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Abstract

The stability of DNA is crucial for the existence of most living organisms. Even a single DNA

break can lead to serious problems, and even cell death. In this work the position-specificity

of single strand breaks (SSB) and the stability of short DNA fragments of various lengths

and sequence repetitions (d(AT )30, d(ATGC)15, d(GC)30, d(TTAGG)12, d(TTAGGG)10, and

d(TTTAGGG)9 with SSBs and d(GC) with 2-60 repetitions without SSBs) were examined, by

performing a series of steered molecular dynamics simulations using the coarse-grained NARES-

2P force field. Our results show that the stability of DNA with a SSB strongly depends on the

position of the break, and that the minimum length of DNA required for stability is sequence

dependent. d(GC)30 with SSB in position x was found to be less resistant to stretching than

d(GC)x without SSB, where x is the number of d(GC) repetitions. DNA sequences with

longer repeated fragments (such as telomeres) exhibit greater stability in the presence of breaks

positioned at the beginning of the chain, which could constitute a cellular defence mechanism

against DNA damage.
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1 Introduction

The study of basic mechanisms involved in cell function is currently one of the most active areas

in molecular science. DNA is a principal cellular component: it is responsible for carrying the

genetic information of all proteins, and determines the frequency of transcription or replica-

tion. However, DNA is very prone to damage, which can lead to cancer1 or neurodegenerative

disease.2 Moreover, DNA damage is also associated with autoimmune conditions3 and dia-

betes mellitus type 2,4 while aberrations of telomeres can lead to cancer.5 Radiation,6 reactive

oxygen species,7 and chemical reactants8 are among the agents that damage DNA. In adults

over 1 kg of superoxide radical O
•−

2 is produced annually.9 There are several different examples

of DNA damage: single strand breaks (SSBs),10 the appearance of 8-hydroxydeoxyguanosine

residues,7 creation of polycyclic aromatic hydrocarbon adducts,11 and breaks in double strand

helices (DSB).12 Among the various examples of DNA damage, SSBs are the most common,

arising at a frequency of tens of thousands per cell per day.13 Unless quickly repaired the most

likely consequence of SSBs is collapse or blockage of replication forks during the S phase of the

cell cycle, leading to DSB, and finally to overall DNA instability.14,15 In most cases, SSBs are

rapidly reversed and do not lead to DSB,16,17 but otherwise they can lead to serious damage

to neuronal cells and even to heart failure.18

The first attempts to study the influence of SSBs on the stability and structure of the DNA

started in the 1990s, when only 1 ns simulations could be performed for very small systems.19

With advances in computational power and tools, longer simulations for larger systems with

higher accuracy became possible. However, with all-atom methods, we are still limited to

relatively small systems. A popular size for DNA studies is often the dodecamer on a sub-

microsecond timescale.20 Recently, larger systems, e.g. 31 bp DNA, have become accessible,

however, with run lengths still limited to 100 ns and with a low number of replicas.21 For

pulling velocities of 1-12 cm/s21 significantly higher force peak values were observed than in

experiment.

In the present contribution we consider the mechanical stability of undamaged DNA of
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various lengths compared to SSB-DNA. We apply steered molecular dynamics with the coarse-

grained force field NARES-2P to study the effect of the SSB position on the mechanical resis-

tance of damaged DNA using slow pulling speeds of 0.4 mm/s and 0.02 mm/s with at least 64

trajectories per system. We study different sequences: three non-telomeric and three telom-

eric, which differ in their mechanical properties.22 We determine if the break position has a

similar effect on mechanical stability to shortening of the DNA. The advantages of using an

efficient coarse-grained force field facilitate: (i) using relatively low pulling speeds of 0.4 mm/s

and 0.02 mm/s, (ii) performing 64 to 120 trajectories for each system, providing 7,080 trajec-

tories in total, (iii) using larger systems, which can exhibit stability during simulations, each

consisting of at least 60 bp. Our results show that stability of the single-break DNA is both

position- and sequence-dependent, and that shorter DNA fragments without defects are more

stable than long DNA with SSB in one of the chains in an analogous position.

2 Methods

The influence of the length of broken fragments on the stability of DNA during pulling was de-

termined using canonical SMD simulations for the NARES-2P force field, implemented in recent

work.22 Each simulation consisted of 64 trajectories, each of approximately 150µs (30,000,000

steps, each of 4.89 fs, taking into account the approximate 3 to 4 order-of-magnitude speed-up

associated with the NARES-2P force field), which were continued to full dissociation of the

chains. A pulling speed of approximately 0.4 mm/s and a force constant of 2 kcal/(mol Å2)

for the harmonic spring were used in all simulations. Additionally, a series of runs with a

0.02 mm/s pulling speed (2.45 ms, 500,000,000 steps) were run to analyse the influence of the

pulling speed on the results. In previous work22 we adjusted pulling speed by trial and error

and found that in some cases even with a pulling speed of 0.4 mm/s system may not have

enough time to equilibrate during simulations, however, most of the regrabbing phenomenon

could still be observed. In all simulations, restraints (anchors for pulling) were placed on the

second residue from the 5′ position of each chain, so pulling was performed parallel to the long
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axis of the DNA.

NARES-2P23,24 is a coarse-grained model for nucleic acids derived analogically to the

physics-based coarse-grained model for proteins UNited RESidue (UNRES), which has been

developed for over 20 years and used mostly to predict protein structure25 and dynamics.26 In

NARES-2P only two interaction sites per nucleic acid are employed: a united sugar-base and

a united phosphate group. In both force fields the energy function is derived from a Restricted

Free Energy (RFE) or Potential of Mean Force (PMF) for all-atom systems, including solvent

and counter-ions. In the simplified representation, the all-atom energy function is averaged

out over the remaining degrees of freedom. All energy terms in NARES-2P are analogous to

UNRES, including the temperature dependence (f2(T )),23 while the effective energy function

of the NARES-2P model is expressed by eq. (1).

UNARES−2P
nucl = wGB

BB
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where UGB
BiBj

denotes the anisotropic Gay-Berne potential of the sugar-base sites and Udip
BiBj

denotes the mean field dipole-dipole interaction potential describing van der Waals and

electrostatic-interaction energies for sugar-base groups, respectively. UPiPj
and UPiBj

denote

the phosphate-phosphate and phosphate – sugar-base interaction potentials, respectively, Ubond,

Uang, Utor and Urot denote virtual-bond-stretching, virtual-bond-angle-bending, torsional, and

sugar-base-rotamer potentials, respectively. Each term is multiplied by the appropriate weight

(wx). For more details and description of the energy function, including van der Waals and

base-base electrostatic-interaction components, please refer to equations 1-14 in ref.27

Starting structures were obtained using Nucleic Acid Builder, which is a part of the AMBER

package,28,29 to generate ideal all-atom models of the B-DNA structures. These structures were

subsequently energy minimised for the NARES-2P force field,23,24 as in previous work.22 Each
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nucleic chain contains approximately 60 nucleotides, which gives approximately 205 Å(6 full

twists) chain length. This length was found to be sufficient to observe distinct properties for

the DNA sequences.

Three non-telomeric (d(AT )30, d(ATGC)15, and d(GC)30) and three telomeric sequences

(d(TTAGG)12, d(TTAGGG)10, and d(TTTAGGG)9) were used to analyse the influence of

single chain breaks in B-DNA. For each of six selected sequences with a single-chain break,

59 breaking positions were studied with 64 SMD trajectories each, giving 3,776 trajectories

per sequence. Additionally, stretching of the GC30 was run in two different modes: with a

lower pulling speed (0.02 instead of 0.4 mm/s) and a lower pulling force constant (0.1 instead

of 2 kcal/(mol Å2)), and d(TTAGGG)10 was also run with a lower pulling speed (0.02 mm/s).

In total, 9× 59× 4 = 33, 984 independent trajectories, each of approximately 150 µs, were run

and subsequently analysed.

Additionally, a separate series of different length d(GC)X chains, where X is the number

of GC repetitions in the range of 4 to 120, were tested at two different pulling speeds (0.4

and 0.02 mm/s) and d(TTAGGG)10 at 0.4 mm/s, to investigate the relation between chain

length and maximum stretching peak value, and verify if single strand breaks have purely a

shortening effect. Each simulation consisted of 120 trajectories to improve sampling, giving in

total 2 × 22 × 120 + 15 × 120 = 7, 080 trajectories from 150 to 2450µs.

The values and positions of the main force peaks during pulling were fitted to the analytical

function30

fc(N) =
N∆Gbp

Nδ − δ0
−

∆Gobs + ∆G0

Nδ − δ0
, (2)

where f is the shearing force, N is the number of base pairs, ∆Gbp is the free energy of disruption

of a single base pair, δ is a distance, and ∆Gobs is the observed N -dependent free energy for

shearing. For simplicity, the assumption that the transition state is a single base-pair state was

applied, as in ref. 30: δ = δ0, and Gbp = G0.
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3 Results and Discussion

3.1 SMD simulations of DNA chains with single break

Analysis of the force needed to pull two chains of B-DNA with single breaks shows that mechan-

ical resistance to stretching is strictly dependent on the sequence. Example plots for d(GC)30

are shown in Figure 1, while additional plots can be found in SI Figures S1-S9. d(GC)30 exhibits

one main force peak, whose height grows with the number of GC repeats, while the position is

similar for breaking at positions 25 to 59 with lengths of 370-390 Å. No other significant peaks

are observed. For d(ATGC)15 there is one main force peak, which for breaks at position 25

to 59 appears around 350 to 360 Å, with a secondary peak at lengths between 400 and 500 Å,

observed mainly for the longer fragments (e.g. 59). d(AT )30 is least resistant to stretching,

and the maximum force peak value barely exceeds 5 pN. Short fragments of AT are completely

unstable, while the pulling pattern for longer fragments (over 23 nucleotides) indicates gradual

untangling of the DNA chains without clear secondary peaks. For telomeric sequences a single

main peak is present, plus at least one secondary peak, which is related to the untangling of

the first repetition. This peak is clearly visible for d(TTAGGG)10 at a slow pulling speed of

0.02 mm/s (Figure S8). If the DNA chain has enough time during stretching it untangles by

single repetition and jumping to another chain, manifested as the sawtooth line in the Fig-

ure S8. For the faster pulling speed this effect is diminished and not so clearly visible. Such

behaviour is not observed for d(GC)30 pulled under the same conditions (Figure S4).

As indicated in Figures 1 and S1-S9, there are distinctive lengths for the broken chains

that cause a rapid increase of the force needed to separate them and in the peak force values:

21-25 for d(AT )30, 8-17 for d(ATGC)15, 12-18 for d(GC)30, 9-13 for d(TTAGG)12, 7-13 for

d(TTAGGG)10, and 9-14 for d(TTTAGGG)9. Hence for each sequence a different number

of nucleotides is needed to provide a stable interacting fragment of the chain. Surprisingly,

the minimal length that exhibits resistant force is smallest for both telomeric sequences and

d(ATGC)15, not for d(GC)30, which involves the largest number of hydrogen bonds stabilising

the DNA. This trend appears for fragments containing up to 12 nucleotides, for which all
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other sequences (except AT) require a higher force to detach the broken fragment, and are

therefore more stable (Figures 2 and 3 and Table 1). Such behaviour indicates that the length

of the repetitive fragment, not the number of hydrogen bonds, is the main factor governing the

stability of B-DNA with single breaks.

In general, it can be seen from Figures 2 and 3 that very short DNA chains (up to 5 nu-

cleotides) are not stable for all of the analysed sequences, and the positions of the main force

peaks appear random. d(AT )30 is the most unstable sequence for any position of breaking.

When damaged DNA is pulled d(AT )30 requires a much longer sequence to be stable. Sur-

prisingly, the second most unstable sequence for short pulled fragments is damaged d(GC)30,

which is consistent with the diagrams shown in Figures S1-S9. On increasing the length of

the pulled DNA chain, d(GC)30 starts to be the most stable sequence. However, for smaller

fragments telomeric sequences and d(ATGC)15 are more stable. A similar picture can be seen

from the total work needed to dissociate the DNA chains (Figure S15). Analysis of the diagram

in which main force peak values are scaled by the average number of hydrogen bonds (Figure

S12), suggests that this factor is significant, as shown by the much smaller differences between

the plots. However, the order of stability remains the same.

The mechanism for DNA untangling consists of several stages (Figure 4): (i) stretching of

DNA chains up to about 165-170% of the initial length (e.g. for d(TTTAGGG)9 stretching

occurs from 207 Å to about 346 Å) maintaining most of the hydrogen bonds (in line with

previous studies31–33); (ii) hydrogen bonds start to break and DNA chains slide, reforming

hydrogen bonds with other bases; (iii) the 3′ ends of the DNA fail to reform regular hydrogen

bonds during chain sliding, and intermediate triplex structures are formed; (iv) full dissociation

of the DNA chains. If SSB results in a short fragment (up to about 10 bp) at the 3′ end, then

during stretching it dissociates before step (i).

Fitting of the analytical function (eq. 1) to the main force peak values (Table 2 and Figure

S11) produces good alignment with the data. The observed ∆Gτobs/∆Gbp values for our stan-

dard pulling speed agree with previous results,30 in the range 6 to 7, compared to 4.95 to 7.98
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for all sequences, except d(AT )30, for which ∆Gτobs/∆Gbp=14.35. The analytical function also

fits well to the position of the main force peaks (Figure S10). For all cases ∆Gτobs/∆Gbp reaches

a plateau for a given length, indicating that DNA is quickly reaching maximum resistance to

stretching. The lower ∆Gτobs/∆Gbp, the higher is the resistance for shorter fragments, because

they become more resistant faster, and the ∆Gτobs/∆Gbp values are lowest for the three telom-

eric sequences. For d(AT )30 ∆Gτobs/∆Gbp is the largest, which is also manifested by instability

for very short sequences.

3.2 SMD simulations of DNA chains with different lengths

Analysis of the simulations shows that very short chains of d(GC)2 and d(GC)4 are not stable

and can dissociate for minimal forces. Increasing the number of GC repetitions from 12 to 32,

the position of the main force peak increases linearly from 4.2 to 10.1 pN. The increase of force

then slows down significantly, reaching a maximum for d(GC)30, and decreasing slightly for

longer sequences. The decrease for the long chains is caused by the extended total simulation

time, which gives the system more time to relax, and subsequently decreases the main force

peak value. To check this hypothesis, an additional series of simulations was run for d(GC)X

with a pulling rate of 0.02 mm/s, i.e. 20 times slower (Figure S13). We find that the maximum

value of the force peak decreases from 13.2 to 7.3 pN for d(GC)30, and that the maximum

force peak value shifts to longer chains (Figure S14). DNA also maintains stability for much

longer stretching when a slower pulling speed is used, e.g. for d(GC)60 with 0.4 mm/s pulling

speed most trajectories dissociate at approximately 760 Å, and only a few of them are still

bound up to 910 Å, while at 0.02 mm/s, most of the trajectories are bound until reaching

approximately 1100 Å (Figure 5A and S13). However, despite the differences caused by pulling

speed, with increasing chain length, the maximum force peak value increases only to a limiting

value and reaches a plateau (Figure 5A-B), which is consistent with experiment.30,34 Differences

between long-range resistance between d(GC)60 and telomeric sequence of d(TTAGGG10)20

were explained in detail in previous work.22

In general, the behaviour of d(GC) sequences with different repetition lengths is similar to
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d(GC)30 with different positions for the SSB, but not identical. The shortest length of DNA

providing stability is d(GC)6 compared to position 12 in SSB d(GC)30, which is analogous.

However, for more d(GC) repetitions the position of the main force peak increases much faster

and almost linearly, compared to d(GC)30 with different SSB positions (Figure 2 and Figure

S15). The fit of ∆Gτobs/∆Gbp is also much better for d(GC)X than for chains with SSB. For

d(GC)60 with 0.02 mm/s pulling speed a secondary force peak can be observed (Figure S13)

at around 1080 Å, which is the result of averaging over 120 trajectories, in which release and

recapture of DNA chains occurred in several cases. It should be noted that such behaviour can

be observed only for sequences of sufficient length and at sufficiently slow pulling speed.

Interesting behaviour can be seen in the total work needed to dissociate the DNA chains

(Figure S17). For the short sequences (up to 26 d(GC) repetitions) more work is required to

dissociate the chains at faster pulling speeds, while for longer sequences (more than 28 d(GC)

repetitions), more work is needed for slower pulling speeds. These results may be due to the

lower stability of short DNA sequences, which start to untangle during longer simulations, and

by the ability of longer DNA sequences to stabilise chains by forming intermediate triplex and by

reformation of duplex structures with loose ends, as observed in previous work.22 The presence

of various high order DNA structures was recently confirmed by experimental studies.35

These observations are confirmed by Figure S17B, showing the total work needed to disso-

ciate the DNA chains divided by the number of d(GC) repetitions. For our standard pulling

speed, the work per repetition (wr) increases rapidly up to 18 d(GC) repetitions, then sta-

bilises up to 22 d(GC) repetitions, and slowly decreases for longer chains. Pulling speed has a

significant effect on the stability of the DNA chains, and even using a relatively slow value of

0.4 mm/s, differences in equilibration time for shorter and longer chains have a significant im-

pact on the work needed to dissociate them. For simulations with a pulling speed of 0.02 mm/s

the shortest stable DNA chain is d(GC)6, then wr slowly increases up to 12 d(GC) repetitions,

and from 14 to 28 d(GC) repetitions a rapid increase of wr is observed, which is associated with

the formation of marginally stable intermediate structures. Above 28 d(GC) repetitions only
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a minor increase of wr is observed, which suggests that these structures gained full mechanical

stability for stretching.

4 Conclusions

A series of MD simulations were run for DNA breaks in different positions and GC sequences

with a variable number of repetitions, to examine the influence of DNA length and the position

of the SSB on the stability of the chains. Our results show that breaks at the end of the DNA

chain (less than 6 nucleotides from the end) cause significant instability, producing minimal

resistance to pulling. Fragments longer than 6 nucleotides are relatively stable, depending

on both the sequence and the length of the fragment. Although d(GC)30 forms the most

hydrogen bonds, it is the most stable only for fragments longer than 12 nucleotides. For

DNA chains damaged in positions 6 to 12, sequences with longer repetitive fragments (such

as d(ATGC)15 and telomeric sequences) were found to be the most stable under stretching,

which may explain why nature chose these fragments to protect the termini of DNA. Our

simulations show that if the SSB position or length of the DNA chain is long enough, stretching

up to 170% can be supported without breaking hydrogen bonds, in agreement with previous

studies.31 Further stretching causes disruption of the hydrogen bonds and sliding of the chains

past each other. The main force peaks are related to the first part of stretching (up to 170%),

and scale well with the total number of hydrogen bonds stabilising the helices. The highest

peaks are observed for d(GC) sequences, and the lowest for d(AT ). Further stretching depends

more on the sequence repetitions than on the number of hydrogen bonds. In addition to the

previously observed influence of chemical modification of the DNA,36 and simulation details,

such as pulling speed37,38 or initial pulling angle,39 our study confirms that pulling speed plays

important role. However, the most important factor is DNA length, which affords greater

mechanical resistance to pulling, largely due to formation of higher order structures.

Telomeric sequences are most stable for SSBs present in short fragments, and their stability

is achieved very quickly (the lowest ∆Gτobs/∆Gbp). Moreover, because telomeric sequence rep-
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etitions are longer, a sawtooth force profile is observed (clearly visible for e.g. d(TTAGGG)10),

which additionally stabilises the DNA chains by producing multiple barriers to dissociation. We

also observed the tailing effect of telomeric sequences seen in previous work,22 which seems to

be connected both to the length of the repetitive fragment and the flexibility of the DNA chains.

This effect increases with AT content, and is manifested by resistance in highly stretched chains

(longer than 520 Å), caused by formation of intermediate triplex and quadruplex structures.

Overall, telomeric sequences appear to be optimal for protecting DNA chains from SSB, even

very close to the end of a DNA chain.
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6 Figure legends

Figure 1. Diagrams of the force needed to stretch DNA for a given distance in GC30. Solid thin

lines indicate averaged values over 64 trajectories for each possibility, fainter thick lines indicate

the standard error for each average, and numbers in the legend indicate after which residue the

break was introduced. Diagrams for other sequences, pulling speeds, and force constants can

be found in the SI.

Figure 2. Position of the main force peak needed to separate chains with single breaks as a

function of the break position.

Figure 3. Values of the main force peak needed to separate chains with single breaks, as a

function of the break position.

Figure 4. Example mechanism of SSB stretching in trajectory number 1 (out of 64) of

d(TTTAGGG)9. Panel A shows an initial structure, and the other panels show the structures

after a given simulation time for a pulling speed of 0.4 mm/s: B) 16µs, C) 35µs, D) 38µs, E)

44µs, F) 45µs, G) 63µs, H) 64µs. The full unbroken chain is shown by the yellow line, while

the broken chain is coloured in blue (stretched fragment) and red (remaining part).

Figure 5. The force needed to stretch A) d(GC), B) d(TTAGGG) sequences as a function

of the number of repetitions for a given distance.

Figure 6. Values of the main force peak needed to separate GC chains as a function of the

number of GC repetitions (dots) and fitting of eq. 1 with parameters showed in Table 2 to this

data (lines).
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Table 1: Minimum number of nucleic acids in a single-break fragment necessary for maintaining
stability, manifested as a main force peak value higher than 30, 60 or 120 pN.

> 30pN > 60pN > 120pN
d(AT )30 16 21 23

d(ATGC)15 7 8 8
d(GC)30 9 11 12

d(TTAGG)12 7 9 10
d(TTAGGG)10 6 6 8
d(TTTAGGG)9 6 9 9

Table 2: Fitting of the obtained distance and force values from the simulations to eq. 1.

∆Gbp/δ error ∆Gτobs/δ error ∆Gτobs/∆Gbp error
d(GC)30 801.81 10.39 6395.8 164.8 7.977 0.178

d(GC)30 − slow 703.13 10.58 7484.3 220.9 10.644 0.270
d(GC)30 − weak 843.06 13.39 6889.7 251.5 8.172 0.269

d(ATGC)15 556.93 6.87 3176.6 93.7 5.704 0.153
d(AT )30 499.54 7.75 7167.5 162.4 14.348 0.237

d(TTTAGGG)9 524.50 7.12 3095.1 97.1 5.901 0.167
d(TTAGGG)10 537.33 11.07 2660.0 135.9 4.950 0.232

d(TTAGGG)10 − slow 516.36 14.76 3851.2 234.5 7.458 0.401
d(TTAGG)12 516.38 5.54 3090.2 82.5 5.984 0.146

d(GC)x 995.48 24.42 8557.9 582.1 8.597 0.545
d(GC)x − slow 606.20 19.02 7130.6 446.3 11.763 0.637
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