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Relation Between Start-ups' Online Social Media Presence and 

Fundraising  
 

Abstract 

The emergence of social media such as Facebook and Twitter have changed the way 

human beings communicate and interact in the context of business settings. In order to further 

explore the use of social media for entrepreneurs, we have explored how entrepreneurs use 

social media for fund-raising purposes. The novelty of this study is the use of social 

relationships (represented by social network features) as the main way to predict whether or 

not funding investments will occur. We use Application Programming Interfaces (APIs) to 

collect entrepreneurs’ funding data from Crunchbase and entrepreneurs’ social media data 

from Facebook and Twitter. We selected 123 companies in the “web” and “software” 

industries from Crunchbase. All the companies use Facebook and Twitter for fundraising 

purpose. Our results show that social media is significant for start-ups in their success or 

failure in fund raising. Investing energy into utilizing online social media and exhausting 

these platforms consciously contributes to the financial success of start-ups. Therefore, start-

ups which are popular among online fans and followers can manage to raise larger amounts of 

funding in the early stages if it's done correctly. 
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Introduction 

Network-based research in entrepreneurship continues to develop and grow for more than a 

decade. Among all the studies, core relational and structural constructs of social networks are 

the main focus in the field of entrepreneurship (Elfring & Hulsink, 2003; Hite & Hesterly, 

2001; Hoang & Antoncic, 2003; Hoang & Yi, 2015). As social media has renovated the 

communication and interaction between individuals throughout the world, social media is also 

utilized as an essential tool by entrepreneurs to maintain relationships (Kadam & Ayarekar, 

2014). According to Wasserman and Faust (1994), in a social network, relational ties between 

actors are channels for the transfer or “flow” of resources. In other words, actors and ties are 

the two components of a social network. Previous studies also indicate that online social 

networks are connected to offline social networks (Subrahmanyam et al., 2008). While the 

topic of funding investments is one of the most widely discussed topics in the realm of 

investing and business, few studies provide evidence as to how start-ups can increase funding 

investments from investors (Liang & Yuan, 2016). One way to understand how start-ups can 

increase their chances of receiving funding investment from investors is to understand one's 

business networking behavior. 

 Previous studies show that the emergence of online networking has opened the door 

for innovative companies to connect with each other and to operate more efficiently (Ellison, 

2007; Ross et al., 2009). Although it is apparent that not all entrepreneurial undertakings 

contribute similarly to economic development, knowledge-based enterprises lead to the 

revitalization of the economy by prompting innovation, competition and industry dynamics 

(Brüderl & Preisendörfer, 1998; Burt, 1992). However, many early-stage businesses still face 

a lack of capital and background information about markets and competition that interfere 

with their future opportunities. Researching entrepreneurial success and failure in relation to 

one's online social presence may improve the survival and growth of their start-up business. 

Venture capital investment plays a crucial part in entrepreneurial practices. Funding plays an 

indispensable role in the evolution and eventual success of new ventures. Fundamentally, a 

strong social network with funding sources, opportunities for the start-up, by granting them 

access to superior information about new ventures and the environmental conditions they face 

(Alexy et al., 2012). 

 The popularity of online social networking sites provides a new platform for 

socialization and business activities (Ellison, 2007; Ellison et al., 2014; Kaplan & Haenlein, 

2010). Social media, and in particular social network sites, are relatively recent additions to 

many individuals’ communication technology repertoires (Quinn, 2016). Social media acts as 

a powerful platform for communicating brand value and brand attributes by facilitating open 

forms of communication (Kadam & Ayarekar, 2014). Previous studies mainly focused on 

social media as a marketing tool for promoting products and attracting consumers, but 

recently a growing number of entrepreneurs have realized its potential in attracting funding 

(Clark & Melancon, 2013; Kadam & Ayarekar, 2014). According to Liang and Yuan (2016), 

entrepreneurs with broader social networks are more likely to receive funding from investors 

and accomplish business development. On the other hand, Tan and Tan (2012) explored the 

roles played by online and offline communities and discovered that offline communities have 

greater influence on investing behaviors.  

Social media provides entrepreneurs with new information and resources to support 

their businesses (Choi and Berger, 2010). Online social networking sites disregard geographic 

boundaries, thereby providing one with free flow of information and worldwide connections, 

which in turn accelerates opportunity recognition and implementation (Choi and Berger, 
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2011). Taking into consideration the relevance of network building and the increasing number 

of social media users, the question arises: how can innovative, fast-growing businesses benefit 

from inherently free social media platforms to run their businesses more efficiently and raise 

funds? 

Research has highlighted that financial capital is one of the fundamental challenges for 

start-ups (Cassar, 2004; Zhang, 2015). As a result, establishing better and wider professional 

relationships could support start-ups in reaching potential supporters and investors. Previous 

studies have shown shows that actively managing, grooming and maintaining one’s online 

social network contributes to social capital (Ellison et al., 2014). Hong (2013) discussed that 

an increasing number of venture capitalists rely on social media to monitor promising start-

ups’ social-media efforts to assess their investment potential. Other studies also provided 

evidence as to how entrepreneurs can increase funding investments from investors by using 

social media (Alexy et al., 2012; Liang & Yuan, 2016).  

The opportunities of fast-growing social media platforms such as Facebook, Twitter, 

Instagram and LinkedIn should be researched more in-depth since they have changed the way 

entrepreneurs communicate and interact with a variety of stakeholders. These platforms offer 

entrepreneurs new opportunities for accessing information and resources (Song, 2015). 

Therefore, this research focuses on the added value created by social media and examines 

their impact on entrepreneurs’ fundraising efforts. Using quantitative research methods, this 

study analyses the importance of online social networks for the successful launch of start-ups. 

In particular, we aim at studying the relationship between start-ups social media activities and 

the amount of funding they raise. 

 

Theoretical Framework 

Start-ups are technology-based, new companies that are beyond the phase of idea or 

concept and have already established their legal infrastructure (Autio, 1997). Start-ups are 

considered as fledgling, knowledge-intensive business firms that have promising ideas and 

exhibit the ability to grow rapidly in a relatively short time (Hechavarr et al., 2016). Start-ups 

are able to convey a new product or service under circumstances of extreme uncertainty (Ries, 

2011). Start-up success is embedded in a broad set of skills and expertise of the entrepreneur 

such as human and financial capital and access to networks (Gompes & Leruer, 2001). 

However, start-ups usually cannot build on the entrepreneur's human and financial capital 

alone (Tatarko & Schmidt, 2016). Therefore, online and offline networks are crucial for them 

to get the necessary financial and knowledge resources needed to succeed (Wu, 2007).  

Research has indicated that start-up founders usually find it difficult to raise funds 

(Davila et al., 2003). Most of them are not eligible for bank loans or debt due to the fact that 

their businesses’ operating history is limited. Some entrepreneurs are able to get funding from 

“family, friends and fools” (from the so-called three Fs) but in many cases it is not sufficient 

(Mason, 2007). In the context of offline networks, Baron and Markman (2003) found a 

positive relation between social business networks and financial success. Effective network 

building is considerably more important for early-stage companies (Burt, 1992; Hoang & 

Antoncic, 2003; Hoang & Yi, 2015) since networks offer the access to information, goods and 

services, expressions of affects, support and advice (Tichy et al., 1979). In the era of the 

Internet, social media has become a prevalent and key source of information sharing (Choi & 

Berger, 2011). It eliminates the barriers of time and space, and broadens the way 

entrepreneurs communicate, build networks, and how they obtain financial support. Online 
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interactions have now filled the communication gaps of offline communication (Wellman et 

al., 2001) and hence become more important to understand.  

 From the concept of network content, social media allows entrepreneurs to gain the 

access to a variety of resources (Hoang & Yi, 2015). Hampton and Wellman (2003) examined 

the online networks of various local communities and found a positive effect of one's social 

interaction with social capital attainment. This can be seen as a result that online social 

networks let firms engage in discussions, share information and connect with others such as 

customers, employees, communities, analysts and investors. It is has been illustrated that 

companies’ sales and marketing results have improved due to their social media presence 

(Clark & Melancon, 2013; Fischer & Reuber, 2011; Mangold & Faulds, 2009). Furthermore, 

online networking and specific structural properties of these networks can contribute to firms’ 

success (Nann et al., 2010). However, whether the growth in online network size and network 

fan/follower activity helps achieve milestone events such as fund raising is a question 

worthwhile to study. We assume that online social networking sites lead to supportive 

opportunities in business development and accelerate young firms’ recognition and expansion 

on the market. In this paper, we will examine start-up activities on Twitter and Facebook in 

order to expand their professional network and raise funds. We intend to shed light on the 

connection between start-ups’ online activities and the amount of financial support received 

from investors. Our main hypothesis is that funders have a tendency to invest in start-ups with 

which they share certain social relationships, in terms of whether the funder and the start-up 

in question are similar or dissimilar. That is, this study combines social network analysis with 

the study of investing behavior.  
 

Conceptual Framework 

Network size 

Network size refers to the number of network actors (Burt, 1983). Network size is one of the 

important structural characteristics in the context of entrepreneurship research (Hoang & Yi, 

2015; Semrau & Werner, 2014). The larger the network is, the greater the amount of 

information circulates in it (Clark & Melancon, 2013). Previous research illustrated that the 

size of the network has a positive influence on entrepreneurial success (Baum et al., 2000; 

Hansen, 1995) and that the size of social networks is positively associated with the success of 

early-stage start-ups (Brüderl & Preisendörfer, 1998; Hoang & Antoncic, 2003; Hoang & Yi, 

2015). According to Witt’s model (2004) the more contacts an entrepreneur has, the more 

support he receives, which positively influences the success of start-ups, an engine that drives 

capital attainment. Larger networks are expected to pay off because network contacts provide 

access to resources, and the size of a network indicates how many different resource holders 

nascent entrepreneurs can potentially rely on when trying to establish their ventures (Berger 

and Gavish, 2015; Semrau & Werner, 2014). Furthermore, the number and strength of ties 

that a funder has with its peers and entrepreneurs is thus an indispensible source of 

information it may use to leverage its portfolio investments (Alexy et al., 2012). Thus, the 

more connections a start-up has, the higher the likelihood that funders will become aware of 

new high-quality investment prospect. 

From online social network perspective, there are several studies in the field showing 

a positive effect of larger or more diverse networks (e.g., Raz & Gloor, 2007; Stam & Elfring, 

2008) on stronger network relationships (e.g., Lee & Tsang, 2001). Lechner et al. (2006) 

claimed that there is a positive relationship between network size and performance. In this 

paper the number of fans and followers serves as a proxy for network size. We notice the size 
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of online networks exceeds dramatically that of offline connections. Based on previous 

studies, a positive relation is expected between the online network size of a start-up and the 

total amount of funding rose. The following hypotheses are formulated. 
 

Hypothesis 1: The size of a start-up's online network is positively related to the total 

amount of its funding raised. 
 

Social media activity of users: Fan activity score and Follower activity score 

Besides monitoring a company’s online community size, the fraction of its active fans 

or followers, who frequently share, like or comment online content, also identifies whether 

social media presence is beneficial. Previous studies such as Clark & Melancon (2013) and 

Kadam & Ayarekar (2014) show that social media activities are relevant as a marketing tool 

or building relationships. Social media users share a vast amount of content on social media 

platforms every day. According to Gundecha and Liu (2012), “Social media data are largely 

user-generated content on social media sites. Social media data are vast, noisy, distributed, 

unstructured, and dynamic”. The large amount of data that social media contains can help us 

understand human behaviors in difference fields (Clark & Melancon, 2013; Gilbert & 

Karahalios, 2009; Midkiff et al., 2015). In addition, they might contain valuable and 

beneficial data for businesses, users and consumers (Gundecha & Liu, 2012). 

Social media platforms provide supplemental tools for page admins to calculate a 

useful metric, the so-called “Engagement Rate”. It interprets the proportion of a page’s 

audience engaged with its content. On Facebook it is available under the “Page Insights” 

function. Facebook Engagement Rate takes into account the total number of likes, comments 

and shares. Then the total can be multiplied by the number of fans to provide a percentage 

measurement (Socialbakers, 2015). Similarly, we can also calculate Twitter Engagement Rate 

by using the same method. Number of replies, retweets and mentions of the tweets are added 

up. To get a percentage rate, the total is multiplied by the number of followers (Socialbakers, 

2015). However, some of these metrics are post metrics, while some are not available to the 

public. Therefore we designed our own measurement scale to calculate engagement. The 

value of relationships is measured by “Facebook fan activity score” and “Twitter follower 

activity score”, which are estimated on the basis of the retrieved metrics. We assume 

companies that build an active online community show better business performance and can 

increase their awareness more easily. In this study performance is indicated by the amount of 

total funding, engagement rate is indicated by activity score. Based on the above discussion 

the following hypothesis is created: 
 

Hypothesis 2: The more active fans/followers a company has on Facebook/Twitter, 

the more funding it raises in total. 
 

Frequency of social media usage 

Burt (1992) found that the amounts of time and effort invested in building social 

capital further contribute to business success. In the area of social sciences, researchers found 

that the time spent on social media is relevant to frequency of communication (Cirillo et al., 

2015; Fischer & Reuber,2011). Assuming that crowd funding founders use social media as a 

tool to attract funding, the time they spend on maintaining existing and building new 

relationships online should be important when considering their success in raising capital. In 

our research, it is represented by the number of their posts and tweets. Positive relationships 
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among the intensity of entrepreneurs’ social interactions through Twitter and Facebook is 

slated to have a positive effect on capital attainment. Therefore, we hypothesis that:  
 

Hypothesis 3：The number of posts and tweets is positively related to a start-up’s 

total amount of funding. 
 

Venture capital 

Venture capital is defined as equity or equity-based investment in recently established 

companies by financial intermediaries, which invest in early-stage businesses. Venture 

capitalists are considered as investors who provide start-ups with more than just financial 

help. In return for the high risk of investment, besides ownership, venture capitalists get 

control over the company. They often play the role of director, advisor or manager of the 

firms due to their rich knowledge of markets and professional experience (Kortum & Lerner, 

2000). Venture-backed companies are proved to be more innovative and more successful due 

to venture capitalists’ additional (i.e., non-financial) support (Hellmann & Puri, 2002; Kortum 

& Lerner, 2000). Venture capital funding events are considered as a positive sign of the 

quality of start-ups (Davila et al., 2003). Baron and Markman’s research (2003) suggested that 

companies with broader social networks receive venture funding more easily. Based on the 

above discussion, the following hypothesis is formulated. 
 

Hypothesis 4: The broader and more active an entrepreneur's network on Twitter 

(number and activity score of followers) and Facebook (number and activity score of fans), 

the more likely it will rise venture capitalist funding. 
 

Stages of start-up funding 

Start-ups face the challenge of gaining awareness and trust of people, especially 

investors’, to get access to necessary resources (Liang & Yuan, 2016). Wu (2007) argued that 

network building increases the chance to gain funding in general (Stam & Elfring, 2008). 

Thus, in order to increase awareness and gain credibility through online platforms, the quality 

of the content and the activity of the companies are crucial. In this case, these can be 

measured by the number of users and by the number of posts. As discussed previously, the 

type of information might change in line with the start-ups venture phase (Elfring & Hulsink, 

2003; Hoang & Antoncic, 2003). In addition, Greve and Salaff (2003) explored that each 

phase of establishing a business requires different types of network activities. Entrepreneurs 

tend to limit their activities in the initial phase of their progress, as they may not feel 

confident about their business plan and abilities (Tan & Tan, 2012). However, after the start-

up is incorporated and their business is set up, one seems to be more inclined to share more 

about their ideas and needs with their network and hence, get support, attract potential 

business partners, and funding. The following hypothesis is formulated: 
 

Hypothesis 5: After a business is established, start-ups become more active on social 

media sites to attract their network’s attention. Social media activity increases between the 

first few rounds of funding. Based on our hypotheses, we generate our conceptual model 

(Figure 1). 
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Figure 1 Conceptual model 

Research design and data collection 

This research relies on a wide range of quantitative data, which was obtained from three 

different online sources which includes Facebook, Twitter and CrunchBase. Facebook and 

Twitter are the two social media platforms that the entrepreneurs use for fundraising (Priem & 

Hemminger, 2010). Crunch Base is a database of the start-up ecosystem consisting of 

investors, incubators and start-ups. It is constantly reviewed by editors to ensure that its data 

is up-to-date and reliable. The CrunchBase dataset is a formidable dataset to employ for social 

analysis as it covers almost complete relationships between start-ups and venture capitalists 

(Alexy et.al, 2012). The dataset of Crunch Base has been used in prior studies as well, 

however, all of these researches examined other fields of investor and start-up behaviour and 

activity (Eugene & Yuan, 2012; Xiang et al., 2012). CrunchBase can be best viewed as a 

‘‘repository’’ of start-up companies, individuals, and investors having a focus on U.S. high-

tech sectors (in particular IT and Internet). CrunchBase describes itself as a ‘‘free database of 

technology companies, people, and investors that anyone can edit.’’ As the database includes 

privately held firms with very few employees as well as multi-billion dollar businesses, the 

spectrum of firms included is wider compared to other company databases. The data was 

retrieved by using Application Programming Interfaces (APIs), which enables the collection 

of novel metrics, from various sources that provide a well-structured dataset. The CrunchBase 

dataset is a formidable dataset to employ for social network analysis as it covers almost 

complete relationships between start-ups and funders. The relationships between start-ups and 

VCs are materializing through investments (i.e., funding rounds). This is thus the point of 

departure for calculating the network metrics on the start-up network. Using the data set from 

CrunchBase, we build a CrunchBase social network based on the entity and relationship 

types, where nodes represent entities, while relationships represent edges. 

 

Data sample 

Information about start-up companies as well as data about their funding was collected 

from the CrunchBase website. CrunchBase is a database of the start-up ecosystem consisting 

of investors, incubators and start-ups. It is constantly reviewed by editors to ensure that its 

data is up-to-date and reliable (Alexy et al., 2012). The dataset of CrunchBase has been used 

in prior studies as well, however, all of these researches examined other fields of investor and 

start-up behaviour and activity (Eugene & Yuan, 2012; Xiang et al., 2012).The database 

covers privately held companies with very few employees as well as multi-billion dollar 

businesses, the spectrum of companies included is wider compared to other company database 

(Alexy et al., 2012). For this research data was extracted by using the CrunchBase 
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Application Programming Interface (API). Using CrunchBase API provides access to its free 

directory of technology start-up companies. 

First of all, our database included 37,875 companies with recorded fundraising until 

April 2014. Companies were categorized by industry; country; status; date of founding; date, 

round and amount of raised funding. Our research was conducted on start-up companies, 

operating in the U.S, which has been the leader in churning out start-ups globally (Tan & Tan, 

2012). As the purpose of our research is to check how start-ups using social media to collect 

funding, thus is a strong foundation for research. We selected firms from two high technology 

sectors: “web” and “software” (company category names are used by CrunchBase). The 

selection criteria were also supported by CrunchBase’s report, which was carried out by its 

data export tool as shown in Figure 2. Web and software companies were among the top 

company categories in terms of total amount of received funding between 2000 and 2014. 

Furthermore, according to the Facts and Figures of the Inc. 5000 report1, companies that are 

operating in the Software and IT services industry performed 136% and 111% aggregated 

growth in terms of revenues respectively.  

 
Figure 2: Top company categories by amount of funding 2000-2013 

Source: www.crunchbase.com 

 

Second, we dropped the start-ups that are no longer running. Since the study uses 

social media data, companies without active social media account on Facebook and Twitter 

were also removed from our sample. Due to the fact that social media traffic increased 

steadily after 2009 (Quinn, 2016). We selected companies that found after 2009 in order to 

obtain enough social media data. Based on all the criteria we’ve mentioned above, a sample 

of 123 companies was selected for analysis. 

 

Dependent variables 

The amount of funding raised represents the dependent variable in this study. The 

amount of funding was calculated both as a sum score as well as separate scores distinguished 

by type of funding.  

                                                      
 

http://www.crunchbase.com/
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Independent variables: Social media metrics 

Social media activity of the selected start-ups was monitored between 2009 and 2014. 

Social media metrics of each selected start-up company were extracted from Facebook and 

Twitter, for instance the number of fans or followers, and the amount of content (posts, 

tweets, images, shares or other content). The metric of presence, interactivity and reach are 

necessary to determine the traffic of a social media page. Sterne (2010) argued that the size of 

a company’s online social network does not have an important role in its success in social 

media. What matters most is how many people find its online content remarkable and then 

spread the word through sharing or retweets. 

 

Facebook  

Facebook metrics were collected through the use of Facebook Graph API. The following 

variables were studied:  

 Fans: refers to the number of Facebook users who “like” the company’s Facebook 

page.  

 Posts: refers to the number of how many times a day a company posted content to its 

page.  

 Likes: reveals how many “likes” a company’s post got each day.  

 Comments: shows how many times a day users commented on a firm’s Facebook 

posts 

 Shares: reveals how many times a company’s Facebook content was shared by users 

each day.  

 Fan activity score: measures what fraction of a Facebook pages (in this case a start 

up's) contents (posts) have caught its fans’ attention. For this report the metric of “fan 

activity score” is calculated based on the retrieved metrics (introduced above). First 

daily fan activity score was calculated for each start-up for 5 years as follows:   

 Then the average of the daily activity scores was estimated for each company. 

 

Twitter 

Likewise data mining on Facebook, Twitters’ API - so called REST API v1.1  -  was applied 

for data collection. However, in contrast with Facebook’s database, access to Twitter data is 

limited, only a limited number of calls can be made in a certain time period. This study 

analysed the following variables:  

 Followers: number of users who have chosen to follow the company.  

 Tweets: reveals how many times a company sent new content to its Twitter page.  

 Retweets: reflects the number of times that a company’s tweet was retweeted by its 

followers.  

 Favorites: similar to Likes on Facebook, it represents the volume of engagement of 

Twitter users.  

 Follower activity score: Twitter activity score on Twitter also indicates how a 

company or brand engages its followers on Twitter. Calculation was done similarly, as 

done for Facebook fans. First the daily Twitter activity score for all start-ups was 

calculated with the following formula between 2009 and 2013: Then the average 

amount of the daily activity score was estimated for each company. 
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Data reduction and analysis 

The data file was created in Excel and subsequently converted into a format that is 

recognizable in SPSS, where variables were defined in SPSS. Since the dataset did not 

contain any counter-indicative items, recoding was not necessary. Scales were not used, 

therefore tests of reliability and validity was not part of this analysis. After defining the 

codebook, the data was first reviewed for missing data, of which none was detected; hence, 

the total sample of 123 was retained for further descriptive analysis. Descriptive analysis was 

conducted first, followed by regression analysis (Model 1 & 2) and ANOVA analysis (Model 

3) for hypotheses testing. 

 

Data Analysis 

Model 1 

Descriptive statistics 

The frequencies table (see Table 1) shows that 123 companies were analysed, and as 

aforementioned no missing data was detected. The average value of the total amount of 

funding was $7,766,052.  

Table 1: Frequencies table 

 

Correlation analysis was used to quantify the strength and direction of the linear 

relationship between each pair of variables. Due to the fact that this study aims at using 

parametric statistics (e.g. Pearson correlation) all variables had to satisfy several assumptions. 

Outliers were detected because they could have altered the results of the analysis. Extreme 

outliers were removed to identify a more accurate model that accommodates unusual cases. 

Consequently 119 cases remained in the analysis. To use a Pearson’s correlation test, the 

assumption of bivariate normality must be satisfied. The normality of the variables’ 

distribution was tested by using the Kolmogorov-Smirnov statistic, which assesses the 

normality of the distribution of scores. A non-significant result (Sig value should be more 

than .05) indicates normality. In this case the Sig. value was 0 for each group of variables, 

suggesting violation of the assumption of normality.  

To be a valid test of strength, all variables were transformed in a way that corresponds 

to the size of the deviation from the normal distribution. The type of transformations depends 

Totalfunding Fans Followers Posts Tweets FbActSc TwActSc

Valid 123 123 123 123 123 123 123

Missing 0 0 0 0 0 0 0

7 766 052      42 078        18 765        651         1 402      5,41 1,51

1 816 666      997              1 270           303         1 344      0,21 0,18

300000a 45a 132a -           -           -           0,00

14 039 388    197 560      118 503      1 083      1 101      32,55 4,76

3,00                 6,45             10,47           4,24        0,22        9,42 4,73

0,22                 0,22             0,22             0,22        0,22        0,22 0,22

9,65                 43,25           113,38        24,36      1,44 -       94,75 22,77

0,43                 0,43             0,43             0,43        0,43        0,43 0,43

25 000            8                   10                -           -           0,00 0,00

78 000 000    1 537 254   1 296 668   8 479      3 220      340,48 29,21

Std. Error of Kurtosis

Minimum

Maximum

a. Multiple modes exist. The smallest value is shown

Mode

Std. Deviation

Skewness

Std. Error of Skewness

Kurtosis

Statistics

N

Mean

Median
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on the shape of the scores’ distribution. Therefore, the skewness and kurtosis values of the 

variables were checked. Based on the output table, values showed positively skewed and 

peaked distribution, which also refer to non-normal distribution. Logarithm and square root 

transformations were applied. After the transformations normality tests were carried out 

again, however, the scales did not follow normal distribution for all variables. Although the 

assumption of normality is violated, Pearson’s correlation model was chosen on the basis of 

the following studies. On one hand, according to Rasmussen and Dunlap’s (1991) observation 

study on non-normally distributed variables, parametric analyses of transformed data proved 

to be more powerful than nonparametric analysis of untransformed data. Furthermore, the 

Pearson correlation is considered to be robust and it withstands violations of normality 

(Bishara & Hittner, 2012). The critical values for correlation coefficients were calculated at 

the .05 level of significance based on the sample size (See Table 2 and Table 3). 

 

 Table 2: Correlation coefficients                                     Table 3: Strength of correlation 

Critical values for r  

N 119 

p < .10 0,15 

p < .05 0,18 

p < .01 0,24 

p < .001 0,30 

 

 

The correlation table shows how the variables are correlated and moving together. 

Results of the Pearson correlation analysis are presented in table 4 and table 5. 

 

Table 4: Correlation Table – Twitter                         Table 5: Correlation table – Facebook 

 
Total 

Funding 
Followers Tweets 

Followers ,31*   

Tweets ,17 ,49*  

FollActSc ,05 ,29* ,33* 

 

Note: *=statistically significant at p<.05 level.                                               Note: *=statistically significant at p<.05 level 

 

Twitter 

As shown in Table 4, there was positive and significant correlation between the following 

variables: 

 Total amount of a company’s received funding and the number of its followers on 

Twitter, r=.31, p<0.0005 

 Number of followers and number of tweets, r=.49, p<0.0005 

Critical values for r Strength of Association 

0.1 < | r | < .3 small correlation 

0.3 < | r | < .5 
medium/moderate 

correlation 

| r | > .5 large/strong correlation 

 
Total 
Funding 

Fans Posts 

Fans ,29*   

Posts ,07 ,58*  

FanActSc ,35* ,61* ,52* 
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 Number of tweets and  Follower activity score (FollActSc), r=.33, p<0.005 

 Number of Twitter followers and Follower activity score, r=0.29, p<0.0005 

 

Overall, there was a positive correlation between a start-ups’ number of Twitter followers and 

the total amount of its funding. Furthermore positive, inter-correlation was found between 

social media metrics namely; between the number of followers and the number of tweets, and 

between the number of tweets and the value of follower activity score. There was positive, 

small association between the number of followers and the follower activity score.  

 

Facebook 

Positive, significant relationship was observed between the variables as follows: 

 Total amount of funding and Fan activity score (FanActSc), r=.35, p<0.0005 

 Number of Facebook fans and number of posted contents, r=.58, p<.0005 

 Number of Facebook fans and value of Fan activity score (FanActSc), r=.61, p<0.0005 

 Number of posts and Fan activity score (FanActSc), r=.52, p<0.0005 

 Total amount of raised funding and the number of Facebook fans, r=.29, p<0.0005 

 

To sum up, the results showed a positive, relationship between start-ups’ total amount of 

funding and their fan activity score. A positive, small association was revealed between the 

total amount of raised funding and the number of Facebook fans. Furthermore, positive inter-

correlation existed between the following independent variables: Facebook network size and 

number of posts, network size on Facebook and fan activity score, number of posts and fan 

activity score. Although VIF and tolerance values did not indicate the possibility of 

multicollinearity, results should be interpreted carefully due to the violation of the assumption 

of normality. In the next step we continued our regression analysis to test our hypotheses. 

 

Multiple linear regression 

To test the stated hypotheses, a multiple regression model was used. Multiple linear 

regression analysis was conducted to determine the relative contribution of each of the 

predictors to the total variance explained above. The conceptual model was tested for each 

social network, Twitter and Facebook, separately. To ensure the validation of the tests, 

several assumptions were held. Since many of them were checked by inspection of the 

residuals the regression analysis needed to be run. Initially, the analyses were run on “pure” 

variables to check the assumptions (Field, 2009). Results showed that assumptions were 

violated, therefore corrections needed to be done. First, outliers were deleted. Then the 

logarithm of dependent and independent variables were used instead of “pure” variables. 

Using logarithm transformation helps to minimize the relative standard deviation instead of 

the absolute one and lets the error term be closer to normality, additionally the influence of 

the possible outliers will be less severe. After the aforementioned corrections, assumptions 

were investigated again: linearity, multicollinearity and homoscedasticity were checked 

(Field, 2009). Coefficients and correlation tables were checked for multicollinearity. 

Correlations between the independent variables were not too high; VIF and tolerance values 

did not indicate the possibility of multicollinearity. All the assumptions passed the test 

allowing further analysis. 
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Model 1 for Twitter 

The regression analysis showed whether the number of Twitter followers, the number 

of a company’s tweets and its follower activity score have an effect on their raised amount of 

funding. The model reached statistical significance. As shown in table 6, the model explains 

12.7% of the variance in total amount of funding (adjusted R²). By analysing the results of the 

regression analysis, it could be observed that only the number of followers made a significant 

contribution to the total amount of funding (β=.337, p=.008). From these findings, the 

hypothesis 1 is accepted, hypothesis 2 and 3 are rejected. 

 

Table 6: Regression coefficients table – Twitter 

Predicting  

'Total amount of funding' 
Beta p 

Twitter followers .337 .008 

Follower Activity Score .084 .933 

Tweets .023 .851 

R²=12.7% 

 

Model 1 for Facebook 

According to our ANOVA analysis, the model for Facebook was found to be 

statistically significant as a whole. It explains 21.3 % of the variance in total amount of 

funding (adjusted R²) according to table 7. Two out of the three independent variables had 

significant influence on the total amount of received funding. Fan activity score made the 

largest unique contribution to the total amount of funding (ß=0.436, p=.001). Furthermore, the 

amount of the start-ups posted content on Facebook also made a statistically significant 

negative contribution (ß= -0.245, p=.017). Results showed that the number of Facebook fans 

(network size) on Facebook had no significant effect on the total amount of funding (ß=0.14, 

p=.269). From these findings, only hypotheses 2 is accepted and the hypothesis 1 and 3 are 

rejected. To sum up, the activity score of the fans showed an effect on the total amount of a 

start-up’s raised funding. The network size did not have a significant influence on 

fundraising. However, it is quite surprising, that the amount of Facebook posts resulted with a 

negative ß, which can be explained by the importance and credibility of content. 

 

Table 7: Regression coefficients table – Facebook 

Predicting 

'Total amount of funding' 
Beta p 

Facebook fans .140 .269 

Fan Activity Score .436 .001 

Posts -.245 .017 

 R²=21.3% 
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Model 2- Logistic regression 

Logistic regression was performed to ascertain the effects of network size and activity 

of fans and followers on Facebook and Twitter on the likelihood that start-up companies 

received venture funding. Assumptions of the test were checked. The logistic regression 

model was not statistically significant and indicated a poor fit. The model was tested again to 

correct the fit of the model. Predictors were included in the model separated for each social 

media site. However, the model did not prove to be significant. Consequently, hypothesis 4 is 

rejected. 
 

Model 3- One-way repeated measures ANOVA  

Due to the limitation of the applied program to retrieve social media data, this analysis 

was conducted only on Facebook activity metrics. This is because of the data limitation that 

can be accessed in a certain time period for Twitter. One-way repeated measures analysis of 

variance (ANOVA) was conducted to determine whether there were statistically significant 

differences in start-ups’ Facebook activity at Time 1 (before 1st round of funding), Time 2 

(1st round – 2nd round) and Time 3 (2nd round – 3rd round). Their activity was measured by 

the number of posts. Consequently only 123 start-ups were selected, which received funding 

at least three times. Assumptions of the analysis were tested in advance. The repeated 

measures ANOVA is fairly robust to violations of normality with large enough sample sizes 

(e.g. 30+) (Pallant, 2005) were examined. The means and standard deviations of the original 

date are presented in table 8 below. 

Facebook activity of start-ups were statistically different at the various stages points 

during fundraising [Wilks’ Lambda=0.822, F (2, 38) = 4.121, p < .05, multivariate partial eta 

squared = 0.178]. Table 8 and 9 show that start-ups became more active, the number of their 

posts increased at each successive time point (i.e. increasing at each stage). Contrast analysis 

showed obvious trends in the data sample. Consequently Hypothesis 5 is accepted. 

  

Table 8: Descriptive Statistics 

Descriptive Statistics 

 Time 

period 
Mean 

Std. 

Deviation 
N 

Time1 34,2 104,6 40 

Time2 118,7 366,7 40 

Time3 232,1 518,4 40 
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Table 9: ANOVA 

Multivariate Tests
a
 

Effect Value F Hypothesis 

df 

Error df Sig. Partial Eta 

Squared 

time Pillai's Trace ,178 4,121
b
 2,000 38,000 ,024 ,178 

Wilks' Lambda ,822 4,121
b
 2,000 38,000 ,024 ,178 

Hotelling's Trace ,217 4,121
b
 2,000 38,000 ,024 ,178 

Roy's Largest Root ,217 4,121
b
 2,000 38,000 ,024 ,178 

a. Design: Intercept  

    Within Subjects Design: time 

b. Exact statistic 

 

The findings suggest that the examined social media activities on both social media 

platforms—i.e., Facebook and Twitter—contribute differently to a start-up’s total amount of 

received funding. Regarding Twitter, only one of the hypothesis proved to be statistically 

significant, which revealed that a company’s online social network size has a significant 

impact on its total amount of funding. Hence, only hypothesis 1 was accepted. Concerning the 

assumptions about Facebook metrics, two of the independent variables made a significant 

unique contribution to the prediction of the total amount of funding raised. On one hand, the 

number of posts, which identifies the frequency of a start-up’s social media usage, revealed a 

negative effect on fundraising. On the other hand, the average Facebook fan activity score of a 

start-up also showed significance. Hypothesis 2 was rejected and 3 was accepted. The 

explanatory power of the developed regression models (adjusted R-squared values) were 

relatively low. However, this does not represent a threat to the model’s validity. In general, 

low R2values are common in behavioral science research (Chau & Hu, 2002). Hypothesis 4 

was formulated on theories of venture investors, however, in this case assumptions were not 

met. Network size and activity score did not show any effect on venture funding, hypothesis 4 

was rejected. Last but not least, social media activity was analysed between phases of 

fundraising. Analysing contrasts at different time points showed that the differences in start-

ups’ Facebook activity were significant. As start-ups started operating and obtained 

investment by funding rounds, their social media activity started to increase simultaneously 

and raised public awareness of businesses. Hypothesis 5 was supported. 

 

Conclusion 

Social capital in its various forms and contexts have emerged as one of the most 

salient concepts in social science. This is specifically due to the assumption behind social 

capital, that people invest in social relations and expect something in return (Soetanto and 

van-Geenhuizen, 2015). From a practical perspective, understanding network dynamics helps 

answer the question of which ties matter and when, especially in capital attainment. New 

firms that are inhibited by liability of newness ought to use their social networks to develop 

early reputation networks to foster firm development (Matthews & Reynolds, 2016). 

 Even though we recognize the contributions made by prior research, we find that there 

is a dearth of research systematically addressing how the characteristics of entrepreneurs’ 

networks affect their access to needed resources (Alexy et al., 2012). Over the last few years 

numerous changes have occurred in the way people and firms share information and interact 
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with each other. Social media has a pioneering role in the field of communication and 

connection with audiences. Social media increases the ability to create and maintain weaker 

ties, allowing a relatively larger number of connections to be maintained at once (Donath, 

2007). Although online social networking developed as a consumer-driven service, 

entrepreneurs have now begun to exploit official and unofficial networks for capital 

attainment (Frydych et al., 2014). Social networks takes outdated ‘offline’ business processes 

into an online atmosphere, enabling entrepreneurs to cultivate and facilitate business 

development. Features such as online-based communities and interaction mechanisms 

produce novel settings for capital attainment, illustrating the potential for unique 

entrepreneurial procedures and potentially different success drivers. A more detailed study on 

the ways in which engagement with these media relate to social capital outcomes is warranted 

to better understand the dynamic of social media.  

 The aim of this research was to analyse an alternative way of getting financial support 

for start-ups, operating in the IT industry. We gathered data related to IT companies and their 

social media data. Quantitative analysis was conducted in order to test how start-ups use 

social media sites and how it in turn affects their fundraising abilities and success. Our 

analysis provided some interesting results and they support earlier qualitative studies (Alexy 

et al., 2012; Xiang et al., 2012; Liang & Yuan, 2016). We also strongly believe that the 

insights generated bear clear practical implications. Our results underline the often-cited claim 

that networking activities may be valuable for (nascent) entrepreneurs, as investing time and 

energy in extending a network and increasing relationship quality may facilitate access to 

needed resources. Funding investment behavior is a highly complex problem and we 

understand that there are more factors than those which are discussed and implemented in this 

study. More importantly, the problem is a non-linear one. Intuitively, we know that investors 

do not make funding investment decisions based on a single factor but rather on a plethora of 

factors. We claim that social variables are reasonable features for predicting funding 

investment behavior. Our results show that it is possible to predict funding investment 

behavior based on social relationships. Start-ups should take their social relationships into 

consideration when seeking investments from a prospective investor 

 Our research shows whether social media performance of start-ups have any effect on 

their raised amount of funding. Traditional media metrics were selected (Kaplan and 

Haenlein, 2010; Kietzmann et al., 2011) and implemented on Facebook and Twitter to analyse 

the performance of the selected start-ups: size, quality, and the intensity of social network. It 

is important to note that the analysis revealed different results between the different social 

media platforms. Even though, the same hypotheses were formulated and similar type of 

metrics were used for testing hypotheses on both social networking sites, some metrics 

showed different results on Facebook and Twitter. These results are in line with previous 

studies, which discussed the differences of social media sites and made some attempts to 

separate social media categories (Kaplan & Haenlein, 2010). Therefore start-ups might need 

to develop different strategies for different social media sites to make the most of them.  

Although literature suggested that businesses with broader offline network show better 

performance (Brüderl & Preisendörfer, 1998; Hoang & Antoncic, 2003; Hoang & Yi, 2015), 

in this study the size of Facebook network did not show any influence on the amount start-

ups’ funding. However, results indicated that start-ups, whose users are more active managed 

to raise larger amount of funding in total. What matters more is, if a company’s Facebook 

visitors find its content interesting and show their enthusiasm by engaging in conversations, 

liking and sharing posts. Therefore it is important to share valuable content that grabs 

attention and makes people want to share and start a discussion. The more shares, likes and 
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comments a post receives, the more likely it reaches broader audience and arouses supporters’ 

attention. The findings of this research suggested that too many Facebook posts can influence 

start-ups’ fundraising process negatively. Again, it can be explained by the importance of the 

content quality. As discussed above, the content of posts matters more than the quantity. 

It is important to note that Twitter analysis had some limitations therefore, conclusions 

should be interpreted carefully. Due to the data regulation, only a limited amount of data 

could be collected by Twitter API. In the case of Twitter analysis, one out of three hypotheses 

was supported. Only network size showed a correlation with the total amount of funding. In 

contrast with Facebook, this outcome supports studies about benefits of network size and 

social capital. Hong (2013) also found that some investors were impressed by start-ups’ 

growing number of Twitter followers. In this research other metrics did not make significant 

contribution to the total amount of funding received. Hence, it is for start-ups with effective 

social media strategy are more likely to raise larger amount of funding in total.  

Results of logistic regression did not support the theory that the broader the social 

network is, the better the chances are to raise venture capital (Baron & Markman, 

2003).Therefore it cannot be concluded that social media has a specific effect on the type of 

funding. One-way repeated measures ANOVA was used to compare Facebook activity of 

start-ups between their rounds of funding. Results indicated that as start-ups started operating 

and became more successful, they also started putting more effort into using online social 

media. It shows that social media does count for businesses, even for small, early-stage start-

ups (Ellison et al., 2007; Ross, 2012). Survival, performance, and progress of the 

entrepreneurial firm are at the core of entrepreneurship research (Lechner et al., 2006). 

Entrepreneurial firms are characterized by a lack of internal capital and articulated in the 

theoretical research with the liability of newness and of smallness. Networking has been 

found to be important for entrepreneurial firms.  

Online social networking is increasing and this study showed that it is influencing 

start-ups’ performance and has managed to indicate new findings in the field of online social 

networking. Although small results were found, they showed that innovative start-up 

companies were able to benefit from communicating on social media platforms. Start-ups, 

which were using Facebook and Twitter effectively, focusing on valuable social media 

metrics, received larger amount of funding in total. Furthermore, it was observed that as their 

business grew, they intended to put more effort into online social networking. It confirmed the 

idea that businesses are using social media consciously.  

However, using social media to attract investors is still new and intriguing, however it 

is expected that they will have a valuable role in the future. Gunelius (2013) supported this 

idea, as she stated: “Using social media to communicate investor information is new today. It 

will become one of the primary investor relations communication tools in the future. "As it is 

still controversial in what extent social media will change the business world, it is 

recommended to conduct further researches. 
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