,b € {1,2} and by using lemma 3.8 and theo-
rem 3.6 we obtain the following:

1 H] = L(@:Q7 + Q) =0,
122, H] = 5(Q°Qc + Q.Q) =0,
12, H] = L(@eQ" + Q0+ Qe +G7Q0) =0,

which are the corresponding relations (2.5).
Similarly we have

[ H] = (- QelT™, Q]+ 17, QIQe + Q™. Q] — 1, 712,
By lemma 3.4 we have

i

[Jab’ QC] _ %(ﬁcaQb + 6choL) and [Jab’Qc] _ 2(ecaQb + ECan).

Therefore by considering various values of a,b € {1,2} we obtain:

L H] = L (-G + Q1+ 1Q.Q - Q' Q0. (3.55)
[J12,H] — —%(—eanCf _ eanQl +6c1Q2QC+602Q1QC

+€e1QeQ? + €?Q.Q" — €' Q*Qz — €2Q'Q0),
[ﬂ%m:—éeﬁ@ﬁﬂf%f@+é%uf—ﬁQwa (3.56)

Then by considering various values of ¢ € {1,2} in (3.55)-(3.56) and by using lemma 3.8
and theorem 3.6 we obtain that

(7' H] = [J*%, H] = [J*,H] = 0,

as required for (2.5). O
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4 The second representation

Let now the supercharges be of the form

Q% = pp™ + iF ) plpk, (4.1)
Qc = pl&é + Z-Flmn&(lﬂ;dmwgv

so we do not have anti-symmetrisation in the cubic fermionic terms. Let generators K,
1% Jo and S% S, be given by formulas (3.6), (3.8), (3.9), (3.10) same as in the first
representation, while the generator D is now given by

1 )
D= —5%Pj + 5(01 +1)N. (4.3)

Theorem 4.1. For all a,b = 1,2 we have {Q% Qp} = —2HJ{, where the Hamiltonian H is

H:&?_M

P b i,
4 9 (?/)b wiwéwdk - Tzz)blr[}bjélk) + 15 mFrmnpr‘~ (44)

Proof. Let us denote terms in (4.1), (4.2) as follows:

A B A’ B’
—_— ~ =

Q" = ™ + B I, Qe = prB+ P Bl
Then, analogues of relations (3.28), (3.29) are
{A, B} = " ™™ ¢ [prs Fignn] — 10" 07 Finrpr, (4.5)
and
{B. A} = i 6™ Ipr, Foje) — 00" Froapj, (4.6)
respectively. Then using (4.5) and (4.6) an analogue of equality (3.30) is (cf. (3.36))
(A B'} 4 (B, A} = 0, Fyn (6 Tl ™ g1 + Sl mibo®) = 5" Finy
= Oy Ein % — G0 — 5" Finy 2.

Further on we have {B, B’} = 0 (cf. (3.37)). Therefore in total, we get that

2
{Q",Qc) = —60 + {A, By + (B, 4)

2 .
Y v 3. 70T r 7bj a L onm a
= 7560 + aTFjlk(d)b Tﬂi#ﬂﬁdk - wbwbjélk)(sc - 55 Frmnpréca (47)
and hence the statement follows. O
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Lemma 4.2. Let T be given by (4.3), (4.4) and (3.6). Then relations (2.2) hold.

Proof. Firstly, we have that

1 7 7 N )
K, H] = *[xz,pQ] + Zéanrmn[$27pr] = i{xrapr} + 5(2@ +1) = =2iD,

4
as required. Moreover we have [Fypnpr, ;0] = —iFrmnpr + 1205 Frmndr = —20Fmnpr.
Then it is easy to see that [H, D] = iH, as required. Further on, [K,D] = —1[2? z;p;] =
iK', which is the corresponding relation (2.2). O

We note that since I and J keep the same form as in the first representation, the
statement of the lemmas 3.2, 3.3 hold.

Lemma 4.3. Let Q%¢, 1%, J% be given by (4.1), (4.2), (3.10), (3.8), (3.9). Then rela-
tions (2.4b), (2.4¢) hold.

Proof. Relations (2.4b), (2.4c) are easy to verify by an adaptation of the proof of lemmas 3.4
and 3.5 respectively. Indeed let us first consider relations (2.4b) for [J%, Q?'¢], which now
takes the form (cf. (3.16))

? . " . n
[Jab’ QQIC] — 5 (ebcplwal + 6acp”/)bl _ lecaﬂmn¢dl¢an¢bn _ ZECbﬂmn¢dl¢&n¢an)

— _%<6cha + 6caQb) — iec(aQ|21|b),

as required for (2.4b).
Further on, let us consider relations (2.4c) for [I%°, Q?'¢]. Expression (3.22) now takes
the form

[1%2,Q%1) = —il® g, Q) = i (P + i PP ") = Q"

as required. The analogue of (3.23) is
i , - i
[1127Q21a] ~ 9 (plwal if zmnwbl%”iﬁan) = QQa,

which matches (2.4c). Finally, it is easy to see that [I'1, Q?1%] = 0 (cf. (3.17), (3.18) in
lemma 3.5). Relations (2.4) for S take the same form as in lemmas 3.4 and 3.5. The

remaining relations can be checked in a similar way. O

Lemma 4.4. Let Q®°, 1%, Jo% T% be given by formulas (4.1), (4.2), (3.10), (3.8),
(3.9), (3.6), (4.3), (4.4). Then relations (2.1) hold.

Proof. We first note that by theorem 4.1 we have {Q%, Q°} = €*{Q% Qp} = —2H¢*® which
is the corresponding relation (2.1). The anticommutator {Q?'%, Q?'*} vanishes since the
terms (3.47), (3.48) cancel each other and the right-hand side of (3.50) vanishes. Further
on it is immediate that {Q%'?, @'/} is the same as in the first representation. Similarly for

{Q22G,Q22b}, {QQ?(Z’Qle}' Note also that {Qllanllb}’ {Q12a’Q12b}7 {Qllanle} take

the same form as in lemma 3.8.
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Further on, let us consider {Q%*'?, Q'?*}. The left-hand side of (2.1) now takes the
form (cf. (3.44) and the change in the generator D)

{Q.Q™) = =20 ™ + zypre®® + 2i(1 + 20)9" 9, (4.8)
and the right-hand side of (2.1) becomes (cf. (3.46))

{Q21a7 QlQb} _ xrpreab + 4,L-a¢(ar1;br) _ Q’i(l + Oé)Eab(ﬂ}QTT/_)lr _ wlr&%)
— _2iwar¢br + xrpreab + 22(1 + 204)1/1177"”&(",

which is equal to (4.8) as required. The remaining relations can be checked similarly. [

Lemma 4.5. Let T% and Q®° be given by (3.6), (4.3), (4.4), (4.1), (4.2), (3.10). Then
relations (2.4a) hold.

Proof. Firstly, it is easy to see that [T'1, Q%% = —[K,Q% = —2iz,4¥ = iS% and
[T, QM = [K,S% = 0, and [T'?, Q"] = —[D,S% = —%Qna. Moreover, we have
[T12, Q%19 = %Qm“ as QQ® is homogeneous in z of degree —1.

Let us recall that from the proof of lemma 3.9 (formula (3.53)) we have
L . o 1 ..
8TFjlk [wbrwiwéwdk _ wgwb]dlk’ wam] — 5kmakFr]l <¢brwi¢al . 25]lwar> )
Therefore an analogue of (3.54) takes the form

1 T —p 1
[H, Sa] = _§[p72«7 $m¢am] + xmaerlk[wbrwiwilwdk - ¢g¢bj5lk, Wm] - iéanrnmwaT

= ipr )™ — Fp” i = iQe,

as required for the corresponding relation (2.4a). Further on, we have that [T2%?, Q% = 0
and similarly, [T?%,Q,] = 0, (cf. lemma 3.9). The remaining relations can be checked
similarly. O

Lemma 4.6. Let T, 1% J% be given by (3.6), (4.3), (4.4), (3.8), (3.9). Then rela-
tions (2.5) hold.

The proof of the lemma is the same as the proof of lemma 3.10 for the first represen-
tation since 1% and J% keep the same form, and the proof of commutation relations with
H in lemma 3.10 relies only on relations (2.1) which express H as the anticommutator of
the supercharges Q% and Q.

5 Hamiltonians

We now proceed to explicit calculations of Hamiltonians appearing in theorem 3.6 and
theorem 4.1. We start with a Coxeter root system case.
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5.1 Coxeter systems

In this case we take R to be a Coxeter root system in V' = R [40]. More exactly, let R be
a collection of vectors which spans V' and is invariant under orthogonal reflections about
all the hyperplanes (v,z) = 0, v € R, where (-,-) is the standard scalar product in V. We
also assume that R can be decomposed as a disjoint union of its subsets R4 and — R4
such that each subsystem R, and R_ contains no collinear vectors. Furthermore, let us
assume that squared length (v,v) = 2 for any v € R, and that R is irreducible. Non-equal
choices of length of roots in the cases when the Coxeter group has two orbits on R are
covered by considerations in subsection 5.2 below.
The corresponding function F' has the form

F(z1,...,zN) :% > (7,2)*log(y, ), (5.1)

YER+
where A€ C. It is established in [18, 41] that F satisfies generalized WDVV equations (2.10).
Recall the following property.

Lemma 5.1 (Chapter 5, [42]). For any u,v € V.
S~ (4, 4)(4,v) = h(u,v),
YER+

where h is the Coxeter number of R.
Lemma 5.1 has the following corollary.

Lemma 5.2. Let F be given by (5.1). Then
$iFijk = )\hdjk
Proof. Let v € R have coordinates v = (y1,...,7n). By lemma 5.1 we have

i By = A Z % =A Z Vivk = )‘h(ejv er) = )‘héjk'
YER+ g YER+

The following identity will be useful below:

> _By) (5.2)

s, (Ba)(n2)
B#

It follows from the observation that the left-hand side is non-singular at all the hyperplanes

(/Bax) =0, 8 € R4.
Let us choose now Wt 1
a=_2+1 (5.3)
2
Then hA = —(2a. + 1), so by lemma 5.2 function F' satisfies the required condition (2.9).

Thus it leads to D(2, 1; «) superconformal mechanics with the Hamiltonians given by the-

orems 3.6, 4.1. We now simplify these Hamiltonians for the root system case.
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Theorem 5.3. Let function F be given by (5.1). Then the Hamiltonian H given by (3.27)
is supersymmetric with the superconformal algebra D(2,1;a), where o is given by (5.3).
The rescaled Hamiltonian Hy = 4H has the form

2 1
1= —A+ ZL—F)‘F@,

'YGR+ (’77 )
where A = —p? is the Laplacian in V and the fermionic term
ViR Yiry
=2) Y g ! e PPl — AN Z Z J)waw’” (5.4)
YER+ 7T VER 4 7
Proof. By formula (3.27) we have that
2
H:%+W+M

where potential
U = — L0696 4 = By Bl 67 59157
8 16
and ) o o
W = =0 Fu (Vg™ — vt o).
Let us firstly simplify U. We have

V’Yl’Yk
Fjik = A Z o

’YGR+
Then
0; Fjy6" 6% = Wﬂ”’“ §ii gik — (5.5)
and
o 2
Fijkﬂmnénméjl(slk — 4)\2 Z (Ba '7) — Z 8A - (56)
siem, Ba)vz) o (v.2)
because of identity (5.2). The statement follows from formulas (5.5), (5.6). O

The following theorem can be easily checked directly.

Theorem 5.4. For the function F given by (5.1) the Hamiltonian H given by (4.4) is
supersymmetric with the superconformal algebra D(2,1;«), where o is given by (5.3). The
rescaled Hamiltonian Ho = 4H has the form

——A+§: o,

YER+

where ® is defined by (5.4).
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Proposition 5.5. Hamiltonians Hy, Ho from theorems 5.3, 5.4 satisfy gauge relation
0 loHyod=Hj,

where 6 = [Jger, (B, ).

The proof follows immediately by making use of the identity (5.2).

Remark 5.6. We note that the Hamiltonian Hs is not self-adjoint under hermitian involu-
tion defined by

It =gl pl=p;, al=u;, it=-i, and (AB)' = BiA!

a?’ 7

for any two operators A, B. One could have considered another ansatz for @, so that
to obtain self-adjoint Hamiltonian. Namely, let Q% be as in (4.1) and consider hermitian
conjugate (Q%). Let Q%, (Q*)! (a = 1,2) be the ansatz for the supercharges. Then

Q) = pry + iF g .
Note that since Frjkwéfi/_)g&bj = Frjk(d_)gizbj@bs — ¢r6k7) we may express (Q*)" in terms of
Q. (see (4.2)) as follows
(QG)T = Qa - ZFZmnwé(snm
We then have
{Q“(Q)"} = {Q% Qc} — i{Q% FymntbL}5™™
_ _ _ i
= {Qa7 QC} - warwiarﬂmnénm - ¢gwakprklﬂmn5nm + iFrmnpr(Sgénma

with {Q% Q.} defined by (4.7). Then supersymmetry algebra constraint {Q?, (Q°)} =

_ht2
!

—20%H leads to restrictions oo = —%, or a = . In both cases the bosonic part of the

Hamiltonian H can be seen to be zero.
5.2 General V-systems

Let us consider a finite collection of vectors A in V = C¥ such that the corresponding
bilinear form

Ga(u,v) = Z('y,u)('y, v), wu,veV
yEA

is non-degenerate. Let us recall what it means that A is a V-system [18]. We can assume
by applying a suitable linear transformation to A that

Ga(u,v) = (u,v)

for any u,v € V. In this case A is a V-system if for any v € A and for any two-dimensional
plane m C V such that v € 7 one has

> (BB =,

BeANT

for some p = p(v,7) € C.
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Let F = F4(x1,...,2n) be the corresponding function

F=3 Z(’Ya I)2 log(%:c) ’ (57)

yeEA

where A\ € C. Then F satisfies generalised WDVV equations (2.10) (see [18]). Furthermore,
the condition
ziFijr = —(2a + 1)djp

is satisfied if 1
—=(A+1).

SO+1)
Therefore this leads to D(2,1; «) superconformal mechanics with the Hamiltonians given

o =

by theorems 3.6, 4.1, which we present explicitly in the following theorem.

Theorem 5.7. Let function F be given by (5.7). Then the Hamiltonian H given by (3.27)
is supersymmetric with the superconformal algebra D(2,1; ), where o = —%()\ +1). The
rescaled Hamiltonian Hy = 4H has the form

H=-A+2Y (v, ) N > (1,7)(8,8)(, B)

— + &
2 9
2 ’YG.A (’77 x) 4 'Y»BEA (,.)/7 $)(B? x)
where A = —p? is the Laplacian in V and the fermionic term
2X Y Nk T 22775 ()
@ = 37 2D o gt 5 L) g (5-8)
’YG.A (’77 x) ’YGA (’)/7 x)

Furthermore, the Hamiltonian H given by (4.4) is also supersymmetric with the supercon-
formal algebra D(2,1; ), where « = —1(A+1) and the rescaled Hamiltonian Hy = 4H has
the form

)
, )

H2=—A+)\Z
yeA

(v
9, + .
(v,z) "

The proof is similar to the one in the Coxeter case. The following proposition can also
be checked directly.

Proposition 5.8. Hamiltonians Hq, Ho from theorem 5.7 satisfy gauge relation
0 loHyod = Hj,

where § = HBGA(,B,Z‘)%(/B’ﬁ).

6 Trigonometric version

In this section we consider prepotential functions F' = F(xy,...,zy) of the form
F=> caf((a,x)), (6.1)
acA
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where A is a finite set of vectors in V = CV, ¢, € C are some multiplicities of these vectors,

and function f is given by

1 1
—23 — —Liz(e™?%)

1) =52 -

so that f”'(z) = coth z.
We are interested in the supercharges of the form
Q" = prp™ + iF (W ),
Qc = pﬂz,l; + i Fmn <7;£177de'¢)2>7
a,c = 1,2, which is analogous to the first representation considered in section 3.
Function F' should satisfy conditions

Frijkmn = Frmkajna (62)

for all r,5,m,n = 1,..., N but we no longer assume conditions (2.9). Then we have the
following statement on supersymmetry algebra.

Theorem 6.1. Let us assume that F satisfies conditions (6.2). Then for all a,b = 1,2
we have

{Qaa Qb} = {Qav Qb} =0 and {Qav Qb} = _2H6[()lv

where the Hamiltonian H is given by

o F R 1 .. 1
H = % ]lk (wblwbwdwdk ¢i¢b]5lk + 4(5Z](5lk> + 16Fz]kﬂmn5nm5]lélk.
Furthermore, the rescaled Hamiltonian H1 = 4H has the form
1 o
Hy=-A+— Z c(# - Z cacp(o, @) (B, B)(a, B) coth(a, ) coth(S, x) + @,
2 sinh®(a, x)
acA a,fEA
(6.3)
where A = —p? is the Laplacian in V and the fermionic term
2Cq 05004 il i =i
P = 2 Gty O AT — (0 )", (6.4)

The proof of the first part of the theorem is the same as the proof of theorem 3.6
together with the proof of the relevant part of lemma 3.8. The proof of formula (6.3) is
similar to the proof of theorem 5.3.

Let us now consider supercharges of the form

Q% = Py + i B ]k,
Qc = pﬂl)f; + Zﬂmn¢é¢dm¢ga

a,c = 1,2, which is analogous to the second representation considered in section 4. Then
we have the following statement on supersymmetry algebra.
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Theorem 6.2. Let us assume that F satisfies conditions (6.2). Then for all a,b = 1,2
we have

{Q% Q" ={Qu,Qp} =0 and {Q",Qy} = —2HJ,

where the Hamiltonian H is given by

H:pj 8Fﬂk

: (W™ — Ea6) + L6 Fopapi (65)

Furthermore, the rescaled Hamiltonian Ho = 4H, has the form

Hy=—-A+ Z cola, @) coth(a, )0, + P, (6.6)
acA

where ® is the fermionic term defined by (6.4).

The proof of the first part of the theorem is the same as the proof of theorem 4.1
together with the proof of the relevant part of lemma 4.4. Then formula (6.6) can be easily
derived from the form (6.5) of H.

Let us now assume that A = R is a crystallographic root system, and that the mul-
tiplicity function c¢(a) = ¢4, @ € R is invariant under the corresponding Weyl group W.
For a general root system R the corresponding function F' does not satisfy equations (6.2).
For example, if R = An_; then relations (6.2) do not hold. But for some root systems and
collections of multiplicities relations (6.2) are satisfied.

In the rest of this section we consider such cases when prepotential F' satisfying (6.2)
does exist. The corresponding root systems R have more than one orbit under the action
of the Weyl group W. We start by simplifying the corresponding Hamiltonians H; given
by (6.3).

Proposition 6.3. Let us assume that prepotential F given by (6.1) for a root system
R with invariant multiplicity function c satisfies (6.2). Then Hamiltonian (6.3) can be
rearranged as

=-A+ + P, 6.7
Z smh2 (o, ) (6.7)

where

_ ca(a,a)2(1 + co(a, @), if 200 ¢ R,
fo = cala,a)?(1+ (a,a)(ca +8c2q)), if 2a€R,

® = & + const, with ® given by (6.4) and Ry is a positive subsystem in R.

Indeed, it is easy to see that for the crystallographic root system R the term

Z CCYCB(O‘7 Oé)(ﬁ, ﬂ)(av 5) COth(Oé, .fL') COth(ﬁa $)
B,aER
Bra
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is non-singular at tanh(a,z) = 0 for all @ € R, hence it is constant. One can show that
the Hamiltonian H; given by (6.3) simplifies to the required form.

We now show that solutions to equations (6.2) exist for the root systems R = BCly,
R = Fy and R = (G4, with special collections of invariant multiplicities.

Let R4 be a positive subsystem in the root system R. For a pair of vectors a,b € V
we define a 2-form B%f) by

Be = 3" csey(B,9)Bsn(a,0)B A, (6.8)
ByYER+

where B, g(a,b) = a A f(a,b) = (a,a)(B,b) — (o, 0)(B,a). The form B%Lf) has good
properties with regard to the action of the corresponding Weyl group W. Namely, the
following statement takes place.

Proposition 6.4. The 2-form (6.8) is W -invariant, that is

a,b wa,wb wa,wb
e 3 A (6.9)

for any w e W.

Proof. Let us choose a simple root a € R. It is sufficient to prove the statement for
B(a’b)

w = S,. Let us rewrite R, as

B =2¢a 3 esla,B)Baplab)aAf+ > eaey(8,7)Bsala,b)8 A,
BER ByER+\{a}

It is easy to see that for any 8,7y € R
Bg(saa, sab) = Bs,g,s,~(a,b) (6.10)

since (u, $qv) = (Squ,v) for any u,v € V. Let us now apply s, to equality (6.8). Since
sa(R+ \{a}) =Ry \ {a} we have

SQB%’P = —2¢q Z cg(a, B)Ba,gla, b)a A B+ Z cgcy(B,7)Bay(a,b)saB N say

BER BreER+\{a)
= 2¢q Z C/g(Oz, B)Bsaa,saﬁ(aa bla A B+ Z Cﬁcv(ﬁu 'Y)Bsaﬁ,sa’y(ay b)B Ay
BER+ ByER+\{a)

9

_ (Sa%Sab)
= BR+

by the relation (6.10). This proves the first equality in (6.9). In order to prove the second
equality (6.9) let us notice that in fact

Z cg(o, B)Bagla,b)a N g =0.

BER+

Hence sa[gggf) _ Bﬁfﬁé‘f”‘b). i
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Let us derive some conditions for a function F' to satisfy equations of the form (6.2).

Let F; be the N x N matrices of third derivatives of F, (F})y, = 8@08;%7 and for any
vector a = (ay,...,ay) € V let us denote F, = Zf\il a; F;.
Theorem 6.5. Let a,b € V. Then the equations
Foly = By Fy
are satisfied if and only if for any positive system R4
B = 0. (6.11)

Proof. We have
(Fo)ix = Z calov, a)oqoy coth(a, x),
aER
and therefore
F,Fy, = Z cacgla, a)(a,b)(a, B) coth(a, z) coth(B, z)a @ B.
a,BER
Hence the equations [Fy, F;] = 0 are equivalent to
Z caCpBa pla,b)(a, B) coth(w, z) coth(B, z)a ® f = 0,
a,BER
which can be easily checked to be equivalent to
D" cacsBa,gla,b)(a, B) coth(a, z) coth(B, z)a A B = 0. (6.12)
a,BER+

It is easy to see that the sum in the left-hand side of the equality (6.12) is non-singular at
tanh(a, ) = 0 for all & € R4, hence this sum is always constant. In an appropriate limit
in a cone coth(a,x) — 1 for all & € R, and therefore the equality (6.12) is equivalent to
the equality

D cacsBaglab)(a, B)a B =0,

a,BER+
as required. ]
Let e;, 2 =1,..., N be the standard orthonormal basis in V. We may express ng’f) in
the basis e; A e; of A%V,
,b
87(%:) = Z gijei N €j, (6.13)

1<i<j<N

for some scalars g;; = gi;j(a,b). Then linear independence of the basis vectors and condi-
tion (6.11) give rise to (g) equations gj;(a,b) = 0. If Ay_; C R then by Proposition 6.4
we should have that g;;(a,b) = £9,(i)s(j)(c(a),o (b)) for any transposition o € Sy which
acts on vectors a, b by the corresponding permutation of coordinates. This shows that the
condition (6.11) reduces to a single equation g;; = 0 for any fixed ¢, j and general a,b € V.
For convenience we will write below Be, ., (a,b) as B;;(a,b).
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Theorem 6.6. Let R = BCy. Let the positive half of the root system BCy be
nei, 2ne;, 1 <i < N; n(e; £ej), 1 <i<j<N,

where n € C* is a parameter. Let r be the multiplicity of vectors ne;, and let s be the
multiplicity of vectors 2ne;. Let q be the multiplicity of vectors n(e;£e;). Then the function

N N
F =Y (rf(ni) + sf2nzi) +q > (e + ) (6.14)
i—1 i<j

satisfies conditions (6.2) if and only if r = —8s — 2(N — 2)q. The corresponding supersym-
metric Hamiltonians given by (6.6), (6.7) take the form

(85 +2(N —2)q)(1 —2(N —2)gn?)  16s(1 + 48’/]2)>
=-A+4qt - 6.15
K Z ( sinh? nz; sinh? 2nx; ( )

N
42 4q1+2q77) =

+ P,
sinh?(n(z; + x;))
and
=—-A+2 Z (85 + 2(N — 2)q) cothnz; + 8s coth 2n;)0; (6.16)
N
+4qn® Y " coth(n(z; £ 7,))(0; £ 0;) + ©
1<j

with ® given by

—4n4z( o B =200y o) (v - v

sinh? n; sinh? 2nz;

Z Z Z qdmtzdmt] <dmtldmtk¢bi¢£%¢_}dk - Q%@Z_’bj»

Slnh (zm + €x
66{1 —1} m<tijlLk +exy))

where dpg = dmer(€) = O + €0pr, and ® = & + const.

Proof. Let us use theorem 6.5 in order to deal with conditions (6.2). Let us consider the
coefficient g12(a, b) at e; Aey by collecting respective terms in the corresponding form B%f)
given by (6.8), (6.13). The non-trivial contribution to gj2 comes only from the following
pairs of vectors {/3,7} in the expansion (6.8):

(1) {ne1,n(e1 £e2)}, (2) {2ne1,n(er £ea)}, (3) {n(e1 te2),nler £ej)}, 3<j <N,

since contributions from pairs {n(e; £ e2),n(e2 £ e;)} and {n(e1 £ e;),n(e2 = €;)} is zero
each. Pairs (1) contribute 4rqn®Bia(a,b), pairs (2) contribute 32sqn°Bia(a,b) and pairs
(3) contribute 8¢*(N — 2)n°Biz(a, b). Therefore

g12(a,b) = 4q(r + 8s + 2(N — 2)q)776B12(a, b).
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By Proposition 6.4, g;; =0 for all 1 <14 < j < N if and only if r = —8s — 2(INV — 2)q. The
form of the Hamiltonians Hs, Hy follows from theorem 6.2 and Proposition 6.3 respectively.
Then the statement follows. O

Remark 6.7. We note that for the multiplicity s = 0 theorem 6.6 is contained in [38].
Indeed, theorem 2.3 in [38] states that the function F' given by formula (6.14) with root
system R = By satisfies WDVV equations. It also follows from the proof of theorem 2.3
in [38] that the corresponding metric is proportional to the standard metric d;;. Therefore
WDVYV equations are equivalent to equations (6.2).

Theorem 6.8. Let R = Fy. Let the positive half of the root system Fy be
mes, 1<i<4; mle;te), 1<i<j<d g(eliegiegie4),

where n € C* is a parameter. Let r be the multiplicity of short roots ne;, 3(e1+exteztey)
and let q be the multiplicity of long roots n(e; = e;). The function

4

F=r Z (na;) Z f< €1$1+€2$2+63$3+$4)+QZf (z; &+ zj))

i=1 616{1 -1} i<j

satisfies conditions (6.2) if and only if r = —2q or r = —4q. The corresponding supersym-
metric Hamiltonians (6.7), (6.6) take the form

4

1 1
s (Y Y o

= sinb” nz; ceflo1} (3(€121 + €222 + €323 4 14))

4
42 q(L+2q1°) &
sinh?(n(z; + 2;)) ’

and

Ho = —-A+ 7‘7]3 Z coth (2 (611’1 + €229 + €373 + LI?4)> (6161 + €90 + €303 + 84)
61’6{1,—1}

4 4
+ 2 Z cothnz;0; + 4qn® Z coth(n(z; £ x;5))(0; £ 0;) + ®
i=1 i<j

with ® given by

4
0=t e (el i)

Y Yy P (i — 2035

2
66{1 —1}ym<tijlk Slnh $ + GJJt))

rdid; ii i di o Tbi
DD Dy : 5 (e} = vi”),

1
(Z(e1z €9 €3 T
626{171} ik 5 (€171 + €272 + €373 + T4

where r = —2q orr = —4q, d; = d;(€1, €2, €3) = €101; + €202; + €303; +04; and ® = &+ const.
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Proof. Since By C Fy we have the contribution to the coefficient g;2 of the form (6.8), (6.13)
from the pairs of vectors {3,v} € By which is equal to 4q(4q+7)n°Bi2(a,b). The remaining
contribution to the coefficient g2 comes from the following pairs of vectors {3,~} in the
expansion (6.8):

(1) {7]61, g(q +estegt 64)} , (2) {77(61 +e3),

(3) {77(61 +ey), g(el +eytez+ 64)} )

N3

(61i62i63i64)},

Indeed, let us demonstrate why pairs of vectors of the form

g(el +egtegtey) (6.17)

contribute trivially to the coefficient g1 of the form (6.8), (6.13). Let 8 = 2(e1+Aea+pue3+
ves) and B = 2(e1+Xeg—pe3 —vey), where A, i, v = 1. Non-trivial contribution with this
f3 to g12 can only come from the two pairs {3, &7}, where v+ = 2 (e1 — Aeg & (pe3 + vey)).
The same holds for B . The contribution from the two pairs {3, v+ } is — ’\T’QnGBelJr Aea,pes+ves
while the contribution from the two pairs { 5 Y+ s )‘T’inGBeﬁ Aea,pies+ves- Hence altogether
contributions to gi2 from pairs of vectors of the form (6.17) cancel. Similarly, one can check
that contributions from pairs {nez, 4 (e1 £eatezteq)} and {n(e1ez), J(e1 £eateztes)}
is zero.

Then pairs (1) contribute 2r27°Bis(a,b) and pairs (2), (3) contribute 4rqn®Bia(a,b)
each. Therefore in total

g12(a,b) = 2(8q2 + 67rqg + 7"2)776312((1, b).

By Proposition 6.4, g;; = 0 for all 1 < ¢ < j <4 if and only if r = —2q or r = —4q. The
form of the Hamiltonians Hs, Hy follows from theorem 6.2 and Proposition 6.3. Then the
statement follows. O

Theorem 6.9. Let R = (5. Let the positive half of the root system Go considered in three
dimensional space be

a; =n(er — e2), az =n(er — e3), az =n(ez — e3),
ay =n(2e1 —eg — e3), as = n(e; + es — 2e3), ag = n(e; — 2es + e3),

where n € C* is a parameter. Let s be the multiplicity of the short roots «;, i = 1,2,3 and
let v be the multiplicity of the long roots aj, j = 4,5,6. Then the function

3
F= SZf(n( — ;) Z fn To(2) = To(3)))

1<j 0653

satisfies conditions (6.2) if and only if s = —3r or s = —9r. The corresponding supersym-
metric Hamiltonians (6.7), (6.6) take the form

3
4s(1 —|— 2377 18r(1 + 6r1%) ~
_ 4 4
= At Z smh2 E sinh?(n — Ty(2) — ) +®,
To(1) = To(2) = Lo (3)
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and

3
Hy = —A+4sp® > coth(n(z; — x;))(9; — 9;)

1<j

+6rn° > coth(n(27,(1) — To(2) — To(3))(205(1) — Oo(2) — Ou(z) + 2,
o€S3

with ® given by

gty Y St 5 (0% — 2030

m<tijlk Sll’lh
rd?d? .
2ty Y ! d7 A7 ™ — 6yt
€S 1,4,k sinh”(1)(2z o(1) ~ Ta(2) — 950(3)))( )

where s = =3r or s = =91, d_;; = Omi—0ti, d] = 205(1); — 05(2)i —Io(3)i» and ® = O+ const.

Proof. The coefficient at e; A ey in the form ngf) given by (6.8), (6.13) is

6 5
g12(a,b) = Z 2Ca;Ca; (i, @j) Bay a;(a,0) (i A aj,e1 A ez) = ZA“
i<j i=1

where (a;Aaj, e1/A\ea) = det(c1, c2) where ¢y, are the column vectors ¢, = ((ay, ex), (o, €x))T,
k=1,2, and

6
A; = Z 20, Ca; (@i, @j) Ba, a;(a,b) (i A, e1 A ea).
j=i+1

We have
A = 657“1763&1,%(@ b),
Ay = 250°(8Bag,a5(a,b) — 37 Bay a6 (a, b)),
Az =0,
Ay = 187*1°Ba, 304 (a, b),
A = 187“2176Ba5,a6(a, b).

Simplifying we obtain
gi12(a,b) = 2n°(27r% + 12rs + s)(Bia(a, b) — Bis(a, b) + Bas(a,b)).
By Proposition 6.4, g;; = 0 for all 1 < ¢ < j < 3 if and only if s = —3r or s = —9r. The

form of the Hamiltonians Hy, Hs follows from theorem 6.2 and Proposition 6.3 respectively.
Then the statement follows. O
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Remark 6.10. The bosonic part of the supersymmetric Hamiltonians (6.6), (6.7) becomes
Calogero-Moser Hamiltonian in the rational limit. For example let us consider the case
of the root system BCy and let us introduce rescaled multiplicities 8 = n%s, § = n?q
and 7 = n?r in theorem 6.6. Then in the limit n — 0 bosonic parts of Hamiltonians H;
and Hy given by (6.15), (6.16) become the rational By Hamiltonians H", Hy" with two
independent coupling parameters, namely,

1<J 1 ?
and
N ~ N
4 21
wy=-asy A wi0)-Y %,
i<j i i=1""

where | = 2((N — 2)q + 25). Thus supersymmetric Hamiltonians (6.15), (6.16) can be
viewed as n-deformation of the rational superconformal Hamiltonians considered in theo-
rems 5.3, 5.4 for the root system R = By.

7 Concluding remarks

Since work [14] there were extensive attempts to define superconformal N = 4 Calogero-
Moser type systems for sufficiently general coupling parameters and suitable superconfor-
mal algebras. Some low rank cases were treated in [22, 23]. A number of works were
devoted to the superconformal extensions of Calogero-Moser systems where extra spin
type variables had to be present (see [43] for a discussion and the review). In the current
work we presented superconformal extensions of the ordinary Calogero-Moser system with
scalar potential as well as its generalisations for an arbitrary V-system, which includes
Olshanetsky-Perelomov generalisations of Calogero-Moser systems with arbitrary invari-
ant coupling parameters. The superconformal algebra is D(2,1; «) where parameter « is
related to the coupling parameter(s). It is crucial for our considerations that we deal with
quantum rather than classical Calogero-Moser type systems.

We also presented supersymmetric non-conformal deformations of the Calogero-Moser
type systems related with the root system By (which may be thought of as the Calogero-
Moser system with boundary terms) as well as with some other exceptional root systems.
It would be very interesting to see if there are any relations of considered systems with
black holes (cf. [11] for the conjectural relation with supersymmetric Calogero-Moser sys-
tems and e.g. [12, 44] and references therein for non-conformal deformations of AdSs black
hole geometry).

All our considerations are also extended to non-self-adjoint gauge of the Calogero-
Moser type Hamiltonians. There has been considerable interest in such non-self-adjoint
but P7T symmetric bosonic Hamiltonians (see e.g. [45] and references therein). It would be
interesting to see whether these Hamiltonians play a role in the context of supersymmetry.

It may also be interesting to clarify integrability of considered supersymmetric
Hamiltonians.
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