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Abstract 

Background: Cryopreservation is a routinely used methodology for prolonged storage of viable cells. 

The use of cryo-protective agents (CPAs) such as dimethylsulfoxide (DMSO), glycerol or trehalose is 

paramount to reduce cellular cryo-injury but their effectiveness is still limited. The current study 

focuses on establishing and modulating the proteomic and the corresponding biological profiles 

associated with the cryo-injury of human leukaemia (HL-60) cells cryopreserved in DMSO alone or 

DMSO +/- novel CPAs [e.g. nigerose (Nig) or salidroside (Sal)]. 

Findings: To reduce cryo-damage, HL-60 cells were cultured prior and post cryopreservation in 

RPMI-1640 media +/- Nig or Sal. Shotgun proteomic analysis showed significant alterations in the 

levels of proteins in cells cryopreserved in Nig or Sal compared to DMSO. Nig mostly affected 

cellular metabolism and energy pathways, whereas Sal increased the levels of proteins associated with 

DNA repair/duplication, RNA transcription and cell proliferation. Validation testing showed that the 

proteome profile associated with Sal was correlated with a 2.8 fold increase in cell proliferative rate. 

At the functional level, both Nig and Sal increased glutathione reductase (0.0012±6.19E-05 and 

0.0016±3.04E-05 mU/mL, respectively) compared to DMSO controls (0.0003±3.7E-05 mU/mL) and 

reduced cytotoxicity by decreasing lactate dehydrogenase activities (from -2.5 to -4.75 fold) and lipid 

oxidation (-1.6 fold). In contrast, only Nig attenuated protein carbonylation or oxidation. 

Conclusions: We have identified key molecules and corresponding functional pathways underpinning 

the effect of cryopreservation (+/- CPAs) of HL-60 cells. We also validated the proteomic findings by 

identifying the corresponding biological profiles associated with promoting an anti-oxidative 

environment post cryopreservation. Nig or Sal in comparison to DMSO showed differential or 

additive effects in regards to reducing cryo-injury and enhancing cell survival/proliferation post thaw. 

These results can provide useful insight to cryo-damage and the design of enhanced cryomedia 

formulation. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy155/5237707 by U

niversity of C
am

bridge user on 17 January 2019



 
 

 

Keywords: Cryopreservation, Oxidative stress, Dimethylsulfoxide, Nigerose, Salidroside. 

Background 

Cryopreservation of viable cells and tissues is a powerful approach to ensure cell longevity and 

integrity and facilitate cell/tissue engineering therapy [1]. Cell-based therapy is a rapidly emerging 

industry and is estimated to be worth around $5 billion in the USA alone [2]. Despite well-established 

cryopreservation protocols, cells remain subject to a high level of cryo-damage leading to 

compromised cell function and necrosis [3]. The cellular damage is generally seen as lipid and protein 

oxidation, which can severely affect cell stability [4] and ability to proliferate [5]. Thus, reducing the 

impact of cryo-damage is paramount to enhance cell recovery rate post freeze/thaw cycles.  

 

Despite their reported toxic properties, DMSO and glycerol are the most commonly used cryo-

protective agents (CPAs) to reduce cryo-injury and increase cell viability [5]. Other CPAs such as 

trehalose have been used for their cryo-protective properties against intracellular ice crystal formation 

[6]. However, the protective effect of these compounds is still limited [7] with low cell viability and 

recovery rates post cryopreservation [8]. The use of CPAs can also lead to production of reactive 

oxygen species, whereby cells are subjected to oxidative damage during freeze-thaw cycles [9]. 

Moreover, the effectiveness of intracellular or auto anti-oxidative response to cryo-insult is limited as 

cell survival is reduced [10].  Attempts to promote cellular anti-oxidative status have been reported 

before and these showed an improved cell survival rate [11]. For example, the use of arabidopsis 

thaliana containing high levels of ascorbic acid increased intracellular catalase activity leading to a 

higher cell survival rate post thaw [11].  

 

The majority of studies on cryopreservation have focused on either fertility [12-14] or more recently 

on stem cells [5]. The potential clinical use of Human Mesenchymal Stem Cells in regenerative 

medicine and/or cell-based therapy has led to a sharp focus on enhancing the cryopreservation process 

of these cells.  Martín-Ibáñez et al have succinctly summarised the current use of CPAs as additive (e. 
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g. DMSO/ Glycerol +/- cryo-additive agents) to slightly improve the cryopreservation of human 

Pluripotent stem cells [15]. More recently, Haritz Gurruchaga et al have demonstrated that the 

combination of CPAs such as DMSO/Sucrose has significantly improved the quality of Human 

Mesenchymal Stem Cells post cryopreservation [16].  Tissue cryopreservation of the umbilical cord 

has also been attempted which is crucial to the future success of regenerative medicine [17]. Although 

limited attempts have been carried out to improve cryopreservation of cell lines (e. g. Hepatocytes) 

[18]. Moreover, the bulk of empirical studies attempting to decipher molecular profiles associated 

with cryo-injury have been conducted mainly on fertility-related specimens [19, 20], plant cells [21] 

or stem cells [22]. Likewise, attempts to modify cryo-proteomic profiles using CPAs or DMSO +/- 

antifreeze have been made mainly in the field of reproductive medicine [23, 24]. In contrast, only a 

limited number of molecular/functional studies have been conducted on nucleated-human cell lines to 

decipher and modulate biological pathways underpinning cryo-damage. 

Here, we have used human leukemia (HL-60) cells as a nucleated cellular model to establish the 

biomolecular profiles associated with cryo-damage in the presence of DMSO alone or with the 

addition of salidroside (Sal) or the novel CPA nigerose (Nig) [4]. The addition of Sal with the tyrosol 

glucoside, as the active component of the herb Rhodiolarosea, was used previously to prevent high 

altitude sickness [25]. Sal has also been found to act as antioxidant against hydrogen peroxide-

induced apoptosis of human red blood cells [26] and as a CPA for red blood cell cryopreservation [4]. 

However, this is the first investigation to test the potential cryoprotective properties of Nig. Nig is an 

un-fermentable sugar obtained by partial hydrolysis of nigeran and is polyol extracted from 

fermentation of microorganisms such as black mold or dextrans [27] as well as honey [28]. A 

hypothesis driven approach is clearly needed here to elucidate and modify cell-specific molecular and 

biological pathways associated with cyo-injury. Here we have employed a shotgun proteomics 

approach to profile and modulate the molecular pathways underpinning human nucleated cell cryo-

damage. The present study also offers the opportunity to enhance future cryomedia formulation, 

minimize losses of cell viability and maximize cell recovery post freeze-thaw cycle. 
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Data Description 

For proteomic analysis samples were analysed using hi-resolution mass spectrometry on a Synapt G2-

Si HDMS mass spectrometer (Waters). Data processing, database searches and label free 

quantification were performed using Progenesis QI for Proteomics. The mass spectrometry raw data 

files, database search and quantification results have been deposited and can be accessed via 

ProteomeXchange [29] with identifier PXD006998.. The resulting HL-60 proteome profiles has led us 

to investigate the corresponding biological activities (e. g. enzymatic, protein/ lipid oxidation and cell 

proliferation assays) post cryopreservation.  

 

Analyses 

Proteins found to present at significantly different levels in HL-60 cells cryopreserved in DMSO 

alone (n=5 replicates), DMSO+Nig (n=5 replicates) or DMSO+Sal (n=5 replicates) were classified 

according to their biological and functional pathways.  The Uniprot accession codes of differentially 

expressed proteins or genes were mapped to Gene Ontology Annotation using software linked to 

Funrich database. (http:// www.funrich.org) [29]. The number of significantly changing proteins 

(P<0.05) that are expressed in HL-60 cryopreserved in DMSO, DMSO + Nig or DMSO + Sal are 

illustrated in a Venn diagram (Figure 2A).  Thus, the overlapping as well as the uniquely expressed 

proteins (e. g. up/down-regulated) between the different arms of the study (Figure 1) are shown in 

Figure 2A.    ().  
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Proteomic Analyses  

Label-free quantitative shotgun proteomic analysis was used to identify HL-60 cell proteins found at 

different levels post cryopreservation in DMSO alone, DMSO +Nig or DMSO + Sal (n= 5 

replicates/arm). In this study, cryopreservation has significantly induced changes in the abundances of 

many proteins of HL-60 cryopreserved in  DMSO +Nig group 1140 proteins (Table S2), DMSO + 

Sal group 1032 proteins (Table S 3) and  with only 886 proteins found changing for HL-60 

cryopreserved DMSO alone (Table S1). Some of the biologically relevant proteins expressed by HL-

60 (i. e. identified, quantified and differentially expressed) are summarised in Table 1. 

 

 

 

Using the Funrich database, the In silico functional analysis of the proteomes has revealed the 

following: 

1) The effect of cryopreservation showed a higher number of differentially expressed 1,140 proteins 

(with P<0.05) for DMSO +Nig (Figure 2A) and DMSO + Sal (1,032 proteins; Figure 2A), with only 

886 proteins found for DMSO alone (Figure 2A). In addition, the Venn diagram analysis (Figure 2A) 

has shown that the highest number of uniquely identified proteins was found in DMSO + Sal (n=231). 

Cells cryopreserved DMSO + Nig showed 224 proteins that are specifically expressed in the presence 

of Nig while the lowest number (n=158) of uniquely expressed proteins (not found in DMSO + Sal or 

Nig treated cells) is in HL-60 cells cryopreserved in DMSO. 

2)  The nature of biological pathways associated with cryo-damage of HL-60 cryopreserved in DMSO 

alone and those which were differentially modulated by the CPAs post thaw. A proportionately high 

number of proteins (21.05%) engaged in nucleotide and nucleobase regulation or DNA binding were 

identified in HL-60 cells cryopreserved in DMSO + Sal. In contrast, the DMSO + Nig arm showed 

the highest proportion of changes (16.8%) in proteins associated with energy pathways and protein 

metabolism (Figure 3A). Supplementing DMSO with Nig or Sal as CPAs also led to an increased 

level of proteins with oxidoreductase activities, especially in the case of Nig (Figure 3B). The level of 
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proteins linked to cell maintenance was the highest in HL-60 cells cryopreserved in DMSO alone 

(12.5%) when compared to DMSO +Nig (8%) and DMSO + Sal (6.4%).  

 

3) The percentage of recognised DNA binding proteins were estimated at 8.09% for cells 

cryopreserved in DMSO + Sal while this did not exceed 2% in cells cryopreserved in DMSO +Nig 

and DMSO alone (Figure 3B). HL-60 protease activity-associated proteins were estimated at 4.4% in 

DMSO +Nig, 3.1% in DMSO alone, while only reaching 2.02% in DMSO + Sal (Figure 3B). With 

regards to cryo-stress, heat shock proteins were differentially expressed in HL-60 cells cryopreserved 

in DMSO + Sal (1.2%) and DMSO alone (0.6%), whereas these proteins were not detected in cells 

cryopreserved in the presence of Nig. The proteome profile reflecting the effect of freeze/thaw cycle 

on HL-60 cells cryopreserved in DMSO alone and DMSO + Nig or Sal are summarised in Table 1. 

 

Oxido-redox functions (Table 1)  

Reduction in HL-60 cryo-oxidation was shown by an increased level of glutathione reductase and 

superoxide dismutase [Cu-Zn] by 3.2 ad 1.4 fold, respectively, in DMSO alone (Table 1). However, 

no significant change was detected in the levels of either of these markers for cells preserved in the 

presence of Nig or Sal. In contrast, the levels of thioredoxin reductase-1 were increased up to 35 fold 

when Nig was added and by 15 fold with the addition of Sal. A similar pattern was seen with the 

NADH-ubiquinone oxidoreductase 75 kDa subunit. The level of pro-oxidative enzymes were all 

reduced in the presence of CPAs such as peroxiredoxin (not detected in DMSO, downregulated by 

2.0-fold in DMSO + Nig and by 3.5-fold in DMSO + Sal), glutathione S-transferase Kappa-1 

(decreased by 8-fold in DMSO, decreased 13.6-fold in DMSO + Nig and decreased 3.5-fold in DMSO 

+Sal) and thioredoxin-dependent peroxide reductase [decreased3.0-fold in DMSO, decreased 5.2 fold 

in DMSO + Nig and decreased 8.8-fold in DMSO + Sal). Very long-chain specific acyl-CoA 

dehydrogenase (involved in fatty acid -oxidation) showed a 4-fold decreased level in HL-60 cells 

cryopreserved in DMSO + Nig and a 5-fold decrease in DMSO + Sal compared to the levels in cells 
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cryopreserved in DMSO alone. A similar anti-oxidative pattern was observed in the presence of CPAs 

with increased levels of acyl-coenzyme A oxidase (16.8 fold in DMSO + Nig and 42.7-fold in DMSO 

+ Sal) and carbonyl oxidase (5.5 fold in the presence of DMSO + Sal). 

A differential response to cryo-stress was identified when Nig or Sal were added to media prior to and 

post cryopreservation of HL-60 cells. For example, the stress-related protein Hsp 70-binding protein 1 

was increased 14.4-fold in HL-60 cells cryopreserved in DMSO alone but its level decreased by 71- 

and 77-folds in the presence of Nig or Sal respectively. In contrast, cytosolic stress response proteins 

such as the heat shock 70 kDa protein 4 was not detected in DMSO +/- Nig and was increased by 2.3-

fold in DMSO + Sal. Finally, microsomal Hsp 70 protein-13 was not detected in HL-60 cells 

cryopreserved in DMSO +/- Sal while this same protein was upregulated by 15.8-fold in the presence 

of DMSO + Nig.  

 

Nuclear and cellular functions (Table 1) 

 Twenty-four hours post thaw, incubation of HL-60 cell in Sal led to a marked elevation in its nuclear 

proteins as shown in Table 1. In the presence of Sal, the levels of proteins associated with DNA 

repair were relatively upregulated such as DNA excision repair protein ERCC-6-like (- 8.8-fold in 

Sal, while diminishing by 13.8 fold in the presence of DMSO + Nig and by 14.4-fold in DMSO 

alone), mini-chromosome maintenance complex-binding protein (increased by 71-fold in DMSO + 

Sal, 11-fold in DMSO +Nig and not detected in DMSO alone). Sal also enhanced the levels of 

proteins involved in transcriptional regulation such as transcription factor TFIIIB component B 

protein (increased by 11-fold in DMSO + Sal, 8-fold in DMSO + Nig, and by 2-fold in DMSO alone).   

In the presence of CPAs, the significantly altered levels of proteins associated with nuclear activities 

were reflected by the changes in proteins associated with cell growth and cytosolic functions. For 

example, the presence of Sal and Nig doubled the fold change of cyclin-G-associated kinase from a 4-

fold in DMSO alone, up to 8 or 9-fold increment in Nig and Sal, respectively. TBC1 domain family 

member 2A, known to be involved in the regulation of GTPase activities and vesicle fusion, was only 

augmented by 10.5 fold post thaw for HL-60 cryopreserved in DMSO alone while it was further 
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enhanced in the presence of Nig by 11.2-fold and up to 39-fold increase in Sal. The levels of 

cytoskeletal proteins were also boosted by the CPAs such as ankyrin-2, microtubules-associated 

protein and echinoderm microtubule-associated protein-like 1) which are known to be associated with 

cell shape. Functions such as cell re-organisation and division were also increased in the presence of 

Nig and Sal compared to DMSO alone (Table1).  

 

HL-60 cell proliferation post thaw (Table 1) 

The number of HL-60 cells 24 h post thaw was estimated at 265 x 10
4
, 130 x 10

4
  and 180 x 10

4
 

cells/mL for DMSO alone, DMSO + Nig and DMSO + Sal respectively (Figure 4). At 48 h, Sal 

increased the proliferative rate by 2.84-fold compared to cells cryopreserved in DMSO alone and this 

was 1.3-fold for DMSO + Nig compared to cells cryopreserved in DMSO alone (640 x 10
4
 cells/mL). 

The direct comparison between the effect of Nig and Sal on cell growth rate at 48 h showed that the 

number of HL-60 cells in the presence Sal was at 1820 x 10
4 

cells/mL while this only reached 860 

x10
4 
cells/mL in the presence of Nig. Such an increase in the HL-60 cell proliferative rate post thaw in 

the presence of Sal was paralleled by the increase in the protein levels of cyclin-G-associated kinase 

(9.8-fold) (Table 1). Finally, post thaw HL-60 cells were immediately centrifuged, washed three 

times with culture media and the resulting changes in cell viability during the recovery period up to 48 

were negligible (<2%).  

 

Biological profiles of HL-60 cryopreserved in DMSO +/- Nig or Sal  

HL-60 cell intracellular glutathione reductase (GR) activity was measured [n=5 replicates] prior to 

freezing and 24 h post thaw. GR activity was significantly increased in all cases. The presence of 

CPAs in the media significantly boosted GR activity from 0.0003 mU/mL prior to cryopreservation to 

0.0005 mU/mL in the presence of DMSO alone. The addition of Nig boosted GR activity post thaw 

even further reaching 0.0013±0.00006 mU/mL. Sal had the biggest effect on HL-60 cell GR activity 

with a reading of 0.0016 mU/mL (i.e. 3 times more increased compared to HL-60 cells cryopreserved 

in the standard DMSO cryomedia). HL-60 cell intracellular Lactate dehydrogenase (LDH) activities 
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were also measured prior to freezing and 24 h post thaw [n=5 replicates]. Adding Sal to the culture or 

cryomedia lowered LDH readouts from 0.1±0.03 mU/mL in DMSO alone to 0.04±0.01 mU/mL in 

DMSO + Sal. Moreover, the addition of Nig had the biggest effect on lowering LDH activity by 

bringing this to 0.02±0.044 mU/mL (3 times lower than prior to cryopreservation, 5 times less than 

DMSO alone and 2 time less than DMSO + Sal). 

 

Oxidation assays were conducted to investigate Nig and Sal cryo-protective properties agianst HL-60 

cells lipid (e. g. lipid peroxidation) and protein (e. g. Carbonylation) oxidation.  HL-60 lipid 

peroxidation level was measured in triplicate prior to freezing, and 1 h and 24 h post thaw in the 

presence and absence of Nig or Sal. Measurement of MDA levels 1 h post thaw showed a significant 

increase in lipid oxidation with HL-60 cells cryopreserved in DMSO alone reaching an level of 

7.31±0.16 nmol/mL (Figure 5). In contrast, this was approximately 40% lower in the presence of Nig 

(4.35±0.02 nmol/mL) or Sal (4.53±0.09 nmol/mL). In the recovery phase (e.g. 24 h post thaw), HL-60 

cell lipid peroxidation levels reached control levels (e.g. prior to cryopreservation ~ 2.1 nmol/mL). 

One day post thaw, lipid oxidation levels for HL-60cells cryopreserved in DMSO +/- Nig or Sal 

reversed back to its prior cryopreservation level (Figure 5). 

 

As an indicator of oxidative stress, protein carbonylation assessment is widely used to reflect a major 

form of protein oxidation. Carbonylation assays were performed to assess the effect of CPAs on 

protein oxidation level post thaw. The results showed that protein carbonylation level for HL-60 cells 

cryopreserved in DMSO + Nig was kept at the level prior to freezing the cells and averaged 

0.107±0.007 nmol/mL (Figure 6) while Sal had no significant effect on protein oxidation level (~ 

0.23±0.048 nmol/mL). In the absence of cryo-additives, HL-60 cell levels of protein 

carbonylation/oxidation post freeze-thaw in DMSO alone were approximately 0.26±0.016 nmol/mL 

(Figure 7). Finally, Nig at 300 µM showed an anti-oxidative effect by reducing non-cryopreserved 

HL-60 proteins carbonylation levels from 0.16 nmol/mL to 0.1 nmol/mL for cells growing in RPMI + 

300 µM Nig, while this was only reduced to 0.13 nmol/mL in the presence of 200 µM Sal (Figure 7). 
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Discussion 

This is the first study aimed at establishing the proteomic and biological responses of HL-60 cells 

subjected to storage freezing in the presence of DMSO +/- novel CPAs. Many of the proteomic 

findings were validated by carrying out functional/biological assays targeting the main proteomic 

pathways identified. The major issue with the most commonly used permeating CPAs such as DMSO 

is their cytotoxicity [30], leading to low cell recovery. In the present study, HL-60 cells were 

incubated with Nig or Sal prior to and during cryopreservation. We subsequently identified 

differential proteome profiles associated with HL-60 cryopreservation in DMSO +/- CPAs. For 

example the highest total number of differentially expressed proteins was found in cells cryopreserved 

in a combination of DMSO and Nig (37%), followed by 34% in DMSO and Sal, compared to only 

29% for cells cryopreserved in DMSO alone. This suggests that these two CPAs helped to preserve 

cellular proteins. The bulk of previous proteome profiling studies investigating nucleated cell lines 

were either performed on the cells without cryopreservation [31], assessing pharmacological agent 

effects on specific cells [32] or comparison of cellular proteome profiles of healthy versus diseased 

patients [33]. 

 

The current finding demonstrated that the HL-60 cell line cryopreserved in DMSO alone exhibited an 

increased level of proteins associated with oxidative stress (e. g. superoxide dismutase, acyl coA 

oxidase or Hsp 70-binding protein 1) was interesting as these were mostly reversed in the presence of 

Nig or Sal. Furthermore, protein deglycase, a protein known to play an important role as an oxidation 

sensor [34], was increased in the presence of DMSO + Sal only, suggesting the promotion of an anti-

oxidative environment. These findings are in line with reports of putative stress factors related to 

cryopreservation [35]. Furthermore, HL-60 cells cryopreserved in DMSO only showed a higher level 

of lipid and protein oxidation, consistent with our proteome findings. Nevertheless, further proteomic 
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studies on nucleated cell lines are needed to address the issues of the proteome dynamic range or the 

proteome profiles post cryopreservation. At this stage the most comprehensive proteomic analysis was 

only performed on human nucleated cell lines prior their cryopreservation [31].    

 

The present proteomic study showed that Nig or Sal used as CPAs for the cryopreservation of HL-60 

cells can either have additive or counter-regulatory effects in comparison to DMSO. For example, in 

response to cryo-stress, the level of NADH-ubiquinone oxidoreductase 75 kDa subunit, known to be 

involved with cellular oxidative metabolism [36], was upregulated in DMSO +/- Sal and even reached 

higher levels in the presence of Nig. This suggests that the Nig effect is more likely to target the 

mitochondrial machinery and reduce apoptosis as suggested by Ricci et al [37]. We also found a 

differential effect of Sal and Nig (when added to DMSO) on key enzymes associated with cryo-stress. 

For example, LDH protein level was reduced when HL-60 cells were cryopreserved in DMSO alone 

and the addition of Sal reversed its levels by increasing it up to 1.6 times. 

 

Differential effect of CPAs on the proteomic outcome of HL-60 cell cryopreservation was also 

reflected in the correlation between the increases in protein levels of glutathione reductase in the 

presence of DMSO alone. Glutathione reductase is a critical enzyme known to promote the reductive 

environment by protecting cells against the damaging effects of free radicals. Surprisingly, its protein 

levels were not correlated with its activity, which was increased in the presence of Nig or Sal. Similar 

findings of poor correlation between GR or LDH activities and protein levels have been reported 

elsewhere by Glanemann et al [38]. 

The heat shock 70 subunits reacted differentially to cryo-stress +/- CPAs. For example, Hsp70-

binding protein 1 decreased in the presence of CPAs and increased in the presence of DMSO. In 

contrast, Heat shock 70 kDa protein 13 was not detected when HL-60 was cryopreserved in DMSO 

+/- Sal. The reason for such differential expression patterns of Hsps is not clear but might be due to 

post-translational modifications (e.g. carbonylation) and differential interactions with co-chaperones 

which might alter their functions during cryo-stress [39]. 
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The current findings also support the role of Sal in reducing oxidative damage by promoting oxidative 

DNA repair as shown for hematopoietic stem cells via the regulation of the base excision repair 

pathway (e.g. poly(ADP-ribose) polymerase-1) [40]. Post thaw, the level of expression of proteins 

associated with transcriptional activities such as Rho GTPase activating protein 27 and Ras GTPase-

activating-like protein IQGAP2 were also increased by Sal in comparison to cells cryopreserved in 

DMSO alone. This increase in the level of proteins associated with DNA repair/replication and 

transcriptional activities in the presence of CPA also appeared to be mirrored by an increase in the 

level of proteins associated with cellular growth. The levels of epidermal growth factor receptor were 

decrease here by 2.1-fold in the presence of Sal, while it was undetected in the recovery phase of HL-

60 cells cryopreserved in DMSO +/- Nig. This receptor is generally known to be crucial in DNA 

replication and cell division [41] while its levels are unchanged when cryo-preserving human ovarian 

tissue [42]. Such a regulatory element of the DNA damage signalling pathways is paramount for cell 

survival by controlling passage from the S to the G2/M phases of the cell cycle [43]. In line with our 

proteomic findings, Sal has shown a noticeable promoting effect on HL-60 cell proliferation during 

the recovery phase. A similar elevation in proliferative proteins was found in hepatocyte cells in 

response to the proliferation promoter compound perfluorooctane sulfonate [4]. On the other hand, 

our findings conflict with the reported effect of Sal on inducing breast cancer cell cycle arrest [45]. 

Such an anti-proliferative effect was previously attributed to Sal being used as anti-hypoxia agent 

leading to suppression of hypoxia-induced cell proliferation [46]. Finally, in the present study we 

have also identified an additive effect of DMSO with Sal or Nig in enhancing some cellular functions 

by increasing the level of cytoskeleton proteins such as ankyrin-2, synaptotagmin-like or microtubules 

(Table 1) leading to a better HL-60 cell recovery and growth post thaw. 

 

This is the first and largest targeted study aimed at deciphering proteomic profiles associated with the 

cryopreservation of the nucleated human cell line (HL-60) in DMSO with and without novel cryo-

additives agent such as Nig. The proteome profiles associated with HL-60 cryopreservation in DMSO 
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+/- Nig or Sal were mostly validated at the biological level as these correlated with the corresponding 

biological readouts (e.g. enzymatic, oxidation and proliferative assays). HL-60 cryopreservation in 

DMSO only has led to oxidative damage and subsequently validating the already known biological 

features associated with cryo-stress. More importantly, the addition of novel CPAs has identified a 

potential synergistic or differential cryoprotective effect of these CPAs in comparison to 

cryopreserving HL-60cells in DMSO only. Predominantly, this study has clearly shown that Nig 

reduces specifically protein oxidation while Nig or Sal both reduce lipid cryo-oxidation. The presence  

The most striking finding generated by the current proteomic profiling study is that post thaw, Sal 

increased the level of proteins that are associated with nuclear activities and subsequently increased 

cell proliferation in the recovery phase. The presence of CPAs (e. g. Nig or Sal) not only enhanced 

HL-60 cell recovery post thaw but also significantly reduced cytotoxicity by decreasing the level of 

LDH activity (Figure 6) genearlly used as a cytotoxicity marker [47].      

In summary, identifying the relevant molecular (Proteomic analysis) and functional (biological 

readouts) pathways affected by cryopreservation and successfully targeting the compromised 

pathways with novel cryoprotective agents is a way forward to limit cryo-damage. The present 

findings will contribute to enhancing cryo-media formulation and potentially lead to improving future 

cell and regenerative tissue based therapies. 

 

Methods 

Materials 

HL-60 cells (HL-60(TB) (RRID:CVCL_A794)), RPMI-1640 media, fetal Bovine bovine serum 

(FBS), pencillin –streptomycin, nigerose, salidroside, sterilised filtered dulbecco’s phosphate buffer 

saline (DPBS), trypan blue solution cell culture, dimethylsulfoxide (DMSO), isopropanol, Tris base, 

urea, HCL, ammonium biocarbonate, acetonitrile, dithiotheritol (DTT), iodoacetamine (IAA), formic 

acid, radio immunoprecipitation assay (RIPA) buffer, protease inhibitor cocktail and milli-Q water 

were all purchased from Sigma-Aldrich (Poole. UK). Mr. Frosty™ Freezing Container was purchased 
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from ThermoFisher scientific (Waltham, MA, USA). Certified Sep-Pak C18 cc vac cartridge was 

purchased from (Waters, UK). Sequence grade modified trypsin purchased from Promega 

(Southampton, UK). Glutathione reductase, lactate dehydrogenase and lipid peroxidation (MDA) 

assay kits were purchased from Abcam (Cambridge, UK). Protein carbonyl colorimetric assay kit was 

purchased from Cayman Chemical Company (Ann Arbor, MI, USA).  

Experimental design 

The study was divided into three arms (Figure 1). Arm 1 involved culturing HL-60 cells up to 70% 

confluence in RPMI 1460 media, containing 10% (v/v) FBS and 50 U/mL penicillin-streptomycin. 

HL-60 cells were centrifuged at 100 x g for 5 min and the medium was immediately removed. HL-60 

cells were re-suspended in freezing media (10% DMSO and 90% FBS) at 10
6 
cells/mL, slowly frozen 

in cryogenic tubes and stored at -80°C overnight. Next, cells were cryopreserved either in the freezing 

media in liquid nitrogen. HL-60 cells were thawed in a water bath at 37°C, centrifuged at 100 x g for 

5 min and washed three times with RPMI media. Post thawing, HL-60 cells were cultured in a 

recovery medium containing RPMI, 20% FBS, 5 U/mL penicillin-streptomycin and the FBS 

concentration was reduced to 10% 24 h post thaw. HL-60 cells were cultured as described above for 

Arm 1 with exception of adding 300 µM Nig (Arm 2) or 200 µM Sal (Arm 3) for 24 h prior to 

cryopreservation, during cryopreservation and up to 48 h post thaw. The selected concentrations of 

the cryo-additive agents (e.g. Nig or Sal) were optimised as described in Supplement S4. Cells were 

maintained at all times in culture at 37°C under 5% C02/ 95% air. 

For proteomic and biochemical analysis (Five replicates per arm), HL-60 cells cryopreserved in 

DMSO +/- Nig or Sal were harvested at approximately 70% confluence prior to freezing and at 24h or 

48 h post thaw.  

 

Sample preparation for NanoLC-MS/MS analyses 

Human leukaemia (HL-60) cells were used as a nucleated cellular model to establish its proteome 

profiles when cryo-preserved in DMSO with or without novel CPAs. The experimental design was set 

up as described in Figure 1.  Briefly, HL-60 cells were cultured in RPMI media, cryo-preserved in 
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freezing media (10% DMSO and 90% FBS) and recovered in RPMI media (Arm 1). For Arm 2 and 3, 

300 µM Nig and 200 µM Sal were added respectively to the culture media 24 h prior, during 

cryopreservation and up to 48 h post thaw. HL-60 proteins were extracted by acetone precipitation. 

Cell pellets were mixed with 100 µL cold (-20
o
C) acetone and kept at -20°C for 60 min to allow 

protein precipitation. The samples were centrifuged at 13,000 x g for 10 min,  pellets and air-dried at 

room temperature for 30 min. Pelleted proteins were homogenised in 6 M urea buffer, vortexed and 

sonicated for 2 min. 70 mM DTT was added to samples and incubated 30-60 min at room 

temperature. Next 140 mM Iodoacetic acid alkylating reagent was added, followed by vortexing and 

incubation for 30-60 min at room temperature. The urea concentration was reduced by adding 775 µL 

milliQ water and vortexing. Protein concentrations were determined using the Bradford method. After 

this, 60 µg of extracted proteins were trypsinized in a 1:50 ratio, mixed carefully and left overnight at 

37°C for digestion. The next day, the reactions were stopped via adjusting the pH to <6 by adding 

concentrated acetic acid. The digested peptides were purified using SEP-PAK C18 purification 

columns.  

 

NanoLC-MS/MS Analyses 

Proteomic analyses were performed in a bi-dimensional microUPLC tandem nanoESI-HDMS
E
 

platform by multiplexed data-independent acquisition experiments [27]. A 2D-RP/RP Acquity UPLC 

M-Class System (Waters Corporation) coupled to a Synapt G2-Si HDMS mass spectrometer (Waters 

Corporation) platform was used. The samples were fractionated using a one-dimension reversed-

phase approach. Peptide samples (0.5 µg) were loaded into a 100 Å, 1,8μm, 75 μm × 150 mm M-

Class HSS T3 column (Waters Corporation). The fractionation was achieved by using an acetonitrile 

gradient from 7% to 40% (v/v) over 95 min at a flow rate of 0.4 µL/min directly into a Synapt G2-Si 

mass spectrometer. For every measurement, the mass spectrometer was operated in resolution mode 

with an m/z resolving power of about 20,000 FWHM, using ion mobility with a cross-section 

resolving power of at least 40 Ω /ΔΩ. MS and MS/MS data were acquired in positive ion mode using 

ion mobility separation of precursor ions (HDMS
E
) over a range of 50-2000 m/z. The lock mass 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy155/5237707 by U

niversity of C
am

bridge user on 17 January 2019



 
 

 

channel was sampled every 30 s. The mass spectrometer was calibrated with a MS/MS spectrum of 

[Glu1]-fibrinopeptide B human (Glu-Fib) solution delivered through the reference sprayer of the 

NanoLock Spray source.  

 

Data processing and database searches 

Proteins were identified and quantified by using dedicated algorithms and searching against the 

Uniprot proteomic database of Homo sapiens (version 2016/09) [48]. The databases used were 

reversed “on the fly” during its queries and appended to the original database to assess the false-

positive identification rate. For proper spectral processing, database searching and label free 

quantification, we used Progenesis QI for Proteomics software package with Apex3D, Peptide 3D, 

and Ion Accounting informatics (Waters Corporation). This software starts with loading of the LC-

MS data, followed by alignment and peak detection, which creates a list of interesting peptide ions 

that are explored within Peptide Ion Stats by multivariate statistical methods. The processing 

parameters used were 150 counts for the low-energy threshold, 50.0 counts for the elevated energy 

threshold, and 750 counts for the intensity threshold. Automatic alignment of the runs (all runs in the 

experiment was assessed for suitability) was used for the processing. In peak picking, was used 8 as 

maximum ion charge and the sensitivity value was set as 4. Moreover, the following parameters were 

considered in identifying peptides: 1) digestion by trypsin with at most two missed cleavages; 2) 

variable modifications by oxidation (M) and fixed modification by carbamidomethyl (C); 3) false 

discovery rate (FDR) less than 1 %. One or more ion fragments per peptide, three or more fragments 

per protein and one or more peptides per protein were required for ion matching. Identifications that 

did not satisfy these criteria were rejected. The experiment design was  summarized in figure 1 (See 

Arm1, Arm2 and Arm3) and the label free protein quantitation was done using Hi-N (N=3) method 

[49]. The Shapiro–Wilk W-test analysis of variance (ANOVA) was used to identify proteins that were 

present at different levels. Only those findings with p-values <0.05 were considered as significant. 

Finally, proteins with mean changes of 1.5-fold were considered as differentially expressed, 
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Validation assays 

Enzymatic activities 

HL-60 cell pellets were collected and washed in cold PBS once as described above and lysed in 350 

µL RIPA buffer and 2.85 µL protease inhibitors and kept on ice for 30 min. Cell lysates were 

centrifuged at 100 x g for 5 min and enzymatic assays were performed using an amount equivalent to 

1 x 10
6
 HL-60 cells according to the manufacturer’s instructions. The glutathione reductase (GR) 

assay is based on measuring spectrophotometrically the resulting chromophore (TNB) [e.g. 

sulfhydryl-glutathione and 5,5’-dithiobis (2-nitrobenzoic acid) (DNTB)] at 405 nm. The first and 

second readouts were measured at 5 and 10 min intervals using the Spectrostar Nano plate reader 

(Promega). Lactate dehydrogenase (LDH) assays were also performed according to the 

manufacturer’s instructions. The quantity of NADH was detected spectrophotometrically at 450 nm 

by mixing NADH detection buffer with the cell supernatant and lysate. The first readout was taken 

immediately and the samples were incubated in the dark at 37°C with a final colorimetric reading at 

30 min. 

Protein and lipid oxidation assays 

 Protein oxidation or carbonylation was measured in two sets of samples (each sample is composed of 

3 sets of HL-60 cells pooled together) prior to cryopreservation and 24 h post thaw. The carbonylation 

assay was performed according to the manufacturer’s instructions. Briefly, a reaction between 2,4-

dinitrophenylhydrazine (DNPH) and oxidized carbonyl groups on proteins was conducted using 

Cayman’s protein assay kit. The derivatized carbonyl groups were quantitated by reading 

spectrophotometrically at 375 nm. For lipid peroxidation, measurements were carried out in triplicate 

on amounts equivalent to 10
6
 cells/mL by identifying the formation of malondialdehyde-thiobarbituric 

acid (MDA-TBA) adduct in acidic condition at 95°C for 1 h. Samples absorbance’s were measured at 

532 nm using the Spectrostar nano plate reader following the manufacturer’s instructions. 

Malondialdehyde (MDA) concentration was expressed in nmol. 
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 Cell proliferation 

HL-60 cell viability and proliferation were assessed at1 h, 24 h and 48 h post thaw. Cells were mixed 

with trypan blue and placed on haemocytometer slides for counting under light microscope in 

duplicate at each time point. 

Statistical analysis 

 All enzymatic assays were performed using five biological replicates. The lipid oxidation assay was 

performed in triplicate and the protein carbonylation assay was carried out in duplicate.  Results were 

presented as mean ± standard deviation. Significant differences between groups were determined 

using Student’s t-test for paired and unpaired observations. P values <0.05 were considered 

significant. 

 

Availability of supporting data 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via 

the PRIDE partner repository with the dataset identifier PXD006998. Additional supporting data is 

available in the GigaScience GigaDB repository [51]. 

 

Abbreviations  

ANOVA: Analysis of variance 

CPAs: Cryo-protective agents 

DMSO: Dimethylsulfoxide  

DNPH: Dinitrophenylhydrazine  

DTT: Dithiotheritol  

DPBS: Dulbecco’s phosphate buffer saline  

FDR: False discovery rate  
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FBS: Fetal Bovine Serum  

FC: Fold Changes  

Glu-Fib: Glu1-fibrinopeptide B human  

GR: Glutathione reductase  

HL-60: Human Leukaemia cells  

LDH: Lactate dehydrogenase  

MDA: Malondialdehyde  

MDA-TBA: Malondialdehyde-thiobarbituric acid  

Nig: Nigerose  

ND: Not Detected  

PT: Post thaw  

PC: Prior cryopreservation  

RIPA: Radio immunoprecipitation assay  

Sal: Salidroside  

DNTB: Sulfhydryl-glutathione and 5, 5’-dithiobis [2-nitrobenzoic acid]  

UP: Unique peptides 
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Figure. 1. Schematic diagram. Experimental design of HL-60 cryopreserved in Dimethylsulfoxide 

(DMSO) [n=5] +/- Nigerose (Nig) [n=5 replicates] or Salidroside (Sal) [n=5 replicates]. Proteomic 

analysis and corresponding biological assays were conducted 24 h prior and post cryopreservation of 

HL-60 cell cultures grown in RPMI-1640 media (RPMI) +/- Nig or Sal. 
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Figure. 2. Proteome analysis. HL-60 total number of differentially expressed proteins cryopreserved 

in DMSO +/- Nig or Sal [n=5 per arm]. A) Venn diagram illustrating HL-60 cells unique and 

overlapped number of significantly changing proteins 24 h prior and post thaw. The numbers in the 

circles represent the number of identified genes significantly changing prior/post HL-60 

cryopreserved in DMSO only [n=5 replicates], DMSO + Nig [n=5 replicates]  or DMSO + Sal [n=5 

replicates]. B) Table representing the total number of number of identified genes representing HL-60 

upregulated (blue arrow) and downregulated (red arrow) proteins in each of the above cryo-condition. 
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Figure. 3. Biological pathways analysis. Comparative overview of the biological processes (A) and 

functional functions (B) representing mammalian HL-60 cells cryopreserved in DMSO +/- Nig or Sal. 

The percentage of proteins extracted from HL-60 cells cryopreserved in DMSO alone, DMSO/Nig or 

DMSO/Sal were identified using FunRich software. 
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Figure 4. Cell growth. HL-60 cell proliferation was measured in duplicate at 1h, 24 h and 48 h post 

thaw. Cells were initially either cultured in RPMI media containing Nig (300 µM) or Sal (200 µM) 

and cryopreserved in DMSO +/- Nig or Sal. HL-60 cells were thawed, washed and cultured in RPMI 

media containing Nig (300 µM) or Sal (200 µM) for up to 48 h. Data are expressed as mean. 

 

 

Figure 5. Oxido-Redox enzymatic assays. Intra-cellular enzymatic activities of HL-60 were 

measured prior freezing (Control). Cells were frozen in DMSO +/- Sal or Nig and HL-60 GR and 

LDH activities were measured in RPMI media only, RPMI +Nig (300 µM) or in RPMI + Sal (200 

µM) 24 h post thaw. A) Glutathione reductase (GR) activity (mU/ml). B) LDH activity (mU/ml). Data 

are presented as a mean [n=5 replicates] ± SD. (* P value < 0.05). 
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Figure 6. Lipid peroxidation (MDA) assay. Lipid oxidation of HL-60 incubated prior and post thaw 

in media +/- Nig or Sal and cryopreserved in DMSO +/- Nig (300 µM) or Sal (200 µM). The data are 

represented in mean [n=3 replicates] ± SD (* P value <0.05). 

 

 

Figure 7. Protein carbonylation or oxidation of cryopreserved HL-60 cells. The control represents 

protein carbonylation level prior HL-60 cryopreservation in RPMI only, RPMI + 300 µM Nig or 

RPMI + 200 µM Sal. Cells were cryopreserved in RPMI/DMSO +/- Nig or Sal and protein 

carbonylation was measured in duplicate (each sample is composed of 3 sets of HL-60 cells pooled 

together) 1 h post thaw in RPMI media containing Sal or Nig. Data are expressed as mean ± SD (* P 

value <0.05). 
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Table 1: Proteins found at significantly different levels (p<0.05) using label-free LCMS/MS profiling of the human promyelocytic leukemia HL-60 cells 

cryopreserved in DMSO [n=5 replicates] +/- Sal [n=5 replicates] or Nig [n=5 replicates]. 

 

 Protein name DMSO alone DMSO/nigerose DMSO/salidroside 

 

Uniprot entry  UP                       FC 

             (log2PC/PT) 

UP               FC 

          (log2 PC/PT)  

 

UP                 FC 

          (log2 PC/PT)  

 

 

 

Q99497  

P00338 

P00390 

P00441  

Q16881  

P28331  

Q9Y2Q3 

P30048   

C9J0G0  

P49748 

P16152 

P49368 

P40227  

 

Oxido-Redox 

 

Protein deglycase DJ-1 

Lactate dehydrogenase A chain  

Glutathione reductase 

Superoxide dismutase [Cu-Zn] 

Thioredoxin reductase 1 

NADH-ubiquinone oxidoreductase 75 kDa subunit 

Glutathione S-transferase kappa 1 

Thioredoxin-dependent peroxide reductase, mitochondrial  

Acyl-coenzyme A oxidase (ACOX)  

Very long-chain specific acyl-CoA dehydrogenase 

Carbonyl reductase 

T-complex protein 1 subunit gamma 

T-complex protein 1 subunit zeta 

 

 

 

ND                   

11                 -1.6 

7                  3.2 

8                  1.4 

2                14.6 

4                 4.9 

2                -8.0 

2                -3.0 

2               32.0 

5                -2.7 

 

 

ND                    

ND                    

ND                    

ND                    

2         35.0 

4         46.0  

2       -13.6 

2         -5.2 

2        16.8 

5       -11.6 

 

 

12                   1.4 

11         -1.6 

ND                       

ND                    

2         15 

4         16 

2          -3.5 

2          -8.8 

2         42.7 

5        -14.8 
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Q9NZL4   

P48723   

P34932  

Q53EL6 

P08758 

Q5VT06 

P25787 

Hsp70-binding protein 1 

Heat shock 70 kDa protein 13  

Heat shock 70 kDa protein 4   

Programmed cell death protein 4 

Annexin A5 (Annexin-V) 

Centrosome-associated protein 350  

Proteomsome subunit alpha type-2 (PSAT2) 

ND 

ND 

ND 

 

3               14.4 

ND 

ND 

ND 

6               -6.6 

29                         88.9 

ND                                         

ND 

17          1.2 

7          1.4 

 

3       -71 

2        15.8 

ND 

ND 

6        -9.2  

29                  61.2 

3                    34.4                         

5           -1.5 

ND 

ND 

 

3         -77.0 

ND 

17             1.3 

4             1.6 

6             4.5 

29                       81.2 

ND     

 

 

Q9BTE3  

P33993 

P35658 

Q86YP4  

Q5T890 

Q99973 

Q8WXI9  

Nuclear activities regulation  

 

Mini-chromosome maintenance complex-binding protein  

DNA replication licensing factor MCM7 

Nuclear pore complex protein Nup214 

Transcriptional repressor p66-alpha  

DNA excision repair protein ERCC-6-like 

Telomerase protein component 1  

Transcriptional repressor p66-beta   

Exportin-1 

 

 

ND 

ND 

ND 

ND 

4             -14.4 

ND  

4              -2.6 

 

 

2       11.0  

9               -3.5 

ND 

ND 

4              -13.8 

3         -2.3 

ND 

 

 

2           70.0 

9           - 2.4 

6             1.6 

11             2.5 

4             -8.8 

3           -2.3 

ND 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy155/5237707 by U

niversity of C
am

bridge user on 17 January 2019



 

35 
 

O14980 

A6H8Y1  

Q15054  

Transcription factor TFIIIB component B 

DNA polymerase delta subunit 3 

 

5               3.0 

9               2.1 

2             - 3.4 

ND 

9            7.9 

2         - 30.0  

5             3.7 

9           10.6 

2          -22.3 

 

 

P00533 

Q14676  

Q6ZUM4 

Q9BYX2  

O14976 

Q8N163 

O94986  

Q13576 

Q14789 

P49327  

 

Q01484 

O00423  

A0A0U1RR07 

Q15691 

Cell growth and function 

 

Epidermal growth factor receptor  

Mediator of DNA damage checkpoint protein 1 

Rho GTPase-activating protein 27 

TBC1 domain family member 2A 

Cyclin-G-associated kinase  

Cell cycle and apoptosis regulator protein 2 

Centrosomal protein 152 KDa 

RasGTPase-activating-like protein IQGAP2 

Golgin subfamily B member  

Fatty acid synthase  

 

Ankyrin-2 

Echinoderm microtubule-associated protein-like 1   

Synaptotagmin-like protein 2  

Microtubule-associated protein RP/EB family member 1 

Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 

 

 

ND 

ND 

2                13.7 

3                        10.5 

4                  4.1 

9                         1.5 

ND 

4                15.2 

14               18.9 

ND 

 

17               32.0 

4               23.0 

4                 4.1 

10                 7.1 

 

 

ND 

5          17.0 

2          39.5 

3          11.2 

4            8.5 

9           1.8  

7         59.8 

4         65.7  

14         37.2 

39        10.4 

 

17        39.7 

4       42.0  

4        9.0 

10        3.2 

 

 

4          - 2.1 

5           21.4 

2          75.4 

3          39.0 

4           9.8 

9           2.3 

7         19.0 

4         40.9 

14         21.3 

39           9.0 

  

17         48.8 

4         32.2  

4         22.0 

10           7.1 
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E9PNZ4  2               12.6  2        12.3 2           4.4 

      

         

      

Abbreviations: UP = unique peptides, ND = Not Detected, FC = Fold Changes indicating the ratio of differentially expressed proteins identified prior 

cryopreservation (PC) and post thaw (PT). 
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