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Abstract.

Malaria forecasts from dynamical systems have never been attempted at

the health district or local clinic catchment scale and so their usefulness for

public health preparedness and response at the local level is fundamentally

unknown. A pilot pre-operational forecasting system is introduced in which

the European Centre for Medium Range Weather Forecasts (ECMWF) en-

semble prediction system and seasonal climate forecasts of temperature and

rainfall are used to drive the uncalibrated dynamical malaria model VEC-

TRI to predict anomalies in transmission intensity four months ahead. It is

demonstrated that the system has statistically significant skill at a number

of sentinel sites in Uganda with high quality data. Skill is also found at ap-

proximately 50% of the Ugandan health districts despite inherent uncertain-

ties of unconfirmed health reports. A cost-loss economic analysis at three ex-

ample sentinel sites indicates that the forecast system can have a positive

economic benefit across a broad range of intermediate cost-loss ratios and

frequency of transmission anomalies. We argue that such an analysis is a nec-

essary first step in the attempt to translate climate-driven malaria informa-

tion to policy-relevant decisions.

Keypoints:

• A climate-driven malaria early warning system is skillful at the sub-national

scale in Uganda

• A cost-loss economic analysis allows a user to determine for which in-

terventions and event frequency the system has value
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• Short health data records and lack of high quality sites hamper early warn-

ing system evaluation and improvement
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1. Introduction

Timely availability of information is key for effective decision making in any sector. The

ability to reliably predict the transmission of malaria for the season ahead sufficiently far

in advance would be of significant benefit to health planners in Africa [Thomson and

Connor , 2001; Hay et al., 2001; Thomson et al., 2005; Cox and Abeku, 2007]. The lag

between the rainy season and the peak of malaria transmission implies that monitoring

weather conditions can provide warning of anomalous malaria transmission one to two

months in advance, resulting in calls to improve climate monitoring capacity in Africa for

health applications [Thomson et al., 2014].

Numerous studies have investigated the potential of climate surveillance [Abeku et al.,

2004; Grover-Kopec et al., 2005; Ceccato et al., 2007; Worrall et al., 2008; Ototo et al.,

2011] although to date there has been limited progress in sustainably operationalizing such

approaches into health systems [Thomson et al., 2014]. This is partly due to the challenge

of effectively integrating climate into existing health planning procedures. While refer-

ring to longer timescales of climate change, many of the issues highlighted by Campbell-

Lendrum et al. [2015] are also valid for shorter seasonal planning timescales, notably the

lack of high quality, multi-decade health datasets with which to develop and evaluate

climate-driven planning systems, the potential mismatch of scales between climate infor-

mation and the local decision process, the lack of relative effective decision support tools

to marry climate-driven information with the decision process and a general lack of a

framework to effectively communicate model system uncertainties to end-users [see also

Tompkins and Thomson, 2018]. Moreover, the one month advance warning provided by
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the monitoring of climate may be too short limiting the scope to implement or modify

cost-effective, preemptive actions [Checchi et al., 2006] such as sending out indoor residual

spraying (IRS) teams to identified vulnerable areas. DaSilva et al. [2004] emphasize that

this latter shortcoming could be addressed by incorporating information from reliable sea-

sonal climate forecasts that provide predictions of climate variables (such as temperature

and precipitation) from 6 to 13 months ahead. If proven skillful, these could be used to

increase the advance warning time for impending outbreaks. The present work limits the

scope of the predictions to an advance warning (lead time) of four months, since previous

work has shown that this is likely the upper limit for skillful prediction for the present

generation of seasonal prediction systems [particularly for precipitation, e.g. Shukla et al.,

2016; Ogutu et al., 2017], while noting that this time frame may still be inadequate for

some operational decisions.

The uptake of seasonal climate predictions in malaria-related health planning has been

hampered by several knowledge bottlenecks. Historically, prediction at seasonal timescales

was reliant on statistical models of seasonal anomalies based on regional sea surface tem-

perature anomalies [Mason et al., 1996; Mutai et al., 1998], and forecast skill of rainfall

and temperature in the tropics from dynamical systems was limited to the very short range

of at most a few days [Vitart , 2014], thus preventing longer range, skillful, climate-based

prediction of outbreaks. At the same time, spatial disease modelling systems that ac-

counted for climate were statistical in nature and relied on accurate and long-term health

data records. The quality, consistency and availability of sub-national level health data

for malaria was often inadequate for the training and subsequent evaluation of disease

prediction systems [Thomson et al., 2014]. Paper-based surveillance systems and limited
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confirmation of suspected cases through microscopy or diagnostic test kits lead to large

health data uncertainties that compound those deriving from the use of imperfect climate

and malaria modelling systems. The first demonstration of climate forecasts for malaria

prediction used dynamical climate forecast models to drive a statistical model for national

malaria cases in Botswana [Thomson et al., 2005]. To date there has been no demonstra-

tion of malaria early warning from dynamical modelling systems at the sub-national,

health-district scale.

Scientific and surveillance advances are reducing the barriers to the development of

dynamical disease prediction systems. Case confirmation through rapid diagnostic test

kits, while still not universal, has increased substantially [Zhao et al., 2012], while many

countries in Africa now have digital based health surveillance systems in place [Chaulagai

et al., 2005]. In tandem, weather forecasting techniques and order-of-magnitude increases

in the use of satellite monitoring of the atmosphere have improved climate forecasting

skill [Bauer et al., 2015]. Mathematical dynamical disease modelling systems that account

for climate have been developed and can be applied to model seasonal and inter-annual

spatial changes in malaria hazard [Hoshen and Morse, 2004; Laneri et al., 2010; Lunde

et al., 2013; Tompkins and Ermert , 2013]. Recent theoretical studies have used climate

forecast information to drive such dynamical disease models to demonstrate the potential

predictability of malaria over regional scales [Jones and Morse, 2010, 2012; Tompkins

and Di Giuseppe, 2015], with the caveat that no validation was made for the presented

systems with actual health data. One example of an early warning system evaluated

with monthly case data aggregated at the national scale for Botswana has been presented

by MacLeod et al. [2015], consisting of a dynamical malaria model driven by monthly
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and seasonal forecasts. The forecasts were statistically skillful, while highlighting the

considerable number of outbreak false alarms [MacLeod et al., 2015].

Here, we present the first sub-national evaluation of a spatially distributed, climate-

driven, malaria early warning system built with dynamical modelling systems. The system

is evaluated using high quality sentinel site and regional health district data in Uganda

and it is demonstrated that the system can predict which seasons may have enhanced

transmission up to four months in advance. Our key finding is that, despite the use of

an imperfect forecast system verified with imperfect health data, a threshold has now

been superseded whereby the system skill may translate into positive economic value for

decision making.

2. Methods

Technical details of the malaria early warning system are given in Tompkins and Di

Giuseppe [2015] and in supplementary material S1-3. Briefly, the early warning system

consists of dynamical malaria model that models the parasite sexual reproduction in

the human host in a classic compartmental susceptible-exposed-infected-recovered (SEIR)

model, coupled to a model for the vector lifecycle and the parasite sporogonic cycle which

account for climate variations. The climate conditions are provided by monthly weather

and seasonal climate forecasts with one forecast ensemble made per month for the years

1994 to 2013. The ensemble of five forecasts sample chaotic uncertainty of the atmosphere

and account for weather forecast model and analysis system uncertainties.

This version of the early warning system predicts the entomological inoculation rate

(EIR, the number of infectious bites received per person per unit time), the human bite

rate, the detectable parasite ratio (PR) and the vector density, and the EIR is used to
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generate a proxy for total cases off-line. To focus on the skill at predicted interannual

variability, all series are detrended prior to analysis and monthly standardized anomalies

of both the model proxy and the observed cases (detailed next) are calculated. The

skill is then classified using the Spearman’s rank correlation score between the modeled

and observed series of standardized anomalies, with the forecasts classed as skillful if the

correlation value for the period for which data is available is significant at the 95% level.

In Uganda, high quality, laboratory total confirmed case data from six sentinel sites dis-

tributed throughout across the country are available for the period 2006-2013 [Sserwanga

et al., 2011]. Of these, Kabale has an altitude of 2000 meters and has mean tempera-

tures below the 18◦C threshold required for sustained transmission in the model, while

the other five sites (Apac, Jinja, Kanungu, Mubende, and Tororo) range between 1000

and 1320 meters. We mainly focus on Jinja, Kanungu and Mubende as the three highest

altitude sites above 1100m where climate variability is expected to be more important for

driving inter-annual variability in malaria transmission [Zhou et al., 2004; Haque et al.,

2010; Ototo et al., 2011; Alonso et al., 2011]. In addition to the sentinel sites, monthly

totals of suspected malaria cases obtained from the Ministry of Health of Uganda and

aggregated at the administrative district level are used for a period of approximately ten

years. For details of the forecast system, observations and evaluation method, refer to the

supplementary material S1.

3. Results

The predictions of transmission anomaly compared to the actual measured anomaly in

malaria cases is shown for the three focus sites of Jinja, Kanungu, and Mubende (Fig.

1). The panels show information that would be available to a decision-maker one month
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(lead 1) and four months (lead 4) in advance. The shaded region shows the span of the

5 member forecast ensemble, an indication of the forecasts uncertainty related to the

climate forecasts, but does not include the uncertainty of the malaria model or the initial

conditions [see discussion in SI and Tompkins and Thomson, 2018]. The uncertainty due

to climate increases with lead time, hence its range is much larger for the four month lead

time predictions. This is also emphasized in table 1, which shows the rank correlation

skill score for all five sites as a function of the forecast lead time. The system is skillful

at most forecast lead times for all five sites, but the skill does not decrease monotonically

as a function of lead time. This is an artifact of the relatively short validation period,

constrained by the availability of health data.

The comparison shows that the early warning system is able to predict the seasonal

trends in case anomalies at the sentinel sites, with the 2010 identified as a year of anoma-

lous transmission, likely associated with the occurrence of a medium strength El-Ninõ

event which would produce anomalously warm temperatures and can sometimes increase

rainfall if associated with warmer seas in the Indian Ocean [Lindblade et al., 1999]. From

the two high altitude sentinel sites (i.e. Kanungu and Mubende), the model performance

is superior in Kanungu, with the higher transmission in 2012 at Mubende underestimated.

The early warning system is able to predict the secondary maximum that occurs in 2012

in Mubende and Kanungu in the highlands, and yet also predicts the single period of

enhanced cases at the lower altitude Jinja site. This indicates that the system has the

potential to predict differences occurring at a sub-national scale, likely driven by rainfall

spatial heterogeneity.
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The forecasts are also validated using the suspected malaria case surveillance time series

obtained from the Ministry of Health of Uganda and aggregated at the district level, and it

is found that the system is skillful in approximately half of the districts (Figure 2). While

the districts that are skillful include many of the higher altitude locations in the east and

south west, there is no obvious characteristic that determines the skillful districts, which

also include districts where malaria is highly endemic.

The cost-loss analysis of relative economic value V of the MEWS is conducted using the

monthly anomalies for the three focus sentinel sites (Fig. 3) and shows that the system

has positive value for a range of intermediate cost-loss ratios bounded by zero or negative

value at very low or high cost-loss ratios. As the event threshold becomes rarer, the

system has value at lower cost-loss ratios, seen in the diagonal slant of the area of positive

economic value, and for a decreasing range of cost-loss ranges. Kanungu has a wider range

of decision entry points and cost-loss ratios for which the system has positive economic

benefit relative to Mubende, for which the system only has benefit for thresholds below

approximately 0.85, corresponding to a 1 in 5 month event, and for cost-loss rations of 0.15

to 0.3. At Jinja the range of economic value is limited. Note that an upper quintile event

as calculated here is not precisely equivalent to the definition of an epidemic by the WHO

field handbook on malaria epidemiology[Hook , 2004], since the latter is defined in terms

of a seasonal anomaly, whereas the present calculation is based on monthly anomalies.

4. Discussion

The forecasting system has demonstrable skill in predicting temporal variations in

malaria cases, although the analysis is necessarily limited by the temporal length of data

available. This is the first time that a dynamical early warning system for malaria has
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been shown to have demonstrable skill at the sub-national scale using monthly real time

series of epidemiological surveillance data. For context, previous studies have quantita-

tively compared their malaria forecasts against national annually averaged malaria indices

[MacLeod et al., 2015] or qualitatively against sub-national annual Plasmodium falciparum

prevalence data [Lauderdale et al., 2014].

The skill was demonstrated for high quality confirmed sentinel site cases as well as for

approximately half of health districts. It is emphasized that the district malaria data is

affected by many factors in addition to climate variability, including population mobility,

changes in land use and systematic increases in preventative interventions. In addition,

we suspect that a key factor is that district data, especially in the earlier period of the

database, is subject to large uncertainties due to the lack of systematic confirmation of

cases at the time the data were collected [Yeka et al., 2012]. As the spatial scale of seasonal

climate anomalies will exceed the district scale, in particular for temperature, one would

expect a positive spatial autocorrelation of the normalized seasonal malaria transmission

anomaly. Instead, the health district data shows a Moran’s spatial autocorrelation (Fig.

4) close to zero, and lower than the climate-driven malaria model. Note that hetero-

geneities in urban-rural settings, population densities and land cover would not greatly

affect autocorrelation as these factors do not change rapidly on inter-annual timescales.

Recognizing the limitations of the district data, it is encouraging that the malaria pre-

dictions are nevertheless skillful in approximately half of the districts in Uganda, four

months in advance.

Apart from the need to reduce uncertainties and errors in the climate forecasting and

malaria modelling systems themselves, the next step is to ascertain how to best incorporate
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such as system effectively into a national or regional decision making process concerning

health planning and interventions. The cost-loss economic analysis represents a potential

framework for this as it allows a decision maker to assess whether using the forecast system

to decide when to apply a particular invention makes economic sense. For example, in the

analysis of the relative economic value V it was seen that the system never has value at

low cost-loss ratios C/L. This is straightforward to interpret since at low cost-loss ratios,

the system has to be very accurate to have positive economic value as a single miss will

prove more costly than simply intervening every year. In these cases the decision maker

would err on the side of caution and simply intervene even with a highly accurate forecast

system available for guidance. The diagonal slant of the area of positive economic value in

fig. 3 means that for rarer events, the threshold for using the early warning system moves

to lower cost-loss ratios. This also makes sense, since as anomalies that one is attempting

to mitigate become rarer, the economic wastage of always intervening when not required

starts to outweigh the cost of losses due to a forecast miss.

At high cost-loss ratios, the cost of forecast false alarms is instead the issue, since the

high cost of invention in these cases outweighs the alternative strategy of never intervening.

It should be said that these cases highlight a weakness of the cost-loss analysis, in that

intervention decisions are political as well as economical, and a decision maker may decide

to intervene even if it is not the optimal strategy to avoid the appearance of inaction in

the face of an unexpected disease outbreak. Another drawback of the cost-loss approach is

that mapping actual policy decisions and outcomes to economic values of intervention costs

and economic losses is extremely challenging. For example, an economic loss may refer to

loss of productivity due to worker absence or the direct cost of treating clinical cases, with
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estimates made from analyses of previous outbreaks in an epidemic transmission setting.

On the other hand, the action cost could refer to implementing interventions in the area.

Economic analyses have been carried out previously to evaluate and compare the economic

value of interventions in various transmission settings [Wiseman et al., 2003; Worrall

et al., 2004; Morel et al., 2005; Worrall et al., 2008; Yukich et al., 2008], but necessarily

involve simplifications. Despite these challenges, such an economic framework is important

to emphasize the fact that a forecast may well have statistical skill at predicting an

outbreak, but that this may not necessarily translate into actionable information for a

specific decision.

Another aspect of health early warning systems that requires further attention regards

the initialization of the forecasts. Weather forecasts have been operational now for over six

decades, and in that time, the world meteorological organization (WMO) has worked with

national weather centers to build up a wide-reaching global telecommunications system

to transmit satellite and in situ measurements to collecting centers in near real time for

their use in assimilation systems to provide the initial conditions for weather forecasts. No

such system for monitoring epidemiological or entomological conditions exists. While case

data is now collected digitally in many countries using health management information

systems [HMIS Chaulagai et al., 2005], these are usually country based, and, for obvious

reasons of privacy, rarely open-access or shared with neighboring countries. Entomological

conditions such as vector density are sporadically monitored, if at all. At best, satellite

information can be used to monitor surface water availability to attempt to infer vector

densities indirectly [Franke et al., 2015]. The lag between climate and malaria means that

the forecast skill in the first month derives almost entirely from the correct initialization
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of the epidemiological and entomological conditions [Tompkins and Di Giuseppe, 2015].

Thus, the development of improved health early warning systems will be hampered unless

the issue of data availability for initialization can be addressed. A first step would be

for an coordinated international action to collect past digital health records, processed to

adequately address privacy concerns, to be released in digital format publicly as a resource

for research to develop and evaluate the potential of health early warning systems. The

ensuing development of pilot systems with improved assimilation techniques for system

initialization would in turn encourage further efforts to open up data resources publicly

and make investments towards the collection of health information in near-real time to

support operational use for intervention planning [Tompkins et al., 2018]. In addition

to improving and expanding broadband networks which facilitate the implementation of

HMISs, low cost technology solutions now exist for long-distance wireless networks [Zen-

naro et al., 2010] and low-volume data transmission via mobile networks to reach isolated,

rural locations [Aranda-Jan et al., 2014] that would allow relevant epidemiological, as well

as supporting entomological and in situ environmental information to be transmitted and

gathered efficiently in near real time.

5. Conclusions

We have shown that a dynamical malaria system driven by a combination of monthly

and seasonal climate forecasts is able to produce forecasts of the normalized force of

infection that reproduce some of the temporal variability in the malaria cases, both in

terms of district unconfirmed cases and high quality data from several sentinel sites in

Uganda. This is the first such demonstration on a sub-national scale. Further confidence

in the system could be gained by its evaluation in alternative geographical areas or by using
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longer data-series, highlighting the need for continuous, sub-national malaria data across

large areas. An economical analysis demonstrates that the system has positive benefit

for a range of intervention-benefit ratios at some sites, possibly indicating a method for

incorporating such a system into the decision making process.
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Table 1. Spearman rank correlation coefficient at Jinja, Kanungu and Mubende sentinel sites

as a function of forecast lead time from 1 to 4 months. Statistically significant values are in bold.

Sentinel Site Lead 1m Lead 2m Lead 3m Lead 4m
Apac 0.56 0.29 0.55 0.39
Jinja 0.75 0.66 0.80 0.78
Kanungu 0.87 0.14 0.69 0.63
Mubende 0.39 0.57 0.51 0.62
Tororo 0.73 0.33 0.63 0.46
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Figure 1. Standardized anomaly of the detrended observed total malaria cases (Co) at the Jinja,
Kanungu and Mubende Sentinel sites (red line) compared to the standardized anomaly of the detrended
cases proxy (Cm) from the forecast ensemble, with the black line showing the ensemble mean and the
gray shading the range (minimum and maximum) of the 5 member forecast ensemble members. In
the left hand column, each point of the forecast timeseries is a forecast started one month prior to the
observation, and thus give an early warning of 1 month (lead 1), while the right hand column shows a
forecast started 4 months ahead (lead 4).
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Figure 2. Map of Uganda showing the Spearman’s rank correlations for districts for which the

model forecast system has statistically significant skill relative to the suspected malaria district

data obtained from the Ministry of Health.
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Figure 3. Relative economic value V of using the forecast system at a four month lead time

at Jinja, Kanungu and Mubende, using a range of cost-loss (C/L) ratios (X axis) and percentile

threshold of the monthly standardized transmission anomaly (y axis). For example a percentile

fraction of 0.66 corresponds to higher transmission anomaly that is expected to occur one in

three months, while 0.8 refers to a 1 in 5 standardized anomaly. Refer to supplementary material

S1 for full outline of analysis method.
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Figure 4. Moran spatial autocorrelation for each month calculated for the Uganda district

data (circles) and the lead 1 district malaria predictions (squares). The whiskers indicate the

interannual standard deviation.
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