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Interesting dynamical features such as periodic solutions of binary cellular automata are rare
and therefore difficult to find, in general. In this paper, we illustrate an effective method in
identifying fixed and periodic points of traditional one- and two- dimensional p-valued cellular
automaton systems, using cycle graphs. We also show when the binary or p-valued cellular states
are extended to real-values and when defined as doubly-infinite vectors, there exists a continuum
of periodic solutions for every period, even when the governing local rules are simply linear. In
addition, we demonstrate the important effect boundary conditions have on systems’ dynamical
structures.

Keywords: real-valued cellular automata; discrete nonlinear dynamics; linear rules; equilibria;
periodic solutions; boundary conditions.

1. Introduction

The field of cellular automata (CA) has generated a vast amount of interest, since its creation by von
Neumann in the 1940s [Von Neumann et al., 1966]. This was further boosted by Wolfram’s remarkable
numerical experiments conducted from the 1980s ([Wolfram, 2018] and [Wolfram, 1984]) and by a series of
ground-breaking nonlinear dynamics studies from Chua and co-researchers in the early 21st century ([Chua
et al., 2002], [Chua et al., 2003] [Chua et al., 2004], [Chua et al., 2005a], [Chua et al., 2005b], [Chua et al.,
2006], [Chua et al., 2007a], [Chua et al., 2007b] and [Chua et al., 2008]).

People are fascinated by CA, because in these systems, amazingly complex patterns and dynamical
behaviours emerge when governed by very simple locally interacting rules. Apart from the ones mentioned
earlier, many other researchers have also contributed to the theoretical, analytical and computational un-
derstanding of CA. For example, Voorhees performed computational analysis on 1D binary CA [Voorhees,
1996]. Jen analysed enumeration of preimages which provided CA rule’s probability distribution infor-
mation [Jen, 1989]. Ilachinski systematically explored features and applications of CA, particularly in
information-based discrete physics [Ilachinski, 2001]. Chopard and his collaborators investigated a variety
of CA applications, especially in studying microscopic fluid dynamics and particle transport when linked
with the lattice Boltzmann technique [Chopard & Masselot, 1999],[Chopard et al., 2002], [Chopard, 2012].
The hybrid CA and lattice gas method was originally introduced by Frisch, Hasslacher and Pomeau in
[Frisch et al., 1986] as a discrete Navier-Stokes equation solver obeying mass and momentum conserva-
tions, and Wolf-Gladrow gave a comprehensive description of its concept and recent development into the
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lattice Boltzmann models in [Wolf-Gladrow, 2004].

Furthermore, CA have also been studied as spatially and temporally discrete nonlinear dynamical
systems. In our previous work [Xu et al., 2009], we classified one-dimensional (1D) binary CA based on
Smale’s basic sets and nonwandering points as well as introducing mathematical and numerical techniques
for identifying periodic points and basic sets. These share a common perspective as Mainzer and Chua’s
work [Mainzer & Chua, 2011] and many of the results agree. Wuensche and co-researcher studied global
dynamics, in particular, the basins of attraction, of 1D binary CA systems ([Wuensche & Lesser, 1992],
[Wuensche, 1992], [Wuensche, 2000] and [Wuensche, 2017]. Martinez summarised several classifications of
elementary CA in [Martinez, 2013]. Uguz and collaborators investigated the effect the underlying lattice
grid has on the CA dynamics in [Uguz et al., 2013] and [Uguz et al., 2017], and linear two-dimensional
(2D) CA over ternary field [Sahin et al., 2015]. The de Bruijn graph, an alternative representation of the
local rule table, can be used to determine fixed points and the reversibility of 1D CA ([Sutner, 1991],
[Bhattacharjee et al., 2018], [Martinez et al., 2018], [McIntosh, 1991] and [McIntosh, 2009]). This method
was extended into 2D to compute the well-known Conways game of Life CA in [McIntosh, 2010].

As mentioned earlier, CA do not only create complex and interesting dynamical structures, but have
also shown surprising ability to reproduce complex behaviours observed in real systems. Therefore, they
have a very wide range of applications, when used as a mathematical framework and a computational tool
for modelling. These include:

(i). biological models of life processes, e.g. ant colonies [Chopard & Droz, 1998], [Bossomaier & Green,
2000] and bird flocking [Ermentrout et al., 1993];

(ii). ecological and geological models, e.g. forest fire [Karafyllidis & Thanailakis, 1997], forest insect
disturbance [Perez & Dragicevic, 2012] and fast moving landslides [Avolio et al., 2013];

(iii). social and behavioural models: eg. residential migration [Dabbaghian et al., 2010], urban growths
[Liu et al., 2017], evacuation process, traffic flow and pedestrian dynamics, etc.;

(iv). micro-structure of material process models, eg. austenite grain growth and coarsening [Vertyagina
et al., 2013] [Zhu et al., 2014],[Raabe, 2002], [Han et al., 2015], [Vertyagina & Mahfouf, 2015], [Wang et al.,
2017], alloy solidification [Zhao et al., 2013] and shape rolling [Svyetlichnyy, 2012], additive manufacturing
[Rai et al., 2016] etc.;

(v). micro-biological modelling, e.g. tumour growth [Al-Husari et al., 2014], response of a solid tumour
to chemotherapy [Powathil et al., 2012], influenza A viral infections [Beauchemin et al., 2005], hepatitis B
viral infections [Xiao et al., 2006] and ebola virus dynamics [Burkhead & Hawkins, 2015] etc.

The concept of CA has also been applied in producing powerful chaotic image encryption programmes
[Machicao et al., 2012] and [Ping et al., 2014].

Most of the CA models used binary or boolean elements in their states, which rather limited their
modelling accuracy and efficiency. The binary variables can be extended to p-values (where p is an integer)
and then to real-values, to offer more flexibility and versatility. The various types of CA were shown
in a comprehensive recent survey by Bhattacharjee and co-researchers [Bhattacharjee et al., 2016]. The
real-valued CA, unsurprisingly, generate an even richer amount of structures such as fractal, chaotic and
hypercyclic [Bayart & Matheron, 2009], which we explored in [Xu et al., 2011]. This previous work laid solid
foundation for theoretical understanding of cellular systems with real-valued states as well as facilitating
more realistic modelling approaches for real systems. It also paved a path for the results and analysis
demonstrated in this paper.

This paper is organised as follows: in Sec. 2, we present a cycle graph method, similar to the de Bruijn
graph but simpler in its format, for obtaining periodic points of one- and two- dimensional p-valued cellular
systems. The later four sections focus on real-valued CA. More specifically, in Sec. 3, we analyse equilibria
and periodic solutions of one-dimensional CA with different restrictive boundary conditions. When these
boundary conditions are lifted, we show in Sec. 4 and Sec. 5, that there exist a rich set of periodic solutions
for every period.
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2. Periodic Solutions of Discrete Cellular Systems

Before considering the case of real-valued cellular systems, we shall first examine the case of discrete
p-valued systems. For simplicity we shall begin with systems having doubly-infinite state

X=:--T_120T1""",

where z; € {0,1,--- ,p— 1}, —00 < i < 0.

Thus,
Xe H {Oalavp_l}:{()’lv?p_l}z
—00<1<00
The dynamics are given by
y = F(x),
where
Yi = (F(X))z = f(xi—q’ SRR P ’xi-&-q) (1)

for some positive integer ¢. (For a simple three-bit binary automaton, p = 2, ¢ = 1 and the ‘length’ of the
neighbourhood is 2¢ 4+ 1.) Note that , if we apply F' twice, then

y = F?(x),
where
Ui = F(Zicgs-+  2ir+* » Zitq)
and
zj = f(@j—qy 1T, Tjag), T—q<j<itq

Hence F? is equivalent to a system with neighbourhood length 4q + 1 [Xu et al., 2009]. It follows that, in
order to study periodic solutions of period m, we can consider the fixed points of an equivalent system F™
with neighbourhood length 2mgq 4 1. Therefore we need to consider only fixed points of general systems
with an arbitrary neighbourhood.

In order to specify the system, we must define the function f in (1). It is a discrete function depending
on 2q + 1 variables, each having p values and the range of the function also having p values. For small
values of p and ¢, we usually specify f in the form of a table; for example, for a binary, 3-bit rule (Rule
126), we may define

Table 1. A binary 3-bit function Example.

~

000
001
010
011
100
101
110
111

O R = === =0

giving rise to Sierpinski-type dynamics (which could also be generated by Rule 90 and several other rules).
In the case of large p and / or ¢, such a table becomes impractical (there are p(2¢+1) lines in the table).
However, for the purpose of studying fixed points, we shall see that we only need a ‘partial table’ — namely,
only those lines of the table in which the central digit on the left is the same as the right (the output).
Thus, in Table 1, we have
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Table 2. A binary 3-bit partial table.

!

000 0

010 1

011 1

110 1

From (1), this is just the relation

T = f(Tieg, s Tiy s Tigq)- (2)
For systems with large p and / or g, if the number of values of (z;—q, - , i, -+, Zi4q) is bounded by some

number N for which the tabulation of solutions if (2) is possible, then the method will be feasible.
We now associate a directed graph with the relation (2). The vertices of the graph are the values of
(i—qs -+, Ti, -+, Tirq) Which satisfy (2). If there are N solutions of (2), we will denote them by vy, --- ,vn.

Thus, for each j € {1,---, N}, there exist giq,--- ,{é, e ,fé, such that

b= (g G 8]
and
&= 1) = (g6 )

For example, in Table 2, we have

1 = (000),
s = (010),
vg = (011), (3)
v = (110).

The graph has a directed edge from v; to vy, if the vectors corresponding to v; and vy, ‘fit together’ in
the sense that, if

vj = (5‘7_(], aégv"' agé) y Uk = (é—qu’ 7533"' ag(l;)
then
J _ ¢k
(—gt) = S(-qri-1) L S1= 20,
We shall write such a directed edge by e;r = (vj,v). Thus in the case of (3), we have the directed edges

e11 = (vi,v1), esq = (v3,v4),

giving the directed graph shown in Fig. 1.

11

©34
Vi v, V3 A/

Fig. 1. Directed graph of the system defined by Table 2.
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The following result now follows from the above remarks: Consider a ¢-bit, p-valued one-dimensional
cellular automaton given by the function (1). Let G be the graph related to the rule as above. Then the
automaton has a fixed point if and only if G has a cycle.

Note, the 1D cycle graph presented here is similar to the de Bruijn graph [Sutner, 1991] (traditionally
used for the analysis of 1D CA [Bhattacharjee et al., 2016]), but it is a partial graph which only contains
vertices that have the central digit of the input fixed at the output from the rule table, therefore it
is simpler in its format. The main advantage of the new cycle graph is that it can be easily extended
to identify periodic solutions of higher periods for 1D CA and fixed points for 2D CA, because of this
simplicity. Next, we shall show examples of period-2 and period-5 solutions for 1D CA Rule 82 to further
explain this point.

Example 2.1. Consider the 1D binary CA governed by the 3-bit rule as shown in Table 3.

Table 3. 1D 3-bit CA Rule 82

f
000 0
001 1
010 0
011 0
100 1
101 0
110 1
111 0

In order to find period-2 orbits of this 3-bit CA system, we consider the fixed points of the corresponding
system F2, with a neighbourhood length 5 (2mq+1 = 2 x 2 x 1+ 1), of which the updated 5-bit rule table
is given in Table 4, with 32 (2°) lines.

Table 4. 1D 5-bit CA Rule, corresponding to the 3-bit CA Rule 82

| A A | S
00000 | 0 01000 0 10000 | 1 11000 | 1
00001 | 1 01001 0 10001 | 0 11001 | 0
00010 | 0 01010 0 10010 | 1 11010 | 1
00011 | 0 01011 0 10011 | 1 1otr |1
00100 | 0 01100 0 10100 | 1 11100 | 0
00101 | 1 01101 0 10101 | 0 11101 | 0
00110 | 0 01110 1 10110 | 1 110 |1
00111 | 1 01111 0 10111 | 0 1 | o

Within the 32 configurations from Table 4, 15 of them satisfy the relation defined in Eq. (2) (i.e they
have the central digit fixed). These form vertices of a partial rule graph and together with the directed
edges linking vertices which fit together, we obtain a directed graph for this 5-bit system shown in Fig. 2.
Cycles in this graph represent fixed points of the 5-bit CA which are in fact period-2 points of the 3-bit
CA Rule 82.

In order to better visualise the cycles, Fig. 2 can be simplified by showing the vertices and edges which
are part of a cycle only (removing all vertices and edges which do not belong to any cycle), as shown in
Fig. 3. The fixed points of the 5-bit CA defined by Table 4, which are periodic solutions of period-2 for
the 3-bit CA Rule 82 defined in Table 3, can now be easily read out from Fig. 3. For example, 001010
(complete the cycle following the sequence of vertices: 3, 5, 7, 4, 6, 2) when subject to periodic boundary
conditions, is a period-2 point.
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0o
7

(::;%DDD
1

nooto
2

Fig. 2. Directed graph of the system defined by Table 4.

00101
3

1000
5

01000
4

Fig. 3. Simplified directed graph from Fig. 2.

Periodic points of higher periods can also be identified using the cycle graph method, but we will expect
to see more complicated graphs. For example, the period-5 points of the 3-bit CA Rule 82 correspond to
fixed points of a new system F®, with a neighbourhood length 11 (2mg+1 =2 x5 x 1+ 1). The rule table
has 2048 (2'!) lines and therefore is not practical to be presented here. However, following the same steps
as the period-2 case shown earlier, we plot the directed graph of this 11-bit CA which display the vertices
where the values of (x;_5,- -+ ,x;, -+, z;i45) satisfy (2) and the directed edges between them in Fig. 4.

As before, this rather dense graph can be simplified by only showing vertices and edges in cycles, as
shown in Fig. 5. From this graph, the period-5 points of 3-bit CA Rule 82 can be determined, for example,
00011010100001001011 (complete the cycle following the sequence of vertices: 8, 18, 36, 62, 52, 27, 50, 21,
41, 3, 6, 12, 24, 47, 16, 30, 56, 34, 60, 44) when subject to periodic boundary conditions.

It can be seen from Example 2.1, the cycle graph introduced in this paper is a more straightforward
method for identifying periodic points of higher period than 2. Although the computational complexity
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Fig. 4. Directed graph of the 11-bit system.

0100101100 215901 T0Th moot110011
01001001140 24 _ % 01010000100
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01000011140 010000111
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Fig. 5. Simplified directed graph from Fig. 4.
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increases when determining periodic points of higher period, in principle, the new cycle graph method
works for periodic solutions of any period of 1D CA in general.

Now consider the case of two-dimensional automata. This time we associate two graphs with the system.
Again we consider only the numbers of the rule table fixing the mid-point. Rather than considering the
general case, we shall simply refer to a 3 x 3 binary automaton, in order to keep the explanation as simple
as possible. (The general case follows easily from the following comments.) Here, we explain the method
using a 2D CA with simple rules as an example. Afterwards, we will give another example on a much more
complex 2D CA to demonstrate the effectiveness of the method in Example 2.2. For now, consider the
(partial) rule table for a simple 3 x 3 automaton given, in an obvious sense, in Fig. 6 (where a white square
corresponds to 0 and a black square to 1).

i
i

—> 1 16 —0

— 1 12

- N g
- N gL

Fig. 6. A partial 3 x 3 rule table (only the rules fixing the central point are shown).

The graphs associated with the system are as follows: a ‘horizontal’ graph which has a vertex for each
element of the rule table fixing the midpoint. As in the one-dimensional case, a directed edge is drawn
from one vertex to another, if the corresponding rule element can be placed together horizontally. Thus,
for example, vertices 6 and 7 are connected, since we have the relation as shown in Fig. 7.

We then introduce a ‘vertical’ graph in a similar way, where vertices can be placed together vertically.
We then obtain the two graphs of Fig. 6 as in Fig. 8.

Next we introduce yet another graph from which we may conclude the existence of fixed points. We
take the ‘horizontal’ graph and reduce it to a graph containing only vertices and no edges. This is the
‘graph of cycles’ of the horizontal graph. In general, there will be an infinite number of cycles in a graph,
since we may go around a given cycle any number of times. To obviate this problem we proceed as follows.
First we write down all ‘prime loops’ —i.e. those cycles which contain no other cycles. In Fig. 8, for example,
these will be the cycles shown in Fig. 9.

Then we form all cycles which can contain cycles that have already been found. Repeating this proce-
dure, we find all the cycles in which each sub-cycle is only traversed once. Since the original graph is finite,
there must be a finite number of such cycles. Again, from Fig. 8, we see that ‘second level’ cycles are the
ones illustrated in Fig. 10.
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.
N,
-

Fig. 7. Horizontal placement of vertices 6 and 7 from Fig. 6.

11 12 13

(@) b)

Fig. 8. Graphs for the automaton in Fig. 6. (a) Horizontal graph; (b) Vertical graph.

In this way, we obtain, from the horizontal graph, a finite graph of vertices consisting of its cycles as
shown in Fig. 11.

We label these vertices with cycles of integers which correspond to the vertices of the original graph
(Fig. 8) which are visited (in order) by these cycles. For example, in Fig. 10, the second level cycle ca5 is
labelled by the cycle

(12345167891).

Finally we construct the desired graph (which we call the two-dimensional cycle graph associated with
the system) by adding a directed edge from ~; to v;, if we can match the labels of v; and 7; as in Eq. (4):

Y (m1 mg - my)
U 1 (4)
v o(n1 ong o ong),

where each vertical arrow corresponds to an edge in the ‘vertical’ graph (we may need to permute ~;
cyclically to do this).

The main result now follows easily from the above remarks: A two-dimensional cellular automaton has
a fixed point if and only if its associated two-dimensional cycle graph contains at least one cycle. Note that
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2 3 4 o
6 7 8 9

Fig. 11.

C
13

12 13 14 15 16 17

Fig. 9. Prime loops graph cycles of Fig. 8 (a).

Fig. 10. Second level cycles of Fig. 8.

" T t

A finite graph of vertices representing the cycles of Fig. 8.

in the two-dimensional cycle graph we can go round corresponding cycles any number of times. Using this
result, we see that the system in Fig. 6 has the fixed points (among others) shown in Fig. 12.

5B

= E=

Fig. 12. Fixed points of the 2D CA defined in Fig. 6.
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Example 2.2. In this example, we consider a more complex 2D CA — the well-known Conway’s game of
life [Gardner, 1970], which has the capability of a universal Turing machine [Rendell, 2011]. The system is
defined on a 3 x 3 Moore neighbourhood and the rule table therefore has 512 (2°) lines, but the evolution
rules of this binary CA (1 means ‘alive’ and 0 means ‘dead’) can be summarised as follows:

If the central cell is alive and there are 2 or 3 other alive cells in the neighbourhood, then this central cell
will remain alive at the next evolution step; otherwise it will become dead.
If the central cell is dead and there are exactly 3 alive cells in the neighbourhood, then this central cell
will become alive at the next evolution step; otherwise it will remain dead.

The fixed points can be identified using two cycle graphs introduced in this section. Fig. 13 and Fig. 14
below illustrate the ‘horizontal’ and the ’vertical’ graphs, containing a vertex of every configuration in the
rule table which fixes the mid-point and directed edges linking vertices when the configurations can be
placed together horizontally and vertically, respectively.

11 100011
4 10L1100100

[oa0nooa
00000t 1
& (00000700
g 00000101
ooa0110
OA000T 000
00001007
4 00000010
Jujiauuy qu]

7 35 35 34 33

Fig. 13. The horizontal graph for Conway’s game of life CA.

Indeed, because of the expected complexity of the dynamics of the game of life CA, these two graphs
are very dense. However, fixed points can be identified computationally using algorithms to trace cycles
from these horizontal and vertical graphs shown in Fig. 13 and Fig. 14, for example, a fixed point shown
in Fig. 15 (where a white square corresponds to 0 and a black square to 1). Note that this 2D CA size is
10 x 10 and periodic boundary conditions are applied on all sides.

As illustrated in the 1D CA case earlier, periodic points correspond to fixed points of another CA
system with a bigger neighbourhood. This theory also extends to 2D CA where periodic solutions can be
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0911071000
T 041107007
a-118G000000
000000001
@0000010
100000011
000000700
d000001 01
000000110

Fig. 14. The vertical graph for Conway’s game of life CA.

H NN N EN
N | | N
HE [

Fig. 15. A fixed point of Conway’s game of life CA, identified using the horizontal and vertical graphs.

determined as fixed points of an associated CA with a larger neighbourhood. Although the increase of

neighbourhood size poses computational challenges (as the number of entries in the rule table increases
dramatically), the cycle graph method presented in this paper is still a valid theoretical technique for

finding periodic orbits of high-dimensional CA.

From the discussions in this section, we can see that periodic orbits in most binary automata may
be fairly uncommon. This means that the dynamics of such systems may lead to very few ‘interesting’
features, which are largely determined in dynamical systems by their recurrent behaviour. In contrast
to these systems, we shall see in the next sections that real-valued automata can have many periodic
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orbits, although, as we shall see next, if strict boundary conditions are imposed it is difficult to find many
fixed points. If we remove the boundary conditions and allow infinitely long states then periodic solutions
abound. In fact we shall see that such systems have uncountable numbers of periodic solutions of almost
arbitrary structure.

3. Equilibria Analysis of Real-Valued Linear Cellular Automata

Recall the definition of 1D p-valued CA from Section 2. Real-valued CA are defined similarly, apart from
x; € R. Because the local transition functions are now defined on R, unsurprisingly, these automata systems
produce far richer behaviours (e.g. hypercyclic or chaotic) than the p-valued systems. In a previous paper
[Xu et al., 2011], we demonstrated that even in the cases of linear functions f, i.e.

f(Tic1, @i, xig1) = axi—1 + Bri + yTip1 (5)

where «, 3,7 € R, the systems still generated a large amount of complex patterns and interesting dynamical
behaviours. It was also proven that if |y| > 1 and |« - |3] - |7| is small enough, the linear system had dense
orbits (or was hypercyclic in the sense of [Bayart and Matheron, 2009]).

Given the fact that even real automata defined by linear rules display a variety of dynamics, it is
important to study these automata as dynamical systems, to help understand the relationships between
the local governing functions and the corresponding global dynamical behaviours. We start this process with
the study of an automaton system’s fixed points (or equilibria). In Subsections 3.1 and 3.2, linear automata
with two different types of boundary conditions, namely zero and periodic are analysed, respectively. It is
shown that the boundary condition of a CA hugely affects its dynamical structure. Subsection 3.3 tackles
the situation when the local linear rules are defined on a 5-bit neighbourhood instead of a 3-bit one. The
results of fixed points of 5-bit CA can be applied to identify periodic points with period 2 for CA defined
on 3-bit neighbourhoods.

3.1. Zero Boundary Conditions

When a 1D CA has zero boundary conditions, that means its states z[ are in the form of
X[n] = (0707 ‘ x[ln}’x[Qn]v o 71"%}’ | 070)

i.e. the states are bounded by Os at the two ends. By definition, fixed points of a CA are points which
satisfy the following:

[+ _ [n]

for all n € Z—. For a 3-bit CA, the criterion translates into
[n]

95%1) =T,

i—12"5
in other words, every value of the next state only depends on the value directly above (at the same position
in the state string) in the current state.

It is easily seen from the definition of a fixed point that every system state is a fixed point for a cellular
system governed by Eq. (5), where « = v = 0 and § = 1. Next, our study will focus on CA defined by
translated linear functions of the form

f(xic1, 25, 2i11) = axi1 + (b+ 1)x; + cxiq1 + d, (6)
where a, b, c,d € R. Note: the new notations a,b and ¢ (a = a, b+ 1=, ¢ =+ in Eq. (5).) are for the
convenience of calculations and explanation. Fixed points of CA ruled by local functions in Eq. (6) now
satisfy:

x; = ari—1 + (b+ 1)z + cxiy1 +d,
which simplifies to

ax;—1 + bx; + cxip1 +d=0. (7)
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One standard approach in analysing fixed points is to represent the middle variable z; in terms of the other
ones. This method often encounters difficulties, as at least one other variable in the equation is unknown.
However, the zero boundary conditions can be utilised to determine all values of a fixed point as a recurring
process if Eq. (7) is considered in the form of

_ari + bxr; +d
- .

Now from left to right, each value of a fixed state can be solved in terms of the ruling function
coefficients a, b, ¢ and d. According to the left boundary conditions, z_1 = g = 0. Therefore:

d

Tit1 =

=4 ©
x2:—bxlc+d:—;i2(—b+c), 9)
acg:—wzx?—i_d :—%(bQ—ac—bc—i—cZ), (10)
x4 = —LW = —%(—bg—i—Qabc—i—bzc—acQ—bcz—i—c?’), (11)
(12)
. _am—3 + brm_2 + d’ (13)

c
) — _ aTm—2 + l;:nmq + d’ (14)

The boundary conditions on the right hand side implies:
axm—1 + bxy +d

Tmt1 =0=— - ) (15)
Tmis =0 = —Lﬁoﬂl. (16)
Eq. (16) can be simplified to
d
T =~ (17)
Furthermore, substitute Eq. (17) into Eq. (15), we obtain
T—1 = —a%(a —b). (18)
Lemma 1. Only one fized point x = (0,0,|0,0,---,0,|0,0) exists for any zero bounded cellular automaton

described by a 3-variable linear function f(x;—1,x;,z;+1) in the form of Eq. (5), apart from the case when
a=~v=0and g =1.

Proof. Eq. (5) is equivalent to Eq. (6) when d = 0. d is a common factor in all elements of the fixed point
state in Eq.s (8-14), therefore, d = 0 leads to every element of the fixed point being 0. W

The elements x,,—1 and z,, in Eq. (13) and Eq. (14) must also have d as a common factor, due to the
nature of the representations of ,,—1 and z,,. This eliminates the variable d (where d # 0) when Eq.s (13)
& (18) and Eq.s (14) & (17) are combined to remove x,,_1 and x,, respectively. Then there are effectively
3 variables a, b & ¢ within 2 simultaneous polynomial equations. These two equations can be solved for
any 2 of the variables in terms of the 3rd one to determine the global equilibria of the corresponding real
CA systems defined by linear local functions (6).
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Remark 3.1. A valid set of a, b, ¢, d values (where a, b, ¢ cannot all be 0) satisfying Eq.s (13) & (18) and
Eq.s (14) & (17) fixes a certain local system function in the form of (6), and also generates a single value
for every element of the equilibrium x, x3, -+ and z,, according to Eq.s (8-14). Therefore, the cellular
automaton has only one fixed point, of which values satisfy Eq.s (8-14), including the case when d = 0.
Systems with any other set of a, b, ¢, d which do not obey Eq.s (13) & (18) and Eq.s (14) & (17) do not
contain fixed points.

Lemma 2. Any one-dimensional cellular system defined by (6) with zero boundary conditions has no more
than 1 equilibrium point.

Although it can be computationally complicated in practice when the CA size is large, the analytical
process described above for determining a cellular system’s equilibrium stands for any one-dimensional
linear cellular automata (IDLCA) of finite sizes. Next, we present an example of a CA of size 14 to
illustrate the fundamental idea, however, as the theory is valid for any finite CA size, the equilibria of CA
with lager sizes can be identified using more powerful computers.

Example 3.1. A group of 1D CA governed by local translated linear functions (6) have zero boundary
conditions for their states, which are described by

x" = (0,0, | :E[ln},l‘én], e ,13[17;3]’95[1@7 1 0,0). (19)

In order to find the CA systems which possess fixed points, the following polynomial equations are to be
solved simultaneously:

T3 = —C%( b2 — 11abc — blle + 4502082 4 10ab?c? + b10¢? — 84431063 — 36a2b" ¢ — 9ab®c?
—b9¢® + 70a*b*c* + 56a3b°c* + 28a2b%¢* + 8ab”c* + bBet — 21a°h2® — 35a*b3 P
—35a3b*c® — 21a%b°¢® — Tabbc® — b7c® + abc® + 6a°bc® + 15a*b*c® + 200303 S
+15a%b* S + 6ab®c® + b5 — adc” — Batbe” — 10a3b*c” — 10a%b3c” — Sab*c” — b7 (20)
+a*B 4+ 4a3bc® + 6a2b%c® + 4ab3c® + b1 — a3 — 3a2bc® — 3ab?*® — b3 + a2ct0
+2abc'® 4+ b0 — ac't — be!t 4 ¢1?)
= [%(b_ a)a

T14 = —C%( —b13 4 12abM e + b'2¢ — 55a209¢% — 11ab'0¢? — b2 + 12063073 + 45a28¢® + 10ab? 3
401063 — 126a*b5 ¢ — 84a3b5¢* — 36a2b7¢t — 9abBct — Ot + 56a°b3¢® + T0a*bicd
+56a2b°¢® 4 28a2b5¢® + 8ab’c® + b8¢® — Tabbc® — 21a°b%c® — 35a*b3c8 — 35a3b%c8
—21a2b°¢® — 7ab%cb — b7¢cb + ab¢™ + 6a°be” + 15a*b%c” 4 20a3b3¢” + 15ab*¢” + 6ab’c”
+65¢" — a®c® — 5a*bc® — 10a3b%¢® — 10a263¢3 — bab*c® — 5B + a*c? + 4a3be?
+6a2b%c° + 4ab3c® 4+ bc® — a2l — 3a2bel? — 3ab%c!0 — B30 + a2t + 2abelt 4 b2t
—act? — pel? 4 013)

—_d
o
(21)
Given a, b, c € R, the numerical solutions of a and ¢ in terms of b are a = ¢ = —%. b, d can be any real
numbers but 0. For example, let a = ¢ = —1, b = /2, d = 1. Then this IDLCA is governed by

fxiy, wis i) = =z + (V2 + Dy — x40 + 1. (22)
The initial state x% of (19) is specified by Eq.s (8-14):
x%= (0,0, 1, 1+v2, 242, 242, 142, 1, 0, 0, 1, 14+v/2, 242, 242, 142, 1, 0, 0). (23)
Each element of the next state is given by

xgl} = f<95£0—11= x£0]7$£(—)&]-1)'

Therefore,

x'=(0,0, 1, 14v2, 24V2, 242, 1+v2, 1, 0, 0, 1, 1+V?2, 2-+v2, 242, 1+v2, 1, 0, 0) = x".
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Obviously, x[? = xBl = x4 = ... = x["]. Hence x in the form of (23) is one and the only fixed point of the
1DLCA ruled by (22).

Numerical solutions of Eq.s (20, 21) can also be achieved relatively easily if for example, b = 0, then
we obtain

{{c — —ia},{c = ia},{c = a}, {c = —V—=1a}, {c = V-1a}, {c — —(—1)3/4(1} , {c — (—1)3/4a}} .

Similar as earlier, the condition of a, b, c € R means a = c¢. In the case of a = ¢ = % and d = 3, for example,
another 1IDLCA given by

1 1
fl@izt, i, @) = 5Ti-1 +z; + 3Ti+1 +3

also contains one non-zero equilibrium:

x = (0, 0, —=6, —6, 0, 0, —6, —6, 0, 0, —6, —6, 0, 0)

3.2. Periodic Boundary Conditions

A 3-bit 1D CA with periodic boundary conditions implies the system states can be represented by

X[n] = (xEZ]_lvx[mn]ﬂ ’ x[ln]am[inv T 7'7;1[77;}7 ‘ a:[ln]’ 'r[Qn})

We now study the equilibria of 1IDLCA without translations. The transition rule is in the general form of
f(a:i_l, x;, mi—&-l) =ar;—-1 + (b + 1)1'1‘ + Ccxi41. (24)
Fixed points of the 1IDLCA satisfy
x; = azxi—1 + (b+ 1)x; + czit,
which leads to
axi—1 + bx; + cxip1 = 0.
Again, boundary conditions can be used to assist the process of identifying state values of an equilib-
rium, by represent z;y1 in terms of x;_; and z;:
axi—1 + bx;
Tir] = —f.
Values of a fixed point therefore satisfy the following:

—bxy — ATm—1

_ 25
1 c ) ( )
b b — b ,,—
mz:_awm—i— xlz( ac)xy,;+a L1 (26)
c c

awy +bry  (=b3 + 2abc)z,, + (—ab?® + a’c)rpy,_q

xr3 = — c = 63 (27)
ars +brs (b — 3ab®c + a®c®)xy, + (ab® — 2a%be)Tm—1
:[/‘4 = — c = c4 (28)
_ bz, —
Ty = —m=s T 02, (29)
c
L (30)
c

The boundary conditions on the right hand side are satisfied automatically.
We give an example to explain the details of this method.
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Example 3.2. Consider a IDLCA defined by (24) on a 3-bit neighbourhood of the 10-digit long (m = 10)
states with periodic boundary conditions. The system states are represented by

%l

= (g g ol g g e ),

Elements of fixed solutions of the CA satisfy Eq.s (25-30) when m = 10. These equations can be simplified
to

axig+ freg =0

Y10 + 0x9g =0’ (31)

where o = b0 —9abBc+28a2b5¢? —35a3b* 3 + 15a*b%ct —aPc® — 19, B = ab® —8a?b"c+21a3b°c? — 20ab3 3 +
5a°bct, v = —b94-8ab"c—21a2b°c?4-20a3b3c® —5a*bct and § = —ab®+7a?b0c—15a3b*c? +10a*b?c3 —a’ct —c°.

Let matrix A = (: g) When A is invertible, the only set of solutions for (31) is 19 = 9 = 0, in

which case x1 = 29 = --- = xg = 0. The only equilibrium is the all ‘0’ state. When A is singular, however,
(31) has many sets of solutions, which indicates many equilibria for a CA system specified by (24). Because
a,b,c € R and ¢ # 0, the solutions of |A| =0 are c=—-a—bor c=—a+0b.

When ¢ = —a — b, it can be shown that

A= (8 ) =10

a a

where a = —5a%b — 20a®b? — 504753 — 80a°b* — 86a°b° — 62a2b5 — 29a3b” — 8a?b® —ab?. Let a = 1 and b = 2,
for example, then ¢ = —3. the governing function is

f(@im1, @i, Tig1) = Tio1 + 32 — 3wigr. (32)
Eq. (31) in this case becomes
axig — axg = 0.

Then any combination of xg and x1¢ satisfying xg9 = x19 is a valid set of solutions. The number of valid
combinations is infinite. If we take xg = 2 and x19 = 2, all other values of the initial state can be calculated
using Eq.s (25-30). Thus the corresponding fixed point is (2,2, 2,2,2,2,2,2,2,2,2,2,| 2,2). Indeed, for
the 1IDLCA defined by (32) with periodic boundary conditions, every point where all the elements equal
each other is an equilibrium for this system.

Similar results can be found when ¢ = —a + b, which results in
A= < “ 0;) = |A| =0,
Ta " a
where a = 5a”b — 20a8b% 4+ 50a7b3 — 80a%b* + 86a°b° — 62a*b° + 29a3b” — 8a%b® + ab?. Again, for any set of
a, b, ¢ satisfying ¢ = —a + b, it specifies a transition function, which governs a CA with an infinite number
of fixed points, where 19 = —xg.

Note: The method for finding equilibria detailed above extends to any finite CA sizes.
Remark 3.2. The state (0,0,]0,0,---,0,|0,0) is always a fixed point of a cellular system governed by (24).

Lemma 3. The number of equilibria of a one-dimensional cellular automaton given by a linear local rule
(24) is either 1 or infinite.

Lemma 2 and Lemma 3 together demonstrate the important impact boundary conditions have on the
equilibria and therefore the dynamical structure of a 1IDLCA with finite CA size.
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3.3. 5-bit Linear Rules

As explained in Section 2, periodic solutions of period 2 for the 3-bit automata are fixed points of the
equivalent 5-bit automata. Now consider a 1D CA defined on a 5-bit neighbourhood by a translated linear
function:

f(mi—o, i1, @i, i1, Tig2) = axi—o + bxi—1 + (¢ + V)x; + dxiy1 + exipa + g, (33)
has system states
x" = (0,0,0,0 | 2", 2l . 2l 1 0,0,0,0).
Values of the system’s fixed points obey the following condition:
axi—o + bxi_1 + cx; + driy1 + exizo + g =0.

The process of locating fixed points of the system is very similar to the one described in Section 3.1, if the
system is bounded by ‘Os’ on both sides of the states. This is achieved by representing ;s in terms of the
other variables, i.e.

axi—o +bxri 1+ cx; +drip1 +g
. .

Ti42 = —

and using the zero boundary conditions. Although the process of finding elements of fixed states is similar

as in Section 3.1, because the CA has a 5-bit local function, the ‘0’s on both sides of the state boundary

provide 4 polynomial equations (instead of 2 as of the 3-bit case) by linking z,—3, Tm—2, Tm—1 and x,,

respectively. These 4 new equations contain 5 variables a, b, ¢, d and e, as g is a common factor which can

be eliminated if g # 0. Numerical solutions of these variables can be calculated to determine the elements

of the fixed point of a certain 1IDLCA governed by (33). Lemma 2 is also valid for any CA defined by (33).
If a 5-bit IDLCA has periodic boundary conditions, the system states are in the form of

X[n} = (xgz]—& x[mn}—% :U[mn]—la 95% | :U[ln]vx[Zn]a e >:U[mn]v ‘ x[ln}7x[2n]7wi[’)N]7x£ln])7
and the 5-bit governing function is represented by
f(Tice, Tic1, Ti, Tig1, Tig2) = axi—2 + bri—1 + (¢ + 1)x; + dxiy1 + exiqo. (34)

Similar steps as described in Section 3.2 for determining equilibria can be adopted and A is now a 4 x 4
matrix. Lemma 3 holds for IDLCA defined by (34) on a 5-bit neighbourhood.

In the next two sections of the paper, we show that if the state is doubly infinite, so that there are
no boundaries, then the system’s recurrent behaviour is completely different. In particular, we show that
such systems contain uncountably many periodic solutions of all periods.

4. Dynamics of Real Automata

We consider linear dynamics on the infinite-dimensional vector space

o0
V= oRORORG. - = @ R

1=—00

Vectors in this space will be denoted by

(L’:( y L2, T-1, Lo, L1, T2, )T
We consider first rank 1, 3-bit real automata defined by
y = Ax, (35)

where A is a doubly-infinite matrix. In terms of coordinates, the dynamics (35) is given by

Yi = axri—1 + bx; + criy1, —oo <1 < 0.
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Thus, A has the form

SIS e
SO
e}

l.e.
A=ali+ bl +cRy,

where [ is the doubly-infinite identity matrix and

[0 i [0 1 i
1 0 0 01 0
L= oo , Ri= S
0 1 0 0 0 1
I 10 I 0]

In order to obtain an explicit form for the dynamics, we introduce the doubly-infinite matrices
Li = (0k k—i)—oo<k<oos Bi = (O kti)—co<k<oo-
Thus we have

Lemma 4. The operators L;, R; satisfy the relations

RiLi=ILRy =1,

Li,j, ifi>j
LiRj =R;L; =1,  ifi=j,
Rj_i, if j >

and LF =Ly, RF=Riy.
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Proof. These follow by elementary computation. (Note, however, that these relations do not hold for

finite-dimensional truncations of R; and L;.) W

Theorem 1. The elements of AF are given by

(Ak>“:07 ifj<i—korj>i+k,
Z?]
k!
(Ak> = Z —'apleQCp:S, Zf pl_p3:l&0<l§k,
v lpl=k, 1>0 "
|
(Ak) = > E“plbpchg» if p3—p1=1&0<1<k,
i+l !
|p|=k, >0
ii ! :

Ip|=k, p1=p3
Proof. We have
A=ali+bl +cRy
and so
AF = (aLy + bl + cRy)*

k!
= Z —‘((aLl)pl(bI)pQ(ch)p?’), (multinomial theorem)
lpl=k
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where p = (p1, p2, p3) and p! = p1! pa! p3!. Thus, we have

k!
AP =" —aPr b L RY

o=k ¥
k! »
= > =", Ry,
—. D
Ip|=k
k!pl 2 ~P3 k!P123 k!pl 2 ~P3

= Y VP Ly + D AR+ Y S R Ry g,

|p|=Fk, p1>p3 |pl=k, P1=p3 Ip|=Fk, P1<p3

Now equate like indices. W

5. Periodic Solutions of Real Linear Automata

We now consider the periodic points of doubly-infinite real automata. The general state will be denoted
by a doubly-infinite vector z € --- G RPR PR P -- -, i.e.

T

T = ( , -2, T—-1, Lo, L1, T2, ) .

Consider first the case of fixed points, i.e. period 1 orbit. The dynamics are given by

y = Az,
or
Yi = axri—1 + bx; + crip1, —oo <1 < 0.
For a fixed point we have
T = axi—1 + bx; + crip1, —oo <1 < 00,
ie.
Tir] = (126)331 — %xi_l, VielZ (36)
and
. — ) gy — gscm, VieZ. (37)

To solve (36), let s; = 17_6, q1 = —%. Then putting z; = [1:;_1], we have
1

. e 0 1 .
S PP

i—1 i—1
el o=lad) R @
q1 S1 q1 S1 T

Similarly, to solve (37), we put so = 17—17’ @2 =—7 and z; = [xiﬂ]. Then

. _ 0 1 .
Zi—1 = ¢ 2 Zis

3
01 017 [z,
= — . 39
o [% 82] =0 |:Q2 82} Lﬂo} (39)

Hence (38) and (39) give a two-parameter set of fixed points of the dynamical system.

and so

and so
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In general, period-k orbits are given by the fixed points of the (2k + 1)-bit automaton A*. As above
we can write the fixed point equation in the form

k k k k k
Ti = Qi pTick T O g1 Tiok+1 T+ 05T + Qi 1 Tig1 + -+ Q4 Tk
As before we obtain a ‘forward’ and a ‘backward’ equation (assuming afi_ 7 0, afi P OF

k
(=05 1 k k
Lit+k = T Ly — — Qi g Tiek + T QG 1 Titk—1)
itk Ofitk

(1 - af,z) 1 ( k
Ti—f = T, —
o

k
% Qi—ft1Ti—k+1 + 0+ %,z‘+k$z’+k> :
Qi k ii—k

This leads to the equations

01
0 1 0
Zi+1 = 0 IR Ziy (40)
0 1
ataf @ - @]
where z; = (Ti—2k+1, Ti—2k+2, * , %;), and
0 1 -
0 1 0
Zi-1= 10 Zis (41)
0 1
BB B B
where z; = (zi12k—1, Titor—2, -+ ,2;). This gives a 2k-parameter set of period k points.

Example 5.1. As an example, consider the system given by the infinite matrix A as follows:

0.50.304
A= 0.50.304
0.50.304

ie.a=0.5,6=0.3,¢c=04and y; = 0.52;_1 + 0.3z; + 0.4x;41. Then

0.25 0.3 0.490.24 0.16
A% = 0.25 0.3 0.490.24 0.16
0.25 0.3 0.490.24 0.16

Solving Equations (40) and (41), we find the period-2 point:
(--+,15.747, —7.4434, 3.0464, —1.292, 1,0.3, 0.4, 0.5, — 1.6, 2.775, —10.825, 27.302, - - - )T,

6. Conclusions

In this paper, a previously discovered graph theory based technique [Xu et al., 2009] for finding period
solutions of one-dimensional binary automata has been extended to two-dimensional and p-valued CA.
We have demonstrated the effectiveness of this approach in the binary situations, where periodic orbits
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are uncommon and difficult to identify traditionally. The rich dynamical behaviours of cellular systems
based on real-valued states have also been studied. We have shown that boundary conditions play very
important roles in the dynamical structure of cellular systems. As shown in this paper, when strict boundary
conditions are imposed, fixed points and periodic solutions are very much restricted. However, when the
boundary conditions are relaxed and the system is defined on infinite-dimensional vector space, there exist
uncountable numbers of periodic orbits of almost arbitrary structure. Including boundary conditions (even
for linear systems) introduces high order polynomial equations, as shown in Examples 3.1 and 3.2. Whatever
approach is taken, these equations will have to be solved, to identify periodic points. In a forthcoming paper,
we shall show how to deal with general boundary conditions in both 1D and 2D linear CA.

The findings presented in this paper lead to better understanding of cellular systems’ dynamics when
CA are used as a modelling tool in a variety of applications. In particular, our future research will focus
on the dynamics of two- and three-dimensional lattice gas cellular automata and lattice Boltzmann models
[Halliday et al., 2017], [Xu et al., 2017], where real-valued states are adopted. Note finally, that the methods
of Section 5 can be applied to nonlinear systems, by using the implicit function theorem, although we can
no longer obtain explicit solutions as in Section 4.
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