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Abstract 

In this study, we generate 50 Multi-Layer Perceptons, 50 Radial Basis Functions, 50 Higher Order 

Neural Networks and 50 Recurrent Neural Network and we explore their utility in forecasting and 

trading the DJIA, NASDAQ 100 and the NIKKEI 225 stock indices. The statistical significance of the 

forecasts is examined through the False Discovery Ratio of Bajgrowicz and Scaillet (2012). Two 

financial leverages, based on the levels of financial stress and the financial volatility respectively, are 

also applied. In terms of the results, we note that RNN have the higher percentage of significant 

models and present the stronger profitability compared to their Neural Network counterparts. The 

financial leverages doubles the trading performance of our models.  
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1. Introduction 

Neural Networks (NNs) are a class of non-linear models inspired by the work and functioning of 

biological neurons. They have applications in all aspects of Science and are considered as the 

formulation that will have the greatest impact to our lives in the future (Maren et al., 2014). In finance 

and trading, there is a paradox in NNs and their applications. From the one hand, there is an industry 

(asset management) with hundreds of thousands of employees and billions of dollars in revenues that 

relies heavily on their applications. Chui et al. (2016) and the Boston Consulting Group (2016) estimate 

that by 2025 the field of wealth management will be dominated by the interaction of artificial 

intelligence and big data. On the other hand, the academic research of NNs and their applications in 

financial forecasting and trading is extensive, but it is usually presented in no mainstream outlets. The 

applications of NNs in trading rely on the assumption that financial asset price time series are 

systematically linked and that previous prices contain substantial relevant information that could be 

used to predict future price trends. This assumption contradicts the Efficient Market Hypothesis 

(EMH), the foundation of the modern finance theory, which states that asset prices reflect all available 

information and it is not possible to beat the market with time series models (such as NNs).  Theorists 

in finance argue that the studies that present profitability in trading with NNs are results of extensive 

data mining or luck. 

The purpose of this study is to contribute to this debate and explore the utility of NNs through a 

Multiple Hypothesis Testing (MHT) framework. NNs are widely applicable in trading desks but their 

performance relies on the choice of hyperparameters and inputs. In the absence of any formal theory 

behind their selection, practitioners rely on their experience to make that selection. In this research, 

a large number of NNs is generated and applied to the task of forecasting and trading the one-day 

ahead logarithmic return of DJIA, the NASDAQ 100 and the NIKKEI 225 stock indices. The generated 

NNs differ in terms of hyperparameters and inputs. The four main NN architectures, the Multi-Layer 

Percepton (MLP), the Radial Basis Function (RBF), the Higher Order Neural Network (HONN) and the 

Recurrent Neural Network (RNN) are explored. To be more specific, 50 NNs from each of the four 

families are generated and the percentage of statistically significant NNs is explored through the False 

Discovery Ratio (FDR) of Bajgrowicz and Scaillet (2012). Then based on the significant NNs, series of 

portfolios are generated and their profitability is explored on the three stock indices on two different 

datasets, 2007-2008 and 2016-2017. The first period covers the recent global financial crisis, while the 

second one is free from strong financial stress factors. Two financial leverages, based on the levels of 

financial stress and the financial volatility respectively, are also introduced.  

The literature of NNs in Finance focuses on forecasting and trading applications (Zhang et al., 1998). 

Fulcher et al. (2006) apply HONN in forecasting the AUD/USD exchange rate and Panda and 
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Narasimhan (2007) use a MLP to produce statistical accurate forecasts of the INR/USD exchange rate.  

Andreou et al. (2008) use NNs to forecast European options with disappointing results, while Yang et 

al. (2008) employ a MLP and other regression techniques to examine the potential martingale 

behaviour of Euro exchange rates in the context of out-of-sample forecasts. Dunis et al.  (2010 and 

2011) highlight the advantages of HONNs in a series of financial forecasting exercises. Sermpinis et al. 

(2013) introduces a semi adaptive RBF algorithm, while Yang et al. (2010) study the predictability of 

eighteen stock indexes with NNs and linear models. Bekiros and Georgoutsos (2008) forecast the 

NASDAQ index with RNNs. In a similar application, Matias and Reboredo (2012) forecast successfully 

with NNs and other nonlinear models intraday stock market returns.  Adeodato et al. (2011) show that 

an approach based on the use of median for combining MLP forecasts won the NN3 Forecasting. 

Guresen et al. (2011) forecasts the daily closing prices of the NASDAQ index with MLPs and dynamic 

NNs.  Bagheri et al. (2014) applies a similar set of algorithms to the task of trading four foreign 

exchange rates while Krauss et al. (2017) presents an application of deep learning NNs in trading the 

S&P500.  It is worth noting that none of the aforementioned studies considers the data snooping bias 

and examines the statistical significance of the results. Surveys on the applications of NNs in trading 

have been presented by Zhang et al. (1998), Bahrammirzaee (2010) and Cavalcante et al. (2016).  

It terms of the results of this study, we prove that there are NN architectures that provide statistically 

significant forecasts for the series under study. The generated portfolios are profitable in terms of 

Sharpe Ratio and annualized return after transaction costs in both in-sample and out-of-sample.  RNNs 

seems the architecture that presents the higher percentage of significant NNs and the stronger 

profitability. We note that the profitability of all models is higher in the first dataset that covers the 

recent global financial crisis. The application of the two financial leverage doubles the profitability of 

our models. Our study highlights the importance of NNs in financial trading. Their non-linear nature 

allows them to capture the pattern of financial trading series. Our results explain the popularity of 

NNs in the finance industry and confirm to some extent the Adaptive Market Hypothesis (ADM) of Lo 

(2004). The ADM states that complex models should have an advantage but their performance should 

vary through time.   

 The rest of the paper is organised as follows. In Section 2, there is a description of the four NN 

architectures under study. In the same section, we discuss the role of the hyperparameters and the 

FDR, the MHT framework under study. Section 3 presents the empirical results of all models 

considered and investigates their performance with the introduction of the two financial leverages. 

Section 4 provides some concluding remarks. 

2. Methodology 
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NNs are linear and polynomial approximation methods that relate a set of inputs variables }{ i

tx where 

i=1…n is the number of inputs, to an output { ty~ }.  They are consisted by layers that are connected 

with weights. These layers can transform the data and introduce non-linear features.  In the relevant 

literature, hundreds of NNs architectures have been presented, each with its unique characteristics. 

In this study, we will focus on the most popular NNs architectures applied in financial forecasting and 

trading, namely the MLP, RBF, HONN and RNN.  

2.1  MLP 

MLPs are the most popular and simple form of a NN. It is consisted by three different types of layers. 

The input, the hidden and the output layers. The input layer includes the inputs nodes and each node 

corresponds to a different explanatory variable. Input nodes incorporate simple linear functions such 

as the sum. The output layer is usually formed with one node which represents the output of the NN. 

The hidden layers, separate the input from the output layer and define the amount of complexity the 

model is capable of fitting. The number of hidden layers and the number of nodes in each layer are 

based on the complexity of the model under study and a trial and error approach. In financial 

application, the hidden nodes usually contain the sigmoid function. In the cases where more than one 

hidden layer exists, MLPs are also called Deep Learning NNs. 

The network process information based on a feed-forward approach. The input nodes contain the 

explanatory variables. Each input node is connected with all the hidden nodes of the first hidden layer. 

These connections are weights which are trained by the NN. The information in the hidden nodes is 

passed through a nonlinear activation function and transferred to all nodes of the next hidden layer. 

This process is repeated until we reach the output layer, which represents the result of the network. 

MLPs are trained by adjusting the weights (the connections between the nodes) through a learning 

algorithm, the backpropagation of errors1 (Shapiro (2000)). This learning algorithm simply tries to find 

those weights which minimize an error function (normally the sum of all squared differences between 

target and actual values). 

 Since networks with sufficient hidden nodes are able to learn the training data (as well as their outliers 

and their noise) by heart, it is crucial to stop the training procedure at the right time to prevent 

overfitting (early stopping). This is achieved by dividing the in-sample dataset to two subsets, the 

training and the test sets. MLPs are trained in the training set and their performance is checked 

regularly in the test subset. The training stops when the error between the estimated and the actual 

                                                           
1 Backpropagation is the most common learning algorithm in MLPs and the most commonly used type 
in financial time series forecasting (Kaastra and Boyd,1996). 
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values in the test subset, starts to increase. The training subset usually includes the first 4/5 of the in-

sample and the test subset the last 1/5.   A MLP with a single hidden layer is presented in Figure 1 

below:  

Figure 1: MLP with a single hidden layer and two hidden nodes 

   

where: 
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where ty  being the target value, T is the number of iterations, jku is the network weight between 

input j and hidden node k and kw  is the network weight between the hiddden node k and the single 

output node.      

As discussed before, MLPs are trained by updating the weights ( jku and kw ) in a series of iterations 

with the objective of minimizing equation (3). The main advantage of MLPs is their simple architecture 

and their flexibility in terms of complexity. The  universal approximation theorem states that every 
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continuous function that maps intervals of real numbers to some output interval of real numbers can 

be approximated closely by a MLP with just one hidden layer (Hornik et al., 1989). On the other hand, 

MLPs training can be slow when the number of hidden nodes and layers is large and often stuck to a 

local optima.  

2.2.  RBF 

RBF networks were introduced by Broomhead and Lowe (1988) as an approach to improve accuracy 

of MLPs while decreasing training time and complexity. Their architecture is almost identical with the 

single hidden layer MLPs (see, Figure 1). The difference is that the weights between the input and the 

hidden layer are fixed to 1 and the function of the hidden nodes is: 

                                                                 
2

2

2)( 

Cx

ex




                                                             (4) 

where C is a vector indicating the center of the Gaussian Function and σ is a value indicating its width. 

These variables are determined by the training process. When presented with the x input vector, a 

hidden neuron computes the Euclidean distance of the test case from the neuron’s center point and 

then applies the RBF kernel function to this distance using the spread values. The resulting value is 

passed to the summation (output) layer. In the literature, there is a wealth of methods to select the 

center and the width of equation (4). The most common approaches are the K-mean clustering, 

orthogonal least squares or to select them randomly from a subset (Yingwei, 1998). The first two 

approaches are computationally intensive procedures that do not always reach to the optimal 

solution. In this study we are interested in generating a large number of RBFs and evaluating them 

through a MHT framework. Thus, we randomly chose the centres we define as widths the average 

distance between the chosen centres. This ensures that the hat the individual RBFs are neither too 

wide, nor too narrow, for the given training data. The computation of the optimal weights between 

the neurons in the hidden layer and the summation layer is done using ridge regression (Orr, 1996).  

RBFs are easily designed, have good generalization and show strong tolerance to input noise (Yu et al., 

2011).  They are also universal function approximators (Park and Sandberg, 1991). 

2.3  HONN 

HONN or Tensor Networks were introduced from Giles and Maxwell (1987). They are feedforward 

networks characterized from their simplicity and short computational time. The major advantage of 

HONNs compared to their NNs counterparts is that they are able to provide some rationale for the 

simulations they produce and thus can be regarded as “open box” rather than “black box” (Zhang 

(2009)).  
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A HONN is consisted by only two layers (inputs and output). The input nodes are consisted by the 

explanatory variables and polynomials and trigonometric functions of them. In the output node a 

sigmoid function is applied. HONNs use joint activation functions, a technique that reduces the need 

to establish the relationships between inputs when training. It also reduces the number of free 

weights, which means that HONNS are faster to train than similar MLPs. They are able to simulate 

higher frequency and higher order non-linear data, and consequently provide superior estimations of 

the underlying patterns compared to the more classical NN architectures. On the other hand, because 

the number of inputs can be very large for higher order architectures, orders of 4 and over are rarely 

used. HONNs are widely applicable in the fields of pattern recognition and associative recall. However, 

unlike the MLPs and RBFs, they are not universal function approximators.  

 

2.4  RNN 

RNN is a class of artificial NN where at least one connection is formed between the nodes form a 

directed cycle. This allows them to exhibit dynamic temporal behavior.  In the previous architectures 

the information is always fed forward (from the inputs to the hidden layer and then to the output 

layer).  In RNN, the input nodes contain, apart from the explanatory variables, what the network has 

achieved in the previous period. In other words, the decision that a RNN is reaching at time t is affected 

not only from the new data but also from what the network has achieved on time t-1. Figure 2 presents 

a RNN with three inputs and two hidden nodes. 

Figure 2: RNN with a three inputs and two hidden nodes 
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The weights now determine how much importance to accord to both the present input and the past 

hidden state. The error will return via backpropagation and be used to adjust the RNN weights until 

the error cannot go any lower. This additional memory naturally leads to a superior performance in 

pattern recognition compared to feedfoward networks (Elman, 1990). On the other hand, RNNs 

require substantially more connections and more memory in simulation, thus resulting in a substantial 

increase in computational time (Tenti, 1996). 

2.5 Hyperparameters 

The performance of NNs is heavily dependent on the choice of their inputs and their hyperparameters 

(Donaldson and Kamstra (1996) and Lisboa and Vellido (2000)). The choice of the inputs is based on 

the nature of the series under study and the practitioners’ knowledge/beliefs. In the literature, 

researchers often apply Principal Component Analysis (PCA), metaheuristics or other econometrics 

(see amongst others, Kaastra and Boyd (1996) and Sermpinis et al. (2013). Hyperparameters are the 

variables that the practitioner needs to set before optimizing its series with NNs. Setting these 

variables can been seen as model selection. Similarly with the inputs, they are set either based on 

objective criteria or based on a separate statistical or heuristics procedure (such as grid search, cross-

validation or genetic algorithms). For example, the hyperparameters of MLP are the learning rate (how 

fast the NN is converging), the number of the hidden layers and the number of the hidden nodes at 

each layer, the momentum (how many steps ahead the network is looking) and the size of training 

blocks (how often the network will check if it has reached the global optima in the test sub-set). For 
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RBF, the practitioner also needs to set the center and the width of the Gaussian Function. Different 

sets of hyperparamters naturally lead to different forecasts and empirical evidence.   In this study, we 

examine 50 MLPs, 50 RBFs, 50 HONNs and 50 RNNs (else 𝑙 is set to 200). The NNs differ between them 

in terms of inputs and hyperparameters. The range of the hyperparameters is set by the guidelines of 

Hornik et al. (1989), Tenti (1996) and Yu et al. (2011), while the inputs are combinations of 

autoregressive lags of the target series. 

2.6 Data-snooping 

Data snooping (also p-hacking, data dredging, looking elsewhere…) is a statistical bias that appears 

when exhaustively searching for combinations of variables. In such a case, the probability that a result 

arose by chance grows with the number of combinations tested (White, 2000). In other words, if you 

try hard enough you will find good results, but this does not mean that your results can be generalized. 

As discussed before, the performance of NNs depends on the choice of their inputs and their 

hyperparameters. Practitioners experiment with their dataset for their optimal setting. This 

inadvertently leads to models that suffer from data snooping. These models might have a good in-

sample and out-of-sample performance but when applied on a different dataset, their accuracy will 

be reduced dramatically. In order to test for the data snooping bias, the researcher needs to apply 

MHT framework. Under these framework, it is possible to check simultaneously if the performance of 

each model (from a set of competing models) is statistically different from zero or not. In order to test 

for data snooping, one needs to control either the Family Wise Error Rate (FWER) (the probability of 

making one or more false discoveries, or type I errors) or the FDR (the probability of having a rate of 

false discoveries). The FDR provides a less stringent control of the Type I errors and is more suitable 

for large and multiple datasets (Romano and Wolf, 2007). Thus, this is the approach that we follow. 

In FDR, we try to control the expected false discovery proportion amongst all discoveries. In a more 

formal setting we control FDR at a level γ if 𝐹𝐷𝑅 ≡ 𝐸(𝑓𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) ≤ 𝛾.The level γ 

is defined by the practitioner and represents the percentage of false discoveries that he/she is willing 

to accept. In this study, we adapt the FDR procedure of Storey (2002) and Bajgrowicz and Scaillet 

(2012). Under these frameworks, we measure the performance in terms of annualized return of each 

NN and we estimate the return matrix G of all models. Then, using the stationary bootstrap method 

of Politis and Romano (1994) we resample the returns 𝐺 and create 𝑏 = 1, … ,1000 bootstrap 

realizations 𝐺𝑗𝑏 for each NN return series. Based on the original and bootstrapped returns, a p-value 

is estimated for each NN. Then starting from the smallest p-value, we estimate: 

𝜋0̂(𝜆) =
#{𝑝𝑗>𝜆;  𝑗=1,…,𝑙}

𝑙(1−𝜆)
                                                                                        (5) 
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where  𝑙 is the number of NNs and λ is a used defined parameter. The procedure is stopped when the 

desired FDR level is reached. Following Bajgrowicz and Scaillet (2012), we set λ as 0.6 while we stopped 

the procedure when 𝜋0̂(𝜆) reaches 10%. In other words from our identified NNs as genuine, the 10% 

of them are false discoveries.  

For more details on the FDR algorithm, we refer the reader to Storey (2000) and Bajgrowicz and Scaillet 

(2012). In this study, we examine 50 MLPs, 50 RBFs, 50 HONNs and 50 RNNs (else 𝑙 is set to 200). The 

NNs differ between them in terms of inputs and hyperparameters. The range of the hyperparameters 

is set by the guidelines of Hornik et al. (1989), Tenti (1996) and Yu et al. (2011), while the inputs are 

combinations of autoregressive lags of the target series.  

2.7 Portfolio Construction 

All NNs are applied to the task of forecasting the logarithmic returns of the DJIA, the FTSE 100 and the 

NIKKEI 225 indices. Following the FDR approach we identify the genuine profitable NNs and we 

construct portfolios. Based on each model’s forecast a long, short or a neutral trading signal is 

generated. We invest an equal proportion of wealth to the signals generated by each individual rule. 

After pooling the signals, we invest a proportion of our portfolio to the risk free rate while the 

remaining to a long or short position.  

For example, imagine that the FDR identifies 30 NNs as genuine. From these 20 generate a buy signal, 

5 a short signal and 5 a neutral signal. After pooling, we obtain 15 buy signals and 10 neutral signals. 

Hence, we invest 60% of our wealth in the index while the remaining 40% is invested on the risk free 

rate2.   

3. Empirical Section 

The purpose of this study is to examine the profitability of a large pool of NNs through a multiple 

hypothesis testing framework. As discussed before a series of NNs are applied to the task of 

forecasting the one day ahead logarithmic return of the DJIA, the NASDAQ 100 and the NIKKEI 225 

stock indices. Then, the genuine profitable models are identified through the FDR approach and 

portfolios are constructed based on their forecasts.  

We examine two separate datasets, namely the periods of 2007-2008 and 2016-2017. The first dataset 

is dominated by the global financial crisis, while the more recent one is free from financial stress 

                                                           
2 As risk free rate we consider the effective federal funds rate. This is the interest rate at which 
depository institutions trade federal funds (balances held at Federal Reserve Banks) with each other 
overnight.  
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factors. Thus, we will also examine if the performance of our models is affected by the side-effects of 

the recent financial crisis.  

3.1 Dataset 

The summary statistics of the logarithmic returns of the three series are presented in Table 1 below. 

Table 1. Summary Statistics 

Period Index DJIA NASDAQ 100 NIKKEI 225 

1
/1

/2
0

0
7

-

3
1

/1
2

/2
0

0
8

 Mean -0.0007 -0.0013 -0.0007 

Standard deviation 0.0181 0.0223 0.0206 

Skewness 0.1063 -0.3841 -0.0323 

Kurtosis 10.2447 10.1993 9.0919 

Jarque-Bera  (p value) 0 0 0 

ADF (p value) 0.0001 0.0001 0.0001 

1
/1

/2
0

1
6

-

3
1

/1
2

/2
0

1
7

 Mean 0.0006 0.0004 0.0006 

Standard deviation 0.0085 0.0131 0.0085 

Skewness -0.6914 -0.2991 -0.6914 

Kurtosis 6.6337 10.7754 6.6337 

Jarque-Bera  (p value) 0 0 0 

ADF (p value) 0.0001 0.0001 0.0001 

Note: The values in the Table represent the summary statistics of the series under study.  

We note that all series exhibit small skewness and high kurtosis. The Jarque-Bera statistic confirms 

that all return series are non-normal at the 99% confidence level, while the Augmented  Dickey-Fuller  

(ADF) reports that the  null  hypothesis  of  a  unit  root  is  rejected  at  the  99%  statistical  level in all 

cases. 

We set as in-sample the first 6 months of each dataset and as out-of-sample the following month. The 

estimation is rolled forward by one month till the end of the dataset. In other words for the 2007-

2008 dataset, the first in-sample is 1st January 2007 to 31st June 2007 and the first out-of-sample is 1st 

July 2007 to 31st July 2007. Then, after we execute our exercise, the sample is rolled forward one 

month (1st February 2007 to 31st July 2007 in-sample and 1st August 2007 to 31st August 2007 acts as 

out-of-sample). Thus, 18 consecutive exercises are conducted for each of the two datasets. This 

procedure protects our findings for microstructure events and structural breaks within our series and 

add robustness to our findings.       

3.2 In-sample Performance 

In this Section, the in-sample performance of our NNs is presented. Table 2 reports the average 

percentage of NNs that have been identified as significant in the in-samples for the three indices under 

study. 

 



12 
 

 

 

 

 

Table 2. Significant NNs 

Period Index DJIA NASDAQ 100 NIKKEI 225 

1
/1

/2
0

0
7

-

3
1

/1
2

/2
0

0
8

 MLP 12% 10% 12% 

RBF 8% 14% 6% 

HONN 16% 14% 16% 

RNN 18% 20% 16% 

1
/1

/2
0

1
6

-

3
1

/1
2

/2
0

1
7

 MLP 4% 8% 10% 

RBF 8% 6% 10% 

HONN 8% 12% 4% 

RNN 16% 14% 16% 

Note: The table presents the average percentage of NNs identified as significant in the in-samples for the three 

indices. The values in bold represent the higher percentage at each case.  

We note that the percentage of RNN is higher than the ones of their counterparts. The RNN 

specification seems to produce more significant NNs on average in the in-samples of both datasets. It 

is also interesting to note that the percentage of significant models is higher in the first dataset, which 

is characterised from the global crisis.  The next Table presents the average in-sample trading 

performance of the FDR portfolios constructed by the identified as significant NNs. Transaction costs 

are estimated to 20 basis points per trade (see, https://www.interactivebrokers.com)3.  

Table 3. In-Sample Trading Performance 

Period Index DJIA NASDAQ 100 NIKKEI 225 

1
/1

/2
0

0
7

-

3
1

/1
2

/2
0

0
8

 MLP 7.29% (0.52) 6.09% (0.55) 7.72% (0.71) 

RBF 10.01% (1.09) 9.39% (1.00) 5.10% (0.52) 

HONN 8.77% (0.86) 9.01% (0.93) 10.05% (1.18) 

RNN 10.16% (1.19) 9.50% (1.02) 9.49% (0.09) 

1
/1

/2
0

1
6

-

3
1

/1
2

/2
0

1
7

 MLP 8.12% (0.68) 5.22% (0.43) 7.00% (0.76) 

RBF 7.93% (0.75) 6.20% (0.52) 6.01% (0.59) 

HONN 6.40% (0.57) 7.41% (0.60) 8.30% (0.78) 

RNN 8.28% (0.79) 8.29% (0.74) 8.42% (0.80) 

                                                           
3 Stock indices can be traded with three separate ways. A trader can buy or short all stocks that constitute the 
index, however this might lead to substantial transaction costs and liquidity issues. The second way is through 
futures and the third is through an Exchange Traded Fund (ETF) on the index. The transaction costs considered 
in this study are an approximation of the costs that large institutional investors will be facing if they decided to 
trade the stock indices under study with futures or ETFs.  
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Note: The values in the Table are the average annualized returns after transaction costs of the 

significant portfolios. The values in the parenthesis are the related Sharpe Ratios. The values in bold 

represent the higher values at each case. 

We note that the RNN portfolios are the more profitable in terms of annualized return and Sharpe 

ratio. HONN present a strong trading performance that in several cases is better that the ones of RBF 

and MLP. These results are surprising considering HONN simplistic architecture. It is also interesting 

to note that the trading performance of all models worsens on the second dataset. It seems that the 

financial stress conditions that dominate the first sample assisted our NNs to achieve even better 

trading performance. 

3.3 Out-of-sample Performance 

The in-sample performance of all portfolios is positive but what has the outmost important in any 

forecasting/trading exercise is the out-of-sample. As discussed before, the in-sample is set to six 

months and the out-of-sample to one month. This exercise is repeated 18 times for each of the two 

datasets by rolling forward one month the sample. Table 4 presents the average out-of-sample trading 

performance.  

Table 4. Out-of-Sample Trading Performance 

Period Index DJIA NASDAQ 100 NIKKEI 225 

1
/1

/2
0

0
7

-

3
1

/1
2

/2
0

0
8

 MLP 3.18% (0.26) 3.11% (0.23) 4.58% (0.34) 

RBF 4.89% (0.39) 4.26% (0.37) 4.10% (0.30) 

HONN 4.07% (0.35) 5.35% (0.53) 5.91% (0.61) 

RNN 6.06% (0.58) 5.28% (0.49) 5.95% (0.62) 

1
/1

/2
0

1
6

-

3
1

/1
2

/2
0

1
7

 MLP 3.00% (0.30) 2.84% (0.19) 3.47% (0.33) 

RBF 4.34% (0.41) 3.91% (0.36) 4.46% (0.47) 

HONN 3.12% (0.33) 4.01% (0.39) 3.52% (0.35) 

RNN 5.72% (0.54) 4.28% (0.42) 5.24% (0.51) 

Note: The values in the Table are the annualized returns after transaction costs of the significant 

portfolios. The values in the parenthesis are the related Sharpe Ratios. The values in bold represent 

the higher values at each case. 

Table 4 reveals a similar trend for our portfolios. RNN clearly outperform its benchmarks in both 

datasets. HONN present the second best performance in 5 out of 6 cases and the best in one case. The 

trading performance of all models is better in the first dataset that covers the recent financial crisis. It 

seems that the additional memory nodes of RNN lead not only to an increased percentage of 

significant models but also to a better trading performance.  

3.4 Financial Leverages 
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In this Section, two financial leverages are applied. The first one is inspired by the increased trading 

performance of our models in the first dataset. It is based on the level of financial stress of the stock 

indices under study. The second one is based on the trading notion that when volatility is high is better 

to stay out of the market. A similar leverage has been introduced by Dunis et. al. (2010), Dunis et. al. 

(2011) and Sermpinis et al. (2014) and is applied in practice by Société Générale and Horus Partner 

Wealth Management (ISIN: FR0011176544). In periods of high volatility, the markets are becoming 

erratic and the risk unbearable. This fact has been observed in a series of empirical studies and has 

led to a series of financial instruments (see amongst others, Dunis and Miao (2006), Bertolini (2010) 

and Sermpinis et al. (2014)).  

In both leverages, we multiple or divide the percentage of wealth with which we long or short the 

index. At all cases, this percentage ranges from 100% of our wealth to 0%. In the latter case, 100% of 

our wealth is invested in the risk-free rate.   

3.4.1 Financial Stress Leverage 

The systemic financial stress represents disruptions in the normal functioning of financial markets. It 

rises when financial or economics factors deviate from the normal trends. Naturally financial stress 

levels are high when there is a financial crisis. We note from Tables 2 and 3 that the trading 

performance of our portfolios is higher in the first period that covers the recent global finance crisis. 

This motivates us to generate an adaptive financial stress leverage.  

As a first step, we select a metric for the level of financial stress. This is the Office of Financial Research 

(OFR) stress index. The OFR index is constructed from 33 financial market variables, such as yield 

spreads, valuation measures, and interest rates. It is considered to provide a daily snapshot of the 

level of financial stress. It covers the USA and other advanced economies4. Secondly, we match our 

portfolios with the OFR stress levels for USA (DJIA and NASDAQ 100) and other advanced economies 

(NIKKEI 225). Then, based on the signal of our portfolio and the level of financial stress in the previous 

month, we apply a leverage. The level of this leverage is based on: 

Average level of financial stress (5 days) - Average level of financial stress (1 month) 

If the average level of financial stress in the last five days is higher than relevant level of the last month, 

we consider that the level of stress is increasing. Then, on the following day we double the percentage 

                                                           
4 The finance literature is rich with financial stress indices. In our application, we need an index that is 
updated on a daily basis and covers USA and Japan. The OFR has these two characteristics. However, 
it should be noted that in the other advanced economies are included not only Japan but also the 
Eurozone countries. Although the fit is not perfect for this case, it is the closest to the best of our 
knowledge. Other stress indices have lower frequency or focus on a single economy.    
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of our wealth invested to the trading signal generated from our portfolios. For example, let us consider 

that our models for tomorrow indicate that we should invest 40% on the index and 60% on the risk 

free rate. If the level of stress on the previous five days is higher than the one of the previous year, we 

will invest 80% on the index and 20% on the risk free rate. On the opposite scenario, we invest to the 

index as usual. In other words, when financial stress levels are increasing we invest more based on our 

NNs and less on the risk free rate.  Table 5 presents the relevant performance of our models after the 

application of the financial stress leverage.  

Table 5. Out-of-Sample Trading Performance with Financial Stress Leverage 

Period Index DJIA NASDAQ 100 NIKKEI 225 

1
/1

/2
0

0
7

-

3
1

/1
2

/2
0

0
8

 MLP 5.49% (0.40) 5.19% (0.45) 7.40% (0.68) 

RBF 7.12% (0.64) 6.02% (0.52) 5.71% (0.45) 

HONN 6.96% (0.62) 7.58% (0.71) 6.18% (0.72) 

RNN 9.52% (0.95) 8.18% (0.84) 8.81% (0.89) 

1
/1

/2
0

1
6

-

3
1

/1
2

/2
0

1
7

 MLP 5.37% (0.59) 4.54% (0.32) 6.51% (0.50) 

RBF 6.62% (0.64) 5.28% (0.40) 5.92% (0.51) 

HONN 4.41% (0.39) 5.63% (0.44) 6.35% (0.47) 

RNN 6.78% (0.69) 7.09% (0.71) 7.40% (0.77) 

Note: The values in the Table are the annualized returns after transaction costs of the significant 

portfolios. The values in the parenthesis are the related Sharpe Ratios. The values in bold represent 

the higher values at each case. 

We note that the performance of all portfolios is increased. These results confirm the findings of 

Section 3.3 and Table 4. NNs seems to work better when financial stress conditions dominate the stock 

markets. The ranking of our models is not changed and RNN continue to provide more profitable 

forecasts. There are cases where the performance of our portfolios is doubled. This happens more 

notably in the first dataset.  These results further highlight the effectiveness of NNs in trading and 

more especially when financial markets are in turbulence.  

3.4.2 Financial Volatility Leverage 

In order to further improve the trading performance of our models we apply a leverage based on 

RiskMetrics5 one day ahead volatility forecasts.  The intuition of the strategy is to avoid trading when 

volatility is very high and exploiting days when the volatility is relatively low. The leverage scales the 

relevant position sizes inversely to the recent risk behaviour. 

                                                           
5 A brief description of the RiskMetrics volatility model is provided in Appendix A. 
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As a first step, we forecast with RiskMetrics the one day ahead realised volatility of our series. Then, 

the average the average (μ) difference between the actual volatility in day t and the forecasted for 

day t+1 and its ‘volatility’ (measured in terms of standard deviation σ) are calculated over the last six 

months is estimated. Based on these estimations, we define six sub-periods, ranging from periods with 

extremely low volatility to periods experiencing extremely high volatility. The periods where the 

difference is between the μ plus one σ are classified as ‘Lower High Vol. Periods’. Similarly, ‘Medium 

High Vol.’ (between μ + σ and μ + 2σ) and ‘Extremely High Vol.’ (above μ + 2σ) periods can be defined. 

Periods with low volatility are defined following the same approach, but with a minus sign. The 

leverages and the sub-periods are presented on Table 6. 

Table 6. Sub-periods and leverages 

 Extremely 
Low Vol. 

Medium Low 
Vol. 

Lower Low 
Vol. 

Lower High 
Vol. 

Medium 
High Vol. 

Extremely 
High Vol. 

Leverage 2.5 2 1.5 1 0.5 0 

 

Based on these sub-periods, we invest more or less each day on the signal that our NNs portfolios 

generate. For example, on the first day of the out-of-sample we check our RiskMetrics volatility 

forecast at which sub-period falls. As mentioned before, these sub-periods are based on the last six 

months. Let us assume that the volatility forecast falls on the extreme low volatility period and that 

on the same day we have to invest based on our portfolios 20% on the index (long position) and 80% 

on the risk-free rate. Based on our leverage (2.5), we will invest 50% on the index and 50% on the risk-

free rate. On the other hand, if on the same day the volatility forecast is falling instead to the extreme 

high volatility period, 100% of our wealth would have been invested on the risk free rate (leverage 0).  

The parameters of our strategy (μ and σ) are updated every month by rolling forward the estimation 

period. For example, for the first month of the out-of-sample, μ and σ are computed based on the six 

months of the in-sample. For the following month, the two parameters are computed based on the 

last six months of our dataset (the last five months of the in-sample and the first month of the out-of-
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sample). Table 7 presents the trading performance of our NN portfolios with the time varying volatility 

leverage.  

 

 

 

Table 7. Out-of-Sample Trading Performance with Financial Stress Leverage 

Period Index DJIA NASDAQ 100 NIKKEI 225 

1
/1

/2
0

0
7

-

3
1

/1
2

/2
0

0
8

 MLP 6.02% (0.53) 6.71% (0.59) 7.35% (0.74) 

RBF 6.61% (0.60) 6.63% (0.57) 6.97% (0.70) 

HONN 5.92% (0.49) 6.66% (0.57) 6.70% (0.67) 

RNN 7.40% (0.77) 8.29% (0.89) 9.33% (1.01) 

1
/1

/2
0

1
6

-

3
1

/1
2

/2
0

1
7

 MLP 6.48% (0.56) 5.81% (0.48) 7.59% (0.77) 

RBF 6.12% (0.55) 6.47% (0.64) 6.15% (0.64) 

HONN 5.60% (0.47) 6.52% (0.66) 6.54% (0.68) 

RNN 7.53% (0.81) 8.60% (0.93) 8.00% (0.88) 

Note: The values in the Table are the annualized returns after transaction costs of the significant 

portfolios. The values in the parenthesis are the related Sharpe Ratios. The values in bold represent 

the higher values at each case. 

The time varying volatility leverage is doubling the annualized returns of our NNs portfolios in most 

cases. The RNN continue to outperform its counterparts in terms of annualized returns and Sharpe 

Ratios. Comparing the results of Table 7 and 6, we note that the volatility leverage is more successful 

than the one based on the financial stress. Unlike the previous sets of results, NNs seem to perform 

equally well in both datasets.  

4. Concluding Remarks 

This study explores the profitability of 200 NNs through a MHT framework. 50 MLPs, 50 RBFs, 50 

HONNs and 50 RNNs are generated and applied to the task of forecasting the one day ahead 

logarithmic return of three stock indices. The NNs differ in terms of hyperparameters and inputs. The 

genuine NNs are identified through a FDR approach and portfolios are constructed. Their profitability 

is examined in terms of annualized return after transaction costs and Sharpe Ratio. Two financial 



18 
 

leverages are introduced based on the level of financial stress and the financial volatility respectively. 

Their application aims to test whether they can improve the portfolios profitability. 

In terms of the results, we note that the FDR approach identifies a large percentage of NNs as genuine.  

The profitability of NNs is positive in both in-sample and out-of-sample. From the four NN families 

under study, we note that RNN has the higher percentage as genuine forecasts and the better trading 

performance. The performance of all portfolios is better in the sample that covers the recent global 

financial crisis. The application of the two financial leverages is successful and doubles the profitability 

of NNs in the majority of cases. 

These results explain the popularity of NNs in trading desks and in wealth management. They are 

capable of producing high profitability that is further enhanced in periods of uncertainty and financial 

stress. Profitability enhancement can be achieved with the help of simple financial leverages that try 

to exploit financial stress and volatility. From the four NN families under study, the most promising 

architecture is the RNN. Their long memory and the fact that they incorporate past errors in their 

architecture give an advantage compared to their counterparts. Finally, our results should go forward 

convincing academics and professional on the utility of NNs in financial trading.   
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Appendix A. RiskMetrics Volatility 

 

The RiskMetrics volatility model is one of the simpler methods to forecast the financial volatility. 

Nevertheless, it is popular among quantitative finance professionals. Derived from the from the 

GARCH(1,1) model but with fixed coefficients, the daily RiskMetrics volatility forecast for day t is 

estimated as: 

 𝑅𝑖𝑠𝑘𝑀𝑒𝑡𝑟𝑖𝑐𝑠 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡
2 = 0.94𝜎𝑡−1

2 + 0.06𝑅𝑡−1
2                                                (6) 

where 𝜎𝑡−1
2  is the volatility of the index at day t-1 and 𝑅𝑡−1

2 is the squared logarithmic return of the 

index on the same day.   

  

 


