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Abstract 

Interrupted time series are increasingly being used to evaluate the population-wide 

implementation of public health interventions. However, the resulting estimates of 

intervention impact can be severely biased if underlying disease trends are not adequately 

accounted for. Control series offer a potential solution to this problem, but there is little 

guidance on how to use them to produce trend-adjusted estimates. To address this lack of 

guidance, we show how interrupted time series can be analysed when the control and 

intervention series share confounders, i.e., when they share a common trend. We show that 

the intervention effect can be estimated by subtracting the control series from the 

intervention series and analysing the difference using linear regression or, if a log-linear 

model is assumed, by including the control series as an offset in a Poisson regression with 

robust standard errors. The methods are illustrated with two examples.  
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Introduction 

 

Interrupted time series (ITS) analysis is an increasingly popular method for evaluating public 

health interventions [1]. An important feature of the analysis is that it quantifies the 

population-level impact of the intervention, which often includes herd effects [2, 3]. ITS effect 

estimates are therefore different from, and complementary to, the direct effect estimates 

obtained from individually-randomised studies.  

 

Although useful, a major disadvantage of the method is that estimates of intervention impact 

are vulnerable to confounding due to trends unrelated to the intervention. Say, for example, a 

vaccine is introduced in a country that is undergoing rapid economic development. If there is 

a reduction in disease after vaccine introduction, then it is difficult to know whether this is due 

to the impact of the vaccine itself or to other factors related to economic development such 

as improved nutrition.   

 

One potential solution to this problem is to adjust for linear trend using regression: the so-

called segmented regression model [4]. The model is popular since it is easy to implement 

and to interpret. However, the model is often difficult to justify since in order to estimate the 

intervention effect it is necessary to assume that the pre-intervention linear trend  would have 

persisted post intervention had the intervention not been introduced.  

 

Another solution is to use a control series to model the trend in the absence of intervention. 

The control series should share the same confounders as the intervention series and be 

unaffected by the intervention. The control might be the same outcome in an untreated 

population—e.g., Clancy et al. [5] used mortality in Ireland outside Dublin as the control to 

assess the impact of a coal sales ban on mortality in Dublin. Or the control might be a 

different outcome in the same population—e.g., Morgan et al. used aspirin-related deaths as 
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the control to assess the impact of reduced paracetamol pack size on paracetamol-related 

deaths [6].  

 

Control series are often used descriptively to show that there is no underlying trend, and 

hence to demonstrate the validity of an intervention effect estimate [7,8]. But when there is a 

trend this needs to be accounted for in the analysis. We address this issue here by 

presenting a simple framework for analysing interrupted time series with a control. First, we 

review the use of segmented regression to analyse ITS without a control. Then we show how 

a control series can be used as an alternative means of adjusting for trend. We illustrate the  

methodology using data from two ITS studies: an evaluation of a hospital-based infection 

control programme, and an evaluation of the impact of rotavirus vaccine introduction. 

 

Interrupted time series model 

Consider a series of � observations on disease incidence, �� �� = 0, … , � − 1�, made before 

and after the introduction of an intervention. For example, the observations might be monthly 

case counts before and after vaccine introduction. A simple model for these observations is 

 

   � = � + βx� + ϵ.      (1) 

 

In this model, � denotes the presence/absence of the intervention (i.e., � = 0 before the 

intervention and  � = 1 after), β is the intervention effect, � is the expected incidence in the 

absence of intervention and ϵ� is an error term. The latter is assumed to be independent of 

x�, and represents the effects of disease determinants other than �. 

 

This model is misspecified if some determinants of disease incidence are correlated with �. 

The model would, for example, not be applicable if there was a change in surveillance 
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intensity during the study period or if a second intervention was implemented. In this case, 

the model should include these confounders such that 

 

� = � + �� + ∑ ����� − ���� + � ,�      (2) 

 

where �� denotes the ith confounder, ��  represents its effect on disease incidence, and � 

represents the expected incidence at  � = 0 (since  � = 0  and �� = ��� when � = 0 ). If 

the confounders are known and measured, then the impact of the intervention can be 

estimated by fitting a regression model that includes these factors. But what can we do if 

some or all of the confounders are unobserved? One possible solution is to assume that the 

combined effect of the confounders is a linear function of time, as is the case if each 

�� increases or decreases linearly over time. This is the assumption behind the so-called 

segmented regression model [4]: 

 

� = � + �� + �� + �.                (3)  

 

In the absence of autocorrelation (see below), the model can be fitted by regressing disease 

incidence on time, �, and the intervention indicator, �. Often the model is extended to 

include an interaction between � and � to allow for a time-varying treatment effect (Figure 1 

A & B), i.e., 

 

� = � + ��� + ����� − �� + �� + �.   (4) 

 

In this specification of the model in which we have centred � about � in the interaction term, 

�� represents the intervention effect at time  � = � and ��  represents the change in the 

intervention effect for each unit increase in time.  
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The model assumes the intervention effect increases linearly over time after intervention 

introduction. But other models of intervention impact, including models that incorporate lag 

effects, can also be fitted. If, for example, there is a roll out period during which the 

intervention does not reach its full effect, this could be modelled by including several post-

intervention indicators: 

 

                                  � = � + ���� + ���� + �� + �,    (5) 

 

where ��  is an indicator for the first post-intervention period, i.e., the roll out period, and 

�� is an indicator for the second post-intervention period. Faced with many possible 

models of intervention impact, to avoid overfitting we follow Lopez Bernal et al. [9] in 

recommending that the model be chosen primarily based on biological plausibility rather than 

statistical criteria. 

 

In addition to the intervention effect, we may also want to include a seasonal component in 

the model (e.g. by including calendar month as a categorical covariate). Often seasonality 

will have limited confounding effect, and it will have no confounding effect if both the pre- and 

post-intervention periods are whole numbers of years. Nevertheless, accounting for 

seasonality can be useful since doing so will often reduce autocorrelation and error variance. 

 

Using a control series to adjust for trend 

An alternative solution to the problem of confounding is to use the trend observed in a control 

series to adjust the intervention effect estimate. Usually the control is an age group or 

population that did not receive the intervention, or those with a related disease. The 

approach is particularly useful when the trend in incidence is non-linear, and a linear 

segmented regression analysis is therefore not applicable. But even when the pre-

intervention trend is linear, a control can be useful if it provides information on how the 
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intervention series might have behaved in the absence of intervention. As such an ITS 

analysis that uses a control series may be more convincing than an analysis that uses 

segmented regression alone. 

 

The key features of the control series are that it should 1) be unaffected by the intervention, 

and 2) share confounders with the intervention series. If, in addition, we assume the shared 

confounders have the same effect on both series, then we arrive at the following model:  

 

     �  = � + �� + !��� + �       

       �" = �" + !��� + �",                   (6) 

          

where �  is the intervention series, �" is the control series, !��� = ∑ ����� − ���� �  is the 

combined effect of the unobserved confounders, and �   and �"  are error terms that may be 

correlated in time (autocorrelated) but are independent of x�. 

 

We will refer to the model in eqn 6 as the common trend model since both series share a 

trend, !���, in the pre-intervention period and would share a trend in the post-intervention 

period were it not for the impact of the intervention (Figure 1C & D).  

 

Assuming the common trend model, we can eliminate the effect of the unobserved 

confounders (the trend) by subtracting the control series from the intervention series 

 

# = �  − �" = �$ + �� + �$ ,                 (7) 

 

where �$ = � − �"  and �$ = �  − �" and both series are of equal length (��. Thus, the 

intervention effect, �, can be estimated   by performing a regression where the difference, #, 

is the outcome and �  is an explanatory variable. Assuming a constant intervention effect, as 
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in eqn 7, this amounts to a “difference-in-differences” estimate where the mean of the pre-

intervention differences is subtracted from the mean of the post-intervention differences [10].  

In the simple case where the �$  are uncorrelated, the means can be compared using a t-

test. However, if either the control or intervention series is autocorrelated then the �$ will be 

autocorrelated and it will be necessary to account for this in the regression (see below for 

further discussion of autocorrelation). 

 

As with the segmented regression model, the common trend model can easily be extended 

to incorporate more complex intervention effects. If, for example, we expect the treatment 

effect to increase linearly then we could model this by including a treatment time interaction 

in the regression, as we did for the segmented regression model (eqn 4). Or, if we expect the 

intervention effect to saturate then we could include several post indicators, as in eqn 5. 

We may also include a seasonal component in the model for #,  (e.g., by including calendar 

month as a categorical covariate), if seasonality has not been removed by the process of 

differencing.  

 

Testing the common trend assumption 

The approach outlined above is only useful if an appropriate control can be identified. 

Specifically, we must ensure the control is unaffected by the intervention and shares 

confounders with the intervention series. The latter requirement means that determinants of 

the intervention series that have changed between the pre- and post-intervention period, 

apart from the intervention itself, should also be determinants of the control series and vice 

versa. In particular, a potential control is not suitable if it is affected by an intervention or 

change in surveillance that does not also affect the intervention series. 

 

As well as using background information to assess the quality of the control, we can test the 

model by comparing the pre-intervention trend lines: according to the model these should be 

parallel.  
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The trend lines can be estimated using one of a number of non-parametric regression 

techniques. The simplest is the moving average, which is estimated by fixing a time window 

of width 2ℎ + 1 and then for each  �  calculating the mean of values between � − ℎ and � + ℎ.  

The method can be improved upon by using a weighted mean, where the weights are 

determined by proximity to �, or by using a weighted local linear regression. The latter is 

known as locally weighted scatter point smoothing (LOESS) and is recommended by 

Wasserman as a default non-parametric regression method [11]. The procedure can be 

implemented in R using the loess function [12] or in Stata using the lowess command 

[13].  

 

In addition to graphically testing the common trend assumption, a statistical test of the 

common trend model can be conducted by regressing the pre-intervention differences on 

time, accounting for autocorrelation if necessary. If the data are consistent with the model 

then there should be no evidence of a trend. 

 

Unfortunately, neither the graphical nor the statistical test guarantees that a common trend 

model is appropriate. This is because the model requires not only that trend lines are parallel 

in the pre-intervention period, but also that they would be parallel in the post-intervention 

period were it not for the effect of the intervention. Because the latter requirement is 

untestable, a strong biological rationale for the control is necessary even if it passes 

graphical and statistical tests.  

 

Autocorrelation 

Even after accounting for the trend (either by segmented regression or by fitting a common 

trend model) and, where relevant, seasonality, the residuals often remain correlated in time. 

Typically, the correlation is greatest when residuals are close in time. This correlation, which 

is also known as autocorrelation, needs to be accounted for to obtain correct standard errors 
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and hence correct p-values and confidence intervals. Two approaches are commonly used to 

account for autocorrelation, both of which can be used to account for many different patterns 

of autocorrelation. 

 

One approach is to model the error as an autoregressive moving average (ARMA) process 

and estimate the resulting regression model by maximum likelihood [14,15]. A commonly 

used ARMA model is the first order autoregressive model where � = '�(� + ) and it is 

assumed that the ) are independent and normally distributed with zero mean. The model 

can be fitted using the arima function in R or arima command in Stata.  

 

Another approach is to fit the regression model ignoring the autocorrelation and adjust the 

standard errors using the Newey-West method [16]. The method is an extension of the 

methodology used to obtain robust standard errors [17,18] and as such produces standard 

errors that are valid even when there is heteroscedasticity (heterogeneous error variance). 

As with the robust standard error methodology, the method is widely applicable, and can be 

used both in the context of Poisson regression and linear regression. The key assumption is 

that autocorrelation is zero beyond a certain lag (e.g., zero autocorrelation beyond lag two 

implies observations that are separated by more than two time units are uncorrelated). To 

obtain consistent standard error estimates, the cut-off should be small relative to the length 

of the time series. For example, Wooldridge suggests using the integer part of ��/+ [19]. 

Newey-West standard errors can be obtained using the NeweyWest function in R 

(package=sandwich) [20] or glm command in Stata (see supplementary information for 

example Stata code and R code).  

 

Poisson regression 

When disease incidence is expressed as a count, one may wish to use Poisson regression 

instead of linear regression, especially when the counts are small.  
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Since Poisson regression is log-linear, we define a log-linear version of the common trend 

model as follows: 

 

          log�/ � = � + �� + !��� 

                                                         log�/"� = �" + !���,                                                 (8) 

 

where /  and /"  are the expected counts in the intervention and control series at time � .  

 

In the appendix, we show that the intervention effect, � , in the above model can be 

estimated using Poisson regression with the control series included as an offset. Although 

the Poisson regression model is misspecified (it is not equivalent to Eqn 8), it gives a 

consistent estimate of the intervention effect and the confidence intervals are valid provided 

that robust standard errors (e.g., Newey-West standard errors) are used. A potential 

constraint is that the offset in a Poisson regression cannot include zero values because the 

Poisson distribution must have a positive mean. However, this problem can easily be 

circumvented by replacing zero values of �"  with a positive number that is close to zero.  

 

Multiple control series  

In some studies, several plausible controls may be available. This situation might arise, for 

example, if an intervention is introduced in one state and data are available from other states 

where the intervention was not introduced. We can combine information from the controls by 

fitting a model that assumes a common trend across all series.  

 

Mathematically, the (linear) common trend model with multiple controls can be written as  

 

                               �� = �� + ��� + !��� + ��,                 (9) 
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where 0 = 1, … , 1 denotes the series, one of which is the intervention series and 1 − 1 of 

which are controls. The model can be fitted by combining the series into a single outcome 

vector � = ����, … . , ��3(�, … . . , �4�, … . , �43(��, and conducting a linear regression that 

includes terms for series, intervention and trend.  The series effect, �� ,  is modelled as a fixed 

effect and the common trend is modelled either by assuming a functional form, e.g. linear, or 

by using indicators for each time period.  

 

Note that this approach is not limited to linear regression. If the series consist of count data a 

log-linear version of the common trend model can be fitted using Poisson regression. 

 

Autocorrelation remains an issue whatever type of regression is used.  Fortunately, however, 

it can be accounted for either by using an extension of the Newey-West methodology for 

multiple times series (panel data), or by treating the series as clusters and using cluster-

robust standard errors [21]. The latter approach works best when the number of clusters 

(series) is large but simulations suggest that it may also work well when there are few 

clusters (e.g. <10) provided that standard corrections are implemented [22,23]. 

 

Recently an alternative method has been proposed that involves using a synthetic control as 

the comparator [24]. The synthetic control is generated by comparing all linear combinations 

of the controls and finding the one that most closely resembles the intervention series in the 

pre-intervention period. Statistical inference is design based and the null distribution is 

derived by treating each control as the intervention series and recalculating the intervention 

effect under this assumption. The method therefore requires a reasonably large number of 

controls. In particular, at least 20 controls are required to have a possibility of achieving 

p<0.05.  
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Including the control as a covariate  

In many ITS analyses confounder adjustment is done by including the control series as a 

covariate—i.e., �   is regressed on �"  and � [3,5].   Superficially this seems reasonable 

since the control series can be considered a proxy for the combined effect of the 

confounders. However, it can be seen from eqn 6 that �"  and !��� are not equivalent; �"  

includes error whereas !��� does not. Thus, as is well known from the theory of 

measurement error [25], including �" in the model instead of !��� causes attenuation bias: 

the estimated coefficient associated with �"  is, on average, closer to zero than the 

coefficient associated with !��� (N.B. under the common trend model the coefficient 

associated with !��� is assumed to be equal to 1). Hence, because of this attenuation, the 

degree of confounding is underestimated, and the intervention effect estimate is biased. We 

therefore do not recommend this approach. 

 

Example 1: Impact of an infection control programme on gram negative rod 

bacteraemia  

Goto et al. evaluated a hospital-based infection control programme in 130 Veterans Health 

Administration facilitates in the US using data collected between Jan 2003 and Dec 2013 

[26]. The programme was originally designed to reduce the incidence of Methicillin-Resistant 

Staphylococcus aureus infections, but some components of the programme—e.g., efforts to 

improve hand hygiene—were thought to be more widely effective. To test this hypothesis, 

Goto et al. evaluated the intervention impact against hospital-acquired gram-negative rod 

bacteraemia—specifically cases due to Escherichia coli, Klebsiella species and 

Pseudomonas aeruginosa—using community-acquired bacteraemia as a control. The data, 

which consist of monthly incidence rates of hospital-acquired bacteraemia per 10,000 person 

days (mean=3.7, range 2.3-5.4) and monthly rates of community-acquired bacteraemia per 
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10,000 person months (mean=6.6, range 4.6-8.9), are shown in Figure 2A together with 

LOESS trend lines.  

 

Three estimates of the intervention effect at the end of the study were calculated. 

The first was an unadjusted estimate (i.e., it does not account for trend). The second was 

obtained by fitting a segmented regression model (Figure 2B), and the third was obtained by 

differencing (Figure 2C). All models included an indicator for the transitional period (Mar-Oct 

2007) during which the intervention was not fully implemented, and the intervention effect 

was assumed to increase linearly over time. The segmented regression model additionally 

included calendar month as a categorical variable to account for seasonality. Standard errors 

were adjusted for autocorrelation up to lag three using the Newey-West method. The data 

are provided as supplementary information together with R code and Stata code for 

conducting the analysis. 

 

According to the segmented regression model, the intervention reduced the incidence of 

gram-negative bacteraemia by 1.98 (95% CI 1.30, 2.67) cases per 10,000 person days by 

the end of the study (Table 1) and, according to the common trend model, it reduced the 

incidence by 0.81 cases (95% CI 0.40, 1.23).  

 

There is a substantial difference between these estimates because the two models make 

opposite predictions about the counterfactual no intervention scenario: the segmented 

regression model predicts increasing incidence in the post-intervention period, whereas the 

common trend model predicts decreasing incidence.  

 

Which estimate is better? In general, if the control satisfies the requirements of the common 

trend model then the estimate from the common trend model is better because it 

incorporates the additional information provided by the control. 
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In this example, biological justification for the common trend model is strong. Firstly, the 

control is unlikely to be affected by the hospital-based intervention. Secondly the two series 

are likely to share confounders because they share the same population, same outcome and 

same mode of surveillance. As well as having a strong biological justification, the model is 

supported by the fact that the pre-intervention trend lines are approximately parallel (Figure 

2A), and by the fact that there is no evidence of linear trend in the pre-intervention 

differences (p=0.87, see also Figure 2B).  

 

Overall, the common trend model would therefore seem to be plausible. Nonetheless the 

intervention effect estimate from this model is not immune from bias. One possible bias, 

which was identified by Goto et al., is that the proportion of community-acquired bacteraemia 

treated in an outpatient setting, as opposed to a hospital setting, may have changed over the 

course of the study. A change of this kind that is limited to just one of the two series violates 

the shared confounders assumption. 

 

Example 2: Rotavirus vaccine introduction  

Rotavirus vaccine was introduced into the Ghanaian childhood vaccination programme in 

April 2012. To evaluate the impact of its introduction, Armah et al. used surveillance collected 

between January 2010 and December 2014 from two large tertiary care hospitals 

[2]. During surveillance, all children < 5 years admitted with diarrhoea were tested for 

rotavirus. In their analysis, Armah et al. used rotavirus-negative diarrhoea cases as the 

control. 

 

As in Example 1, we estimated vaccine impact using both the segmented regression model 

and common trend model. However, because the data consist of counts, the models were 

fitted using Poisson regression instead of linear regression. 
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Both models included an intervention × time interaction but no intervention main effect—i.e., 

we assumed no vaccine effect immediately after introduction followed by an increasing effect 

over time. The segmented regression model additionally included month as a categorical 

variable to account for seasonality. In both models, Newey-West standard errors were used 

to account for autocorrelation up to lag two. The data as well as R code and Stata code for 

the analysis are provided as supplementary information. 

 

The data, which consist of monthly rotavirus-positive counts (mean=23, range: 4-101) and 

rotavirus-negative counts (mean=34, range: 14-83), are plotted on the log-scale in Figure 3 

and on the original scale in Supplementary Figure 1. 

 

Estimates of vaccine impact are similar for the segmented regression and common trend 

model. Based on the segmented regression model, incidence of rotavirus-positive diarrhoea 

was reduced by 4.1% (95% CI 0.7, 7.5) per month and based on the common trend model it 

was reduced by 3.6% (95% CI 2.3, 4.8) per month. Interestingly, the confidence interval was 

narrower for the estimate from the common trend model, which suggests that this model 

explains more of the variation in incidence.     

 

Both confidence intervals were calculated using Newey-West standard errors and therefore 

account for over-dispersion and autocorrelation. We can see the importance of using the 

correct standard errors by comparing the Newey-West standard errors with the naïve 

standard errors from the Poisson regression. For the segmented regression model, the 

Newey-West standard error is almost three times as large as the naïve standard error 

(0.0180 versus 0.0067), and for the common trend model it is almost twice as large (0.0067 

versus 0.0035). Thus, in both models the naïve standard error substantially underestimates 

the uncertainty. 
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Broadly speaking, the assumptions of the common trend model seem reasonable: the control 

is unaffected by the intervention (the vaccine does not protect against rotavirus negative 

diarrhoea), and it is plausible that both series share confounders. The argument for shared 

confounders is reasonably strong because the method of surveillance is the same and, 

although the pathogens differ between the series, they share the faecal-oral mode of 

transmission. 

 

Despite the reasonably strong biological justification, when the model was tested through the 

inclusion of time as a covariate, there was evidence of model misspecification (p<0.001). 

Consistent with this result, the pre-intervention log trend lines are not parallel on the log scale 

(Figure 3), though the lines suggest only modest misspecification.  

 

In this example it is unclear whether we should prefer the common trend model or the 

segmented regression model. Fortunately the choice is not critical here because the trend in 

the control is approximately log-linear and the models are therefore roughly equivalent.  

 

 

Conclusions 

ITS are unusual in that the degree of confounding is immediately apparent from a time series 

plot of the data.  When there is no trend, and hence no confounding, ITS can be analysed by 

comparing pre and post intervention means, accounting for autocorrelation if necessary. On 

the other hand, when a trend is apparent the analysis must allow for confounding.  

 

The segmented regression model and the common trend model can both be used to adjust 

for confounding. The latter is potentially the more convincing of the two models, but only if 

the control has a strong biological justification and is statistically consistent with the model. In 

studies where no control is available, or where the quality of the control is in doubt, the 

segmented regression model may provide a useful alternative. This model, however, is 
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based on the strong assumption that the pre-intervention trend would have persisted in the 

absence of intervention. It should therefore be used cautiously, particularly if the impact of 

trend over the study period is large relative to the intervention effect. 
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Appendix: using Poisson regression to estimate the common trend model 

Here we show that the intervention effect parameter in a log-linear common trend model can 

be estimated by including the control series as an offset in a Poisson regression. This 

regression model is not equivalent to the log-linear common trend model (i.e., it is 

misspecified). However, it turns out, as shown below, that this model can nonetheless be 

used to obtain a consistent estimate of the intervention effect. 

 

Under the log-linear common trend model, and assuming a constant intervention effect, the 

means of the intervention series, / , and the control series, /", are denoted by 

 

          log�/ � = � + �� + !��� 

                                                         log�/"� = �" + !���, 

 

where !��� represents the common trend. 

 

However, if we fit a Poisson regression that includes the control series as an offset, then we 

are assuming the intervention series follows a Poisson distribution with mean 

 

                                              log /6  = �6 + �7� + log��" + 8�, 

 

where the positive constant 8 is included to ensure log /6  is defined when �" = 0. 

The log likelihood for this assumed model is 

 

9:�7, �6 ; = ∑ log [=(>?@A/6 
B@A / � !] ∝ ∑ −��" + 8�=F?@GHIJA +� [�6 + �7� + log��" + 8�], 
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and, assuming �" and �  are independent, the parameters being estimated are the values 

of  �7 and �6  that maximise the average log likelihood  

EL9:�7, �6 ;M = ∑ −�=FNGO�� + 8�=F?@GHIJA + =F@GHJAGO��� �6 + �7� + E[log��" + 8�]�, 

where the expectation is taken with respect to the true model [26]. 

By solving 
PQLR:HI,F?@;M

PHI
= 0 and 

PQLR:HI,F?@;M

PF?@
= 0 it is apparent that as 8 → 0  the maximum is 

achieved when �6 = � − �" and �7 = �. Thus the Poisson regression model can be used to 

obtain a consistent estimate of the intervention effect. 

 

Although the estimate is consistent, standard Poisson regression confidence intervals and p-

values are not valid because the model is misspecified. Even if we assume both the 

intervention and control series follow a Poisson distribution, the variance of the residuals 

obtained from the Poisson regression will still be greater than that predicted by the Poisson 

model. This is because by using the control series to account for trend we are including 

additional error (control series =trend + error) that is not accounted for in the standard 

Poisson regression analysis. Fortunately, the problem can be overcome by using robust 

standard errors or, if it is necessary to account for autocorrelation, Newey-West standard 

errors. 
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Table 1: Estimated impact of a hospital infection control programme on the incidence 

of gram-negative rod bacteraemia 

 

 Difference* 95% CI 

No adjustment -1.09 -1.38, -0.80 

Segmented regression model  -1.98 -2.67, -1.30 

Common trend model, differencing -0.81 -1.23, -0.40 

 

*Estimated difference in incidence per 10,000 person days at study end (Dec 2013) 

 

Table 2: Estimated impact of rotavirus vaccine introduction 

 

 RR* 95% CI 

No adjustment 0.939 0.919, 0.959 

Segmented regression model  0.962 0.926, 0.998 

Common trend model, control used as offset 0.964 0.951, 0.977 

 

*Rate ratio for change in rotavirus-positive diarrhoea incidence per month post intervention 
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Figure 1: Four models for estimating intervention impact from an interrupted time series. The 

models are based on different assumptions about the nature of the intervention impact and 

about disease incidence in the counterfactual no intervention scenario (dotted line). In the 

segmented regression model (A and B) the counterfactual scenario is determined by the pre-

intervention trend, and in the common trend model (C and D) it is determined by the control 

series. The intervention impact may be constant (A and C) or time-dependent (B and D).  
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Figure 2: A Monthly incidence of hospital-acquired bacteraemia (per 10,000 person days) 

and community-acquired bacteraemia (per 10,000 person months) before and after the 

implementation of an infection control programme. Trend curves estimated by LOESS 

(locally weighted scatter point smoothing). Vertical dashed lines represent the period over 

which the intervention was rolled out (March-Oct 2007). B Segmented regression model: the 

intervention effect is estimated by extrapolating the pre-intervention trend and comparing 

with the observed incidence post-intervention.  C Common trend model: the intervention 

effect is estimated by computing the difference between the two series and comparing the 

differences pre and post intervention. In both models (B and C) it is assumed the intervention 

effect increases linearly with time. 
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Figure 3:  Monthly rotavirus-positive and rotavirus-negative diarrhoea cases in children < 5 

years before and after the introduction of rotavirus vaccine (vertical dashed line). The counts 

and LOESS trend lines are presented on a log-scale.  
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Supplementary Figure 1:  Monthly rotavirus-positive and rotavirus-negative diarrhoea cases 

in children < 5 years before and after the introduction of rotavirus vaccine. The figure presents 

the same data and LOESS trend lines that are presented in Figure 3, but on the original scale 

(i.e., not on the log scale used in Figure 3).   

 

 

 

 

 

 


