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Abstract—Network slicing (NS) has been identified as a funda-

mental technology for future mobile networks to meet extremely

diverse communication requirements by providing tailored quality

of service (QoS). However, due to the introduction of NS into

radio access networks (RAN) forming a UE-BS-NS three-layer

association, handoff becomes very complicated and cannot be

resolved by conventional policies. In this paper, we propose a

multi-agent reinforcement LEarning based Smart handoff policy

with data Sharing, named LESS, to reduce handoff cost while

maintaining user QoS requirements in RAN slicing. Considering

the large action space introduced by multiple users and the

data sparsity problem due to user mobility, LESS is designed

to have two components: 1) LESS-DL, a modified distributed

Q-learning algorithm with small action space to make handoff

decisions; 2) LESS-DS, a data sharing mechanism using limited

data to improve the accuracy of handoff decisions made by

LESS-DL. The proposed LESS mechanism uses LESS-DL to

choose both the target base station and NS when a handoff

occurs, and then updates the Q-values of each user according

to LESS-DS. Numerical results show that in typical scenarios,

LESS can significantly reduce the handoff cost when compared

with traditional handoff policies without learning.

I. INTRODUCTION

It has been widely agreed that network slicing (NS) will play
a paramount role in future mobile networks to support highly
diverse quality of service (QoS) requirements from end-users
[1]–[3]. NS aims to logically separate network functions and
resources within a common physical infrastructure, guarantee-
ing the specific QoS provisioning in different communication
scenarios. By exploiting NS technology, the network capabili-
ties in terms of capacity, delay, transmission rate, etc., could be
dramatically improved due to the high flexibility and efficiency
of resource configurations [4].

Besides these significant benefits, the introduction of NS
also brings many design challenges to the new radio access
networks (denoted as RAN slicing throughout this paper),
including network function virtualization, network resource
allocation, radio frame mixed numerology [5] as well as
mobility management [2], [4]. In particular, handoff is crucial
for keeping users connected while communication environment
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changes (e.g., user movement) [6], as it affects not only QoS of
users but also network performance in terms of handoff rate,
resource utilization, NS re-configuration rate, etc. Consider-
ing the NS-based network architecture, conventional reference
signal received power (RSRP) based handoff mechanisms [7]
are not applicable to RAN slicing. This happens because the
target base station (BS) could not provide the required service
for users if only considering RSRP when handoffs occur, thus
RSRP-based handoff policy is not able to achieve the aim
to provide guaranteed QoS for mobile users. Therefore, it is
obligatory to design new handoff mechanisms dedicated for
RAN slicing.

Indeed, handoff in RAN slicing is much more complicated
when compared with that in the traditional cellular networks.
Specifically, user equipments (UEs) should be associated with
an NS via a specific BS, forming a UE-BS-NS three-layer
association structure. Therefore, both the service type of NSs
and the RSRP of BSs need to be considered to guarantee the
QoS of UEs when handoffs occur. In addition to QoS, we also
need to take handoff cost into consideration in RAN slicing.
Unlike that in traditional networks, there are several types of
handoff, e.g., switch NS only, switch BS only, switch both,
or even apply for deploying a new NS. Different types of
handoff with specific level of signaling exchange may incur
different handoff costs. For example, switching NS only needs
to exchange signaling in the same BS, implying a low handoff
cost, while switching both NS and BS requires a large handoff
cost. Therefore, considering the aforementioned challenges
including the three layer associations, QoS guaranteeing as
well as different handoff costs, artificial intelligence tools that
incorporate information on surrounding environment could be
used to design a smart handoff mechanism dedicated for RAN
slicing.

In this paper, we propose a multi-agent LEarning based
Smart handoff policy with data Sharing, named LESS, for
RAN slicing. Our design objective is to minimize the long-term
handoff cost while guaranteeing the QoS of UEs. Considering
the high action space introduced by multiple users in the
learning framework and the limited collected data due to user
mobility, LESS is designed to consist of two parts, namely
LESS-DL and LESS-DS. In LESS, we use LESS-DL to choose



both the target BS and NS when a handoff occurs, and then
update Q-values according to LESS-DS. Specifically, LESS-
DL is a modified distributed Q-learning algorithm to reduce
the action space. It allows each UE to separately update its
own Q-value and make handoff decisions according to its
own Q-table. LESS-DS is a data sharing mechanism to tackle
insufficient data issues, which could exist around the BSs that
UEs hardly associate with before. LESS-DS updates the Q-
value for UEs with the same QoS by sharing the reward
when handoff decisions are made, thus it requires less data
to obtain accurate Q-values. Combing the two parts, LESS
is practicable to RAN slicing. Numerical results show that in
typical scenarios, LESS can significantly reduce the handoff
cost when compared with traditional handoff policies without
learning.

In the following, we describe our system model in Section
II. Then, we propose LESS-DL handoff decision algorithm
and LESS-DS data sharing mechanism in Section III and IV
respectively. In Section V, we present the numerical results.
Finally, Section VI concludes this paper.

II. SYSTEM MODEL

We consider an NS-based mobile network architecture
shown in Fig. 1, which consists of multiple end-to-end NSs,
BSs, as well as UEs. These NSs share the physical resources in
both core networks and RAN. Each NS has different network
function modules, such as connection management, mobility
management, security, etc., thus to provide a specific service
for UEs. The detailed descriptions of the network architecture
can be found in [8]. Here we focus on RAN slicing from the
mobility management perspective.
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Fig. 1. NS-based mobile network architecture.

A. Radio Access Network Model
We consider a multi-BS and multi-NS RAN model shown

in Fig. 1. Let B, N and U be the set of BSs, NSs and UEs,
respectively. We assume that UEs in the system move at a
random speed and in a random direction. Similar to that in
[9], we use two parameters to describe QoS requirements:
minimum threshold of transmission rate �min

i and endurable

time ⌧i, which is the maximum time a UE is allowed to have
the transmission rate lower than the minimum threshold. Let
T = {T1, T2, . . . , TL} be the set of all service types, and
 i 2 T be the service type of UE i. We say  i = Tn when
both �min

i and ⌧i can fulfill the requirement of the service type
Tn.

We identify a specific NS, say NS j, by the two elements
(Tj ,Bj), where Tj is the set of service types that NS j can
provide, and Bj is a vector denoting the bandwidth allocation
of NS j from all BSs. Let b̄(k)j be the k-th element of vector Bj

denoting the bandwidth of NS j allocated by BS k. b̄(k)j = 0
when BS k is not in the coverage of NS j. UEs can access
to the NS via only the covered BSs. In the example of Fig. 1,
UEs can access to NS 1 via only BSs 1 and 2.

B. Handoff Model
We describe the handoff model from two aspects: handoff

trigger condition and handoff cost. Handoff should occur once
the QoS of the UE cannot be satisfied [9]. Based on the
definition of QoS, the handoff trigger condition for UE n can
be written as

8t0 2 [t� ⌧n, t], rn(t0) < �min
n , (1)

where rn(t0) is the achievable transmission rate of UE n at
time t0. This condition states that UE n cannot achieve the
minimum rate requirement �min

n in the last ⌧n time.
Once the handoff trigger condition is met, UEs need to select

suitable target BSs and NSs. As aforementioned, each type of
handoff corresponds to a specific handoff cost. Here we define
4 handoff costs generated by the 4 handoff types: 1) CNS ,
switch NS only; 2) CBS , switch BS only; 3) CNS�BS , switch
both NS and BS; 4) CNew, deploy a new NS (this type can be
seen as a special handoff in RAN slicing); with the relationship
CNS < CBS < CNS�BS < CNew. Based on this, we design
a handoff mechanism to minimize the overall handoff cost
through target BS and NS selections while guaranteeing the
QoS of UEs.

III. MULTI-AGENT REINFORCEMENT LEARNING BASED
HANDOFF FRAMEWORK

In this section, we first formulate the handoff decision
problem as a multi-agent reinforcement learning (RL) model,
and then propose an intelligent handoff mechanism based on
the learning model, LESS.

A. Multi-Agent RL Model for Handoff
Once the handoff trigger condition for a UE is met, it should

choose an appropriate serving NS and BS in order to maintain
the desired QoS. We model this target BS and NS selection
problem as a multi-agent RL consisting of four main elements:
agents, states, actions and reward. In detail, each UE is an
agent to make handoff decisions. The states are defined as
the available bandwidth levels of NSs. Let skj (t) denote the
available bandwidth level of NS j via BS k at time t after
discretization. The environment state can be written as S (t) =�
skj (t)

�
(|B||N |)⇥1

at time t.



An actions means selecting both target BS and NS when a
handoff occurs. In detail, we denote by ai (t) = (xi (t) , yi (t))
the action taken by UE i at time t, where xi (t) and yi (t) is
the target BS and NS respectively. If yi (t) /2 N , the action
denotes deploying a new NS. Let A be the action space for a
UE, and thus the system action space for all UEs is A|U|. The
reward denoted by ri(S (t) ,ai (t)) is the handoff cost for UE
i in state S (t) 2 S with action ai (t) 2 A at time t, which
can be expressed as

ri (S (t) ,ai (t)) =
8
>>><

>>>:

CNS , if xi (t) = xi (t� 1) , yi (t) 6= yi (t� 1) ,

CBS , if xi (t) 6= xi (t� 1) , yi (t) = yi (t� 1) ,

CNS�BS , if xi (t) 6= xi (t� 1) , yi (t) 6= yi (t� 1) ,

CNew, if yi (t) /2 N .
(2)

Our objective is to minimize the total long-term handoff
cost

P1
t=1

P|U|
i=1 ri(S (t) ,ai (t)) by designing an intelligent

handoff mechanism. Traditional Q-learning algorithm [10] is
widely used to get the optimal solution to RL problems.
However, considering the requirements of mobile networks,
two issues prevent the use of traditional Q-learning algorithm
to solve the proposed problem: 1) the system action space��A|U|

�� is very large, implying that Q-learning algorithm needs
a long time to converge; 2) Q-learning requires enough data
to obtain accurate Q-values, which can be problematic if
UEs do not visit some BSs frequently leading to insufficient
exploration of the environment. To address these two issues,
we propose the LESS handoff mechanism in the following.

B. Framework of LESS Handoff Mechanism
LESS mainly consists of two parts: LESS-DL and LESS-

DS as shown in Fig. 2. LESS-DL is a modified distributed Q-
learning algorithm to choose the target BS and NS for each
individual UE when handoffs occur. LESS-DL allows each
UE to separately update its own Q-value and make handoff
decisions according to its own Q-table, thus the action space
is reduced to |A|. By modifying the Q-value update method,
LESS-DL can also converge to the optimal policy, which will
be illustrated later.

LESS-DS is a data sharing mechanism to overcome the data
sparsity problem mentioned before. FAs some BSs are not
visited by a specific UE frequently, not enough data is gathered
to update the UE’s Q-values, thus the handoff decisions may
be not optimal. Considering that the UEs served by the same
NSs should have similar QoS requirements, we design LESS-
DS to update Q-values of UEs with the same service type
when handoff decisions are made, requiring less data to obtain
accurate Q-values. In the following, we illustrate LESS-DL
and LESS-DS in detail.

IV. LESS-DL ALGORITHM FOR TARGET BS AND NS
SELECTION

Q-learning is a simple yet effective algorithm for solving RL
problems, and it can be briefly described as follows. Denote

Fig. 2. The framework of LESS handoff mechanism.

by vector A =
⇥
a1 (t) , ...,a|U| (t)

⇤
2 A|U| the actions for

all UEs. Qt (S,A) and r (S,A) is respectively the Q-value
and reward for state-action pair (S,A) 2 S ⇥ A|U|, where
r (S,A) =

P|U|
i=1 ri (S (t) ,ai (t)). The update rule of Q-value

can be expressed as:

Q0 (S,A) = M, for all A 2 A|U| and S 2 S,
Qt+1 (S,A) =8
<

:
Qt (S,A) , if A (t) 6= A or S (t) 6= S,

r (S,A) + � min
A02A|U|

Qt (S (t+ 1) ,A0), otherwise,

(3)

where S (t) and A (t) is respectively the state and the action
vector at time t, M is a large constant for initialization and
�(0 < � < 1) is the discount factor. The target BS and
NS selection policy is that choosing the NS-BS pair with the
smallest Q-value with respect to ✏-greedy policy.

However, applying traditional Q-learning to solving our
problem requires a large action space (i.e.,

��A|U|
��), which takes

a long time to converge. Moreover, it requires all UEs to make
handoff decisions simultaneously, which is unrealistic. Thus,
to overcome these issues, we develop a distributed learning
algorithm, LESS-DL, shown in Fig. 3 to select target BS
and NS for each individual UE. The main idea of LESS-DL
is that each UE only needs to maintain a reduced Q-table
where the action space is composed of his own actions without
distinguishing the actions from other UEs.

A. q-Value Update Policy

Denote by qi-table the reduced Q-table maintained by UE
i, and q(i)t (S,ai) the Q-value of UE i at time t with state-
action pair (S,ai). For convenience, we use q-value and Q-
value to denote the value in the reduced and original Q-table
respectively. Using a similar idea of [11], q(i)t (S,ai) can be



Fig. 3. The framework of LESS-DL.

updated as:

q(i)0 (S,ai) = M, for all ai 2 A and S 2 S,
q(i)t+1 (S,ai) =8
>><

>>:

q(i)t (S,ai) , if ai (t) 6= ai or S (t) 6= S,

min

⇢
q(i)t (S,ai) , ri (S,ai) + � min

a02A
qt (a

0, � (S,A))

�
,

otherwise.
(4)

By using this update method, we can get the reduced q-tables
for all UEs. Although the reduced q-table of all UEs cannot
construct the original big Q-table, the following proposition
gives a very good property of the reduced q-table, which makes
it possible to take actions in a distributed manner.

Proposition 1. The value of q(i)t (S,ai) in the reduced qi-
table is the minimum value in the original Q-table defined in
(3) when the action of UE i is ai, i.e.,

q(i)t (S,ai) = min
A2A|U|a(i)=ai

Qt (S,A) (5)

where a(i) denotes the i-th element in action vector A.

Proof: Similar to that in [11], we can easily obtain our
Proposition 1 by replacing all the notation ‘max’ to ‘min’.

Proposition 1 states that by using the q-value update method
in (4), we can obtain the minimum value Qt (S,A), which
makes it possible to design an optimal NS-BS selection policy
for UEs in a distributed manner. In the following, we illustrate
how to use the q-value to obtain the optimal target BS-NS
selection policy.

B. Optimal Action Policy

For traditional Q-learning, we know that once we get a
proper converged Q-table, the policy that we choose the action
with the smallest Q-value can guarantee the optimality [10].
However, for the reduced qi-table, if we choose the action with
the smallest value q(i)t (S,ai) for each UE, it cannot guarantee
the optimal policy. In other words, choosing action ai

⇤ with
the smallest value q(i)t (ai

⇤, S) for each UE may not obtain the
optimal action-vector A⇤ of all UEs with the smallest Q-value
Qt (A⇤, S) [11], i.e., we cannot guarantee that

⇥
a1

⇤,a2
⇤, . . . ,a|U|

⇤⇤ = A⇤. (6)

To overcome this issue, we use the following policy to
choose actions. The main idea is to update and store an action
policy parallelly with q(i)t (S,ai) update. Once the value of
min q(i)t (S,ai) decreases, we update our action policy as we
can find a better action, and then we store the better one as the
current optimal action. When the q-table converges, implying
that the value of min q(i)t (S,ai) stays unchanged, our action
policy is stable, and the current stored policy is optimal. The
update rule of stored action policy ⇡(i)

t (S) of UE i is stated
as:

⇡(i)
0 (S) 2 A, arbitrarily,

⇡(i)
t+1 (S) =(
⇡(i)
t (S) , if S 6= St or min

ai2A
q(i)t (S,ai) = min

ai2A
q(i)t+1 (S,ai),

ai (t) , otherwise.
(7)

where ai (t) is the action of UE i at time t.
From [11] we can get the corollary that for an arbitrary state

S, we have
h
⇡(1)
t (S) ,⇡(1)

t (S) , . . . ,⇡(|U|)
t (S)

i
= arg min

A2A|U|
Qt (S,A).

(8)
Thus, when we get the converged q-table, choosing the current
stored action ⇡(i)

t (S) for each individual UE can guarantee the
minimum handoff cost.

In general, based on ✏-greedy policy LESS-DL can be
described as: before q-value is converged, we choose the
current stored policy ⇡(i)

t (S) as the target NS-BS pair for each
UE respectively with probability p = (1�✏), and choose other
pairs randomly with probability p = ✏. Then, we update the
q-values in a distributed manner according to (4) by using the
obtained handoff cost. Finally, we update the current stored
action policy based on (7) for the next handoff decision. Once
we get the converged q-tables, we always choose the current
stored action as the target NS-BS pair for each individual UE.

V. LESS-DS FOR DATA SHARING

From the proposed LESS-DL algorithm, we know that it
requires enough data to get the accurate q-value, and thus to
achieve the minimum handoff cost. However, some unexplored
BSs do not get enough data to update q-values, and the handoff
performance maybe degraded. For convenience, we call this
area as low-frequency activity (LFA) area. To overcome the
insufficient data issue in LFA areas we propose a data sharing
policy LESS-DS cooperating with LESS-DL algorithm, shown
in Fig. 4. The main idea of LESS-DS is that the q-value of a
UE should be updated by not only its own data but also the
data of others who have the same service type.

Denote by � (t) the agent who is making decisions at time
t. For a specific qi-table maintained by UE i, the q-value
update policy based on LESS-DS can be described as follows.
If � (t) = i, the update policy of q(i)t+1 (S,ai) is the same as



Fig. 4. LESS-DS based LESS handoff mechanism.

(4). If � (t) = j, (j 6= i), the update policy of q(i)t+1 (S,ai) is:

q(i)t+1 (S,ai) =
(
q(i)t (S,ai) , if ai (t) 6= ai or S (t) 6= S or  i 6=  j ,

min
n
q(i)t (S,ai) , p

(i,j)
t (S,ai)

o
, otherwise,

(9)

where  i is the service type of UE i and p(i,j)t (S,ai) =

�(i)
t (S,ai)

↵

⇢ · rj (S,ai) + � min

a02A
qt (a0, � (S,A))

�
is de-

fined as the calculated q-value for UE i by using the handoff
cost generated by UE j. In p(i,j)t (S,ai), �(i)

t (S,ai) is the
number of times that UE i chooses action ai with state S until
time t, ↵ > 0 and ⇢ > 1 are parameters.

Here we give some explanations for this LESS-DS based
q-value update policy. We use the same way as (4) to update
the q-value when the handoff decision is made by UE i. If
the decision is made by other UEs (e.g., UE j), we update
the q-value according to (9). In (9), if �(i)

t (S,ai) is a large
number, implying that the area covered by the correspond-
ing BS-NS pair is frequently visited by UE i, the value of
p(i,j)t (S,ai) could be larger than q(i)t (S,ai), and thus we keep
q(i)t+1 (S,ai) = q(i)t (S,ai). This means that in the non-LFA
areas, we do not use other UEs’ data, while in LFA areas
where �(i)

t (S,ai) is small, we use the handoff cost rj (S,ai)
generated by UE j with the same service type to calculate
p(i,j)t (S,ai) and to update the q-value q(i)t+1 (S,ai) of UE i.
To avoid decreasing q(i)t+1 (S,ai) value excessively, we add a
punishment factor ⇢ > 1. The effectiveness of LESS-DS can
also be verified by our simulations in Section VI.

Combing LESS-DL and LESS-DS, we propose the LESS
handoff mechanism that runs as follows. When a handoff
occurs, we use LESS-DL algorithm to choose the target BS
and NS in a distributed manner. Then we update q-values
according to LESS-DS mechanism. The updated q-value is
used by making decisions when the next handoff occurs.

VI. SIMULATION AND NUMERICAL RESULTS

In this section, we compare the performance of LESS with
three other handoff mechanisms: Max-SINR, NS-Prior and
LESS-DL. In detail, Max-SINR first selects the BS with the
maximum signal-to-interference-plus-noise ratio (SINR) for
UEs [7], and then finds the NS deployed in this BS with
satisfied QoS provisioning. If such a BS-NS pair is found,
select them as the target, otherwise deploy a new NS that
satisfies the UE’s QoS. NS-Prior mechanism first selects the
NS that satisfies the QoS requirement of UEs, and then finds
the BS covered by this NS with sufficient bandwidth. Lastly,
by comparing with LESS-DL, we can verify the effectiveness
of LESS-DS data sharing policy. The handoff trigger condition
is the same for all the four mechanisms in (1).

We consider a network which consists of a macro BS (MBS)
located at the central of a circular area with a radius of 1000m
and varying number of pico BSs (PBS), femto BSs (FBS) and
UEs. The number of deployed NSs is 40. Each NS covers 8 BSs
randomly, and provides different rate and delay (in term of ⌧n
in our model) performance. The transmit power of MBS, PBS
and FBS is set to 46dBm, 30dBm and 20dBm, respectively
[12]. All the BSs share a 20MHz bandwidth, and allocate
them to the deployed NSs based on the NS QoS provisioning.
UEs are randomly distributed in the area with different rate
and delay requirements. In the following, we examine the
performance of the proposed LESS handoff mechanism.

In the first experiment, we compare the handoff cost, the
number of handoffs and the UE outage probability for the four
handoff mechanisms when the number of BSs varies from
10 to 40 as shown in Fig. 5. As expected, we find that the
handoff cost of the two learning based mechanisms LESS and
LESS-DL is much lower than that of the other two traditional
mechanisms shown in Fig. 5(a). In particular, when compared
with Max-SINR, NS-Prior and LESS-DL, the handoff cost gain
of LESS is about 51%, 40% and 10%, respectively when the
number of BS is 25. From Fig. 5(b), we can see that LESS
achieves the smallest number of handoffs, while the number
of handoffs in LESS-DL is higher than that in NS-Prior due to
the lack of data gathered from the LESS-DS policy. Finally, in
terms of UE outage probability, Fig. 5(c) shows that NS-Prior
achieves the performance as good as LESS due to the prior
consideration of NS service provisioning.

Next, we compare the handoff performance for the four
handoff mechanisms with different number of UEs, as shown
in Fig. 6. Fig. 6(a) shows that the learning based mechanisms
LESS and LESS-DL significantly outperform the other two in
term of handoff cost. As the learning objective is handoff cost,
the performance in terms of the number of handoffs and UE
outage probability of LESS is very close to that of NS-Prior
mechanism, which considers NS service type when making
handoff decisions. This can be concluded from Figs. 6(b) and
6(c).

VII. CONCLUSIONS

In this paper, we proposed the LESS handoff mechanism
for RAN slicing based on multi-agent RL with the aim of



(a) Handoff cost (b) Number of handoffs (c) Outage probability of UEs

Fig. 5. Comparisons of handoff performance for the four handoff mechanisms with different number of BSs.

(a) Handoff cost (b) Number of handoffs (c) Outage probability of UEs

Fig. 6. Comparisons of handoff performance for the four handoff mechanisms with different number of UEs.

minimizing the long-term handoff cost while guaranteeing the
QoS of UEs. To make it practicable to mobile networks, LESS
is designed to contain two parts, namely LESS-DL, a modified
distributed Q-learning algorithm with small action space to
select target BSs and NSs when handoffs occur, and LESS-
DS, a data sharing policy using limited data to improve the
accuracy of handoff decisions made by LESS-DL. Numerical
results showed that LESS can significantly reduce the handoff
cost by about 50% compared with traditional handoff policies.
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