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Background 

Clinical investigation, using cerebral metabolic assessment with positron emission 

tomography, magnetic resonance spectroscopy and regional cerebral microdialysis, 

has repeatedly disclosed major alterations of neuroenergetics in the aftermath of 

traumatic brain injury (TBI). Impairment of neuroenergetics is characterized by 

elevated cerebral glucose demand, increased glycolysis and diversion of the main 

substrate, glucose, to be used in injury-related reparative pathways, such as the 

pentose-phosphate pathway (PPP) 1. Ultimately, these secondary processes lead 

to cerebral metabolic glucose depression, decreased availability of cerebral 

extracellular glucose and energy dysfunction, which in turn exacerbates brain 

damage and may worsen neurological recovery 2. Use of alternative cerebral 

energy substrates – including lactate (LAC) and ketone bodies (KB, including β-

hydroxy-butyrate BHB and acetoacetate AcAc), to compensate for glucose 

shortage, may therefore be a key adaptive mechanism following TBI. Further, LAC 

and KB may provide improved substrate availability, as their transport to the brain via 

mono-carboxylate transporters (MCT) is up-regulated after TBI 3. 

Alternative energetic substrates to glucose for the brain: lactate and ketones 

Increased astrocyte glycolysis generates LAC, which trans-locates to the brain 

extracellular space.  This astrocytic glycolysis is not accompanied by oxidative 

metabolism of substrates, even in the presence of oxygen (hence termed aerobic 

glycolysis), which recapitulates obligate glycolytic metabolism in cancer cells 

(Warburg effect). LAC can be transferred to neurons (astrocyte-neuron lactate 

shuttle), and provide a substrate for neuronal energetic needs, while also acting as a 

modulator of various essential neuronal functions, including excitability, plasticity and 

memory consolidation 4. 

The main source of KB is from endogenous ketosis, through lipolysis and hepatic 

metabolism of free fatty acids. Astrocytes are also able to generate KB locally. 

Plasma and local brain derived KB bypass glycolysis to provide substrates that 

directly enter the tricarboxylic acid (TCA) cycle (a process known as anaplerosis) and 

can be metabolized to provide energy in mitochondria, where the TCA cycle is linked 

to the generation of adenosine triphosphate (ATP). Apart from their energetic 

function, KB have key neurotrophic and neuroprotective properties, including up-

regulated expression of brain-derived neurotrophic factor, reduction of oxidative 

stress, promotion of mitochondrial biogenesis, and enhancing synaptic plasticity and 

cellular stress resistance 5. 
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Therapeutic energy supplementation after TBI 

Lactate therapy 

Exogenous supplemental LAC can be administered in the form of hyperosmolar 

(hypertonic) sodium lactate (Na-LAC) solutions. Experimentally, Na-LAC (given 

intravenously or by direct intraventricular administration) attenuates lesion extent and 

cognitive dysfunction, and promotes synaptic plasticity and memory consolidation 

4. In patients with TBI, sodium 3-13C-labelled LAC – administered locally through a

cerebral microdialysis catheter 6, or intravenously 2, 7 – can be effectively utilized 

by the injured brain, with favorable effects on regional neuroenergetics 6. Systemic 

administration of intravenous Na-LAC (30 μmol/kg/min, to raise blood arterial lactate 

to 2-4 mmol/L) increases the availability of cerebral microdialysis glucose and has 

additional favorable effects on the cerebral circulation, by reducing intracranial 

pressure and improving cerebral blood flow 8. Na-LAC has other potentially 

advantageous systemic effects: contrary to chloride, contained in standard 

hypertonic saline solutions, LAC is an active metabolic substrate, therefore Na-LAC 

therapy may prevent hyperchloremic acidosis 9. Lactate may have additional 

benefits in terms of signaling, but these have not been explored in humans. 

Ketone therapy 

Exogenous ketone therapy can be delivered under the form of ketogenic diets (KD), 

using enteral formulas enriched with medium-chain triglycerides (MCT, comprising 

octanoic and decanoic acids). KD has been repeatedly tested in experimental and 

clinical studies as a non-pharmacological approach to the treatment of refractory 

epilepsy, diabetes, brain cancer and neurodegenerative disorders 10. Regarding 

acute phase treatment, continuous enteral feeding using KD takes ≈ 3-5 days to 

reach stable therapeutic blood KB levels (2-4 mmol/L; compared 0.1-0.2 mmol/L in 

untreated subjects) 11, while MCT enriched enteral KD boluses may only achieve ≈ 

0.5-0.6 mmol/L blood KB levels 12. Ketone supplementation also can be achieved 

exogenously in a more direct form, by way of enteral administration of ketone esters 

(KE) or ketone salts (KS) 13 that allow rapid increase (within 30 min) of blood KB to 

therapeutic levels comparable to those obtained by intravenous Na-BHB solutions 

14.

Ketone supplementation has various neuroprotective effects in experimental models 

of brain injury 15, in particular by attenuating seizures 16 and oxidative stress 

17. Also, systemic Na-BHB acts as histone deacetylase (HDAC) inhibitor 13:
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degradation of histone deacetylation is involved in memory and cognitive 

impairments seen in neurodegenerative diseases, therefore HDAC inhibition by KB 

therapy might translate into improved or restored cognitive recovery following TBI. A 

recent clinical investigation in subjects with TBI demonstrated that brain 

microdialysate KB levels were consistently increased during fasting (when compared 

to the fed state) and correlated well with systemic KB levels, implying effective KB 

transfer from the systemic circulation to the injured brain, and suggesting a potential 

therapeutic role for KB supplementation 18. Enteral KB supplementation improves 

cerebral oxidative metabolism (increased NAD+/NADH) in healthy volunteers 12 

and provides extra energy under the form of acetyl-CoA to the TCA cycle, thereby 

reducing the reliance on glycolysis, in athletes 19. Systemic Na-BHB administration 

has been recently shown to achieve effects comparable to Na-LAC on 

neuroenergetics, by reducing cerebral glucose consumption (glucose sparing effect) 

and increasing cerebral blood flow 20. In these human studies, KB supplementation 

was shown to have additional positive systemic effects, by stabilizing blood glucose 

to normal levels 19. Altogether, these data provide the rationale for future clinical 

investigation of ketone therapy during the acute phase of TBI. Long-term progressive 

neurodegeneration following TBI also may be potentially amenable to enteral KB 

supplementation, as in other neurodegenerative disorders 10. 

Future perspectives 

TBI constitutes a persistent challenge to global health care, being the leading cause 

of mortality in young adults and a major cause of death and disability across all ages 

worldwide, with a disproportionate burden of disability occurring in low-income and 

middle-income countries 21. Given the current lack of targeted pharmacological 

therapies, boosting neuroenergetics with lactate or ketone therapy may be a valid 

therapeutic approach to attenuate secondary energy dysfunction, with various 

additional potentially favorable effects against acute phase and progressive 

neurodegenerative post-TBI processes (Figure 1). This approach appears relatively 

safe, inexpensive and therefore easily available worldwide, supporting the conduct of 

further clinical physiological studies and future large-scale multicenter outcome trials.  
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Figure legend. 

Figure 1. Rationale for therapies aimed at improving neuroenergetics following 

traumatic brain injury. 

Pathophysiologic mechanisms of secondary cerebral damage following traumatic 

brain injury (TBI) involve acute phase (≈0-7 days; green box) and progressive (>7 

days-weeks; orange box) mechanisms that contribute to aggravate the initial injury 

and overall patient prognosis. Interventions targeted to improve neuroenergetics – 

such as lactate therapy (in blue) or ketone therapy (in red), by counteracting TBI 

mechanisms at various levels (arrows), have the potential to attenuate secondary 

cerebral damage.  

Abbreviations: BHB, -hydroxybutyrate; CBF, cerebral blood flow; HDAC, histone 

deacetylase; ICP, intracranial pressure; KD, ketogenic diet; KE, ketone esters; KS, 

ketone salts; L/P, lactate/pyruvate; NAD+, nicotinamide adenine dinucleotide 

(oxidized); NADH nicotinamide adenine dinucleotide (reduced); PPP, pentose-

phosphate pathway; ROS, reactive oxygen species. 
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