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ABSTRACT: The synthesis of chiral polyoxometalates (POMs) is a chal- < Confined Reaction Vessel
lenge because of the difficulty to induce the formation of intrinsically chiral Symmetry :
/ : . {Mo1}  Breaker
metal-oxo frameworks. Herein we report the stereoselective synthesis of a
series of gigantic chiral Mo Blue (MB) POM clusters 1—S that are formed a L
by exploiting the synergy between coordinating lanthanides ions as sym-
metry breakers to produce MBs with chiral frameworks decorated with R._COOH
amino acids ligands; these promote the selective formation of enantiopure ~ {Mo8} NH;
MBs. All the compounds share the same framework archetype, based on R?/"COOH
{Mo,,,Ce,}, which forms an intrinsically chiral A or A configurations, con- “ iy
trolled by the configurations of functionalized chiral amino acids. The Moz}  Amino acid Selective Oxidation

chirality and stability of 1—S$ in solution are confirmed by circular dichro-

ism, '"H NMR, and electrospray ion mobility—mass spectrometry studies.

In addition, the framework of the {Mo;,,Ce,} MB not only behaves as a host able to trap a chiral {Mog} cluster that is not
accessible by traditional synthesis but also promotes the transformation of tryptophan to kynurenine in situ. This work
demonstrates the potential and applicability of our synthetic strategy to produce gigantic chiral POM clusters capable of host—

guest chemistry and selective synthetic transformations.

Bl INTRODUCTION

Polyoxometalates (POM:s) are a unique class of discrete metal
oxides with a diversity of structures and properties.l’2 As such,
POMs have a wide range of potential applications from medi-
cine to catalysis and materials science.” One focus of POM
chemistry is the controlled fabrication of chiral POM clusters
that are potential candidates in asymmetric catalysis, chiral
separations, sensors and biomedicine." During the past two
decades, a variety of chiral POM clusters have been designed
and synthesized via either chiral resolution and spontaneous
resolution of the intrinsically chiral POMs or stereoselective
synthesis driven by chirality transfer from chiral organic ligands
or metal—organic species.” Despite the synthesis of chiral
gigantic POMs, the assembly of systems with chiral frameworks
has proved challenging. This is due to their very high sym-
metries and large skeletons composed of hundreds of metal and
oxygen atoms; together, these make it hard to form intrinsically
chiral POMs or achieve chirality transfer. Moreover, the chiral
functionalization of wheel- or cage-shaped gigantic POMs is
particularly interesting, not only because they could provide
confined chiral environments for asymmetric processes such as
asymmetric catalysis and chiral recognition but also because
they could be potentially used as model compounds as “artificial
proteins” to mimic functional biological systems.” To the best of
our knowledge, there have been no reports of chiral POMs with
nuclearity of >100.

Molybdenum blue (MB) compounds are a family of gigantic
isopolyoxomolybdates clusters, including the archetype
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wheel-shaped {Mo,s,} and {Mo;;5} and lemon-shaped {Mo,4}
that are constructed from basic {Mog}, {Mo,}, and {Mo,}
building blocks.” The {Mo,} units are the reactive sites and
could be easily coordinated by amino acid ligands (AA) or
replaced by electrophiles such as lanthanides.”” Indeed, cystine
and tyrosine have been successfully grafted onto the archetypal
{Mo,s,}.° Nevertheless, none of these AA-functionalized
{Mo,s,} clusters exhibit chirality in the solid-state, and
they crystallize in centrosymmetric space groups (Scheme 1).
In contrast, elliptical lanthanide-doped MB (LMB) such as
dimeric {Mo,ssBug}, {Mo;,,Prs}, and {Mo;oCes} can be pro-
duced by substitution of the {Mo,} groups by smaller
lanthanide ions. The incorporation of lanthanide ions “breaks”
the D,; symmetry of parent {M0154} on reorganization and
yields clusters with much lower molecular symmetries, for
example, C; for {M0256Eu8},8"‘ D, for {Molzopré},Sb and C, for
{Mo,0,Ce}.* This means the molecular structures of single
wheels of these LMB are essentially chiral; however, the oppo-
site enantiomers are always present in an equivalent amount
due to the presence of either an inversion center, or mirror plane
and thus makes the arrangements racemic. We hypothesized that
the combination of lanthanides as “symmetry breakers” and
amino acids as chiral ligands may exert a synergetic effect that
could facilitate the stereoselective synthesis of chiral MBs
(Scheme 1). As shown in Scheme 1, racemic LMBs consist of
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Scheme 1. Schematic of the Stereoselective Synthesis of
Chiral MB by Using Lanthanides as “Symmetry Breaker” and
Amino Acids as Chiral Ligands”
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“See Figure 1 for more details regarding A and A configurations of
chiral Mo Blue.

two opposite enantiomers and form in the first step by employ-
ing lanthanide ions as a “symmetry breaker”. In the presence of
either D- or L- amino acids, the single enantiomer of chiral LMB
could be formed by the stereoselective synthesis of chiral
structures due to the chirality transfer/induction from chiral
ligands in the second step. The enantiomers can be discrim-
inated using A and A nomenclature for the individual isomers.
In coordination chemistry, the absolute configuration of chiral
compounds adopting right-handed helical arrangement is
designated as A, while A is used for left-handed helical
arrangement (Scheme 1).

Herein we report the stereoselective synthesis of a series of
chiral MB A-1 and A-1, 2, 3, A-4 and A-4, A-S and A-S by
using Ce®" ions as symmetry breakers, and amino acids as chiral
ligands to confirm our hypothesis. In contrast, compounds 6
and 7, synthesized under similar conditions but without addi-
tion of Ce** ions, crystallize in centrosymmetric space groups.
All compounds were characterized crystallographically and the
formulations are fully supported using extensive analytical
techniques (see the Supporting Information).

B RESULTS AND DISCUSSION

Synthesis of 1-7. Compounds A-1 and A-1 were
synthesized from a one-pot reaction of Na,MoO,2H,0,
CeCl;-7H,0, [N,H,]-2HCl and i-/p-histidine at 90 °C.
Heating is essential for the formation of chiral wheels as the
reaction mixture was turbid when mixing all the starting mate-
rials at r.t. Upon heating, the solution turned to a clear, deep-
blue solution in 10—15 min. The concentration of the amino
acid reagents in the reaction mixture is also critical. Higher
concentrations were found to promote crystal growth quickly,
and thus result in a crystalline solid with poor crystallinity,
while lower concentrations lead to good crystals but with a
longer crystallization time and lower yields. Adopting the same
procedure as A-1 but slightly decreasing the amount of
L-histidine produced compound 2, while compound 3 was
discovered during the scale-up synthesis of A-1. Overall, the
reactions are controlled by adjustment of the amount of
L-histidine. A slight reduction of r-histidine will slow down the
crystallization and initiate the formation of isomeric 2 and 3
instead of A-1. Inspired by the successful synthesis of 1-3,
more amino acids have been explored, and compounds 4 and §
were synthesized using arginine and tryptophan, respectively.

1243

We have also tried other amino acids such as alanine and
phenylalanine; however, either precipitate or very small crystals
were obtained. 6 and 7 were synthesized in a straightforward
way, without addition of CeCl;-7H,O to afford, respectively,
L-histidine- and L-tryptophan-functionalized {Mo,s,} in good
yield and high purity. This shows that the use of the lanthanide
ions is critical in restructuring the MB wheel.
Determination of the Formulas of 1-7. The determi-
nation of the formulas of the Mo-blues has been well estab-
lished and requires a series of analytical techniques including
redox titrations, UV—vis—NIR spectroscopy, bond valence sum
analysis (BVS), elemental analysis, and thermogravimetric
analysis (TGA), in addition to single-crystal X-ray diffraction
analysis (see the Supporting Information for details).'’ Herein,
A-1 was selected to exemplify the general approach used to
determine the formula. First, BVS calculations were carried out
on all the Mo and O centers, revealing that A-1a is composed
of a 24-electron reduced anionic ring containing 12 singly and
60 doubly protonated oxygen atoms.'” Singly protonated are
the 12 equivalent oxo atoms situated in the equatorial plane
and linking two neighboring {Mog} units as well as {Mo,}
units. BVS could not be applied to highly distorted {Mog} due
to the disorder of these groups. Therefore, all the Mo centers
on {Mog} are assumed to be Mo"', consistent with previous
work.® Meanwhile, redox titration and UV—vis—NIR spectros-
copy could not be used to determine the overall reduction state
for A-1a because of its very poor solubility. However, elemental
analysis confirms the framework of 1a consists of 124 Mo and 4
Ce atoms, consistent with the structural refinement done using
the single-crystal X-ray diffraction data. Taking into consid-
eration the information obtained from the calculations above,
along with elemental analysis, it is possible to determine
the overall building-block scheme and overall charge for A-1a
as {[MogO,] [{Moz}s{Mol}12{M08}12{C3(H20)5}4]}IZ_E‘
{[Mo0""50,6] [{MOVIZOS(HZO)Z}S{MOVI/VSOZG(:“‘
O)zH(H20)3MOVUV}12{Cem(H20)5}4{C6H9N302)6]}12_~ Sec-
ond, to balance the negative charge of —12, 10 protons and
2 protonated L-histidines are proposed as counterions as the
content of Na is negligible as found in the elemental analysis
data (0.026%). The amount of L-histidine was deduced from C,
H, and N analysis, and a total eight L-histidines are found in the
structure of A-1. Among them, six are located on the frame-
work of A-la while another two are counterions. Finally, the
TGA curve of A-1 exhibits a total weight loss of 11.6% from r.t.
to 150 °C, which corresponds to ~165 guest water molecules.
On the basis of what discussed above, the formula of A-1 could
therefore be determined as H;o(C4H;oN;0,),{(MogO,)-
Mo;,,Ce,0374(H,0) 6oH;,(CsHgN;0,) 6} 165H,0. The formu-
las of compounds 2—7 are determined in a similar manner.
Compounds 1—7 could be formulated as follows:

o A-1: HIO(C6H10N302)2{(MOSOZG)M0124ce40376'

(H,0)goH 1,
(C¢HyN;0,)6}-165H,0=H ,(C¢H,(N;0,),{A-1a}-
165H,0

o A-1: HIO(C6H10N302)2{(M08026)M0124ce40376'
(H,0)60H5-
(CeHyN;0,)4}-165H,0=H,,(CsH;oN30,),{A-1a}:
165H,0

e 2: Na;H;(C4H (N3;0,),{Mo,,,Ce;03,5(H,0)¢4

HIZ(C6H9N302)4}0.5{(MOSOZG)M0124ce4O376
(Hzo)60H12(C6H10N302)6}0.5' 17OHZOEN33H5(C6H10'
N302)2{2a1}0.5{2a2}0.5' 170H,0
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e 3: Hj,{(MogO,6)Moy5,Ce;0576(H,0) 60H 2 (CsHoN3-
0,)6}:155H,0=H,{3a}'155H,0

A-4: Na,H,(C0H3N,03),{Mo,54Ce,0376(H,0) oH -
(C11HpN,0,)6} 150H,0=Na,H,(C, H;3N,05){A-
4a}-150H,0

A-4: NayH,(C1oH 3N,05),{Mo,5,Ce40376(H,0) 6oH -
(C11HpN,0,)6} 150H,0=Na,H,(CoH,3N,0;) {A-
4a}-150H,0

A-S: H6(C6H15N402)Z{MO124ce4o376(H20)64H12(C6'
H4N,0,),} 160H,0=H¢(CsHsN,0,),{A-5a}-
160H,0

A-5: Hg(CeH N4 0,),{Mo5,Ce;0376(H,0) 6 H o (Ce-
H,N,0,),}-160H,0=H4(C4H5sN,0,),{A-5a}
160H,0

6: Na,H;({Mo;5,0,45,(H,0)5,H;,(CsHyN;0,)5}
200H,0=Na,H,,{6a}-200H,0

7 N38H4(C11H13N202)2{M01540462(H20)54H14(C11'
H|;N,0,)5}180H,0 = NagH,(CH|3N,0,),{7a}-
180H20

Crystal Structures of 1-7. Single-crystal X-ray structural
analysis reveals that A-1 crystallizes in the chiral space group
P2,2,2 and features an elliptical nanoring {Mo;,,Ce,},
composed of 12 {Mog} units, 8 {Mo,} units, 12 {Mo;} units,
4 {Ce(H,0),} units, and 6 L-histidine, with a {Mog} cluster
trapped in the center (Figure lab). The four Ce® ions are
distributed symmetrically on the two ends of both the upper
and lower rims of {Mo;,,Ce,}, making the whole wheel exhibit
an elliptical configuration with C, symmetry. Therefore, the
wheel displays a relatively symmetric structure with an oval-
shaped opening with outer and inner ring diameters of about
31 and 12 A, respectively, at its most elongated points.
Adopting the definition from IUPAC," if we draw two skew
lines between two Ce>* ions on the same rim, then the
anticlockwise rotation of the line behind the plane relative to
the line on the plane is designated as left-handed helix or vice
versa. Accordingly, the absolute configuration of {Mo,,,Ce,} of
A-1a is assigned as A (Figure 1c). There are six L-histidine
coordinated to six {Mo,} units via carboxylate groups with the
side chain buried in the pitch of {Mo,,,Ce,}. Four are located
on one side in two pairs, parallel with a separation between the
adjacent imidazole rings of 3.884 A, while the remaining two
hang on the two ends of either side of {Mo,,,Ce,} to minimize
the steric hindrance (Figure 1b). The absolute configuration of
L-histidine could be unambiguously determined from spatial
arrangement of the atoms around the stereogenic carbon, consis-
tent with the chiral histidine used for synthesis (Figure le).
Adjacent A-1a packs in parallel to the crystallographic ab plane
giving rise to 1D channels occupied by protonated histidine and
guest water molecules (Figure S14).

A {Mog} cluster resides in the middle of the ring with a C,
axis going through its center, anchored in place by a large
number of N—H:--O and C—H--O hydrogen-bonds formed
with the coordinated histidine ligands grafted onto the inner
ring of {Moy,,Ce,} (Figures 1 and S13). In addition, all the
histidine ligands are protonated and serve as positively charged
buffers, reducing the repulsive electrostatic force between the
two negatively charged species, further stabilizing the supra-
molecular guest@host assembly {Mog}@{Mo,,4Ce,}. On the
whole, the {Mog} cluster appears to be structurally related to
the 7-[MogO,4]*~ isomer reported previously,'* which is com-
posed of 4 MoOg octahedra as central core capped by two sets
of dinuclear {Mo,} units consisting of one MoOjs trigonal
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Figure 1. (a) View of the molecular structure of A-1 (left) and A-1
(right). {Mo,}, yellow polyhedron; {Mo,}, red polyhedron; {Mog},
blue polyhedron with central pentagonal units in cyan polyhedron; Ce,
green polyhedron; O, red; C, gray; N, pink. The entrapped {Mog}
cluster and histidines are present in ball and stick model. (b) View of
the symplified framework of A-1 (left) and A-1 (right) to highlight the
basic {Mog}, {Mo,} and {Mo,} building blocks. (c) Representation of
the absolute configurations of A-1 (left) and A-1 (right) based on
helical arrangement of Ce®* ions. The Ce* ions behind the plane is
highlighted in transparency. (d and e) View of the two enantiomers of
entrapped {Mog} clusters and histidine in A-1 (left) and A-1 (right).

bipyramid and one MoOjg octahedron. All the MoOg octahedra
and MoQgs trigonal bipyramids are linked with each other in
an edge-shared mode. However, the {Mog} cluster trapped
within {Mo,,,Ce,} displays a chiral configuration with a
molecular symmetry of C, in contrast to the centrosymmetric
7-[MogO,4]*" isomer reported before (Figure 1d). In a similar
way, single-crystal X-ray structure analysis revealed that A-1
also crystallizes in chiral space group P2,2,2 and exhibits the same
molecular structure as A-1 but with opposite chiral configu-
ration. As shown in Figure 1, the framework of {Mo,,,Ce,},
{Mog} cluster and histidine ligands of A-1a are a perfect mirror
image of those of A-la, indicating the enantiomeric nature of
each other. Also, the BVS calculations for A-la gave values
similar to those for A-1a (Table S1), suggesting they have the
same dodecameric anionic core consisting of 24 Mo" and 12
U3-OH ions. The chirality and enantiopurity of A-1a and A-la
could be unambiguously confirmed by their Flack parameters,
which are close to zero.

2 crystallizes in the same space group, P2,2,2, as A-1. There
are two crystallographically independent wheels in the
molecular structure of 2, denoted as 2a; and 2a,, respectively
(Figure 2a). Both wheels share the same elliptical nanoring
{Mo,,,Ce,} as A-la. 2a; has the same composition as A-1a;
however, the arrangement of six histidine ligands and the
orientation of the encapsulated {Mog} cluster are different from
A-1a (Figure 2b). Among the two pairs of histidine on the

DOI: 10.1021/jacs.8b09750
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Figure 2. View of the molecular structures of 2a (a), 2a, (b), 2a, (c),
and 3a (d). The two wheels in 2a, namely, 2a, and 2a,, are highlighted
with light blue and light orange circles. Color code is the same as that
in Figure 1.

same side, one pair still adopts the parallel arrangement with a
separation between the adjacent imidazole rings of 3.884 A,
while another pair takes a V-shaped alignment (Figure 3b). As a
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Figure 3. Evolution of {Mo,,,Ce,} as confined reaction vessel that is
tuned by the arrangement of L-histidine. View of the parallel arrange-
ment of L-histidine in A-1a (a), parallel and V-shaped arrangement of
L-histidine in 2a; (b), and V-shaped arrangement of L-histidine in 3a
(c). Color code is the same as that in Figure 1.

result, the entrapped {Mog} cluster changes its orientation in
relation to {Mo,,,Ce,} (Figure 3b). From the space-filling
model, the {Mog} cluster is packed more tightly in the cavity of
2a, than is the counterpart in A-la (Figure S19). Moreover,
more hydrogen bonds are found between {Mog} and histidine
ligands on {Mo;,,Ce,} in 2a,, indicating a stronger interaction
between the guest and host (Figure S15). In contrast, there are
only 4 histidine located on the inner surface of 2a,. They could
be divided into two sets, and each consists of two histidine
attached on two {Mo,} units on the same side at the most
elongated points of {Mo;,,Ce,} (Figure 2c). This arrangement
restrains the histidine ligands and keeps them far away from
each other, generating more void space in the central cavity of
2a,. Accordingly, no guest cluster is entrapped in the center,
suggesting only {Mog}-like clusters are available, and no other
clusters of the right size to be complexed in the cavity are
present in solution. Notably, the absolute configuration of 2a,
(A) is opposite that of 2a; (A) even though the same
L-histidine ligand was presented on the wheels. This means
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{Mo,,4Ce,} is very labile, and its absolute configuration is easily
inverted in solution. On the basis of these unique structural
features, 2 could be regarded as an intermediate during the self-
assembly of A-la when an inadequate amount of histidine is
used in the reaction. If adequate histidine is used, then A-1a is
found as the only product.

3 crystallizes in the chiral space group P2. The molecular
structure of 3a is similar to those of A-la and 2a, (Figure 2d).
The main difference lies on the different arrangement of two
pairs of histidine ligands. In this case, both pairs of histidine
take the V-shaped arrangement (Figure 3c). However, the
entrapped {Mog} cluster still adopts the same orientation as the
one in 2a,. Similarly, multiple hydrogen bonds could be found
between the protonated histidine ligands and {Mog} cluster to
stabilize the whole structure (Figure S1S5). Having similar
structural features and the same composition as those of A-1a
and 3a, 2a, can be considered to be an isomer of A-la.

4 and 5 share the same framework of {Mo,,,Ce,} as 1 but
with arginine and tryptophan grafted on the inner ring instead
of histidine. Moreover, no POM clusters are captured within
the void space of the ring. Since A-4 and A-$ are enantiomers
of A-4 and A-§, respectively, A-4 and A-§ are selected to eluci-
date the crystal structures. A-4a adopts the same framework as
A-1a but with 6 p-tryptophan grafted on {Mo,,Ce,}. Similar
to A-1a, four of the ligands are located on one side in two pairs
in parallel with a separation between pyrrole and phenyl rings
of 3.570 A, while two more are located on another side of
{Moy,,Ce,} (Figure 4a). To minimize the steric hindrance, the

Figure 4. (a) View of the simplified framework of A-4a (left) and
A-4a (right) to highlight the basic {Mog}, {Mo,}, and {Mo,} building
blocks. (b) View of the simplified framework of A-Sa (left) and A-5a
(right) (c) Representation of the absolute configurations of A-4a and
A-5a (left) and A-4a and A-5a (right) based on the helical arrange-
ment of Ce* ions. The Ce® ions behind the plane is highlighted in
transparency.

carboxylates of the two D-tryptophan ligands in the middle
adopt monodentate rather than the classic bidentate chelate
coordination modes adopted by histidine (Figure S22). Inter-
estingly, one protonated p-kynurenine other than p-tryptophan
is found as counterion to balance the charge of A-4a

DOI: 10.1021/jacs.8b09750
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(see discussion in the later section). It is well-known that
D-kynurenine is a metabolite formed during the metabolism of
D-tryptophan and that the %eneration of p-kynurenine is
promoted by several enzymes. * In A-4, we propose that the
generation of D-kynurenine may be derived from the oxidative
cleavage promoted by {Mo,,,Ce,}. More discussion will be
presented in section below. A-5a has the same framework as
A-4a, but only 4 p-arginine are located on the inner surface,
which is similar to 2a,. Due to the flexibility of the alkyl
backbone, p-arginine is almost completely encapsulated within
the pitch of {Mo,,Ce,}, thus leaving an accessible pore with a
dimension of ~15 A x 12 A (Figure S17).

Although {Mo,,,Ce,} adopts the same absolute config-
uration in A-la, A-4a, and A-Sa, the amino acids (AA) incor-
porated adopt the L-configuration for A-1a and p-configuration
for A-4a and A-Sa. Because both {Mo,,Ce,} and amino acids
can exhibit chirality, the combination of them will, in principle,
lead to four diastereomers which could be divided in two pairs
of enantiomers, ie., A-{Mo;,,Ce,}-.-AA and A-{Mo,,,Ce,}-
p-AA, A-{Mo,,,Ce,}-L-AA and A-{Mo,,,Ce,}-D-AA. However,
only one pair of enantiomers will be produced for a certain type
of amino acid due to the stereoselective synthesis, as indicated
by the case of A-{Mo,,Ce,}-.-His (A-1a) and A-{Mo,,Ce,}-
p-His (A-1a). As mentioned above, {Mo,,,Ce,} is very labile in
solution. Therefore, it is possible that {Mo;,,Ce,} can adopt
the same configuration when different amino acids with the
opposite chirality are used, which is the case for in A-1a, A-4a,
and A-5a.

Both 6 and 7 crystallize in the centrosymmetric space group
C,/m and comprise an archetypal {Mo;s,} framework that is
composed of 14 sets of {Mog}, {Mo,}, and {Mo,} building
blocks (Figure S). In 6a, 4 histidine ligands are functionalized

Figure S. View of the molecular structure of 6a (left) and 7a (right).
The 4 histidine/tryptophan ligands on the back side of {Mo,g,} is
highlighted in transparency. Color code is the same as that in Figure 1.

on 4 {Mo,} units on one side of {Mo;,}, and another side is
functionalized by 4 symmetrically related histidine. Two of
them align in V-shaped arrangement on two adjacent {Mo,}
units, while another 2 histidine are alternately attached on the
other 4 {Mo,}. Although r-histidine is used in the synthesis, it
could not be fully elucidated in the crystal structure. This is
caused by the high molecular symmetry of {Moyss} (D5g),
which dominates the symmetry of 6 and thus makes the whole
structure centrosymmetric instead of chiral.” This indicates that
L-histidine itself could not transfer its chirality to the framework
of 6a efliciently. Compound 7 has a structure similar to that of
6 but with 8 L-tryptophan ligands grafted on the inner surface,
which adopt the same arrangement as L-histidine in 6.
Important Role of Ce* lons during Self-Assembly and
Crystallization. On the basis of the crystal structures of 1-7,
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it could be clearly seen that Ce® ion is essential for the
formation of chiral MB compounds 1—5. Without addition of
Ce’" ion as “symmetry breaker”, 6 and 7 were produced and
yield a centrosymmetric {Mo;s,} motif that dominates the
symmetry of the whole structure. In this case, L-histidine or
L-tryptophan cannot transfer chirality efficiently to {Mo;s,}-
Therefore, the stereoselective synthesis of chiral MB will occur
only if Ce®" ions are employed to trigger the formation of the
racemic LMB with chiral configuration. This confirms our
hypothesis in Scheme 1. It should be noted that isostructural
chiral MB can be facilely obtained when replacing Ce** with
Gd*" and Sm*' in the synthesis of 1. Indeed, if only Ce®* ions
are introduced in the synthesis in the absence of amino acids,
then racemic LMB {Mo,;,;Ce,} is obtained. This compound
has a molecular similar structure to that of {Mo,,,Ce,} in 15
and exhibits a helical chiral configuration of both A and A in
1:1 ratio (Figure 821).16

{Mo,,,Ce,;} as Confined Reaction Vessel and Trans-
formation of Tryptophan to Kynurenine. On closer inspec-
tion of the crystal structures of 1-S5, all of these compounds
share the same framework of {Mo;,,Ce,}. However, only 1-3
comprise the {Mog}@{Mo,,,Ce,} moiety, while nothing is
entrapped within 4 and S. This indicates the following: (1)
{Mog} is either a template that directs the self-assembly of
{Mo,,Ce,} or a guest trapped by {Mo,,Ce,}. (2) Histidine is
essential for the trapping of {Mog} in 1—3 since other amino
acids such as arginine and tryptophan do not result in its for-
mation. In addition, steric hindrance is critical for the encap-
sulation of {Mog} within {Mo;,,Ce,}. No POM cluster is
encapsulated within 2a,, although this wheel is also function-
alized by v-histidine. The main difference is that 4 histidine are
attached on 2a, while 6 histidine are bound on 1, 2a;, and 3,
demonstrating the importance of steric hindrance. Moreover,
the orientation of {Mog} within {Mo;,,Ce,} is directly related
with the spatial arrangement of L-histidine. As shown in Figure 3,
when the two pairs of histidine ligands change from parallel
(A-1) to combined parallel and V-shaped (2a,) and to
V-shaped (3a) arrangement, the entrapped {Mog} changes its
orientation by rotating ~90° around the short axis of ellipse-
shaped {Mo,,,Ce,} accordingly. In this context, the {Moy,,Ce,}
could be regarded as a confined reaction vessel where chiral
{Mog} could be generated in situ, and its orientation could be
tuned by changing the spatial arrangement of L-histidine
ligands. A similar phenomenon has already been discovered in
{Mo,,Fe,,} macrocycle system where the ring acts as a confined
reaction vessel to produce a novel {Mo;,04(HPO;),} cluster."”

As mentioned above, one protonated kynurenine is
detected as counterion in the crystal structure of 4 (Figure 6).

Z s

Figure 6. View of the molecular structure of A-4a (a); p-tryptophan
(b) attached on A-4a and p-kynurenine (c) as counterion. Color code
is the same as that in Figure 1.
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L-Kynurenine is a key intermediate metabolite during the
metabolism of L-tryptophan, and more than 95% of tryptophan
is metabolized through the kynurenine pathway.'> Upon enter-
ing the kynurenine pathway, tryptophan is first converted to
N-formyl-L-kynurenine by tryptophan 2,3-dioxygenase (TDO)
and indoleamine 2,3-dioxygenase (IDO) via oxidatative cleav-
age, and then N-formyl-L-kynurenine is further degraded by
formamidase to L-kynurenine via hydrolysis. Therefore, two
step reactions are generally required to produce L-kynurenine
from L-tryptophan, involving several highly specific enzymes.
In addition to the biosynthetic route, several approaches have
been developed for chemical synthesis of L-kynurenine; how-
ever, most of them involve multistep synthesis and suffer from
tedious purification.'® In the case of 4, the synthesis proceeds in
a very straightforward manner and gives L- or D-kynurenine
cleanly in a one-pot reaction (Figure 6).

As we know, POM clusters are widely used as versatile cata-
lysts to promote a variety of chemical transformations including
expoxidation, sulfoxidation, phosphoester hydrolysis, and so on.*
In particular, some POM clusters have shown good performance
toward oxidatative cleavage of C—C bonds and the hydrolysis
of peptides.'” Moreover, {Mo,s,} has already been reported as
an efficient catalyst for the partial oxidation of cyclohexane.”
On the basis of the discussion above, we tentatively propose
that the {Mo;,,Ce,} can act to generate kynurenine in situ via
oxidatative cleavage and hydrolysis of tryptophan. During the
self-assembly of 4, the formation of {Mo;,,Ce,} is very fast, as
indicated by a mechanistic study of MB cluster;”" the L-tryptophan
coordinated to {Mo,} units are thus encapsulated within the cavity
of {Mo,,,Ce,} very quickly. In this way, the pyrrole rings on
tryptophan ligands are wel-protected in the wheels and thus
avoid the discussed chemical transformation. In contrast, the
tryptophan that is located externally has unconstrained access
to {Mo,;,,Ce,} and thus undergoes oxidative cleavage and subse-
quent hydrolysis. This finally results in the formation of 4a with
intact tryptophan anchored on inner surface and kynurenine as
counterion. The proposed route of transformation of tryptophan
to kynurenine is deduced based on the reported MB and other
well-established POM catalysis systems; more experiments are
therefore required to validate the mechanistic transformation,
which is beyond the scope of current study and will be compre-
hensively investigated in the future. The successful production
of kynurenine indicates that MB clusters have the potential to
be used for selective oxidation.

CD, 'H NMR, and ESI-IMS-MS Studies. The solution CD
spectra of A-1 and A-1 are mirror images of each other, and
each exhibit a characteristic exciton splitting centered at 234
and 274 nm that originated from histidine (Figure 7). Com-
pared with the free histidine, the redshift of CD signal (~20 nm)
suggests that histidine ligands are attached on {Mo,;,,Ce,} and
that the fixation of carboxylate on {Mo,} units limits the free
rotation of histidine and thus reinforces the conjugated system
of histidine.

However, the CD signal corresponding to {Mo,,,Ce,} is not
detected owing to the rather strong adsorption arising from
intervalence charge-transfer between Mo" and Mo"" centers
which greatly suppress weak CD response induced by histidine
ligands. The solution CD spectra of A-4 and A-4, as well as
those of A-5 and A-S, are also mirror images of each other and
exhibit profiles similar to those of the free amino acid ligands
with a bit of red-shift (Figures $24 and 25). This indicates that
compounds 1, 4, and S preserve their chirality in solution, in
addition to the solid-state.
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Figure 7. Solution CD spectra of A-1, A-1, L-histidine, and p-histidine.

The "H NMR spectrum of A-1 shows a pattern similar to
that of free histidine (Figure 8). However, the related proton

8.5 7.5 6.5 5.5 4.5

chemical shift (ppm)

3.5 25

Figure 8. '"H NMR spectra of A-1 (black, top trace) and 1-histidine
(blue, bottom trace).

resonances become rather broad, and both the signals from
imidazole and alkyl groups display obvious upfield or downfield
shifts in A-la. This demonstrates the histidine ligand is con-
fined in a paramagnetic environment, and the broadening
and shift of proton signals are probably caused by the shield-
ing effect from reduced {Mo,,,Ce,}.”” Attempts to obtain
"H NMR spectra of A-4 and A-5 failed due to their rather poor
solubility in D,O.

Due to the limited solubility, A-4 was decomposed by
Na,H,EDTA (EDTA = ethylenediaminetetraacetic acid) to
give a clear solution for '"H NMR analysis. Compared with free
tryptophan and kynurenine, characteristic peaks related to
kynurenine could be seen very clearly in addition to the signal
corresponding to tryptophan (Figure 9). This further con-
firmed that kynurenine was produced in situ during the crystal
growth of A-4, consistent with the crystal structure analysis.
In contrast, only tryptophan was observed in the solution of
decomposed 7 (Figure 9), indicating that the formation of
kynurenine is very selective and can only be generated in the
presence of {Mo,,Ce,}.

Electrospray ion mobility-mass spectrometry (ESI-IMS-MS)
is useful to investigate whether the structures are present in
solution,” and spectra were acquired for compounds 1 and $.
As an example a spectrum of A-S is shown here in Figure 10,
and other spectra can be seen in the Supporting Information.
In all cases, a dominant series of broad signals are consistent
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Figure 9. '"H NMR spectra of kynurenine, tryptophan, decomposed 7,
and decomposed A-4 (from top to bottom). Inserted dashed line
framework contains the signals corresoponding to kynurenine.
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Figure 10. ESI-IMS-MS spectrum (above) of a solution of A-S, along
with standard ESI-MS spectrum (below).

with signals with the rings remaining intact in solution (ionised
in a range of charge states), with a mixture of cations (these
peaks are often “jagged”, corresponding to the sequential loss of
small peripheral building blocks).**'” Intact molecular species
for the wheel of A-5 could be detected at m/z 2033.1 for
[Mo,54Ce40376(H,0)54Hy0(CeH 14N, 0,),]'7, 2261.2 for [Mo, -
Ce4o376(H20)65H11(C6H14N402)4]9_) 2545.6 for [Mo,,,Ce; O
(H20)66H12(C6H14N402)4]8_) and 29287 for (CsHN,O,)-
[MO124C940376(H20)64H12(C6H14N402)4]7_ (Table S5). Faint
signals which are consistent with the dimeric aggregation of
these structures (signals below green ring) were also observed
in all cases, although it is not clear if this occurs in solution or
upon transfer to the gas phase.

B CONCLUSIONS

In summary, we have developed a novel synthetic strategy using
Ce® ions as symmetry breakers and amino acids as chiral
ligands, and a series of chiral MB clusters 1—5 have been
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successfully constructed which exploit the synergistic effects of
combining both the lanthanide ions and amino acids in the MB
synthesis. Both lanthanide ions and amino acids are essential
for the synthesis, and neither Ce®* ions nor amino acids them-
selves alone can lead to the formation of enantiopure chiral
wheels but racemic LMB or centrosymmetric amino acid-
functionalized MB 6 and 7. All the chiral MB share the same
chiral framework of {Mo,,,Ce,} with the inner surfaces being
functionalized by histidine, tryptophan or arginine. The
chiralities of 1—5 are confirmed both in solid-state and solu-
tion, as indicated by single-crystal X-ray structure analysis and
CD spectroscopy, respectively. The solution behavior of these
clusters was studied by 'H NMR and ESI-IMS-MS, confirming
their stabilities in solution and potential availabilities for higher
order assembly. Interestingly, the chirality of {Mo,,Ce,} is
very labile and could be tuned by changing different types of
amino acids. Moreover, with histidine ligands, the {Mo,,,Ce,}
wheel acts as a reaction vessel during the self-assembly where a
{Mog} cluster is generated in situ, and the orientation of {Mog}
cluster is controlled by the spatial arrangement of histidine
ligands. In the case of tryptophan, {Mo,,,Ce,} promotes the
transformation of tryptophan to kynurenine with high selec-
tivity. In future, we will continue to explore the potential use of
these wheels for chiral recognition and asymmetric catalysis
based on their inherent chirality and porosity.

B EXPERIMENTAL METHODS

Materials and Instrumentations. All reagents and solvents were
purchased from commercial sources and used as received. Elemental
analyses (Mo, Ce, and Na) were performed via ICP-OES. C, H, and N
contents were determined by the microanalysis using an EA 1110
CHNS, CE-440 Elemental Analyzer. Thermogravimetric analysis was
performed on a TA Instruments Q 500 Thermogravimetric Analyzer
under nitrogen flow at a typical heating rate of 10 °C min™". UV—vis—
NIR spectra were collected using a Shimadzu PharmaSpec UV-1700
UV—vis spectrophotometer in transmission mode using quartz
cuvettes with 1.0 cm optical path length. Infrared spectra (4000—
400 cm™") of all samples were recorded on JASCO FTIR-410 spec-
trometer or a JASCO FT-IR 4100 spectrometer. CD spectra were
collected on a J-710 spectropolarimeter (Jasco, Japan). 'H NMR
spectra were recorded on a Bruker DPX 500 spectrometer. ESI-ion
mobility mass spectra were acquired on a Waters Synapt G2 HDMS
instrument.

X-ray Crystal Structure Analyses. Suitable single crystals were
selected and mounted onto a rubber loop using Fomblin oil. Single
crystal X-ray diffraction data of 1, 2, and 4—7 were recorded on a
Bruker Apex CCD diffractometer (4(Mo Ka) = 0.71073 A) at 150 K
equipped with a microfocus X-ray source (50 kV, 30w). The data of
compound 3 was collected on Beamline I19 at the UK Diamond Light
Source (A = 0.6889 A) at 100 K. Data collection and reduction were
performed using the Apex3 or CrysAlisPro software package and
structure solution, and refinement was carried out by SHELXS-2014
and SHELXL-2014 using WinGX."® Corrections for incident and
diffracted beam absorption effects were applied using empirical
absorption correction. All the Mo atoms (including those disordered),
Ce atoms, and most of the O atoms were refined anisotropically.
Sodium ions were identified and refined isotropically. Solvent water
molecule sites with partial occupancy were found and included in the
structure refinement. Crystallographic formulas typically contain many
more water molecules in the crystal lattice than those found in the
sample after drying. With these structures, we are moving outside the
realm of small-molecule crystallography, dealing with refinements and
problems that lie between small-molecule and protein crystallography.
As a result, the refinement statistics are similar to those found for
protein structures. However, the final refinement statistics are rela-
tively good, and in all cases, the structural analysis allows us to
unambiguously determine the structures of the compounds. All the
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structures of compounds 1-7 were deposited at Cambridge
Crystallographic Data Center; the data can be obtained via www.
ccde.cam.ac.uk/data_request/cif under deposition numbers CCDC
1853666—1853671 and 853695—1853698.

Synthesis of A-1. CeCl;-7H,0 (37.5 mg, 0.1 mmol), L-histidine
(7.7 mg, 0.05 mmol), and an aqueous solution of 0.1 M [N,H,]-2HCI
(04 mL) were added to a solution of Na,MoO,2H,0 (242 mg,
1 mmol) in water (40 mL) and 1 M HCIO, (4.5 mL). The mixture
was then heated with medium stirring in a 100 mL Erlenmeyer flask
(wide-necked; covered with a watch glass) at 90 °C for 1 h. The
resulting clear deep-blue solution was then cooled to room temper-
ature, filtered, and kept in an open 100 mL Erlenmeyer flask for
1 week. The deep-blue blocklike crystals were collected by filtration,
washed with ice-cold H,O, and dried under inert atmosphere over
CaCl,. Yield: 71 mg (35.1% based on Mo). Elemental analysis, calcd:
C, 2.30%; H, 2.20%; N, 1.34%; Na, 0%; Mo, 50.70%, Ce, 2.24%.
Found: C, 2.48%; H, 1.09%; N, 1.23%; Na, 0.026%; Mo, 49.13%; Ce,
2.33%. IR (KBr pellet, 4000—600 cm™): 3384(s, br), 3145(s, br),
2927(w), 2857(w), 1726(w), 1617(s), 1502(w), 1430(w), 973(s),
907(w), 866 (m), 803(sh), 708(m), 674(m), 645(m).

Synthesis of A-1. The synthetic procedure is the same as that for
A-1 but uses p-histidine (7.7 mg, 0.0S mmol). Yield: 75 mg (37.6%
based on Mo). Elemental analysis, caled: C, 2.30%; H, 2.20%; N,
1.34%; Na, 0%; Mo, 50.70%, Ce, 2.24%. Found: C, 2.49%; H, 1.09%;
N, 1.45%; Na, 0.053%; Mo, 50.7%; Ce, 2.49%. IR (KBr pellet, 4000—
600 cm™): 3365(s, br), 3147(s, br), 2925(w), 2854(w), 1738(2),
1617(s), 1493(w, br), 1427(w), 976(s), 909(w), 875(m), 809(sh),
744(m), 677(m), 642(m).

Synthesis of 2. CeCl;-7H,0 (30.0 mg, 0.08 mmol), L-histidine
(6.2 mg, 0.04 mmol), and an aqueous solution of 0.1 M [N,H,]-2HCI
(04 mL) were added to a solution of Na,M0O,-2H,0 (242 mg,
1 mmol) in water (45 mL) and 1 M HCIO, (4.5 mL). The mixture
was then heated with medium stirring in a 100 mL Erlenmeyer flask
(wide-necked; covered with a watch glass) at 90 °C for 1 h. The
resulting clear deep-blue solution was then cooled to room temper-
ature, filtered, and kept in an open 100 mL Erlenmeyer flask for
3 weeks. The deep-blue blocklike crystals were collected by filtration,
washed with ice-cold H,O, and dried under inert atmosphere over
CaCl,. Yield: 71 mg (35.1% based on Mo). Elemental analysis, calcd:
C, 2.07%; H, 2.25%; N, 1.20%; Na, 0.28%; Mo, 50.29%; Ce, 2.30%.
Found: C, 1.97%; H, 1.77%; N, 1.11%; Na, 0.28%; Mo, 51.01%; Ce,
2.47%. IR (KBr pellet, 4000—600 cm™'): 3372(s, br), 3132(s, br),
2921(w), 2861(w), 1607(s), 1491(w, br), 1433(w), 1346(w),
1296(w), 1247(w), 1147(w), 1094(w, br), 973(s), 905(w), 869(m),
803(m), 740(m), 637(s), 554(s).

Synthesis of 3. CeCl;-7H,0 (150 mg, 0.4 mmol), L-histidine
(18.6 mg, 0.12 mmol), and an aqueous solution of 0.1 M [N,H,]-
2HCI (1.6 mL) were added to a solution of Na,MoO,-2H,0 (1.0 g,
4.2 mmol) in water (130 mL). Then, pH was adjusted to 1.2—1.3 by
70% HCIO,. Afterward, the mixture was heated with medium stirring
in a 250 mL Erlenmeyer flask (wide-necked; covered with a watch
glass) at 90 °C for 1 h. The resulting clear deep-blue solution was then
cooled to room temperature, filtered, and kept in an open 250 mL
Erlenmeyer flask for 5 weeks. The deep-blue blocklike crystals were
collected by filtration, washed with ice-cold H,O, and dried under inert
atmosphere over CaCl,. Yield: 30 mg (40.1% based on Mo). Elemen-
tal analysis, caled: C, 1.77%; H, 2.10%; N, 1.03%; Na, 0%; Mo,
51.72%; Ce, 2.29%. Found: C, 1.80%; H, 1.71%; N, 1.01%; Na,
0.046%; Mo, 50.78%; Ce, 1.95%. IR (KBr pellet, 4000—600 cm™):
3386(s, br), 3144(s, br), 2920(w), 2853(w), 1609(s), 1490(w, br),
1419(w), 1337(w), 1241(w), 1087(w, br), 990(m), 969(s), 904(w),
860(m), 740(m), 709 (w), 675 (m).

Synthesis of A-4. CeCl;-7H,0 (37.5 mg, 0.1 mmol), L-tryptophan
(29 mg, 0.14 mmol), and an aqueous solution of 0.1 M [N,H,]-2HCI
(04 mL) were added to a solution of Na,MoO,2H,0 (242 mg,
1 mmol) in water (40 mL) and 1 M HCIO, (4.5 mL). The mixture was
then heated with medium stirring in a 100 mL Erlenmeyer flask (wide-
necked; covered with a watch glass) at 90 °C for 1 h. The resulting clear
deep-blue solution was then cooled to room temperature, filtered, and
kept in an open 100 mL Erlenmeyer flask for 5 weeks. The deep-blue
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blocklike crystals were collected by filtration, washed with ice-cold
H,0O, and dried under inert atmosphere over CaCl,. Yield: 30 mg
(15.8% based on Mo). Elemental analysis, calcd: C, 4.31%; H, 2.25%;
N, 0.94%; Na, 0.19%; Mo, 49.65%; Ce, 2.34%. Found: C, 4.88%;
H, 1.44%; N, 1.09%; Na, 0.17%; Mo, 49.80%; Ce, 1.95%. IR (KBr
pellet, 4000—600 cm™): 3396(s, br), 3164(s, br), 2925(w), 2857(w),
1607(s), 1494(w, br), 1423(w), 1340(w), 1247(w), 1094(w, br),
991(m), 973(s), 905(w), 865(m), 741(m), 711(w), 677(m).

Synthesis of A-4. The synthetic procedure is the same as that for
A-4 but uses D-tryptophan (29 mg, 0.14 mmol). Yield: 32 mg (16.6%
based on Mo). Elemental analysis, caled: C, 4.31%; H, 2.25%;
N, 0.94%; Na, 0.19%; Mo, 49.65%; Ce, 2.34%. Found: C, 4.76%;
H, 1.57%; N, 1.09%; Na, 0.22%; Mo, 50.10%; Ce, 2.13%. IR (KBr
pellet, 4000—600 cm™): 3376(s, br), 3169(s, br), 2925(w), 2857(w),
1612 (s), 1491(w, br), 1340(w), 1245(w), 965(s), 902(w), 865(m),
797(w), 739(m), 704(w), 663(m).

Synthesis of A-5. CeCl;-7H,0 (37.5 mg, 0.1 mmol), L-arginine
(7.0 mg, 0.04 mmol), and an aqueous solution of 0.1 M [N,H,]-2HCI
(04 mL) were added to a solution of Na,MoO,2H,0 (242 mg,
1 mmol) in water (40 mL) and 1 M HCIO, (4.5 mL). The mixture
was then heated with medium stirring in a 100 mL Erlenmeyer flask
(wide-necked; covered with a watch glass) at 90 °C for 1 h. The
resulting clear deep-blue solution was then cooled to room temper-
ature, filtered, and kept in an open 100 mL Erlenmeyer flask for
1 week. The deep-blue blocklike crystals were collected by filtration,
washed with ice-cold H,0, and dried under inert atmosphere over
CaCl,. Yield: 90 mg (48.7% based on Mo). Elemental analysis, calcd:
C, 1.83%; H, 2.36%; N, 1.43%; Na, 0%; Mo, 50.46%; Ce, 2.38%.
Found: C, 1.89%; H, 1.37%; N, 1.43%; Na, 0.050%; Mo, 50.00%; Ce,
2.38%. IR (KBr pellet, 4000—600 cm™): 3352(s, br), 3183(s, br),
2927(w), 2854(w), 1611(s), 1505(w), 1430(w), 1349(w), 964(s),
898(w), 839(m), 803(m), 744(m).

Synthesis of A-5. The synthetic procedure is the same as that for
A-S but uses p-arginine (7.0 mg, 0.04 mmol). Yield: 86 mg (45.5%
based on Mo). Elemental analysis, caled: C, 1.83%; H, 2.36%;
N, 1.43%; Na, 0%; Mo, 50.46%; Ce, 2.38%. Found: C, 1.91%; H,
1.58%; N, 1.43%; Na, 0.055%; Mo, 50.10%; Ce, 2.38%. IR (KBr pellet,
4000—600 cm™'): 3355(s, br), 3173(s, br), 2927(w), 2854(w),
1615(s), 1502(w), 1427(w), 1356(w), 970(s), 901(w), 843(m),
800(m), 746(m).

Synthesis of 6. L-Histidine (10 mg, 0.065 mmol) and an aqueous
solution of 0.1 M [N,H,]-2HCI (0.4 mL) were added to a solution of
Na,MoO,-2H,0 (242 mg, 1 mmol) in water (45 mL) and 1 M HCIO,,
(4.5 mL). The mixture was then heated with medium stirring in a 100 mL
Erlenmeyer flask (wide-necked; covered with a watch glass) at 90 °C
for 1 h. The resulting clear deep-blue solution was then cooled to
room temperature, filtered, and kept in an open 100 mL Erlenmeyer
flask for 2 weeks. The deep-blue blocklike crystals were collected by
filtration, washed with ice-cold H,O, and dried under inert atmosphere
over CaCl,. Yield: SO mg (27.4% based on Mo). Elemental analysis,
caled: C, 2.05%; H, 2.17%; N, 1.20%; Na, 0.33%; Mo, 52.58%. Found:
C, 2.07%; H, 1.23%; N, 1.26%; Na, 0.285%; Mo, 52.30%. IR (KBr
pellet, 4000—600 cm™): 3384(s, br), 3152(s, br), 2927 (w), 2854(w),
1615 (s), 1494(w, br), 1247(w), 1094(w, br), 993(w), 968(s), 902(w),
870(m), 817(m), 754(m), 663(m), 646(m), 618(m).

Synthesis of 7. L-Tryptophan (13.3 mg, 0.065 mmol) and an
aqueous solution of 0.1 M [N,H,]-2HCI (0.4 mL) were added to a
solution of Na,MoO,2H,0 (242 mg, 1 mmol) in water (45 mL) and
1 M HCIO, (4.5 mL). The mixture was then heated with medium
stirring in a 100 mL Erlenmeyer flask (wide-necked; covered with a
watch glass) at 90 °C for 1 h. The resulting clear deep-blue solution
was then cooled to room temperature, filtered, and kept in an open
100 mL Erlenmeyer flask for 3 weeks. The deep-blue blocklike crystals
were collected by filtration, washed with ice-cold H,O, and dried
under inert atmosphere over CaCl,. Yield: 37 mg (20.3% based on
Mo). Elemental analysis, calcd: C, 4.61%; H, 2.14%; N, 0.98%; Na,
0.64%; Mo, 51.61%. Found: C, 4.46%; H, 1.97%; N, 1.07%; Na,
0.70%; Mo, 51.48%. IR (KBr pellet, 4000—600 cm™"): 3396(s, br),
3164(s, br), 2925 (w), 2856(w), 1607 (s), 1494(w), 1423(w),
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1340(w), 1247(w), 1094(w, br), 991(w), 973(s), 905(w), 865-
(m),741(m), 673(m).
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