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Novelty and Impact: Our paper conducts gene x environment interaction analysis on 
both additive and multiplicative scales using data from 9,971 ovarian cancer (OC) cases 
and 15,566 controls. Seven OC risk factors are considered with 28 variants identified from 
previous GWAS. The top interaction was between oral contraceptive pill (OCP) use (ever 
vs never) and rs13255292 (P-value=3.48x10-4). The protective benefit of OCP use differs 
by genotype suggesting that prevention strategies need tailoring to an individual’s 
genotypic profile. 

ABSTRACT 

As a follow-up to genome-wide association analysis of common variants associated with 

ovarian carcinoma (cancer), this study considers seven well-known ovarian cancer risk 

factors and their interactions with 28 genome-wide significant common genetic variants. 

The interaction analyses were based on data from 9,971 ovarian cancer cases and 

15,566 controls from 17 case-control studies. Likelihood ratio and Wald tests for 

multiplicative interaction and for relative excess risk due to additive interaction were used. 

The top multiplicative interaction was noted between oral contraceptive pill (OCP) use 

(ever vs never) and rs13255292 (P-value = 3.48 x 10-4). Among women with the TT 

genotype for this variant, the odds ratio for OCP use was 0.53 (95% CI=0.46-0.60) 

compared to 0.71 (95%CI=0.66-0.77) for women with the CC genotype. When stratified 

by duration of OCP use, women with 1-5 years of OCP use exhibited differential protective 

benefit across genotypes. However, no interaction on either the multiplicative or additive 

scale was found to be statistically significant after multiple testing correction. The results 

suggest that OCP use may offer increased benefit for women who are carriers of the T 

allele in rs13255292.   On the other hand, for women carrying the C allele in this variant, 

longer (5+ years) use of OCP may reduce the impact of carrying the risk allele of this 

SNP. Replication of this finding is needed. The study presents a comprehensive analytic 

framework for conducting gene-environment analysis in ovarian cancer.  

Word Count: 4,537; Number of Figures and Tables: 6  
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INTRODUCTION 

Ovarian carcinoma (cancer) is a disease with high mortality; most women are 

diagnosed with advanced stage disease where five-year survival is less than 50% 1.  

Effective screening modalities have been elusive 2, and therefore primary prevention 

strategies remain the most promising avenue to minimize the incidence and mortality of 

ovarian cancer. 

Several factors consistently associated with reduced or increased risk have been 

identified for ovarian cancer, including some that represent opportunities for 

chemoprevention or surgical intervention.  Factors associated with reduced risk include 

oral contraceptive pill (OCP) 3 use aspirin use 4, tubal ligation 5, parity 3, salpingectomy 6-

9 and bilateral salpingo-oophorectomy (BSO). Common germline genetic variation 10-20, 

first-degree family history of ovarian cancer 21, 22,  menopausal hormone therapy use 23-

25, greater body mass index (BMI) 26 and endometriosis 27 are risk factors for the disease. 

OCPs and aspirin use represent feasible chemoprevention strategies whereas 

salpingectomy is now recommended by many gynecologic societies as an ovarian cancer 

prevention approach for women seeking tubal sterilization, having a hysterectomy, or 

having other pelvic surgery. 

Average lifetime risk of ovarian cancer diagnosis for women in the U.S. is 1.3% 28, 

but this number varies greatly depending on the composite exposure history of risk factors 

29.  Pearce et al. estimated the lifetime risk for women in the general population ranges 

from 0.35% (95%CI = 0.29% to 0.42%) to 8.8% (95%CI = 7.1% to 10.9%) depending on 

exposure history for six factors: OCP use, parity, tubal ligation, endometriosis, first degree 

family history of ovarian cancer and genetic risk score quintile 29.   
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However, these lifetime risk estimates were limited to six risk factors and did not 

consider their interaction with individual genetic variants identified through genome-wide 

association studies (GWAS)  28. The multiplicative scale is commonly used for gene-

environment interaction (G x E) analysis. Additive interaction analysis has been 

suggested for case-control studies in many recent papers for a more mechanistic 

interpretation 30-34.  Validity of a truly multiplicative model implies existence of additive 

interaction when the two factors under consideration have non-null main effects 35.  Thus, 

failure to detect G x E interaction on multiplicative scale may imply there exists interaction 

on additive scale, but the ability to detect it depends on the sample size and the main and 

interaction effect sizes 35. We present here our efforts to evaluate both multiplicative and 

additive gene-environment interactions in ovarian cancer using data from the international 

Ovarian Cancer Association Consortium (OCAC) comprising 17 case-control studies.   

We have included 28 common genetic variants previously associated with risk of 

ovarian cancer in genome-wide association analyses for our G x E analyses 36.  

Environmental factors included in our analysis are OCP use, parity, tubal ligation, 

breastfeeding, menopausal hormone therapy, usual adult BMI, and endometriosis. A 

small number of studies in OCAC had data available on aspirin use and thus we have not 

included this risk factor in our analysis here.  Among our list of environmental factors, BMI, 

OCP use, tubal ligation, breastfeeding, and menopausal hormone therapy are of special 

interest because they are modifiable targets for prevention.  
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METHODS 

Study Population 

The OCAC is an international multidisciplinary consortium formed in 2005 

(http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/) with a goal of sharing data from 

worldwide ovarian cancer studies to establish reliable estimation of association between 

environmental and genetic factors related to risk of ovarian cancer 23, 37.  Cases were 

defined as women with ovarian carcinoma (i.e., invasive epithelial ovarian cancers), 

fallopian tube cancer and primary peritoneal cancer. Controls were women without 

ovarian cancer and who had at least one ovary.  For both cases and controls, individuals 

with prior cancers except non-melanoma skin cancers were excluded.  

Genetic Association Analysis 

In total, 28 single nucleotide polymorphisms (SNPs) previously identified through 

GWAS were included from 75 OCAC sites (Table 1).  The first 26 SNPs were found to be 

significantly associated with either ovarian cancer overall or one or more histotypes 36. In 

addition, rs13255292 and rs10962643 were included because they were in the same 

region as two other significant SNPs but showed a strong independent association with 

ovarian cancer risk. The SNP at locus 15q26 (rs8037137), which was found to be 

genome-wide significant 13, was not included because not enough non-carriers were 

present in our analytic dataset for examining interactions. The genetic data included both 

genotyped and imputed variants (imputation being carried out using phase 2 Hapmap 

reference panel). More details regarding genotyping and imputation of the genetic data 

have been previously described 12, 17, 18, 20.  The methods for analyzing the SNP data in 

the OCAC have also been described previously 12, 17, 18, 20.  Briefly, logistic regression 

http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/
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models were fit to examine the association between ovarian cancer and each genetic 

variant under an additive model (using risk allele dosage). The models were adjusted for 

ethnicity, genotyping panel and the leading principal components for each ethnicity.  The 

summary results are shown in Table 1 and are also available through the OCAC website 

(http:/apps.ccge.medschl.cam.ac.uk/consortia/ocac/). 

Environmental Association Analysis 

Environmental Variables (E): A total of seven established environmental risk 

factors for ovarian cancer were of primary interest (Table 2), including four associated 

with decreased risk and three with increased risk for ovarian cancer or one specific 

histotype. These included: OCP use (measured as both ever/never and duration of OCP 

use (never users including <1 one year of use, 1-<5, 5+yr), tubal ligation (yes/no), 

breastfeeding (ever/never), parity (0, 1-2, 3+ full-term births (i.e., those lasting >6 months), 

type of menopausal hormone therapy use for more than 1 year after age 50 (never user, 

menopausal estrogen therapy only, any use of menopausal estrogen + progestin therapy), 

BMI (<25, 25-<30, 30+), and a history of endometriosis (yes/no).  

Four other environmental variables were included in our analysis, as covariates: 

baseline age (<50, 50-<55, 55-<60, 60-<65, 65-70, 70+ years), race (non-Hispanic white, 

Hispanic White, Black, Other), education (less than high school, high school graduate, 

some college, college graduate) and first-degree family history of ovarian cancer (yes/no). 

In addition to these four covariates, study site, OCP use, tubal ligation, parity, BMI and 

endometriosis were also included in all models for the environmental association analysis 

and gene by environment interaction analysis.  

http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/
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Harmonization and Imputation of Environmental Data: A brief description of 

environmental data harmonization across OCAC study sites is provided in eMethod 1 in 

the Supplementary Material. To optimize power and enhance the chance for discovery, 

we carried out multiple imputation of the environmental data. The maximal amount of data 

was used for imputation (see eMethod 1 and eFigure 1 in the Supplementary Material 

for details).  A total of 19 studies comprising 13,722 cases and 22,975 controls with 

partially missing data were included for imputation. Of these 19 studies, 12 were from the 

US, 4 from Europe, 2 from Canada and 1 from Australia (see eTable 1 for a description 

of study sites). Further details for these 19 studies have been previously described (see 

Supplementary Material).  The environmental variables included in our analysis were 

multiply imputed by chained equations (MICE) to produce ten imputed datasets. See 

details of imputation model in eMethod 2.1 in the Supplementary Material.  

All analyses were performed on each of the ten imputed datasets, and 

coefficients/test statistics were properly combined to account for uncertainty due to 

imputation, following the recommended combination rule for multiply imputed datasets 38 

(see details in eMethod 2.3 in the Supplementary Material). Our marginal environmental 

association analysis was based on combined inference from the ten imputed versions of 

this harmonized E data. Logistic regression models were used for evaluating marginal 

associations between the environmental risk factors with ovarian cancer after adjusting 

for covariate. The estimated ORs, their 95% CIs, as well as two-sided Wald tests after 

accounting for imputation uncertainty are presented in Table 2 along with summary 

statistics of complete cases before imputation. Full results of the complete cases analysis 

using logistic regression models are presented in eTable 2.  
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Gene by Environment Interaction Analysis 

After marginal analysis of the genetic and environmental risk factors, we 

considered gene by environment (G x E) interaction analysis both on the multiplicative 

(odds ratio/relative risk) and the additive (relative excess risk due to interaction/absolute 

risk) scale 39.  From the 19 studies with imputed environmental data, a subset of 17 case-

control studies with 9,971 cases and 15,566 controls had available genetic data, thus G 

x E analyses were carried out on these 17 studies. Each imputed environmental dataset 

was merged with the genetic data for subsequent G x E analyses. Interaction analyses 

were then carried out separately on the ten imputed G x E datasets, and then all tests 

and coefficients reported were combined using appropriate multiple imputation 

combination rules 38. 

For both multiplicative and additive interaction analysis, we started with global 

likelihood ratio tests (LRTs) for each G x E pair as several environmental factors had 

multiple categories resulting in tests for interactions with multiple degrees of freedom (df). 

These global joint tests, serving as a screening step for G x E interactions, were carried 

out for a total of 196 (7u28=196) G x E pairs. After the global tests, we then followed up 

on the suggestive interactions (with global test P-value < 0.2) and carried out a two-sided 

Wald test for interactions involving each separate category of an environmental risk factor.  

For the k-th SNP 𝐺𝑘 (k = 1, … ,28), coded as a continuous allelic dosage, the j-th 

environmental risk factor 𝐸𝑗 (𝑗 = 1, … ,7), and a set of confounders/covariates {𝐶𝑞} (𝑞 =

1, … , 𝑄), the basic fitted model for the probability of ovarian cancer of the i-th subject, 

namely, 𝜋𝑖 , is of the following form:  
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𝑙𝑜𝑔𝑖𝑡(𝜋𝑖 | 𝐺𝑘𝑖, 𝐸𝑗𝑖, 𝐶1𝑖, … , 𝐶𝑄𝑖) 

=  𝛽0 + 𝛽𝐺𝐺𝑘𝑖 + ∑ 𝛽𝐸𝑙𝐼(𝐸𝑗𝑖 = 𝑙) + ∑ 𝛽𝐺𝐸𝑙𝐼(𝐸𝑗𝑖 = 𝑙)𝐿
𝑙=1

𝐿
𝑙=1 𝐺𝑘𝑖 + ∑ ∑ 𝛽𝐶𝑞𝑚𝐼(𝐶𝑞𝑖 = 𝑚),𝑀𝑞

𝑚=1
𝑄
𝑞=1   

 [M1] 

where L = (levels of 𝐸𝑗) – 1, 𝑀𝑞 = (levels of 𝐶𝑞) – 1, and Q is the number of adjusted 

covariates. 

Multiplicative Interaction Tests: For testing the multiplicative interaction between 𝐺𝑘 

and 𝐸𝑗, we first used the global LRT with L degrees of freedom to test for the joint null 

hypothesis 𝐻0: 𝛽𝐺𝐸1 = 𝛽𝐺𝐸2 = ⋯ = 𝛽𝐺𝐸𝐿 = 0. If the global test P-value < 0.2, we further 

assessed the multiplicative interaction at each level of 𝐸𝑗 by using a Wald test with one 

degree of freedom for the null hypothesis 𝐻0: 𝛽𝐺𝐸𝑙 = 0 for the l-th level. 

Additive Interaction Tests: Due to limitations of existing software (CGEN) 40 for testing 

additive interactions with continuous dosage data, we used the maximal probable 

genotype for imputed SNPs. We further conducted the LRTs with binary collapsing of 

SNPs assuming a dominant genetic susceptibility model (given the constraints in software) 

31.  For a given SNP 𝐺𝑘 and an environmental risk factor 𝐸𝑗 with L categories, a global 

LRT with L df was used for the following joint null hypothesis  

𝐻0 : 
{exp(𝛽𝐸1) + exp(𝛽𝐺) − 1}

exp (𝛽𝐸1 + 𝛽𝐺) = exp(𝛽𝐺𝐸1) , … ,
{exp(𝛽𝐸𝐿) + exp(𝛽𝐺) − 1}

exp (𝛽𝐸𝐿 + 𝛽𝐺) = exp(𝛽𝐺𝐸𝐿), 

where the regression coefficients (𝛽) are log odds ratio parameters described in model 

[M1]. This null hypothesis is based on a rare disease assumption 41, which is tenable for 

our study (lifetime risk of ovarian cancer in the US is approximately 1.3%) 42. If the 

global LRT P-value < 0.2, we further assessed the additive interaction at each level of 𝐸𝑗 

through the relative excess risk due to interaction (RERI) 41. At the l-h level of 𝐸𝑗 , a Wald 
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test with one degree of freedom (35) was used to test for the null hypothesis: 

𝐻0: 𝑅𝐸𝑅𝐼𝐺𝐸𝑙 = 0, where 𝑅𝐸𝑅𝐼𝐺𝐸𝑙 = exp(𝛽𝐸𝑙 + 𝛽𝐺𝐸𝑙 + 𝛽𝐺) − exp(𝛽𝐸𝑙) − exp(𝛽𝐺) + 1.  

 After the screening step, we further explored the structure of the most promising 

interactions (defined as global test P-value < 0.01). This was accomplished by exploring 

odds ratios corresponding to E in sub-groups defined by G (for the multiplicative 

interaction) or absolute risks for ovarian cancer in each configuration of the values of (G, 

E) (for the additive interaction). To better understand these two different scales of 

interaction, we also compared the observed joint ORs with the corresponding expected 

ORs under the multiplicative and the additive nulls.  

To estimate sub-group specific absolute risk (AR) for each stratum defined by a 

given SNP 𝐺𝑘  and environmental risk factor, we need the relative risk and the joint 

distribution of 𝐺𝑘 and 𝐸𝑗. The former was estimated from the fitted model [M1], and the 

latter was empirically estimated from the observed joint frequency of 𝐸𝑗  and 𝐺𝑘 in the 

control population (details in eMethod3 from the Supplementary Material). Table 4 

presents the bootstrap confidence intervals for the estimated ARs and the risk differences 

(RDs) (see details in eMethod4 in the Supplementary Material). The results for G x E 

analysis are presented in Table 3 (multiplicative interaction), Table 4 (additive interaction) 

and eTable 5 (observed and expected joint OR under the two different nulls). All 

calculations were performed in the statistical software R 30, 40.   

RESULTS 

The marginal G analysis was carried out on 26,864 cases and 48,034 controls and 

the results are shown in Table 1.  These results are available through the OCAC website 

(http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/).  A total of 36,697 women with 

http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/
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13,722 ovarian cancer cases from 19 sites were included in the marginal E analysis using 

the imputed datasets. All seven environmental risk factors were associated with ovarian 

cancer in the expected direction (Table 2).  OCP use for five or more years was 

associated with a 52% decrease in risk of ovarian cancer compared to never users 

(OR=0.48, 95%CI = 0.45 to 0.51). Tubal ligation (OR=0.73, 95%CI = 0.69 to 0.78) and 

breastfeeding (OR=0.76, 95%CI = 0.71 to 0.80) showed similar magnitudes of decreased 

risk. Also, having more than 3 children (versus none) was associated with a 50% (OR=0.5, 

95%CI = 0.46 to 0.53) reduction in risk of ovarian cancer. Using menopausal estrogen 

therapy only for more than one year (OR=1.22, 95%CI = 1.12 to 1.34), being obese 

(OR=1.15, 95%CI = 1.08 to 1.22), and history of endometriosis (OR=1.60, 95%CI = 1.46 

to 1.75) were all associated with increased risk of ovarian cancer.  The inference 

remained robust before and after imputation (eTable 2.). 

Gene by Environment Interaction Results 

Global Likelihood Ratio Tests: The global LRT essentially serves as a screening 

approach to identify a list of potentially interesting interactions.  All interactions with global 

LRT P-value < 0.2 (40 on multiplicative scale and 41 on additive scale) are listed in eTable 

3, while more detailed analysis of the top interactions, which showed the strongest 

significance (P-value < 0.01; 4 on multiplicative and 2 on additive scale), are shown in 

Table 3 and Table 4, respectively. 

According to Global LRT results, the top interaction on the multiplicative scale was 

identified with the SNP rs13255292 and OCP use (ever and never use: P-value = 3.48 x 

10-4; duration of use [<1 yr, 1-5 yr, 5+ yr]: P-value = 7.26 x 10-3) (Table 3). None of the 
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observed interactions were significant based on a Bonferroni threshold of 0.05/(28 x 7)= 

2.55 x 10-4.  

Wald Tests for Multiplicative interactions:  For the most promising multiplicative 

interactions reported in Table 3 we carried out an in-depth analysis to better understand 

the structure of interactions by estimating the ORs (with accompanying Wald CIs and 

tests) corresponding to E in strata defined by G.  For example, the OR for OCP use among 

women with the TT genotype for rs13255292 is estimated to be 0.53 (95%CI = 0.46 to 

0.60), whereas for the CC genotype the estimated OR is 0.71 (95%CI = 0.66 to 0.77) 

suggesting a stronger protective effect of OCP use among TT genotypes (Table 3, Figure 

1A). 

When OCP use was further stratified by duration, we observed an interesting 

pattern in its interaction with rs13255292. The estimated OR corresponding to 1-5 year 

of OCP use vs < 1 year use in the TT genotype group was 0.58 (95%CI = 0.50 to 0.69) 

compared to an OR of 0.79 (95%CI = 0.72 to 0.87) among women with CC genotype, 

showing effect modification by the risk allele (C) of rs13255292 (Table 3, Figure 1B). 

This is akin to the result with ever/never user. However, the OR corresponding to 5+ years 

of OCP use vs < 1 year of use for the TT genotype group was 0.43 (95%CI = 0.37 to 0.50) 

and for the CC genotype was 0.53 (95%CI = 0.49 to 0.58) (Table 3, Figure 1C). With 

overlapping confidence intervals, there is no significant difference in the odds ratios for 

long-term OCP users across genotype sub-groups. Table 3 shows that the P-value of the 

Wald test for interaction of rs13255292 and 1-5 years of OCP use (vs < 1 yr) was lower 

(P-value = 4.74 x 10-3), when compared to the P-value for interaction of the same variant 

with 5+ years of OCP use (vs < 1 yr) (P-value = 2.43 x 10-2).  
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Wald Test for Additive interaction/RERI: For the most statistically significant additive 

interactions in Table 4, we estimated the sub-group specific absolute risks (ARs) and risk 

differences (RDs) in each E by G stratum. For example, for the strongest additive 

interaction based on the global likelihood ratio tests in Table 4, there was suggestive 

evidence that rs11658063 modified the effect of menopausal estrogen therapy use, 

compared to never use of menopausal hormone therapy (P-value = 3.01 x 10-2).  Among 

women with the GG genotype, never users of menopausal hormone therapy had an 

estimated AR of 1.33% (95%CI =1.26% to 1.40%) while women who used menopausal 

estrogen therapy had an estimated AR of 1.96% (95%CI = 1.59% to 2.33%), leading to 

an absolute risk increase of 0.63% (95%CI = 0.24% to 1.02%) (Table 4, eFigure 2).  

For women with the CC genotype, the estimated AR was 1.27% (95%CI = 1.23% to 

1.32%) for never receiving menopausal hormone therapy and 1.36% (95%CI = 1.15% to 

1.57%) for receiving menopausal estrogen only therapy. This implies virtually no 

increased risk from taking menopausal estrogen only therapy among women with the CC 

genotype (95%CI = -0.14% to 0.31%; Table 4, eFigure 2).  The results on the additive 

interactions were in general weaker in terms of the strength of P-values. 

DISCUSSION  

We have conducted a comprehensive multiplicative and additive interaction 

analysis of previously identified common genetic variants and environmental factors 

unequivocally associated with ovarian cancer risk. We observed six suggestive 

interactions (with P-value < 0.01), four on the multiplicative scale and two on the additive 

scale.  The lack of statistical significance of interactions after multiple testing correction 

from a large collection of data and well-curated studies enable us to conclude that it is 
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unlikely that there are substantive interactions with single variants and environmental 

factors regardless of the choice of scale. This is consistent with what has been observed 

for other cancers. One may argue that the Bonferroni threshold for multiple comparisons 

is likely to be conservative for this set of correlated environmental factors, but the general 

pattern of findings remains consistent with smaller magnitude of interaction effect sizes. 

However, there are several interesting findings from this analysis that may be worthwhile 

to follow-up in future G x E studies of ovarian cancer.  

Mechanistic Insight: In addition to guiding targeted prevention strategies, G x E 

analysis has the potential to provide mechanistic insight into the complex multifactorial 

structure of the underlying biological pathway. One issue complicating observed gene-

environment interactions of even confirmed susceptibility loci is that the true casual alleles 

and the biological impact of the variants are unknown. Our top interaction is between OCP 

use and rs13255292. This variant lies in the 8q24 region which harbors several risk loci 

for ovarian cancer 18 and other cancers 43, 44. The SNP is in the PVT1 gene which interacts 

with the oncogene MYC 45. MYC has long been reported to be at least in part under 

hormonal control 46, 47 thus an interaction with OCP use is plausible. Conversely, our top 

additive interaction is between menopausal estrogen use and rs11658063 which falls in 

HNF1B. To our knowledge there is no relationship between HNF1B and hormones thus 

underscoring the difficulty of understanding these gene-environment interactions given 

our limited understanding of the function of the variants and even more broadly the 

biological role of the genes.  

Exposure Pathways and Potential for Targeted Prevention: The strongest 

interactions are observed with OCP use or menopausal estrogen use which are 
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modifiable exposures. Our most promising finding is the potential interaction between 

SNP rs13255292 and OCP use. This finding, if replicated could potentially lead to 

improved understanding of exposure pathways. 

 Analytic Architecture and the Choice of Scale for Measuring Interaction: We 

present a comprehensive analytical framework to carry out post-GWAS G x E analysis 

on both multiplicative and additive scale. Our framework starting with data harmonization 

and imputation followed by Global likelihood ratio tests and single df Wald tests provides 

a principled analytic architecture for such analysis. Our analysis reiterates the well-known 

fact that testing the additive and multiplicative nulls are very similar when the marginal 

associations are weak but could depart when both marginal associations are large in 

magnitude and the sample size is finite. In eTable 5, we present observed joint odds 

ratios for strata defined by G and E along with the expected odds ratios under the 

multiplicative null and the additive null. We use our top hit rs13255292 and OCP use (ever 

versus never) and length of OCP use (<1yr, 1-<5 yrs, 5+ yrs) as an illustration. One can 

note that the expected ORs are fairly close under both models. However, their estimated 

departure from the observed joint OR is more pronounced for the 1-<5 yrs sub-group 

when compared to 5+ yrs, explaining the suggestive evidence for rejecting the null. 

We discussed the multiplicative interaction results for rs13255292 and OCP use in 

the previous section.  We now explore the structure of additive interaction for this G x E 

result (Figure 2A-2C).  Marginally, without including any genetic information, from a pure 

environmental association analysis we observed a relationship between duration of OCP 

use and risk reduction for ovarian cancer. For 1-5 years of OCP use (vs <1 year) the 

estimated absolute risk difference was 0.47% (95%CI = 0.37% to 0.56%), while the 
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estimated absolute risk difference for long-term use of OCPs (5+ year vs <1 year) was 

0.84% (95%CI = 0.77% to 0.92%) (Figure 2B-2C, eTable 4), in agreement with previous 

findings that longer duration of OCP use is associated with larger risk reduction in ovarian 

cancer 3. However, when stratified by rs13255292 genotype, we observed an interesting 

pattern. Among individuals with TT genotype, the corresponding absolute risk difference 

estimate for 1-5 year of OCP use (vs <1 year) was 0.69% (95%CI = 0.49% to 0.88%), 

whereas among individuals with CC genotypes the corresponding risk reduction estimate 

was 0.36% (95%CI = 0.22% to 0.50%), implying potential effect modification by the C 

allele at locus rs13255292 (P-value = 1.12 x 10-2) (Figure 2B, eTable 4). In contrast, the 

absolute risk difference is estimated at 0.95% (95%CI = 0.78% to 1.12%) for women with 

TT genotype and at 0.79% (95%CI = 0.69% to 0.90%) in women with CC genotype.  This 

indicates that longer OC use is associated with greater risk reduction overall and the risk 

reduction might be even greater for women with the TT genotype than those with the CC 

genotype. From Figure 2B-2C we observe the interplay between “nature vs nurture” with 

risk due to germline genetic mutations offset by long-term use of a modifiable protective 

factor. This analysis also highlights the benefit of measuring duration of exposure as 

opposed to a coarse indicator of ever/never use. 

Prior work in G x E for ovarian cancer has focused solely on multiplicative 

interactions.  We previously reported no departures from a multiplicative model with the 

first six risk loci identified through GWAS with a reduced set of exposures 3.  Follow-up 

work identified an interaction with menopausal estrogen therapy use and rs10069690 in 

the TERT gene 48, but that finding was not replicated in the present analysis which 

included a larger set of studies.  Fridley and colleagues have reported on G x E taking a 
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candidate gene approach with several promising findings 49.  There are several studies 

in other cancers examining G x E on the multiplicative scale with limited success in 

identifying interactions, but to our knowledge, only prostate cancer and bladder cancer 

have been studied on the additive scale. In prostate cancer, suggestive additive 

interactions between vitamin D, confirmed genetic variants and risk have been identified 

50.  In bladder cancer, additive interaction has been explored between confirmed genetic 

loci and smoking with risk of disease 31.  In this work the authors were able to demonstrate 

that the absolute risk of bladder cancer for current smokers varied from 2.9% to 9.9% 

based on the polygenetic risk score quartile.  These results are similar to our findings on 

the additive scale with absolute risk differing based on genetics and hormone therapy use; 

an interesting next step for our work is to consider the polygenetic risk score for all of 

these confirmed ovarian cancer susceptibility alleles.    

There are several limitations of the current analysis. Though we considered both 

multiplicative and additive interactions, the logistic model in (M1) is linear in covariates 

and exposures. We ignored potential non-linearity and exposure x exposure as well as 

exposure x covariate interactions. Similarly, we ignored any higher order interactions. A 

completely non-parametric machine learning approach, based on a recursive partition of 

the predictor space may avoid misspecification of the model, but would lack 

interpretability from an epidemiologic and public health perspective. We also 

acknowledge that this exploration of interaction is purely statistical, a more causal 

interpretation in a biological sense will require functional validation. One may also want 

to explore G x E interaction with loci that are not significant at genome-wide threshold but 

are significant at a less stringent threshold or even conduct genome-wide G x E scans. 
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 The associations between ovarian cancer risk and some of the variants included 

here were limited to specific histotypes of ovarian cancer, however we have only 

presented results for all epithelial ovarian cancers combined.  Developing histotype-

specific risk stratification approaches is not feasible because for any given histotype the 

absolute risk is unlikely to ever reach an actionable threshold on a population level.  In 

addition, risk reducing strategies are the same across histotypes and thus there is little 

benefit to considering histotype specific results from a precision prevention perspective.  

Heterogeneous associations between environmental risk factors and ovarian cancer risk 

by histology has previously been well characterized 3, 23, 27. There is value in 

understanding histotype associations for disease etiology and mechanisms and this will 

be the focus of future work.   

The analyses presented here offer insight into potential biological mechanisms, 

opportunities for ovarian cancer risk stratification, and approaches to studying gene-

environment interactions. Ideally, replication for the six promising findings would be 

undertaken, but this is challenging with ovarian cancer given that most studies with the 

relevant data are included here. Functional studies for the regions harboring our most 

promising findings are underway and it is possible that the association described here 

may help inform those investigations 51. Also, gene-environment interaction analyses can 

also be used to identify novel genetic associations 51 and thus a deeper evaluation of 

variants that are still borderline significant, but do not exactly achieve a genome-wide 

threshold is warranted for subsequent G x E analysis. Of particular interest will be to 

conduct risk stratification and risk prediction analysis using a summative polygenic risk 

score and to conduct an agnostic genome-wide search for G x E interaction.  Despite the 
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limitations the comprehensive framework of data harmonization, imputation, screening 

test followed by characterization of effect and risk estimates that has been used in this 

analysis can serve as a robust model for future gene-environment interaction analyses. 
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Figure Legends 

Figure 1A-1C. ORs of oral contraceptive (OCP) use, marginally, or stratified by 

number of risk allele of rs13255292. The ORs were calculated from a logistic 

regression model assuming log-additive effect of SNPs. (A) OR of OCP (ever vs 

never) (B) OR of 1 to 5 years of OCP use (vs < 1 year) (B) OR of more than 5 years 

of OCP use (vs < 1 year). 

 

Figure 2A-2C. Estimated absolute risk (AR) of ovarian cancer given OCP use and 

number of copies of C allele, among non-Hispanic white college graduates aged 

below 50 with no family history of ovarian cancer, BMI below 25, no tubal ligation, 

no endometriosis, with one child. The ARs were calculated from a logistic 

regression model assuming log-additive effect of SNPs while all covariates fixed at 

their most frequent level as described above. (A) ARs stratified by OCP (ever vs 

never) and genotype (B) ARs stratified by 1 to 5 years of OCP use (vs < 1 year) and 

genotype (F) ARs stratified by more than 5 years of OCP use (vs < 1 year) and 

genotype. Risk differences were also reported as the solid black bar. 

 







Tables 

Table 1. Odds ratios for marginal associations of 28 genetic susceptibility variants with ovarian cancer. Analysis 
used data with 26864 cases and 48034 controls from 75 study sites. 

SNP Previously 
published best hita Chr Position Risk 

Allele 
Baseline 
Allele RAF ORb P-valueb 

rs12023270 rs5872217015 1 38086578 T C 0.264 1.08 (1.05,1.10) 2.65×10-8 

chr2:111818658 rs2165109 18 2 111818658 C A 0.277 1.06 (1.04,1.09) 2.03×10-6 

rs874898 rs752590 14 2 113974196 C G 0.262 1.00 (0.98,1.03) 7.36×10-1* 
rs1562314 rs711830 14 2 177045560 T A 0.638 1.10 (1.07,1.13) 2.84×10-14 

rs112071820 18  3 138849110 allele 1 G 0.270 1.03 (1.00,1.06) 5.17×10-2* 

chr3:156397692 rs62274041 17 3 156397692 T C 0.048 1.47 (1.39,1.55) 7.73×10-47* 

rs9870207 18  3 190525516 A G 0.666 1.05 (1.03,1.08) 2.95×10-5 

rs7705526 rs1006969010 5 1285974 A C 0.343 1.10 (1.07,1.12) 5.52×10-14 

chr5:66121089 rs555025179 18 5 66121089 allele2 G 0.526 1.03 (1.00,1.05) 2.61×10-2* 

chr8:82653644 8:82668818 17 8 82653644 G A 0.064 1.18 (1.12,1.23) 3.25×10-12* 

rs9886651 18  8 128817883 G A 0.435 1.06 (1.03,1.08) 2.89×10-6* 

rs13255292 18 NA 8 129076573 C T 0.700 1.07 (1.05,1.10) 3.57×10-8* 

rs10103314 rs1400482 12 8 129560744 A C 0.883 1.15 (1.11,1.20) 5.76×10-15* 
chr9:16915105 rs1096269220 9 16915105 C G 0.834 1.24 (1.20,1.28) 4.54×10-41* 

rs10962643  NA 9 16857403 C A 0.699 1.17 (1.14,1.20) 1.13×10-35* 
rs320203 18  9 104943226 C A 0.842 1.03 (1.00,1.06) 5.21×10-2 
chr9:136138765 15  9 136138765 G allele 3 0.176 1.12 (1.08,1.15) 1.49×10-12* 

rs7084454 rs14496237617 10 21821274 A G 0.301 1.07 (1.05,1.10) 3.32×10-8* 

rs7902587 18  10 105694301 T C 0.091 1.08 (1.03,1.12) 4.54×10-4* 
chr12:121403724 rs7953249 18 12 121403724 A G 0.570 1.05 (1.03,1.07) 2.58×10-5* 

chr15:91531995 rs803713713  15 91531995 C T 0.829 1.08 (1.05,1.12) 1.18×10-6* 

rs11658063 rs7405776 19 17 36103872 G C 0.614 1.04 (1.02,1.07) 2.98×10-4* 
chr17:43552537 rs1879586 17 17 43552537 A G 0.164 1.12 (1.08,1.15) 2.22×10-12* 



rs7217120 rs720782616 17 46484755 C T 0.275 1.10 (1.07,1.13) 8.69×10-13* 

rs809824418  18 21405553 G A 0.741 1.04 (1.01,1.07) 4.23×10-3* 

rs4808075 11  19 17390291 C T 0.268 1.13 (1.10,1.16) 1.49×10-20* 

rs74597329 rs68818714 19 39739155 G T 0.301 1.02 (0.99,1.04) 2.63×10-1 

rs6005807 18  22 28934313 T C 0.095 1.09 (1.04,1.13) 3.35×10-5* 

 

Abbreviations: SNP, single-nucleotide polymorphism; RAF, risk allele frequency; Chr, chromosome; OR, odds ratio; allele1, 

GCCAGATTCAGAAT; allele2, GACACACAC; allele3, GCGCCCACCACTA.  

a: If not specified, the previously published best hit is the same as the current best hit. 

b: Logistic regression for ovarian cancer overall (regardless of histology), adjusted for ethnicity, study panel and leading 

principal components for each ethnicity (using a total of 47 principal components).  

*: P-value > 0.01. 
 



Table 2. Odds ratios for marginal associations of seven environmental risk factors with ovarian cancer risk with 

13722 cases and 22975 controls from 19 study sites.  

Environmental risk factor 
Before Imputationa After Imputationb 
Control Case Control Case  ORc P-valuec 

OCP use       
Never 0.347 0.444 0.351 0.452 Ref  
Ever 0.645 0.536 0.649 0.548 0.62 (0.59,0.66) 5.24×10-73 

(missing) 0.008 0.020     
Duration of OCP use       
Never users (including <1 year) 0.425 0.542 0.430 0.554 Ref  
1-<5 year 0.229 0.208 0.232 0.215 0.70 (0.66,0.74) 8.23×10-32 

5+ year 0.332 0.222 0.338 0.231 0.48 (0.45,0.51) 2.20×10-133 

(missing) 0.014 0.028     
Tubal ligation       
No 0.693 0.777 0.762 0.824 Ref  
Yes 0.208 0.160 0.238 0.176 0.73 (0.69,0.78) 1.81×10-23 

(missing) 0.098 0.063     
Breastfeeding       
No 0.239 0.294 0.380 0.515 Ref  
Yes 0.532 0.410 0.620 0.485 0.76 (0.71,0.80) 4.80×10-21 

(missing) 0.229 0.296     
Parity (number of full-term births) 
0 0.148 0.241 0.149 0.243 Ref  
1-2 0.487 0.434 0.489 0.438 0.59 (0.55,0.63) 1.94×10-65 

3+ 0.359 0.315 0.362 0.319 0.50 (0.46,0.53) 4.91×10-90 

(missing) 0.006 0.011     
Type of HT using more than 1 year after age 50 
Never use 0.687 0.647 0.789 0.782 Ref  
ET only 0.060 0.075 0.066 0.084 1.22 (1.12,1.34) 2.65×10-5 

Any EPT  0.131 0.118 0.145 0.134 0.97 (0.90,1.04) 3.55×10-1 



(missing) 0.121 0.160     
BMI       
< 25 0.392 0.370 0.516 0.485 Ref  
25-<30 0.209 0.213 0.284 0.286 1.03 (0.98,1.09) 2.55×10-1 

30+ 0.144 0.174 0.200 0.229 1.15 (1.08,1.22) 6.11×10-6 

(missing) 0.255 0.243     
Endometriosis        
No 0.703 0.695 0.937 0.902 Ref  
Yes 0.047 0.076 0.063 0.098 1.60 (1.46,1.75) 3.41×10-23 

(missing) 0.250 0.230     
 
Abbreviations: OR, odds ratio; OCP, oral contraceptive pills; BMI, body mass index; HT, menopausal hormone therapy; ET, 

menopausal estrogen therapy; EPT, menopausal estrogen + progestin therapy; Ref, reference group. 

a: Harmonized environmental data before imputation. Results of the complete cases analysis are provided in eTable 2.  

b: Based on ten imputed E datasets. 

c: Logistic regression model adjusted for reference age, race, education, family history, OCP use, tubal ligation, parity, BMI, 

endometriosis and study site. 

 
 
 
 
 



Table 3. Results from Multiplicative Interaction Analysis: Odds ratios corresponding to environmental risk factors, 

stratified by genotype (for G-E pairs with global likelihood ratio test p-value < 0.01. Analysis used the G×E data 

with 9971 cases and 15566 controls from 17 study sites).  

SNP Environmental risk 
factor N (cases/controls)a Estimated ORb for E stratified by G 

(95%CI) Globalc LRT 
Waldd 
Test 

Risk/Baseli
ne allele Variable Category Genotype Genotype (df) (df) 

rs13255292 
C/T OCP use 

 TT TC CC TT TC CC   

Never 396/503 1758/2175 2077/2570 Ref   Ref Ref 

Ever 446/1069 2286/4336 2768/4750 0.53 
(0.46,0.60) 

0.61 
(0.57,0.66) 

0.71 
(0.66,0.77) 

3.48×10-4 

(1) 
3.47×10-4 

(1) 

Missing 24/15 96/56 120/96      

rs13255292 
C/T 

Duration of 
OCP use 

 TT TC CC TT TC CC   

< 1 yr 451/636 2213/2670 2546/3145 Ref   Ref Ref 

1-<5 yr 171/362 854/1522 1082/1662 0.58 
(0.50,0.69) 

0.68 
(0.63,0.74) 

0.79 
(0.72,0.87) 

7.26×10-3 

(2) 
4.74×10-3 

(1) 

5+ yr 209/568 945/2269 1178/2470 0.43 
(0.37,0.5) 

0.48 
(0.44,0.52) 

0.53 
(0.49,0.58)  2.43×10-2 

(1) 

Missing 35/21 128/106 159/135      



 
Abbreviation: SNP, single-nucleotide polymorphism; OR, odds ratio; OCP, oral contraceptive pills; yr, year; Ref, reference 

group; df, degree of freedom, LRT, likelihood ratio test. 

a: Number of cases and controls were estimated from the original merged G×E data (before imputation) with 9971 cases 

and 15566 controls from 17 study sites, using maximal probable genotypes for imputed SNPs. 

rs10962643 
C/A 

Parity 
(full term 

birth) 

 AA AC CC AA AC CC   

0 230/220 940/940 1194/1080 Ref   Ref Ref 

1-2 398/835 1741/3184 2202/3536 0.52 
(0.44,0.61) 

0.56 
(0.51,0.6) 

0.60 
(0.54,0.66) 

7.52×10-3 

(2) 
1.99×10-1 

(1) 

3+ 243/579 1242/2459 1664/2614 0.38 
(0.32,0.46) 

0.46 
(0.42,0.5) 

0.55 
(0.49,0.61)  2.86×10-3 

(1) 

Missing 11/15 47/58 59/46      

chr9:169151
05 

C/G 

Parity 
(full term 

birth) 

 GG GC CC GG GC CC   

0 73/72 624/649 1667/1519 Ref   Ref Ref 

1-2 111/300 1129/2285 3101/4970 0.46 
(0.36,0.58) 

0.52 
(0.47,0.59) 

0.60 
(0.55,0.65) 

5.25×10-3 

(2) 
5.10×10-2 

(1) 

3+ 70/220 749/1679 2330/3753 0.33 
(0.26,0.43) 

0.42 
(0.37,0.48) 

0.53 
(0.48,0.58)  1.25×10-3 

(1) 

missing 2/7 37/36 78/76      



b: ORs were estimated from the logistic regression model with SNP, E variable, SNP E variable. 

c: LRT was performed for jointly testing multiplicative interactions. 

d: Wald test for individual multiplicative interaction. 

All models were estimated from the  logistic regression model with SNP, E variable, SNP E variable, assuming log-

additive model, using dosage data for imputed SNPs, adjusted for reference age, race, education, family history, OCP 

use, tubal ligation, parity, BMI, endometriosis and study site and were performed on imputed datasets of G-E (9971 

cases, 15566 controls) with proper pooling. 

  



Table 4. Absolute risks and risk differences stratified by levels of environmental risk factor and levels of genotype 
(for G-E pairs with global likelihood ratio test p-value < 0.01 on additive scale. Analysis used the G×E data with 
9971 cases and 15566 controls from 17 study sites). 

SNPs Environmental risk 
factor N (cases/controls)a Estimated ARs or RDs for E stratified by SNPs 

(95%CI)c 
Global 
LRTd 

Wald 
Teste 

risk/baseline 
allele variable category Genotype Genotype (df) (df) 

rs11658063 
G/C 

Type of 
HT 

 CC CG GG CC CG GG   

Neither 589/1142 2609/4518 3310/4956 1.27% 
(1.23%,1.32%) 

1.30% 
(1.28%,1.33%) 

1.33% 
(1.26%,1.40%) Ref Ref 

ET only 66/98 281/409 416/454 1.36% 
(1.15%,1.57%) 

1.63% 
(1.46%,1.79%) 

1.96% 
(1.59%,2.33%)   

RDb    0.09% 
(-0.14%,0.31%) 

0.33% 
(0.15%,0.50%) 

0.63% 
(0.24%,1.02%) 

3.29×10-3 

(2) 
3.01×10-2 

(1) 

Any EPT 105/207 498/952 606/1046 1.16% 
(1.04%,1.28%) 

1.21% 
(1.12%,1.30%) 

1.27% 
(1.09%,1.44%)   

RD    -0.12% 
(-0.26%,0.03%) 

-0.09% 
(-0.20%,0.01%) 

-0.06% 
(-0.26%,0.13%)  7.04×10-1 

(1) 

missing 122/202 582/762 787/820      

rs9886651 
G/A OCP use 

 AA AG GG AA AG GG   

Never 1278/1718 2053/2502 900/1028 1.52% 
(1.42%,1.62%) 

1.70% 
(1.64%,1.76%) 

1.91% 
(1.77%,2.04%) Ref Ref 

Ever 1666/3105 2640/4978 1194/2072 1.07% 
(1.02%,1.12%) 

1.10% 
(1.07%,1.13%) 

1.14% 
(1.07%,1.21%)   

RD    -0.45% 
(-0.57%, -0.33%) 

-0.60% 
(-0.69%, -0.51%) 

-0.77% 
(-0.93%, -0.60%) 

5.32×10-3 

(2) 
9.90×10-3 

(1) 

missing 70/47 113/79 57/37      



 
 
Abbreviation: SNP, single-nucleotide polymorphism; AR, absolute risk; RD, risk difference; OCP, oral contraceptive pills; 

HT, menopausal hormone therapy; ET, menopausal estrogen therapy; EPT, menopausal estrogen + progestin therapy; 

Ref, reference group; df, degree of freedom. 

a: Number of cases and controls were estimated from the original merged G×E data (before imputation) with 9971 cases 

and 15566 controls from 17 study sites, using maximal probable genotypes for imputed SNPs. 

b: The risk difference corresponds to given category compared to the reference group, stratified by SNP. 

c: ARs were estimated from logistic regression model by empirically estimated distribution of E and SNPs, while fixing all 

other covariates at their mode (determined from the original data). 

d: LRT was performed for jointly testing additive interactions, assuming dominant effect model of SNPs (due to limitation of 

software). 

e: 1-df Wald test corresponds to the test individual RERI term (SNP = 2 vs SNP = 0, E = k vs E = reference group) is zero 

or not. 

All models were estimated from logistic regression model with SNP, E variable, SNP E variable, assuming log-additive 

model (except for additive LRT which assumes dominant effect), using maximal probable genotypes for imputed SNPs, 

adjusted for reference age, race, education, family history, OCP use, tubal ligation, parity, BMI, endometriosis and study 

site and were performed on imputed datasets of G-E (9971 cases, 15566 controls) with proper pooling. 
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eMethod 1. Data harmonization and preparation for imputation of E data 

Proper data harmonization is essential for a practical imputation and reliable analysis. A 

brief description for the harmonization process of environmental variables follows. 

Initially, the Epidemiology Working Group in OCAC established a set of core variables 

that were requested from each OCAC study. A detailed codebook was provided to each 

site. In addition, each OCAC study provided their questionnaire to the Epidemiology 

Working Group. Core variables were assigned to members of the Epidemiology 

Working Group for harmonization and review. This included questionnaire review to 

ensure similarity in the way questions were asked and logic checks for the data 

provided. For example, for the oral contraceptive variables, checks were run to make 

sure that any individual coded as never having used oral contraceptives was likewise 

coded as zero months for oral contraceptive use duration. When an expansion of the 

original core data was desired for a particular analysis, an epidemiologist reviewed the 

questionnaires, developed a harmonization plan, and created a codebook.  Similar logic 

checks were carried out for new variables brought into the OCAC dataset.  

For imputation, we originally started with an interest of 10 environmental risk 

factors (1-10) with 4 (10-13) confounders from 21 study sites:  

1) Oral contraceptive usage 

a. Oral contraceptive pills (OCP) use (ever/never) 

b. Duration of OCP use (<1, 1-<5, 5+ yr) 

2) Tubal ligation (y/n) 

3) Breastfeeding (y/n) 



4) Parity (0,1-2,3+ births) 

5) Type of menopausal hormone therapy (HT) 1+ year after aged 50 (never user, 

menopausal estrogen therapy only, any use of menopausal estrogen + progestin 

therapy) 

6) BMI (< 25, 25-<30, 30+) 

7) Endometriosis (y/n) 

8) Age at menarche (12-15, < 12, 15+ yr) 

9) Alcohol consumption in last 5 years(y/n)  

10)  Talc powder use on genital area (ever/never)  

11)  Reference age (<50, 50-<55, 55-<60, 60-<65, 65-70, 70+ years) 

12)  Race (Non-Hispanic white, Hispanic White, Black, Others) 

13)  Education (< high school, high school graduate, some college, college graduate) 

14)  first-degree family history of ovarian cancer (y/n) 

Missingness of the environmental risk factors varied by study-site and its pattern is 

presented in eFigure 1A. To avoid discarding a large number of subjects who had 

missing data at least one of the variables, we imputed missing values.  Simultaneously, 

to reduce errors due to the imputation, we excluded some study sites and variables that 

had a high proportion of missingness.  

1.1 Exclusion of environmental risk factors 

Originally, we had environmental information from 45,966 subjects (15,833 cases and 

30,083 controls) from 21 study sites. Examining the study site-specific missing data 

patterns showed that the two variables, alcohol use within 5 years (y/n) genital power 

use (ever/never), were not reported by more than 50% of subjects (eFigure 1A). 



Moreover, more than half of study sites did not collect any information on at least one of 

these two variables. Therefore, these two risk factors were excluded from the entire 

analysis.  

1.2 Exclusion of study sites 

Moreover, we found two study sites, Melbourne Collaborative Cohort Study in Australia 

(MCC) and UK Studies of Epidemiology and Risk Factors in Cancer Heredity (SEARCH) 

Ovarian Cancer Study (SEA), did not collect 6-7 variables. To improve the validity of 

imputation, we excluded MCC and SEA. Since this study focused on the effects in the 

general population (not a specific study site), we kept all the remaining 19 study sites 

(eFigure 1B), some of which may have no information on a few variables. However, 

including as many subjects as possible could improve power to identify any potential G-

E interaction effect.   

After the above exclusions, the final E dataset consisted of 36,697 subjects with 

13,722 cases from 19 study sites (see study characteristics in eTable 1). All the 19 

study sites have been previously described (1-18).  

 



eMethod 2. Imputation procedures and imputed-data analysis  

In our G-E interaction analysis, imputation of E data was a key element because 

analysis restricted to the complete data might not provide enough power and could also 

lead to biased results(19). Multiple imputation is one way to keep all the data by “filling 

in missing values multiple times and thus created multiple ‘complete’ datasets”(20). In 

contrast to single imputation methods (such as plug in a mean of the variable), multiple 

imputation methods can properly account for the missing data uncertainty(20). 

Specifically, we used multiple imputation by chained equations (MICE)(21).  

2.1 Building imputation models for E data 

We imputed the following 13 variables: continuous variables of BMI, duration of OCP 

use, and reference age as well as categorical/binary variables of parity, endometriosis, 

age at menarche, type of menopausal hormone therapy for 1+ year, breastfeeding, 

OCP use, tubal ligation, race, education, family history of ovarian. Because the 

collection of OCP use (ever vs never) and duration of OCP use were acquired through 

two different questions in the survey, we decided to impute both variables because they 

convey slightly different information.  

Using regression models, we sequentially imputed missing values for the above 

13 risk factors, starting with the variable with least missing and progressing in order of 

increasing missing proportions.  Each imputation model included case/control status, 

height, interview year (>=1976-<1986, >=1986-<1996, >=1996-<2006, >=2006-<2016), 

age at diagnosis/interview and study site as covariates for adjustment, in addition to the 

remaining 13 imputation variables. We used the R package MICE to implement the 

imputation procedures above (21) .  



2.2 Ten imputed E data and ten imputed G-E data 

Ten imputed E datasets were created by MICE, each of which consisted of 13,722 

cases and 22,975 controls.  We compared the association between case-control status 

and each imputed variable before and after imputation to verify the validity of imputation 

(eTable 2). For each imputed E dataset, G data from 17 case-control studies (a total of 

9,971 cases and 15,566 controls) were merged to create a G×E dataset.  

menopausal hormone therapy 

2.3 Combining multiple imputation results 

Environmental association analysis and G × E interaction analysis were repeatedly 

carried out with each of the 10 imputed E datasets and each of the 10 imputed G×E 

datasets, respectively.   

Odds Ratio. Individual estimates of the log odds ratio and the corresponding individual 

standard errors from each of the 10 imputed datasets were combined using Rubin’s 

rule(22). Suppose D imputed datasets yield the log odds ratio estimates (𝑄1, … , 𝑄𝐷) and 

their variance estimates (𝑈1, … , 𝑈𝐷).  Then, the pooled estimate is given by 𝑄̅ =

1
𝐷

∑ 𝑄𝑚
𝐷
𝑚=1  and its variance estimate is given by 𝑇 = 𝑈 + (1 + 1

𝐷
) 𝐵 , where 𝑈 =

1
𝐷

∑ 𝑈𝑚
𝐷
𝑚=1 , 𝐵 = 1

𝐷−1
∑ (𝑄𝑚 − 𝑄̅)2.𝐷

𝑚=1  Note (𝑄 − 𝑄̅)𝑇−1
2  approximately follows a t-

distribution (22,23) with the degrees of freedom 𝑣𝐷
∗ = ( 1

𝑣𝐷
+ 1

𝑣𝑜𝑏𝑠
)

−1
 , 

where 𝑣𝐷 = (𝐷 − 1) (1 + 𝑈
(1+𝐷−1)𝐵

)
2

,   𝑣𝑜𝑏𝑠 = 𝑣0+1
𝑣0+3

𝑣0(1 − 𝛾),   𝛾 = (1+𝐷−1)𝐵
𝑇

. In our analysis, 

as the sample size is over 20,000 and the number of covariates in each model is small, 

by central limit theorem, we assumed that 𝑄̅ is normal with mean Q and variance T. 



RERI-statistics. We combine RERI estimate by the same way as combining the 

estimated log-OR mentioned above. 

LRT-statistic. Suppose (LR1,…, LRD) are the individual LRT-statistics from D imputed 

G ×E datasets. Let 𝐿𝑅̅̅̅̅  be the sample mean of (𝐿𝑅1, … , 𝐿𝑅𝐷)  and 𝑣  be the sample 

variance of (√𝐿𝑅1, … √𝐿𝑅𝐷). Then, the pooled LRT-statistic is calculated by 

𝐿𝑅̂ =
𝐿𝑅̅̅̅̅ 𝑘⁄ − (1 − 𝐷−1)𝑣

1 + (1 + 𝐷−1)𝑣  

and the corresponding overall p-value is obtained by  

𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟(𝐹𝑘,𝑏 > 𝐿𝑅̂), 

where 𝐹𝑘,𝑏 is an reference distribution with k = degrees of freedom for each LRT test 

and 𝑏 = 𝑘−3
𝐷(𝐷 − 1){1 + [(1 + 𝐷−1)𝑣]−1}2 (22,24). This is a simplest way of combining 

p-values which only requires the chi-square statistics from each analysis, yet it performs 

pretty well when 𝐷 ≥ 5 (24).  

 



eMethod 3. Estimation of absolute risk (AR) from case-control data 

This section describes how the AR in each G×E stratum was estimated from case-

control studies with aid of external knowledge that the incidence rate of ovarian cancer 

is 1.3% (25).  

Let 𝐿 = (𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐸𝑗) − 1, 𝑀𝑞 = (𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐶𝑞) − 1 ,  and Q be the number of adjusted 

covariates. For a given SNP 𝐺𝑘 = 𝑔 (𝑘 = 1, … ,28) and environmental risk factor 𝐸𝑗 =

𝑙 (𝑗 = 1, … ,7),  the AR of ovarian cancer was calculated by 

𝑃𝑟𝑜𝑏(𝐷 = 1|𝐺𝑘 = 𝑔, 𝐸𝑗 = 𝑙)

=
exp (𝛽̂0

∗ + 𝛽̂𝐺𝑔 + 𝛽̂𝐸𝑙𝐼(𝐸𝑗 = 𝑙) + 𝛽̂𝐺𝐸𝑙𝐼(𝐸𝑗 = 𝑙)𝑔 + ∑ ∑ 𝛽̂𝐶𝑞𝑚𝐼(𝐶𝑞 = 𝑚)𝑀𝑞
𝑚=1

𝑄
𝑞=1 )

1 + exp (𝑒𝑥𝑝 (𝛽̂0
∗ + 𝛽̂𝐺𝑔 + 𝛽̂𝐸𝑙𝐼(𝐸𝑗 = 𝑙) + 𝛽̂𝐺𝐸𝑙𝐼(𝐸𝑗 = 𝑙)𝑔 + ∑ ∑ 𝛽̂𝐶𝑞𝑚𝐼(𝐶𝑞 = 𝑚)𝑀𝑞

𝑚=1
𝑄
𝑞=1 ))

 

where  𝛽̂𝐺, 𝛽̂𝐸𝑙, 𝛽̂𝐺𝐸𝑙, 𝛽̂𝐶11, … , 𝛽̂𝐶𝑂𝑀𝑂 are estimated from the logistic regression model [M1] 

in main manuscript. However, in general the intercept term 𝛽̂0
∗  cannot be directly 

estimated from case-control studies unless one knows the sampling proportion of cases 

and controls. In our analysis, to estimate 𝛽̂0
∗, we used external knowledge,  

𝑃𝑟𝑜𝑏(𝐷 = 1) = 1.3%. Specifically, we view  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖|𝐺𝑘𝑖, 𝐸𝑗𝑖, 𝐶1𝑖, … , 𝐶𝑂𝑖; 𝛽0
∗) 

= 𝛽0
∗ + 𝛽𝐺𝐺𝑘𝑖 + ∑ 𝛽𝐸𝑙

𝐿

𝑙=1

𝐼(𝐸𝑗𝑖 = 𝑙) + ∑ 𝛽𝐺𝐸𝑙𝐼(𝐸𝑗𝑖 = 𝑙)𝐺𝑘𝑖

𝐿

𝑙=1

+ ∑ ∑ 𝛽𝐶𝑞𝑚𝐼(𝐶𝑞𝑖 = 𝑚)

𝑀𝑞

𝑚=1

𝑄

𝑞=1

 

as a function of 𝛽0
∗, and we assume G and E are independent and 

𝑃𝑟𝑜𝑏(𝐷 = 1|𝐶1 = 𝑚1, 𝐶𝑄 = 𝑚𝑄; 𝛽0
∗) 



= ∑ ∑ 𝑃𝑟𝑜𝑏(𝐷 = 1|𝐺 = 𝑔, 𝐸 = 𝑙, 𝐶1 = 𝑚1, 𝐶𝑄 = 𝑚𝑄; 𝛽0
∗) ∗ 𝑃𝑟𝑜𝑏(𝐺 = 𝑔) ∗ 𝑃𝑟𝑜𝑏(𝐸 = 𝑙)

2

𝑔=0

𝐿

𝑙=1

= 1.3% 

where 𝑚𝑞 is the mode of 𝐶𝑞covariate, and 𝑃𝑟𝑜𝑏(𝐺 = 𝑔) and 𝑃𝑟𝑜𝑏(𝐸 = 𝑙) are estimated 

from controls only. Then, the solution of the above equation for 𝛽0
∗ is the estimate 𝛽̂0

∗. 

 

 



eMethod 4. Confidence Intervals for the estimated absolute risk (AR) and risk 

difference (RD) 

To obtain confidence intervals for ARs and RDs in Table 4 and eTable 6, we used a 

nonparametric bootstrapping method. For each of the D imputed datasets, we first 

generated b (set b = 1000) bootstrap samples and calculated the imputation-specific 

estimate of AR (or RD), denoted by 𝑄𝑑
∗  (𝑑 = 1, … , 𝐷), as the sample mean of b bootstrap 

estimates and the within-imputation variance, 𝑈𝑑
∗, as the sample variance of b bootstrap 

estimates. Then, we pooled the D imputation-specific estimates using Robin’s rule (22) 

(see eMethod 2.3), where the between-imputation variance, B*, was estimated as the 

sample variance of (𝑄1
∗, … , 𝑄𝐷

∗ ).  



eFigure Legends 

eFigure 1. Site-specific missing data stricture of 13 variables (A) for raw E data 

with 15833 cases and 30083 controls from 21 study sites (B) for harmonized E 

data with 13722 cases and 22975 controls from 19 study sites. 

 

eFigure 2. Estimated absolute risk (AR) of ovarian cancer given type of 

menopausal hormone therapy (never user [neither], menopausal estrogen 

therapy only [ET only]) and number of risk allele of rs11658063, among non-

Hispanic white college graduates aged below 50, ever used OCP with no family 

history of ovarian cancer, BMI below 25, no tubal ligation, no endometriosis, with 

one child. The ARs were calculated from a logistic regression model assuming 

log-additive effect of SNPs, while all the rest covariates fixed at their most 

frequent level.  
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eTable 1. Characteristics of 19 Case-Control Studies from the Ovarian Cancer Association Consortium (OCAC) 

included in the analyses 

Study 
acronym Study Name Country Year of 

interview Sizea Mean age  
(+/- sd) 

AUS (9) Australian Ovarian Cancer Study  
 

Australia 2001-2006 case 1381 59.0 (48.0-69.9) 

   control 1369 55.5 (43.0-68.0) 

CON (13) Connecticut Ovary Study USA 1999-2003 case 352 59.1 (48.3-69.9) 

   control 526 52.8 (42.4-63.1) 

DOV (1) Diseases of the Ovary and their 
Evaluation 

USA 2002-2009 case 1001 55.8 (46.9-64.7) 

   control 1687 56.0 (46.8-65.3) 

GER (14) Germany Ovarian Cancer Study Germany 1993-1998 case 209 55.9 (44.3-67.6) 

   control 502 54.7 (42.4-67.1) 

HAW (7) Hawaii Ovarian Cancer Study USA 1993-2008 case 641 56.4 (43.9-69.0) 

   control 1034 54.8 (40.2-69.3) 

HOP (11) Hormones and Ovarian Cancer 
Prediction 

USA 2003-2009 case 645 60.0 (47.7-72.4) 

   control 1630 57.6 (45.3-70.0) 

MAL (3) Danish Malignant Ovarian Tumor 
Study 

Denmark 1994-1999 case 653 59.3 (48.6-69.9) 

   control 1564 57.1 (45.8-68.4) 

MAY (5) Mayo Clinic Ovarian Cancer Case 
Control Study 

USA 1999-2014 case 956 61.6 (49.1-74.1) 

   control 1539 59.4 (44.9-73.8) 

NCO (10) North Carolina Ovarian Cancer 
Study 

USA 1999-2008 case 856 56.9 (46.3-67.5) 

   control 981 54.7 (42.9-66.5) 

NEC (16) New England-based Case-Control 
Study of Ovarian Cancer 

USA 1992-2008 case 1327 55.1 (44.0-66.2) 

   control 1946 53.1 (40.6-65.7) 



NHS (15) Nurses' Health Study USA 1976-2009 case 450 62.4 (51.5-73.3) 

   control 973 62.5 (52.1-72.9) 

NJO (26) New Jersey Ovarian Cancer Study USA 2002-2009 case 219 56.2 (45.9-66.5) 

   control 373 63.3 (52.1-74.5) 

OVA (6) Ovarian Cancer in Alberta and 
British Columbia Study 

Canada  2002-2012 case 1355 58.6 (47.7-69.5) 

   control 2712 56.7 (47.0-66.4) 

POL (2) NCI Ovarian Case-Control  
Study in Poland 

Poland 2000-2004 case 260 56.2 (45.5-66.9) 

   control 1107 55.6 (45.1-66.2) 

SON (4) Southern Ontario Ovarian Cancer 
Study 

Canada 1990-1993 case 345 57.7 (46.4-69.0) 

   control 542 56.7 (44.4-69.0) 

STA (8) Genetic Epidemiology of Ovarian 
Cancer 

USA 1997-2002 case 436 49.8 (40.5-59.0) 
   control 540 47.0 (36.8-57.1) 

UCI (18) UC Irvine Ovarian Cancer Study USA 1994-2005 case 384 57.6 (45.4-69.9) 

   control 614 53.7 (41.2-66.2) 

UKO (27) UK Ovarian Cancer Population 
Study 

UK 2006-2009 case 477 60.0 (48.7-71.2) 

   control 879 64.8 (58.9-70.7) 

USC (12,17) Los Angeles County Case-Control 
Studies of Ovarian Cancer 

USA 1993-2010 case 1775 57.1 (45.2-68.9) 

   control 2457 54.0 (41.8-66.3) 

Total study population for marginal environmental association analysis 1976-2014 Case 13722 57.7 (46.3-69.1) 

 Control 22975 56.3 (44.2-68.3) 

Total study population for gene by environmental 
interaction analysisb 

 1976-2014 Case 9971 57.9 (46.5-69.2) 

  Control 15566 56.5 (44.6-68.4) 

 
a Size refers to the number of individuals included for marginal E analysis. 
b Subsets in harmonized environmental data with available genetic data were included in the interaction analysis. 



eTable 2. Odds ratios for marginal associations of seven environmental risk factors in complete cases analysis 
and multiple imputation analysis.   
 

Environmental risk factor 
Complete Cases Analysisa 

(5803 cases, 10190 controls, 11 sites) 

Multiple Imputation Analysisb 

(13722 cases, 22975 controls, 19 sites) 
Control Case ORc P-valuec Control Case ORc P-valuec 

OCP use         
Never 0.309 0.414 Ref  0.351 0.452 Ref  
Ever 0.691 0.586 0.66 (0.61, 0.71) 1.24×10-24 0.649 0.548 0.62 (0.59,0.66) 5.24×10-73 

Duration of OCP use         
Never users (including <1 year) 0.415 0.546 Ref  0.430 0.554 Ref  
1-<5 year 0.254 0.232 0.71 (0.65, 0.77) 1.39×10-14 0.232 0.215 0.70 (0.66,0.74) 8.23×10-32 

5+ year 0.331 0.222 0.50 (0.46, 0.55) 3.92×10-52 0.338 0.231 0.48 (0.45,0.51) 2.20×10-133 

Tubal ligation         
No 0.755 0.814 Ref  0.762 0.824 Ref  
Yes 0.245 0.186 0.71 (0.65, 0.77) 5.85×10-15 0.238 0.176 0.73 (0.69,0.78) 1.81×10-23 

Breastfeeding         
No 0.351 0.457 Ref  0.380 0.515 Ref  
Yes 0.649 0.543 0.79 (0.73, 0.85) 3.27×10-9 0.620 0.485 0.76 (0.71,0.80) 4.80×10-21 

Parity (number of full-term births)         
0 0.049 0.075 Ref  0.149 0.243 Ref  
1-2 0.536 0.543 0.64 (0.55, 0.74) 6.31×10-10 0.489 0.438 0.59 (0.55,0.63) 1.94×10-65 

3+ 0.415 0.382 0.50 (0.43, 0.58) 3.50×10-20 0.362 0.319 0.50 (0.46,0.53) 4.91×10-90 

Type of HT using  
more than 1 year after age 50         

Never use 0.775 0.745 Ref  0.789 0.782 Ref  
ET only 0.067 0.099 1.31 (1.15, 1.49) 3.26×10-5 0.066 0.084 1.22 (1.12,1.34) 2.65×10-5 

Any EPT  0.158 0.156 0.94 (0.85, 1.04) 2.29×10-1 0.145 0.134 0.97 (0.90,1.04) 3.55×10-1 

BMI         
< 25 0.517 0.487 Ref  0.516 0.485 Ref  
25-<30 0.283 0.289 1.03 (0.95, 1.11) 4.76×10-1 0.284 0.286 1.03 (0.98,1.09) 2.55×10-1 

30+ 0.200 0.224 1.11 (1.02, 1.21) 2.20×10-2 0.200 0.229 1.15 (1.08,1.22) 6.11×10-6 



Endometriosis          
No 0.940 0.908 Ref  0.937 0.902 Ref  
Yes 0.060 0.092 1.55 (1.37, 1.76) 7.02×10-12 0.063 0.098 1.60 (1.46,1.75) 3.41×10-23 

 
Abbreviations: OR, odds ratio; OCP, oral contraceptive pills; BMI, body mass index; HT, menopausal hormone therapy; 

ET, menopausal estrogen therapy; EPT, menopausal estrogen + progestin therapy; Ref, reference group. 

a: Harmonized environmental data with no missing values in all included variables. 

b: Based on ten imputed E datasets. 

c: Logistic regression model adjusted for reference age, race, education, family history, OCP use, tubal ligation, parity, 

BMI, endometriosis and study site. 

 



eTable 3. Likelihood Ratio Tests for multiplicative and additive interactions between 28 SNP and 9 risk factor 
(showing P-value < 0.2) with 9971 cases, 15566 controls from 17 study sites 
  

 On Multiplicative scale On additive scale 

 Interaction Term LRTa 1-df Wald Test c Interaction Term LRTb 1-df RERI Test d 

No. Risk Factor SNPs P-value df P-valuee P-valuef Risk Factor SNPs P-value df P-valuee P-valuef 

1 OCP ever rs13255292 3.48×10-4 1 3.47×10-4 NA HRT rs11658063 3.29×10-3 2 3.01×10-2 7.04×10-1 

2 Parity chr9:16915105 5.25×10-3 2 5.10×10-2 1.25×10-3 OCP ever rs9886651 5.32×10-3 1 9.90×10-3 NA 

3 Length of OCP rs13255292 7.26×10-3 2 4.74×10-3 2.43×10-2 Parity rs74597329 1.90×10-2 2 1.88×10-1 8.12×10-1 

4 Parity rs10962643 7.52×10-3 2 1.99×10-1 2.86×10-3 Length of OCP chr17:43552537 1.95×10-2 2 7.25×10-1 4.27×10-2 

5 OCP ever rs9886651 1.97×10-2 1 1.97×10-2 NA Length of OCP chr9:16915105 2.13×10-2 2 1.43×10-1 1.25×10-4 

6 OCP ever rs10962643 2.76×10-2 1 2.76×10-2 NA Length of OCP rs10103314 2.16×10-2 2 1.27×10-1 2.62×10-2 

7 HRT chr9:16915105 3.08×10-2 2 6.08×10-2 1.10×10-1 OCP ever rs13255292 2.65×10-2 1 2.85×10-3 NA 

8 Parity rs74597329 4.04×10-2 2 4.51×10-2 8.38×10-1 Tubal ligation chr:9:136138765 2.71×10-2 1 7.69×10-2 NA 

9 breastfeeding rs7084454 4.14×10-2 1 4.14×10-2 NA Parity chr12:121403724 3.20×10-2 2 4.76×10-1 1.21×10-1 

10 Parity chr12:121403724 6.82×10-2 2 4.21×10-1 3.08×10-2 Parity rs11658063 3.46×10-2 2 2.54×10-1 9.91×10-2 

11 breastfeeding rs7705526 6.88×10-2 1 6.88×10-2 NA OCP ever rs10962643 3.49×10-2 1 1.91×10-3 NA 

12 Tubal ligation rs1562314 7.13×10-2 1 7.07×10-2 NA Parity rs9886651 3.85×10-2 2 4.38×10-1 7.28×10-1 

13 Parity rs7902587 7.16×10-2 2 2.67×10-1 4.64×10-1 OCP ever rs4808075 5.05×10-2 1 1.58×10-1 NA 

14 Length of OCP rs10962643 7.81×10-2 2 2.42×10-1 2.69×10-2 Length of OCP rs7705526 5.09×10-2 2 1.86×10-1 3.25×10-3 

15 Length of OCP rs7705526 7.98×10-2 2 3.47×10-1 2.51×10-2 breastfeeding chr2:111818658 5.41×10-2 1 9.52×10-2 NA 



16 breastfeeding rs320203 8.01×10-2 1 8.00×10-2 NA Parity rs7705526 5.44×10-2 2 9.78×10-3 1.24×10-2 

17 Length of OCP chr9:16915105 8.02×10-2 2 1.00* 3.58×10-2 breastfeeding rs7084454 6.70×10-2 1 1.62×10-1 NA 

18 breastfeeding rs10962643 8.38×10-2 1 8.33×10-2 NA OCP ever chr3:156397692 7.93×10-2 1 1.90×10-1 NA 

19 Parity rs7705526 8.57×10-2 2 3.08×10-2 7.20×10-2 Length of OCP rs9886651 7.93×10-2 2 6.27×10-1 3.86×10-2 

20 Parity chr8:82653644 9.46×10-2 2 9.43×10-1 9.69×10-2 OCP ever rs7705526 8.17×10-2 1 5.24×10-2 NA 

21 breastfeeding rs7217120 1.10×10-1 1 1.10×10-1 NA breastfeeding rs7217120 9.00×10-2 1 3.08×10-1 NA 

22 Length of OCP rs4808075 1.15×10-1 2 9.88×10-2 5.16×10-1 Tubal ligation rs8098244 1.00×10-1 1 1.87×10-1 NA 

23 HRT rs6005807 1.15×10-1 2 4.68×10-2 3.89×10-1 HRT rs6005807 1.07×10-1 2 9.78×10-3 4.29×10-1 

24 Tubal ligation rs4808075 1.25×10-1 1 1.23×10-1 NA breastfeeding rs7705526 1.08×10-1 1 2.79×10-2 NA 

25 OCP ever rs7705526 1.28×10-1 1 1.28×10-1 NA BMI rs10103314 1.21×10-1 2 6.54×10-1 4.35×10-1 

26 Parity rs11658063 1.28×10-1 2 2.39×10-1 4.41×10-2 Tubal ligation rs7084454 1.23×10-1 1 2.37×10-1 NA 

27 breastfeeding chr17:43552537 1.29×10-1 1 1.29×10-1 NA Tubal ligation rs6005807 1.24×10-1 1 6.84×10-1 NA 

28 HRT chr15:91531995 1.30×10-1 2 1.41×10-1 2.33×10-1 OCP ever rs320203 1.34×10-1 1 8.35×10-1 NA 

29 HRT chr12:121403724 1.30×10-1 2 8.63×10-2 2.49×10-1 Length of OCP chr15:91531995 1.43×10-1 2 2.22×10-1 8.54×10-1 

30 HRT rs11658063 1.36×10-1 2 4.45×10-2 7.13×10-1 breastfeeding chr17:43552537 1.44×10-1 1 3.66×10-1 NA 

31 HRT chr:9:136138765 1.59×10-1 2 1.71×10-1 1.29×10-1 Length of OCP rs10962643 1.44×10-1 2 3.84×10-2 2.30×10-4 

32 breastfeeding chr2:111818658 1.64×10-1 1 1.64×10-1 NA Parity rs7902587 1.51×10-1 2 4.10×10-1 9.39×10-1 

33 HRT rs1562314 1.69×10-1 2 1.95×10-1 2.3×10-1 OCP ever chr:9:136138765 1.74×10-1 1 2.46×10-1 NA 

34 Tubal ligation chr15:91531995 1.72×10-1 1 1.72×10-1 NA Tubal ligation chr15:91531995 1.78×10-1 1 2.99×10-1 NA 

35 OCP ever chr9:16915105 1.79×10-1 1 1.79×10-1 NA Tubal ligation chr9:16915105 1.84×10-1 1 4.92×10-1 NA 



36 breastfeeding rs7902587 1.81×10-1 1 1.81×10-1 NA Length of OCP rs7084454 1.86×10-1 2 4.95×10-1 8.28×10-2 

37 breastfeeding rs6005807 1.83×10-1 1 1.83×10-1 NA Parity chr15:91531995 1.87×10-1 2 8.36×10-1 6.91×10-1 

38 Tubal ligation chr12:121403724 1.91×10-1 1 1.91×10-1 NA HRT rs9886651 1.89×10-1 2 1.85×10-1 7.50×10-1 

39 Parity rs4808075 1.95×10-1 2 8.37×10-1 1.43×10-1 Length of OCP rs7902587 1.90×10-1 2 7.99×10-1 1.99×10-1 

40 OCP ever chr2:111818658 1.95×10-1 1 1.95×10-1 NA Endometriosis rs4808075 1.91×10-1 1 2.88×10-1 NA 

41       HRT chr9:16915105 1.95×10-1 2 7.94×10-3 8.24×10-2 

 
Abbreviations: SNP, single-nucleotide polymorphism; OR, odds ratio; AR, absolute risk; OCP, oral contraceptive pills; BMI, 

body mass index; HT, menopausal hormone therapy; ET, menopausal estrogen therapy; EPT, menopausal estrogen + 

progestin therapy; Ref, reference group; Mult, multiplicative; Add, additive.  
a LRT comparing two model: one with interaction, main effect of given SNP and risk factor E; the other model without the 

interaction, using dosage data for imputed SNPs 
b LRT comparing two models: one with interaction, main effect of given SNP and risk factor E; the other model assumes 

no additive interactions, using maximal probable genotypes for imputed SNPs. 
c Wald test of individual multiplicative interaction, using dosage data for imputed SNPs 
d Wald test for individual RERI term (SNP = 2 vs SNP = 0), using maximal probable genotypes for imputed SNPs. 
e comparing E = 1 vs E = 0. 
f comparing E = 2 vs E = 0. 
* without rounding 0.9998719084 

Shaded: Significant interactions that were selected for further analysis 

All models were from logistic regression models adjusted for reference age, race, education, family history, OCP use, 

tubal ligation, parity, BMI, endometriosis and study sites and were performed on ten imputed sets of G×E dataset (9971 



cases, 15566 controls) with proper pooling. Except additive LRT (dominant effect model of SNPs), all the rest tests 

assume log-additive effect model of SNPs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



eTable4. Estimated ARs stratified by OCP use or duration of OCP use and number of risk allele of rs1325292 

 
Abbreviation: SNP, single-nucleotide polymorphism; AR, absolute risk; RD, risk difference; OCP, oral contraceptive pills; 

Ref, reference group; df, degree of freedom. 

a The risk reduction corresponds to given category compared to the reference group, stratified by SNP. 

SNP Environmental risk 
factor 

Estimated ARb for E stratified by G  
(95%CI) 

Global 
LRTc Wald Testd 

Risk/Baseli
ne allele Variable Category Marginal Genotype1 Genotype2 Genotype3 (df) (df) 

rs13255292 
C/T OCP use 

  TT TC CC   

Never 1.68% 
(1.63%,1.74%) 

1.71% 
(1.55%,1.87%) 

1.69% 
(1.62%,1.76%) 

1.67% 
(1.59%,1.76%) Ref Ref 

Ever 1.10% 
(1.07%, 1.13%) 

0.91% 
(0.84%,0.98%) 

1.04% 
(1.01%,1.08%) 

1.20% 
(1.15%,1.24%)   

RDa 0.58% 
(0.49%, 0.67%) 

0.80% 
(0.62%,0.99%) 

0.65% 
(0.55%,0.74%) 

0.48% 
(0.36%,0.59%) 

2.65 x 10-2 

(2) 
2.85 x 10-3 

(1) 

rs13255292 
C/T 

Duration of 
OCP use 

  TT TC CC   

< 1 yr 1.70% 
(1.66%,1.74%) 

1.67% 
(1.53%,1.81%) 

1.69% 
(1.63%,1.75%) 

1.72% 
(1.64%,1.79%) Ref Ref 

1-<5 yr 1.24% 
(1.17%,1.30%) 

0.99% 
(0.86%,1.11%) 

1.16% 
(1.09%,1.23%) 

1.36% 
(1.26%,1.45%) 

  

RD 0.47% 
(0.37%,0.56%) 

0.69% 
(0.49%,0.88%) 

0.54% 
(0.43%,0.64%) 

0.36% 
(0.22%,0.50%) 

6.02 x 10-1 

(2) 
1.12 x 10-2 

(1) 

5+ yr 0.86% 
(0.82%,0.90%) 

0.72% 
(0.64%,0.81%) 

0.82% 
(0.77%,0.86%) 

0.92% 
(0.86%,0.98%)   

RD 0.84% 
(0.77%,0.92%) 

0.95% 
(0.78%,1.12%) 

0.88% 
(0.79%,0.96%) 

0.79% 
(0.69%,0.90%)  1.72 x 10-1 

(1) 



b ARs were estimated from logistic regression model by empirically estimated distribution of E and SNPs, fixing all other 

covariates at their mode (determined from original data). 

c LRT were performed for jointly testing additive interactions, assuming dominant effect model of SNPs (due to limitation 

of software). 

d 1-df Wald test corresponds to the test individual RERI term (SNP = 2 vs SNP = 0, E = l vs E = reference group) is zero 

or not. 

All models were estimated from logistic regression model with SNP, E variable, SNP x E variable, assuming log-additive 

model (except for additive LRT which assumes dominant effect), using maximal probable genotypes for imputed SNPs, 

adjusted for reference age, race, education, family history, OCP use, tubal ligation, parity, BMI, endometriosis and study 

site and were performed on imputed datasets of G-E (9971 cases, 15566 controls) with proper pooling.  

 

 

 

 

 

 

 



eTable5. Observed and expected OR under multiplicative and additive null for six gene-environment pairs with 

G×E data comprising of 9971 cases and 15566 controls from 17 study sites  

Environment Risk Factor Genetic Risk Factor Observed ORs (95%CI) Expected 
ORjointa Pinteraction 

Variable 
Name Category SNP Genotype ORE ORSNP ORjoint Mult Add Multb Addc 

Use of OCP ever 
(vs never) rs13255292 TC 

(vs TT) 0.53 (0.46,0.6) 0.99 (0.93,1.05) 0.61 (0.54,0.68) 0.52 0.51 3.47×10-4 4.49×10-3 

   CC 
(vs TT)  0.98 (0.86,1.11) 0.70 (0.62,0.78) 0.51 0.50  2.85×10-3 

Duration of 
OCP 

1-5 yr 
(vs < 1yr) rs13255292 TC 

(vs TT) 0.58 (0.5,0.69) 1.01 (0.96,1.07) 0.69 (0.61,0.77) 0.59 0.60 4.47×10-3 1.15×10-2 

   CC 
(vs TT)  1.03 (0.91,1.15) 0.81 (0.72,0.91) 0.60 0.61  1.12×10-2 

 >5 yr 
(vs < 1yr) 

 TC 
(vs TT) 0.43 (0.37,0.5) 1.01 (0.96,1.07) 0.48 (0.43,0.54) 0.43 0.44 2.43×10-2 1.88×10-1 

   CC 
(vs TT)  1.03 (0.91,1.15) 0.55 (0.49,0.61) 0.44 0.45  1.72×10-1 

Parity 1-2 births 
(vs 0 birth) rs10962643 AC 

(vs AA) 0.52 (0.44,0.61) 1.05 (0.96,1.15) 0.59 (0.5,0.68) 0.55 0.57 1.99×10-1 7.45×10-1 

   CC 
(vs AA)  1.11 (0.93,1.33) 0.66 (0.57,0.77) 0.57 0.63  7.13×10-1 

 3+ births 
(vs 0 birth) 

 AC 
(vs AA) 0.38 (0.32,0.46) 1.05 (0.96,1.15) 0.48 (0.41,0.56) 0.41 0.44 2.86×10-3 3.15×10-1 

   CC 
(vs AA)  1.11 (0.93,1.33) 0.61 (0.52,0.71) 0.43 0.49  2.41×10-1 

Parity 1-2 births 
(vs 0 birth) 

chr9:1691510
5 

GC 
(vs GG) 0.46 (0.36,0.58) 1.09 (0.98,1.22) 0.57 (0.47,0.7) 0.50 0.55 5.10×10-2 6.73×10-1 

   CC 
(vs GG)  1.19 (0.95,1.49) 0.71 (0.58,0.87) 0.55 0.65  5.83×10-1 



 3+ births 
(vs 0 birth) 

 GC 
(vs GG) 0.33 (0.26,0.43) 1.09 (0.98,1.22) 0.46 (0.37,0.57) 0.36 0.42 1.25×10-3 4.90×10-1 

   CC 
(vs GG)  1.19 (0.95,1.49) 0.63 (0.52,0.77) 0.40 0.52  3.27×10-1 

Type of HT ET only 
(vs never) rs11658063 CG 

(vs CC) 1.07 (0.91,1.27) 1.02 (0.98,1.07) 1.28 (1.14,1.44) 1.10 1.10 4.45×10-2 1.88×10-2 

   GG 
(vs CC)  1.05 (0.96,1.14) 1.52 (1.24,1.86) 1.12 1.12  3.01×10-2 

 Any EPT 
(vs never) 

 CG 
(vs CC) 0.91 (0.8,1.03) 1.02 (0.98,1.07) 0.95 (0.86,1.04) 0.93 0.93 7.13×10-1 7.03×10-1 

   GG 
(vs CC)  1.05 (0.96,1.14) 0.99 (0.85,1.15) 0.95 0.95  7.04×10-1 

Use of OCP ever 
(vs never) rs9886651 AG 

(vs AA) 0.71 (0.64,0.77) 1.13 (1.06,1.20) 0.73 (0.67,0.79) 0.80 0.83 1.97×10-2 7.79×10-3 

   GG 
(vs AA)  1.27 (1.13,1.43) 0.75 (0.68,0.83) 0.90 0.98  9.90×10-3 

Abbreviation: SNP, single-nucleotide polymorphism; OR, odds ratio; OCP, oral contraceptive pills; HT, menopausal 

hormone therapy; ET, menopausal estrogen therapy; EPT, menopausal estrogen + progestin therapy; yr, year; Mult, 

multiplicative; Add, additive.  

a Under multiplicative null, expected ORjoint = ORE*ORSNP; under additive null, expected ORjoint = ORE + ORSNP – 1, where 

ORE = exp(βE), ORSNP = exp(βSNP) are estimated from logistic regression model with SNP, E variable, SNP x E variable. 

b Wald test for individual multiplicative interaction  

c 1-df Wald test corresponds to the test individual RERI term is zero or not. 



All models were estimated from logistic regression model with SNP, E variable, SNP x E variable, assuming log-additive 

model (except for additive LRT which assumes dominant effect), using dosage data for imputed SNPs (except for additive 

Pinteraction which uses maximal probable genotypes for imputed SNPs), adjusted for reference age, race, education, family 

history, OCP use, tubal ligation, parity, BMI, endometriosis and study site and were performed on imputed datasets of  

G x E (9971 cases, 15566 controls) with proper pooling
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