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A relation MSHS→LJ between the set of non-isomorphic sticky hard sphere clusters MSHS and the sets of
local energy minima MLJ of the (m,n)-Lennard-Jones potential VLJ

mn(r) = ε
n−m [mr−n − nr−m] is established.

The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n, and the in-
creases asymptodically exponential with increasing cluster size. While the map from MSHS →MSHS→LJ is
non-injective and non-surjective, the number of Lennard-Jones structures missing from the map is relatively
small for cluster sizes up to N = 13, and most of the missing structures correspond to energetically unfavourable
minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coor-
dination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic
extended Lennard-Jones potential chosen from coupled-cluster calculations of for a rare gas dimer leads to a
substantial increase in the number of nonisomorphic clusters even though the potential curve is very similar to
a (6,12)-Lennard-Jones potential.

I. INTRODUCTION

The nucleation of atoms and molecules in the gas phase, or
liquid, to the solid state is still an active research field [1–8].
Rowland noted in 1949 that “The gap between theory and the
experimental approaches to nucleation has been too wide” and
“the subject [nucleation] is still in the alchemical stage” [9].
More than half a century later, despite all the advancements
made in cluster physics, “there is still a large gap between
experiment and theory” as Unwin noted [10].

The underlying reason for this rather slow progress is that
cluster formation is a dynamic process, and fully charac-
terizing the corresponding high-dimensional potential energy
landscape is typically an NP-hard problem, since there are
(presumed) exponentially many local minima at any given
temperature and pressure [1, 11–16]. Moreover, phase tran-
sitions between different morphologies as a function of size
N [17–21] usually occur where N is too large for an ac-
curate quantum-theoretical treatment [17–21]. For example,
Krainyukova experimentally studied the growth of argon clus-
ters [22], and found that small, initially icosahedral clusters
transform into anti-Mackay clusters for N > 2000, and fi-
nally into the closed packed fcc or hcp structures at N > 105

atoms, in qualitative agreement with theoretical predictions
using Lennard-Jones (LJ) type of potentials [2, 23, 24]. The
notorious rare gas problem was solved only very recently by
accurate relativistic quantum methods correctly predicting a
slight preference of the fcc over the hcp phase due to phonon
dispersion [25].

Simple models often have to be used to simulate cluster
growth and nucleation [26–29]. The simplest model potentials
that can be applied to theoretical studies of atomic cluster for-
mation are “HCR-SRA” potentials with isotropic hard-core-
like repulsive and short-range-attractive interactions [30]. The
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simplest HCR-SRA potential is the “sticky hard sphere”
(SHS) potential [31]

VSHS(r) =


∞, r < rs,

−ε, r = rs,

0, r > rs,

(1)

where rs and ε can be arbitrarily set to 1 (unit sphere and
reduced units, respectively). Eq. 1 can be used as a pertur-
bative basis for finite-ranged HCR-SRA potentials [32, 33].
Since sticky hard spheres are impenetrable and their energy
E = −Ncε is a function only of the number of interpar-
ticle contacts Nc, SHS cluster structure and energetics can
be uniquely mapped to their adjacency matrices Ā, where
Nc =

∑N
i< j Ai j. This allows them to be exactly characterized

via complete enumeration [34–36]; recent studies have identi-
fied all mechanically stable SHS clusters for N ≤ 14, and pu-
tatively complete sets for N ≤ 19 [34–39]. Note, however, that
different SHS structures can have the same adjacency matrix
for N ≥ 14 [38], and the mapping is therefore only surjective.

From the Gregory-Newton kissing-number argument
proved in 1953 by Schütte and van der Waerden [40], no
sphere can be surrounded by more that 12 spheres of equal
radius [41]. For small clusters, graph-theoretic arguments dic-
tate max(Nc) ≤ N(N −1)/2. Thus a loose bound on the maxi-
mum contact number Nc(N) is

Nmax
c (N) ≤min{N(N −1)/2, f (N)} (2)

with f (N) = 6N. This upper bound has been tightened several
times, most recently by Bezdek and Reid [42] to

f (N) = 6N −3(18)1/3π−2/3N2/3. (3)

In Refs. [37, 38] it was shown that Nmax
c (N) =

{6,9,12,15,18,21,25,29,33,36,40,44,48,52,56,60} for
4 ≤ N ≤ 19. While determining Nmax

c (N) for arbitrary N is
equivalent to the still-unsolved Erdös unit distance problem
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FIG. 1: Lennard-Jones potentials using different exponents
(m,n) with fixed n = 2m in reduced units. As the exponents
grow larger the well of attraction becomes more narrow and

its shape approaches the SHS potential. The dashed line
shows the extended LJ potential for the xenon dimer.

[43], it is clear that Nmax
c (N) = 3N − 6 + m(N), where m(N)

grows slowly from zero to around f (N) − (3N − 6) with
increasing N.

While the maximum contact number increases (sub)linearly
with N, the number of non-isomorphic cluster structures
|M(N)| and there connecting transition states are assumed
to increase exponentially [11, 44, 45] (here we denote
M(N) as the set of all non-isomorphic cluster structures
of size N, and |M(N)| as the number of these structures
in M(N)). Stillinger showed that under certain conditions
limN→∞ |M(N)| ∝ exp(αN) [44]. For SHS clusters, the com-
plete setMSHS(N,Nc) has been exactly determined for N ≤ 14
and 3N − 6 ≤ Nc ≤ Nmax

c (N) via exact enumeration studies
employing geometric rejection rules [37, 38]. Unfortunately,
such precise calculations are very difficult for finite-ranged
potentials since exhaustive searches for energy minima are
computationally intensive [46]. Only a few such studies have
been performed, e.g. recent studies of N ≤ 19 clusters inter-
acting via short-range Morse potentials [13, 15, 47].

It remains unclear how the HCR-SRA models commonly
used in cluster physics relate to more physically relevant,
softer interaction potentials like the (m,n)-Lennard-Jones (LJ)
interaction potential,

VLJ
m,n(r) =

ε

n−m

[
m

( re

r

)n
−n

( re

r

)m]
(with n > m). (4)

Here ε > 0 is the dissociation energy and re the equilibrium
two-body interparticle distance. To simplify the presentation,
we (without loss of generality) adopt reduced units (ε = 1,
re = 1) for the following. For m,n→ ∞, VLJ

m,n(r)→ VSHS(r)
(Fig. 1), and the energy landscapes of the two potentials con-
verge in this limit. However, real systems are not in this
limit. For example, for N = 13, there are |MSHS| = 97,221
stable SHS clusters [37, 38], but only |MLJ| = 1,510 stable
(m,n) = (6,12) LJ clusters [48]. This difference is understood
qualitatively – energy landscapes are well known to support

more local minima as the range of the interaction potential de-
creases [49, 50]. There are several effects that will cause the
set of stable LJ clusters to increasingly deviate from the set
of stable SHS clusters as interactions become longer ranged.
As n and m decrease, second-nearest-neighbor attractions be-
come increasingly important, producing stable structures with
ri j ≤ 1. Fold catastrophes [50, 51] progressively eliminate sta-
ble SHS clusters, and several stable SHS structures may col-
lapse into a single stable LJ cluster. However, detailed quan-
titative understanding of such effects remains rather limited.

In this paper, we quantitatively examine how stable N ≤ 14
LJ cluster structures evolve away from the SHS limit as (m,n)
decrease. We focus on both the appearance of the energy land-
scape (decreasing |MLJ(N)|) and the evolving topologies of
the stable cluster sets. We examine these changes in further
detail for specific N = 13− 14 clusters discussed by Gregory
and Newton in the 1600s in the context of the kissing number
problem [40], and also for a more realistic two-body poten-
tial that has been shown to accurately model rare-gas clusters
[23].

II. COMPUTATIONAL METHODS

The pele program [52] was used to generate putatively com-
plete sets of local minima for (m,n)-Lennard-Jones potentials
VLJ

mn(r) as defined in Eq.(4). This program applies a basin-
hopping algorithm that divides the potential energy surface
into basins of attraction, effectively mapping each point in
configuration space to a minimum structure [53–55]. The
minima obtained confirmed the number of local minima re-
ported in previous work [56]. Finite computer time limited
our search to clusters of size N ≤ 13.

Starting from the sticky hard sphere packings up to N = 14,
with Cartesian coordinates given by the exact enumeration al-
gorithm [36] including rigid hypostatic clusters (Nc < 3N −
6) [38], we carried out geometry optimisations with (m,n)-
Lennard-Jones potentials using the multidimensional func-
tion minimiser from the C++ library dlib [57]. The opti-
misation scheme was either the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) or the conjugate gradient (CG) algorithm.
The optimisations were terminated when the change in en-
ergy (in reduced units) over the course of one optimization
cycle was smaller than 10−15. Subsequently, the eigenvalues
of the Hessian were checked for all stationary points. If nega-
tive eigenvalues were found, the affected structures were reop-
timized following displacements in both directions along the
corresponding eigenvectors to locate true local minima. This
procedure assures that the floppy SHS packings are success-
fully mapped into LJ minima.

As the optimisations often result in many duplicates, espe-
cially for small values of n and m where we have |M(m,n)−LJ| �

|MSHS|, the final structures were further analysed and sorted.
Nonisomorphic SHS clusters can be distinguished (apart from
permutation of the particles) by their different adjacency ma-
trices for N ≤ 13 [38]. This is not the case for soft potentials
like the LJ potential since drawing edges (bonds) between the
vertices (atoms) becomes a matter of defining the distance
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range for a bond to be drawn. Therefore, we compare the
interparticle distances {ri j} instead: two clusters are isomor-
phic (structurally identical) if they have the same ordered set
of inter-particle distances {ri j}. While enantiomers can not
be separated using this methodology, permutation-inversion
isomers are usually lumped together since the number of dis-
tinct minima is analytically related to the order of the corre-
sponding point group [51]. To verify the number of distinct
structures we introduced a second ordering scheme using the
energy and moment of inertia tensor eigenvalues.

Two sets of structures are obtained from our optimiza-
tion procedure: the first set contains all possible LJ minima
MLJ from the basin-hopping algorithm, while the second set
MSHS→LJ contains the LJ minima obtained using only the
MSHS sticky-hard-sphere cluster structures as starting points
for the geometry optimization. To compare and identify cor-
responding structures between the two sets, the N(N − 1)/2
inter-particle distances {ri j} were again used as a fingerprint.

Two-body “extended Lennard-Jones” (ELJ) potentials that
accurately model two-body interactions in rare-gas clusters
can be written as expansions of inverse-power-law terms [23]:

VELJ(r) =
∑

n

cnr−n, (5)

where in reduced units the condition
∑

n cn = −1 holds.
For comparison to the simple (6,12)-LJ potential, we
used the ELJ potential derived from relativistic coupled-
cluster theory applied to the xenon dimer, with the
following coefficients for the ELJ potential (in reduced
units): c6 = −1.0760222355; c8 = −1.4078314494;
c9 = −185.6149933139; c10 = +1951.8264493941;
c11 = −8734.2286559729; c12 = +22273.3203327203;
c13 = −35826.8689874832; c14 = +37676.9744744424;
c15 = −25859.2842295062; c16 = +11157.4331408911;
c17 = −2745.9740079192; c18 = +293.9003309498 [58]. The
ELJ potential for xenon is shown in Figure 1 (dashed line).

III. RESULTS

A. Exploring the limits of Lennard-Jones

To study the convergence behavior of the number of distinct
(nonisomorphic) LJ minima in the SHS limit, we performed
geometry optimisations, starting from all nonisomorphic SHS
structures. We will show later that the number of unique min-
ima obtained in this procedure |MSHS→LJ| only misses out on
a small portion of minima obtained from the more exhaustive
basin-hopping approach, i.e. |MSHS→LJ| ≈ |MLJ|. The results
for a constant chosen ratio of LJ exponents n/m = 2 are shown
in Figure 2 (top).
|MSHS→LJ| smoothly converges towards the SHS limit

(dashed line, values in Table I) from below, thus
demonstrating that for LJ systems the number of dis-
tinct minima does not grow faster than exponentially.
The (48,96)-LJ potential has ∆M ≡ |MLJ| − |MSHS→LJ| =

{1,1,7,91,1019,14890,209938} fewer stable minima than the
SHS potential. The fractions of missed minima ∆M/|MSHS|
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FIG. 2: Convergence of the number of distinct LJ local
minima (permutation-inversion isomers are not

distinguished) |MSHS→LJ| obtained through geometry
optimisations starting from the nonisomorphic SHS

structures with increasing LJ exponent n. The dashed line
gives the exact SHS limit |MSHS|. Top: m = n/2. Bottom:

fixed m = 6.

for this potential grow with increasing N and are respec-
tively {7.69,1.92,2.67,5.46,8.62,15.32,23.44}%. Note that
for N ≥ 10 most of these missed minima correspond to high
energy (Nc < Nmax

c ) structures.
If the exponent n for the repulsive part of the LJ potential

is increased with m kept constant, the LJ potential becomes
equivalent to the SHS potential in the repulsive range but re-
mains attractive at long range. Figure 2 (bottom) shows the
convergence of the number of unique structures with respect
to n at set m = 6 towards the SHS limit. Here, the number
of distinct minima converges towards a number that is much
smaller than the total number of SHS packings demonstrat-
ing that (as expected) the attractive part of the potential con-
tributes significantly to the decrease of the number of local
minima compared to the rigid SHS model.

To see if the asymptotic increase in the number of distinct
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TABLE I: Number of distinct local minima |MSHS| for cluster
size N (from Refs. [36–38]) and contact number Nc from the

exact enumeration, compared to the number of different
structures obtained from a geometry optimisation starting

from the setMSHS→LJ(N,Nc) for a (6,12)-LJ potential. The
overall number of unique minima for all contact numbers Nc,
|MSHS→LJ|, is shown in the following column excluding

duplication. This can be compared to the number of different
structures found using basin-hopping (|MLJ|). The difference

∆M = |MLJ| − |MSHS→LJ| is also listed.

N Nc |MSHS(Nc)| |MSHS→LJ(Nc)| |MSHS→LJ| |MLJ| ∆M

8 18 13 8 8 8 0

9 21 52 20 20 21 1

10 23 1 1
24 259 60 62 64 2
25 3 3

11 25 2 2

165 170 5

26 18 6
27 1620a 158
28 20 12
29 1 1

12 28 11 6

504 515 11

29 148 24
30 11638 483
31 174 69
32 8 6
33 1 1

13 31 87 23

1476 1510 34

32 1221 100
33 95810a 1418
34 1318a 293
35 96 49
36 8 6

14 33 1 1

4093 (4187)b (94)b

34 707 101
35 10537 410
36 872992 3939
37 10280 1002
38 878 237
39 79 42
40 4 3

a The largest value for |MSHS | has been taken from Refs. [36–38].
b Estimated.

minima |M(N)| ∼ eαN is indeed exponential, we use Still-
inger’s expression for the asymptodic exponential rise rate pa-
rameter [44]

α = lim
N→∞

(
N−1ln|M(N)|

)
. (6)

Figure 3 shows the number of distinct minima for SHS clus-
ters obtained from the data shown in Table I. The N ≥ 12 SHS
data gives αSHS ≈ 2.21. Figure 3 also shows the (6,12)-LJ
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FIG. 3: Growth behaviour of |M(N)| of SHS and (6,12)-LJ
clusters and corresponding asymptotic exponential rise rate
parameter α for N ≥ 12 as defined in Eq.(6). The intercepts

ln|M(N = 0)| are −17.19 and −6.94 for the SHS and
(6,12)-LJ cases respectively.

results obtained using basin-hopping; these yield αLJ ≈ 1.10,
which is close to the α = 0.8 value estimated by Wallace [59]
or to the recently given value of 1.04 by Forman and Cameron
[45]. Note that the rapid increase of |MSHS|/|MLJ| with N is
explained by the much larger values of α for the SHS com-
pared to the LJ clusters.

Using the results for N ≥ 13 from Figure 2, we can calculate
how α depends on the LJ range parameter n. As shown in
Figure 4, a general function of the form

α(n) = αmax +
a

(n−n0)p (7)

fits the results nicely, allowing the prediction of growth be-
haviour for different LJ potentials. For |M(n/2,n)−LJ|, αmax is
equivalent to αSHS = 2.207. The other adjusted parameters
are a = −66.588, n0 = −3.386 and p = 1.473 (Figure 4). We
also show the ratio α(|MSHS→(n/2,n)−LJ|)/α(|MSHS→(6,n)−LJ|)
between the two different LJ asymptotic exponential rise rate
parameters, which shows that larger cluster sizes need to be
studied to correctly describe the asymptotic limit.

The distribution of minima as a function of (free) energy
was suggested to be Gaussian [60]. Figure 5 shows the en-
ergy distribution of minima for different LJ (n/2,n) potentials
derived from SHS initial structures. We do not see a Gaus-
sian type of distribution (this does not change if we take the
free energy at finite temperatures instead), in fact we included
the case of the (9,18)-LJ potential which shows two maxima
in the distribution already apparent in the (6,12)-LJ potential.
This indicates some “phase transition” in the potential energy
landscape away from low-energy to high energy minima when
converging towards the SHS limit. It is also clear that the dis-
tributions narrow with increasing LJ exponent n towards the
SHS limit.

It is well known that the global minimum for rare gas clus-
ters with 13 atoms is the ideal Mackay icosahedron [61–63].
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Simple geometric considerations imply that such a symmetric
cluster is not possible for sticky hard spheres; all vertices of a
regular icosahedron with edge length 1 lie on a circumscribing
sphere with radius rc ≈ 0.951, making it impossible to insert
a sphere of the same radius into the center of the polyhedron.
Therefore, there must be well-defined LJ exponents (m,n) at
which the icosahedral N = 13 LJ cluster breaks symmetry to
form a rigid cluster. For the n = 2m case considered above,
this occurs at nearest integer m = 15.

We also explored a more realistic extended LJ potential
(Eq. 5; Figure 1) for one of the rare gas dimers (xenon)
in comparison with other LJ potentials. We see that the
repulsive part agrees nicely with the conventional (6,12)-

LJ potential, while for r > 1 the extended LJ potential is
slightly less attractive. This should lead to an increase in
the number of local minima compared to the conventional
(6,12)-LJ potential. We find that this is indeed the case,
i.e. |MSHS→ELJ| = {8,21,74,205,685,2179,6863} for N =

{8,9,10,11,12,13,14}. For N = 13 the number of distinct min-
ima is 44% larger than it is for the simple (6,12)-LJ potential,
which shows that |M(N)| is rather sensitive to the potential
chosen. Hence, to correctly describe the topology of real sys-
tems, one has to take care of the correct form of the 2-body
contribution (as well as higher n-body contributions) [25].

B. (6,12)-Lennard-Jones clusters from basin hopping

Table I shows the number of distinct minima found by
our cluster geometry optimisation procedure using the (6,12)-
LJ potential compared to results from exact enumeration for
SHSs and from basin-hopping for the (6,12)-LJ potential. As
the SHS clusters for a specific N value can be grouped by their
contact number Nc, the geometry optimisations were carried
out separately for each group ofMSHS(Nc). Hoy [36, 37] and
Holmes-Cerfon [38] have reported slightly different numbers
for N = 11 and N = 13; upon geometry optimisation, however,
their datasets yield the same final clusters |MSHS→LJ(Nc)|. As
identical LJ clusters appear in multiple groups with different
contact numbers, we remove the duplicates to create the set
MSHS→LJ of distinct minima, which can be directly compared
to the set of LJ minima MLJ obtained from the basin hop-
ping method. It should be noted that including the hypostatic
clusters and the different |MSHS| for N = 11 and N = 13 from
Ref. [38] did not change our results, implying that hypostatic
clusters are not an important feature for the LJ energy land-
scape.

Interestingly, our gradient-based minimisation procedure
starting from the SHS packings does not in general lead to a
complete set of LJ minima; the mapping from SHS minima to
LJ minima is non-injective and non-surjective. Clearly, some
structural motifs found in LJ clusters are not found in SHS
clusters and vice versa, and the topology of the hypersurface
changes in a non-trivial fashion from SHS to LJ. However, it
is surprising that the fraction of structures that are missed by
this optimisation procedure is so small (see Table II). To gain
further insight, we analysed the energetics and structure of the
unmatched clusters in more detail.

Figure 6 shows an analysis of the difference between the
longest to the shortest bond lengths d∆ = dmax−dmin obtained
for the largest clusters inMLJ with N = {11,12,13} [64]. The
histograms show that the clusters most commonly have a d∆

of about 0.03. In contrast, as shown by the orange bars, the
unmatched structures have significantly larger d∆ values of at
least 0.05, with most of them having d∆ ' 0.06. This is a
first indication of why these structures are not found by start-
ing from SHS packings. The latter only form bonds of length
one, and a large variation in bond length could imply that a
SHS packing similar to the LJ structure does not exist as the
SHS boundary conditions are not satisfied. The data in Ta-
ble III show that the unmatched (UM) structures for a specific
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TABLE II: Number of missing structures after optimisation
belonging to the same ”seed”. N = 8 is excluded because all

LJ minima were found starting from the SHS model.

seed N = 9 N = 10 N = 11 N = 12 N = 13
a 1 1 - 3 8
b - 1 3 4 12a

c - - 1 1a -
d - - 1 1 5
e - - - 1 6
f - - - 1 1
remaining - - - - 2
total 1 2 5 11 34
% 4.76 3.13 2.94 2.14 2.25

a Some structures do not resemble a perfect capped cluster, but undergo a
slight rearrangement.

TABLE III: Range [E0,Emax] of the energy spectrum of all
LJ minima, position of the second lowest minimum structure
E1 and position of the first unmatched (UM) structure EUM

0
relative to the respective global minimum (in reduced units

and E0 = 0).

N Emax E1 EUM
0

8 1.04 0.06 -
9 2.08 0.84 1.19
10 3.13 0.87 2.22
11 4.22 0.85 2.27
12 6.16 1.62 3.38
13 9.26 2.85 6.14

N value have much higher energies compared to the one of the
global minimum (which is set to zero, i.e. E0 = 0). They are
always positioned in the upper half of the energy spectrum,
making them energetically unfavored. We could however not
find any correlation between d∆ and the energetic position of
the LJ clusters.

Last, we checked the geometries of the missing structures
in some more detail. As it turns out, almost all of the missing
stable LJ clusters can be created from a smaller set of missing
clusters by capping some of their triangular faces. Therefore,
these groups of clusters can be referred to as ”seeds” [35]. The
corresponding starting structures of each seed can be seen in
Figure 7. Table II shows the number of clusters belonging to
a specific seed (a)–(f). Over 60 % of the unmatched structures
belong to seed (a) and (b). Two structures in seed (b) and one
structure in seed (c) were found to deviate slightly from the
perfect arrangement, but minor rearrangements of these struc-
tures lead to the desired geometry and they can be assumed to
be part of that respective seed. From a graph theoretical point
of view [34, 35], grouping structures into seeds means that
all structures belonging to the same seed contain the graph of
the starting structures as a subgraph in their respective con-
nectivity matrix. This approach simplifies the analysis to a
great extent, as the feature that prevents the structures from
being found by geometry optimisation is the same for each
of the structures arising from a specific seed. Only two struc-

tures with N = 13 spheres could not be grouped into any of the
seeds, which implies that these could be the starting structures
for two new seeds.

None of the seed structures in Figure 7 are stable SHS pack-
ings. For example, structure (d) can be described as three oc-
tahedra connected via triangular faces sharing one edge. Geo-
metric considerations immediately show that this structure is
impossible to be formed by SHS rules. The dihedral angle in
an octahedron is approximately 109.5◦ which means three oc-
tahedra only fill 328.5◦ of a full circle, leaving a gap between
two faces.

Finally, we note that the starting SHS minima in our op-
timisation procedure are not stationary points on the LJ hy-
persurface, and we therefore optimise to most but not all lo-
cal and available LJ minima. This observation explains why
some high-energy structures were not found by our optimisa-
tion procedure. For a smooth change in the topology of the
potential energy surface from SHS to LJ type clusters one has
to continuously vary the exponents (n,m) in real space, which
is computationally too demanding.

C. The special case of a Gregory-Newton cluster

We call a cluster “Gregory-Newton” (GN) when it belongs
to the set of all clusters consisting of 12 spheres kissing a
central sphere. The canonical Gregory-Newton cluster is the
icosahedron, which is perhaps the most common form studied
in cluster chemistry and physics [2, 41, 65, 66]. We therefore
investigate this cluster type in more detail here.

For monodisperse SHS clusters, the Gregory-Newton argu-
ment (as proved by Schütte and van der Waerden [40]) that no
more than 12 equally sized spheres can touch a central sphere
of same size holds. We note that the problem of the number
of kissing spheres in k dimensions, or even in three dimen-
sions with sphere size smaller than that of the central sphere,
remains largely unsolved [41]. For unequally sized spheres,
some simple results related to spherical codes [67] are known;
for example, 13 hard spheres of radius rs can touch a central
sphere of unit radius only if rs ≤ 0.9165 [67]. For particles in-
teracting via finite-ranged potentials such as VLJ

mn(r), however,
the situation is far more complicated since systems minimize
energy rather than differences in the distances between neigh-
boring particles, and few general results are known. Nonethe-
less, this latter problem is important for understanding real
systems such as coordination compounds [68], which have re-
cently been shown to possess coordination numbers as high as
17 [69] or even 20 [70].

Motivated by the above mentioned existence of high-
coordination-number compounds, we investigated longer
range potentials by decreasing the LJ exponents (m,n), to see
whether the restriction of no more than 12 kissing equal-sized
spheres still holds. As it is impossible to distribute 13 points
on a sphere evenly (there is no triangulation of a sphere with
13 vertices of degree 5 and 6 [71]), we used the Fibonacci
sphere algorithm [72, 73] to find an approximate distribution
of points on a sphere and added a center sphere. By optimis-
ing the coordinates for this N = 14 cluster with different LJ
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FIG. 6: Histograms of the difference between the longest and shortest bond distances d∆ = dmax−dmin for the complete set of
distinct LJ minimaMLJ(N) for N = {11,12,13}. Orange bars give the number of distinct structures not contained inMLJ as

obtained from the basin hopping algorithm.

(a) (b) (c)

(d) (e) (f)

FIG. 7: Graphical representations of the structures, that are
starting new seeds but are not contained inMSHS→LJ. See

Table II and text for more details.

exponents and calculating the distance of every sphere to the
center sphere, we can deduct at which “softness” a 13th sphere
is (perhaps) allowed to enter the first coordination shell, i.e. to
touch the center sphere.

Figure 8 shows the difference between the largest and the
smallest center-to-outer sphere (COS) distances in relation to
the LJ exponents m and n. Interestingly, none of the (m,n)-
LJ potentials lead to equal distances around a central sphere.
While this result could be due to the lack of symmetry, one
sphere is clearly further away from the central sphere even for
the softest “Kratzer” (1,2)-LJ potential [74]. For this poten-
tial the largest and smallest COS distances are rmax = 0.882
and rmin = 0.804, respectively. While the longest distance
only shows up once, the shortest distance appears twice. All
other 10 distances fall in the range between r = 0.845 and
r = 0.861. The rmax/rmin ratio is 1.097 and much shorter
compared to rmax/rmin =

√
2 for the closed packed lattice, or

the shortest distance possible for the SHS system which is

rGN
14 = 1.347 (see discussion below). Hence the 13th sphere

“almost” touches the center sphere.
Note that all COS distances for the N = 14 (1,2)-LJ clus-

ter are significantly shorter than r = 1, due to the N(N − 1)/2
attractive two-body interactions and the softness of the poten-
tial. While this is not generally the case for the optimized
(n,m)-LJ clusters reported here (distances of r > 1 appear as
well), for the infinite lattice (e.g. simple cubic, body-centered
cubic or closed packing) one can prove that the nearest neigh-
bor distance in the lattice is rNN < 1 for any (m,n), with
n > m > 3, combination in the LJ potential as we have (in re-
duced units)

rNN(m,n) =
(
LnL−1

m

) 1
n−m (8)

with m > 3 for a 3D lattice (for details see Ref.[23]). Here
Ln is the Lennard-Jones-Ingham lattice coefficient for a spe-
cific lattice determined from 3D lattice sums. As we have
Ln < Lm for n>m we see that rNN < 1, and lim

m,n→∞
rNN(m,n) = 1

approaching the hard sphere limit. The shortest distance
found in a (6,12)-LJ cluster rmin(N) is rmin(12) = 0.947842
(rmin(8) = 0.986767, rmin(9) = 0.964404, rmin(10) = 0.964382,
rmin(11) = 0.956345, rmin(13) = 0.952179), which surpris-
ingly is smaller than rNN(6,12) = 0.95066 for the simple cu-
bic crystal (NB: for body-centered cubic, face centered cu-
bic and hexagonal closed packing we have rNN(6,12) values
of 0.95186, 0.97123 and 0.97123 respectively). This result
shows that clusters do not necessarily have longer bonds com-
pared to the solid state, where we expect a maximum in inter-
action energy per atom.

Finally, we relate the above results back to the motifs
present in the HCR-SRA limit by focusing on N = 13 and
N = 14 SHS clusters from Ref. [38]. This set contains all non-
isomorphic SHS structures that can be considered GN clusters
(N = 13) and the N = 14 structures that can be derived from
them by attaching a 14th sphere. We find a surprisingly large
number (737) of nonisomorphic N = 13 GN-SHS structures
({724,10,1,2} for Nc = {33,34,35,36}), that all optimise to
the ideal icosahedral arrangement (Ih symmetry) if a (6,12)-LJ
potential is applied. An even larger number of clusters exists
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FIG. 8: Relation of LJ exponents m and n to the difference of
largest and smallest center-to-outer sphere (COS) distances.
A value of 0 would imply that all surrounding spheres are

touching the center sphere.

for N = 14 (14529), which is ≈ 0.016|MSHS(14)|. All of these
structures optimise to just one of two possible (6,12)-LJ min-
ima of GN type. The first is the Mackay icosahedron capped at
one of its triangular faces, and the second is an elongated pen-
tagonal bipyramid (belonging to the class of Johnson solids)
with the 14th sphere capping a square face.

Most of these N = 14 clusters are minimally rigid (Nc =

3N − 6 = 36), while only a few are hyperstatic (Nc > 3N −
6) and none are hypostatic (Nc < 3N − 6). There are
{14369,144,8,6,2} such clusters with Nc = {36,37,38,39,40}
and N = 14. The clusters with Nc = 40 represent hcp and
fcc sub-structures capped at a square face, as these arrange-
ments maximise Nc. Most of the clusters with Nc = {38,39}
are deformed versions of the elongated pentagonal bipyra-
mid mentioned above, indicating that this arrangement is a
favored route to these intermediate-energy structures. How-
ever, Nc = 39 also contains hcp and fcc structures capped at a
triangular face. The first example of a cluster derived from a
perfect icosahedral symmetry shows up at lower value Nc = 37
(!). Representative examples for clusters with high contact
numbers are depicted in Figure 9.

Surprisingly, the N = 14 cluster with the closest central-
to-outer sphere (COS) distance rCOS

min was not known. Here
we close this gap by determining the COS distance for all
Gregory-Newton type clusters. Results are summarized in
Figure 10. We find only one single cluster with rCOS

min =

1.3471506281091, a derivative of the elongated pentagonal
bipyramid belonging to the class of Johnson solids. Here, one
of the square faces is stretched to form a regular rectangle.
The capping of the 14th sphere happens at this deformed face
becoming the vertex of a deformed octahedron and allowing
the outer sphere to get closer to the central sphere (Fig. 9a).
The next-smallest rCOS cluster (rCOS = 1.37515) is shown in

(a) rGN
14 = 1.34715, Nc = 39 (b) rGN

14 = 1.37515, Nc = 36

(c) rGN
14 =

√
2, Nc = 40 (d) rGN

14 =

√
8
3 , Nc = 39

FIG. 9: Graphical representations of SHS packings with
N = 14, where a center sphere is maximally contacting. The
orange sphere in each cluster is the 14th outer sphere, not

able to touch the center sphere (in black). (a) distorted
elongated pentagonal bipyramid (Johnson solid); (b)

distorted icosahedron; (c) hcp capped on a square; (d) hcp
capped on a triangle.

figure 9b. It does not belong to the category of the clusters
derived from the elongated pentagonal bipyramid, but instead
can be described as being icosahedral-like. The short distance
is achieved by attaching the 14th sphere to 3 spheres that do
not form a face of the cluster, because they are separated by a
distance larger than 1.

As shown in Figure 10, motifs with larger rCOS are far more
prevalent. The bar at 1.41 for example contains all structures
where the 14th sphere is touching 4 other spheres that are part
of a tetragonal pyramid, therefore forming a regular octahe-
dron with a tip-to-tip distance of

√
2 (Fig. 9c). The maxi-

mum distance at 1.63 corresponds to capping triangular faces,
so that the most distant sphere is part of a regular trigonal
bipyramid with a height of

√
8/3 (Fig. 9d). The structures

in the bars at 1.60,1.58 and 1.55 are derived from the regular
trigonal bipyramid and result from breaking its axial bonds.
The more bonds are broken, or the further the axial spheres
are separated, the shorter the center-to-outer sphere distance
becomes.



9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1.35  1.4  1.45  1.5  1.55  1.6

fr
eq

u
en

cy

r
COS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1.35  1.4  1.45  1.5  1.55  1.6

FIG. 10: Frequency of distances from the cluster center to the
most distant sphere for all Gregory-Newton-like clusters

contained in the structures from Ref. [38]. The width of the
bars is 0.01.

IV. CONCLUSIONS

We characterized the sets of (m,n)-LJ-potential minima ob-
tained using complete sets of nonisomorphic SHS packings
with 8 ≤ N ≤ 14 [34–38] as initial states for energy min-
imization. The number of distinct minima (i.e. excluding
permutation-inversion isomers) is far smaller than the number
of SHS packings for the standard Lennard-Jones exponents
(m,n) = (6,12), but approaches the SHS limit from below as
(m,n) increase. We characterized how the number of distinct
minima M(N) increases with cluster size N by determining
Stillinger’s rise rate parameter α (Eq. 6 [44]). The increase of
α from ≈ 1.1 for (6,12)-LJ clusters to ≈ 2.2 for SHS clusters
is described by a simple functional form (Eq. 7). All results
can be understood in terms of a smooth progression of the

(m,n)-LJ energy landscape towards the SHS energy landscape
as (m,n) increase.

Using a more realistic extended LJ potential obtained from
coupled cluster calculations for the xenon dimer [23, 58] leads
to M values close to those obtained for the (6,12)-Lennard-
Jones potential, but our results indicate the the topology of
the energy hypersurface is very sensitive to the model poten-
tial applied. For softer potentials, we showed that it is still un-
favourable for a 13th outer sphere to touch the center sphere.
Indeed, the Gregory-Newton argument still holds true for even
the softest (m,n) = (1,2) potential.

Finally, we compared our optimisation results to the
previously published results for the (6,12)-LJ potential.
The mapping from MSHS to MSHS→LJ is non-injective and
non-surjective, however, the number of structures missed by
the optimisation procedure is relatively small. The unmatched
structures belong to the high energy region of the potential
energy hypersurface and possess rather large variations in
their bond lengths. An analysis of their geometries revealed
that most of the larger structures can be constructed from a
smaller cluster by capping some of the triangular faces. This
procedure effectively sorts almost all unmatched structures
into six seeds for clusters up to N = 13.

V. ACKNOWLEDGEMENTS

We acknowledge financial support by the Marsden Fund of
the Royal Society of New Zealand (MAU1409). DJW grate-
fully acknowledges financial support from the EPSRC. PS
acknowledges financial support by the Centre for Advanced
Study at the Norwegian Academy of Science and Letters
(Molecules in Extreme Environments Research Program). We
thank Drs. Lukas Wirz and Elke Pahl for useful discussions.

[1] F. H. Stillinger and T. A. Weber, Science 225, 983 (1984).
[2] T. Martin, Phys. Rep. 273, 199 (1996).
[3] J. P. K. Doye and D. J. Wales, Science 271, 484 (1996).
[4] E. Vlieg, M. Deij, D. Kaminski, H. Meekes, and W. van Enck-

evort, Faraday Discuss. 136, 57 (2007).
[5] G. Meng, N. Arkus, M. P. Brenner, and V. N. Manoharan, Sci-

ence 327, 560 (2010).
[6] C. R. A. Catlow, S. T. Bromley, S. Hamad, M. Mora-Fonz, A. A.

Sokol, and S. M. Woodley, Phys. Chem. Chem. Phys. 12, 786
(2010).

[7] S. Karthika, T. K. Radhakrishnan, and P. Kalaichelvi, Crystal
Growth & Design 16, 6663 (2016).

[8] M. Holmes-Cerfon, Ann. Rev. Cond. Matt. Phys. 8, 77 (2017).
[9] P. R. Rowland, Discuss. Faraday Soc. 5, 364 (1949).

[10] P. R. Unwin, Faraday Discuss. 136, 409 (2007).
[11] A. R. Oganov and C. W. Glass, The Jour-

nal of Chemical Physics 124, 244704 (2006),
https://doi.org/10.1063/1.2210932.

[12] C. P. Massen and J. P. K. Doye, Phys. Rev. E 75, 037101 (2007).

[13] D. J. Wales, ChemPhysChem 11, 2491 (2010).
[14] A. R. Oganov, A. O. Lyakhov, and M. Valle, Accounts

of Chemical Research 44, 227 (2011), pMID: 21361336,
http://dx.doi.org/10.1021/ar1001318.

[15] F. Calvo, J. P. K. Doye, and D. J. Wales, Nanoscale 4, 1085
(2012).

[16] D. J. Wales, J. Chem. Phys. 142, 130901 (2015).
[17] B. W. van de Waal, J. Chem. Phys. 90, 3407 (1989).
[18] C. L. Cleveland and U. Landman, J. Chem. Phys. 94, 7376

(1991).
[19] B. W. van de Waal, Phys. Rev. Lett. 76, 1083 (1996).
[20] J. P. K. Doye, D. J. Wales, and R. S. Berry, J. Chem. Phys. 103,

4234 (1995).
[21] B. W. van de Waal, G. Torchet, and M. F. de Feraudy, Chem.

Phys. Lett. 331, 57 (2000).
[22] N. V. Krainyukova, R. E. Boltnev, E. P. Bernard, V. V. Khme-

lenko, D. M. Lee, and V. Kiryukhin, Phys. Rev. Lett. 109,
245505 (2012).



10

[23] P. Schwerdtfeger, N. Gaston, R. P. Krawczyk, R. Tonner, and
G. E. Moyano, Phys. Rev. B 73, 064112 (2006).

[24] N. V. Krainyukova, The European Physical Journal D 43, 45
(2007).

[25] P. Schwerdtfeger, R. Tonner, G. E. Moyano, and E. Pahl,
Angew. Chem. Int. Ed. 55, 12200 (2016).

[26] H. Cox, R. L. Johnston, and J. N. Murrell, J. Sol. St. Chem.
145, 517 (1999).

[27] S. Y., O. K., T. T., and O. M., Scientific Reports 5, 13534
(2015).

[28] C. Leitold and C. Dellago, J. Chem. Phys. 145, 074504 (2016).
[29] M. B. Sweatman and L. Lue, J. Chem. Phys. 144, 171102

(2016).
[30] R. J. Baxter, J. Chem. Phys. 49, 2770 (1968).
[31] S. B. Yuste and A. Santos, Phys. Rev. E 48 (1993).
[32] T. W. Cochran and Y. C. Chiew, J. Chem. Phys. 124, 224901

(2006).
[33] M. Holmes-Cerfon, S. J. Gortler, and M. P. Brenner, Proc. Nat.

Acad. Sci. 110, E5 (2013).
[34] N. Arkus, V. N. Manoharan, and M. P. Brenner, Physical Re-

view Letters 103, 1 (2009).
[35] N. Arkus, V. Manoharan, and M. Brenner, SIAM Journal on

Discrete Mathematics 25, 1860 (2011).
[36] R. S. Hoy, J. Harwayne-Gidansky, and C. S. O’Hern, Physical

Review E 85, 051403 (2012).
[37] R. S. Hoy, Phys. Rev. E 91, 012303 (2015).
[38] M. C. Holmes-Cerfon, SIAM Rev. 58, 229 (2016).
[39] Y. Kallus and M. Holmes-Cerfon, Phys. Rev. E 95, 022130

(2017).
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[72] Á. González, Mathematical Geosciences 42, 49 (2010).
[73] B. Keinert, M. Innmann, M. Sänger, and M. Stamminger, ACM

Trans. Graph. 34, 193:1 (2015).
[74] A. Kratzer, Z. Phys. 3, 289 (1920).


