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Abstract
Motor variability from exploration is crucial for reinforcement learning as it allows the nervous system to find new task
solutions. However, motor variability from noise can be detrimental to learning and may underlie slowed reinforcement
learning performance observed in individuals with cerebellar damage. Here we examine whether artificially increasing
noise in healthy individuals slows reinforcement learning in a manner similar to that seen in patients with cerebellar
damage. Participants used binary reinforcement to learn to rotate their reach angle in a series of directions. By
comparing task performance between conditions with different levels of added noise, we show that adding a high level
of noise—matched to a group of patients with cerebellar damage—slows learning. In additional experiments, we show
that the detrimental effect of noise may lie in reinforcing incorrect behavior, rather than not reinforcing correct behavior.
By comparing performance between healthy participants with added noise and a group of patients with cerebellar
damage, we found that added noise does not slow the learning of the control group to the same degree observed in
the patient group. Using a mechanistic model, we show that added noise in the present study matched patients’ motor
noise and total learning. However, increased exploration in the control group relative to the group with cerebellar
damage supports faster learning. Our results suggest that motor noise slows reinforcement learning by impairing the
mapping of reward to the correct action and that this may underlie deficits induced by cerebellar damage.
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Introduction
When a novice player is learning to shoot in basketball,

he or she will often perform many repetitions of the task.
The player’s movements will vary considerably from one
repetition to the next, resulting in a mix of successful and

unsuccessful shots. The motor system can use at least
two forms of learning in such tasks, error-based learning
to correct visual errors in the trajectory of the ball from trial
to trial (Shadmehr et al., 2010) and reinforcement learning,
which monitors success and failure (Haith and Krakauer,
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Significance Statement

Understanding the contribution of reinforcement mechanisms to human motor learning has been the subject of
renewed interest. Exploration (i.e., varying one’s movement) is crucial to reinforcement learning. Yet, motor
variability can arise from multiple sources, and the manner in which these influence learning remains poorly
understood. Here, we show that artificially increasing motor noise variability slows reinforcement learning in a
manner similar to that observed in people with cerebellar damage. Importantly, we show that the detrimental
effect of noise may be the attribution of reinforcement to incorrect behavior, rather than not reinforcing correct
behavior. These findings indicate that variability from noise may not be accessible to reinforcement learning
mechanisms, which sheds light on the mechanism of deficit following cerebellar damage.
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2013). Although it may be frustrating for the player, motor
variability can be crucial for both forms of learning (Kael-
bling et al., 1996; Sutton and Barto, 1998; Wu et al., 2014).
It allows the motor system to explore possible solutions to
the task and select the ones that yield desired outcomes
(Lee et al., 2012; Dam et al., 2013; Wu et al., 2014; Pekny
et al., 2015; Shadmehr et al., 2016; Dhawale et al., 2017).
However, an important consideration for motor learning is
how well the motor system can estimate trial-to-trial
changes in behavior. In addition to exploration, motor
variability also reflects noise from stochastic and/or faulty
neural processing (Osborne et al., 2005; Stein et al., 2005;
Churchland et al., 2006; Faisal et al., 2008; Renart and
Machens, 2014). While the motor system may possess an
estimate of exploration variability (Charlesworth et al.,
2012; Wu et al., 2014), it may not be able to precisely
estimate variability from noise (Wolpert and Ghahramani,
2000; van Beers et al., 2004; van Beers, 2009; Chen et al.,
2017). Thus, a high proportion of motor variability from
noise may impair reinforcement learning by disrupting the
mapping between an action performed and the outcome
feedback received.

Our previous study showed that increased variability
from motor noise may underlie slowed reinforcement
learning performance in individuals with cerebellar dam-
age. In Therrien et al., (2016) we compared the perfor-
mance of a group of patients with cerebellar degeneration
to a group of age-matched control participants in a rein-
forcement learning task that required them to learn to
rotate their reach direction. While both groups were able
to alter their reaches and retain the changes, the patients
with cerebellar damage learned less efficiently—that is,
compared with control subjects they showed a reduced
learning rate and were unable to maximize reward. Based
on a model of the task, it was proposed that a significantly
greater proportion of the patients’ trial-to-trial variability
came from motor noise, which led to a discrepancy be-
tween perceived and actual hand location This suggests
that mapping between perceived hand location and re-
ward would be more variable for this group, with some
reaches rewarded when perceived to be outside the tar-
get zone and others unrewarded when perceived to be
inside it (due to noise moving the hand inside or outside
the target zone, respectively). This added noise was hy-
pothesized to underlie slowed learning in the patient

group relative to that of control subjects. However, it
remained to be tested whether augmenting noise in the
control group would disrupt performance in a manner
similar to that seen in patients with cerebellar damage
(Miall and Galea, 2016).

Here we examine whether adding external noise to the
reaches of neurologically healthy individuals slows the
learning of a new reaching movement in a reinforcement
learning task. By comparing task performance between
two conditions with different levels of added noise, we
show that adding a small level of noise does not slow
learning, but that adding a larger level—matched to a
group of patients with cerebellar damage—does. To un-
derstand whether this slowed learning was indeed medi-
ated by the added noise or an overall reduction in the
reinforcement rate, we conduct a second experiment in
which we clamped the reinforcement rate to match that
observed in the high-noise condition. We show that re-
ducing reinforcement for correct behavior does not slow
learning, suggesting that the detrimental effect of noise is
the reinforcement of incorrect reaches. Finally, by com-
paring performance between healthy individuals with ex-
ternal noise added to their movement and a group of
patients with cerebellar damage, we find that the added
noise did not slow learning in the control group to the
same degree observed in the patient group. Using a
mechanistic model, we find that added noise in our task
leaves sufficient exploration variability to allow control
subjects to learn faster than patients with cerebellar dam-
age, although increased noise prevents them from learn-
ing optimally. We suggest that this may be attributed to a
discrepancy between the nature of the added noise in the
present study and the source of noise in patients with
cerebellar damage.

Materials and Methods
Subjects

Eleven right-handed human participants were recruited
for experiment 1 (4 males, 7 females; mean age, 25.0 �
4.8 years). An additional 10 right-handed individuals were
recruited for experiment 2 (5 males, 5 females; mean age,
25.6 � 4.6 years). Finally, the data from a third group of 12
individuals with cerebellar degeneration (8 males, 4 fe-
males; mean age, 61.5 � 10.0 years) is presented for
comparison with the group from experiment 1. The data
from the group with cerebellar damage were previously
reported in the study by Therrien et al. (2016). All patients
had ataxia from a degenerative condition affecting the
cerebellum. Nine patients had a known genetic diagnosis,
the remaining three patients had ataxia from sporadic or
idiopathic cerebellar atrophy. The severity of the patients’
movement impairment was assessed using the Interna-
tional Cooperative Ataxia Rating Scale (ICARS; Trouillas
et al., 1997). The patient group had a mean ICARS total
score of 44.3 � 18.1 of a possible 100. Further details
about the characteristics of the patient group are shown
in the study by Therrien et al. (2016). Group sizes were
chosen to match those typically found in the field of motor
learning and were not based on a priori power analysis. All
study procedures were approved by the Johns Hopkins
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University ethical review board and all subjects gave writ-
ten informed consent before participating.

Apparatus
All tasks were performed using a KINARM Exoskeleton

Robot (B-KIN Technologies). We tested subjects making
right arm-reaching movements in the horizontal plane
below a screen that prevented them from viewing their
arm. All visual feedback during the tasks was projected
onto the screen surface.

Procedure
Experiment 1: the effect of motor uncertainty on
reinforcement-based learning

Over three separate days, participants completed three
sessions of a task in which they reached to a visual target
with no visual feedback of the arm. They received binary

feedback (success or failure) depending on whether their
finger ended in a reward zone. Initially, the reward zone
was centered on the visual target, but a sequence of
visuomotor rotations could be applied around the home
position to the (unseen) reward zone. To be successful,
participants were required to learn to counteract visuo-
motor rotations between the location of a visual target and
where they had to place their finger so as to receive
reinforcement (Fig. 1a). In addition, noise drawn from a
Gaussian distribution on each trial could be added to the
finger location. Reinforcement depended on whether the
noisy location was within the reward zone (Fig. 1b). Each
session was performed with either no noise (control), or
with a low-variance noise (low noise) or a high-variance
noise (high noise) added (Fig. 1c). The three sessions were
run on different days. Both rotation direction and session
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Figure 1. Task overview and single-subject example of noise conditions in experiment 1. a, Participants were required to make 10 cm
reaching movements from a home position to move their finger, through a visual target. The entire arm was hidden from view during these
reaching movements. At baseline, the reward zone was centered on the visual target. In the rotation phase, the reward zone was rotated
relative to the displayed target. This required participants to learn to alter their reach angle relative to the target to counter the rotation so
that the finger ended in the reward zone. Participants were given a binary feedback signal informing them of reach success or failure. Reach
angles that successfully fell into the reward zone were reinforced with the visual target turning green. If a reach angle fell outside of the
reward zone, the visual target turned red. The reward zone encompassed reach angles between the mean of the previous 10 trials and the
rotated target position. b, Noise could be added to participants’ reach angles. The noise was proportional to each participant’s base-
line variability, computed as the SD of the reach angles produced in the first baseline block on day 1 of the experiment, �bl. On each trial,
the �noisy value was drawn randomly from a Gaussian distribution with a mean corresponding to the actual �hand and an SD such that the
baseline variability would be increased by 50% (low noise) or 150% (high noise). Success or failure depended on whether the �noisy value
of the finger fell within the reward zone. c, Participants performed three sessions of the task on separate days, where each session
corresponded to one task condition: control, low noise, or high noise. Each session began with a 60-trial baseline block with no rotation
or added noise. This was followed by a second 60-trial baseline block with no rotation, but noise was added in the low-noise and high-noise
conditions. Participants then performed 300 trials with closed-loop reinforcement feedback: 100 trials with the first 15º rotation; 100 trials
to bring them back to zero rotation; and 100 trials with the second 15º rotation. Rotation directions and session order were counterbalanced
across participants, but each participant performed the same order of rotation directions for the three experiment sessions.
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order were counterbalanced across participants. How-
ever, each subject performed the same order of rotation
directions for all three of the experimental sessions.

Each reaching trial began with a participant’s index
finger in a home position (1-cm-radius circle) located �40
cm in front of them. A cursor that tracked the finger
position guided participants to the home position. Once
the finger had been in the home position for 500 ms,
the cursor disappeared and a visual target appeared
on the screen (1-cm-radius circle), 10 cm distal to the
home position. Participants were instructed to reach so
that their index finger passed through the target. The trial
ended when the index finger position exceeded a dis-
tance of 10 cm from the home position, at which time they
were informed whether their movement had been suc-
cessful (Therrien et al., 2016).

In the absence of a rotation, a successful reach was one
in which the finger position (with any added noise) was
within 5.75º of the target (the reward zone). In the pres-
ence of a �15º rotation, we used closed-loop reinforce-
ment feedback. That is, a successful reach required that

the finger position (with any added noise) be closer to the
target than the average of the last 10 reaches (Fig. 2,
reward zone). Successful reaches were reinforced with
the target turning green. Incorrect reaches resulted in the
target turning red. At the end of each trial, participants
were instructed to relax their arm. The robot then pas-
sively returned their index finger to within 2 cm of the
home position, at which time the cursor aligned with the
index finger reappeared to allow participants to move
their hand into the home position and begin the next trial.
Participants were required to make their reaching move-
ments within 200–600 ms after leaving the home position.
To encourage this, the target turned blue or orange for
movements that were too slow or too fast, respectively.
These trials were then repeated until a reach was made
within the time requirements.

At the beginning of each session, participants were
given a 40 trial practice block with no rotation to familiar-
ize themselves with task and desired movement speed.
This was followed by two baseline blocks. The first base-
line block consisted of 60 trials with no rotation or added
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Figure 2. Noise influenced reinforcement. a, The noisy reach angle time series from a single subject in the high-noise condition of
experiment 1 plotted with the feedback received on each trial. b, The actual hand reach angle time series from the same subject plotted
with the feedback received on each trial. Closed-loop reinforcement feedback was based on the noisy reach angle. Thus, noise jittered
reinforcement feedback, reducing participants’ ability to map reinforcement to the correct hand reach angle. As a result, participants could
be reinforced when the hand reach angle was incorrect (i.e., the noisy reach angle was in the reward zone on that trial) or could be not
reinforced when the hand reach angle was correct (i.e., the noisy reach angle was outside the reward zone on that trial).
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noise (BL1). The second baseline block consisted of an-
other 60 trials with no rotation, but noise was added in the
low-noise and high-noise conditions (BL2). In the control
condition, the second baseline block was identical to
the first. Participants then performed 300 trials with the
closed-loop reinforcement feedback: 100 trials with the
first 15º rotation (either in the clockwise or counterclock-
wise direction; R1), 100 trials to bring them back to zero
rotation, and 100 trials with the second 15º rotation (in the
direction opposite to the first rotation; R2). Participants
performed 420 trials per condition for a total of 1260 trials
over the three experimental sessions.

In the low-noise and high-noise conditions, external noise
was added to participants’ reach angles and the closed-loop
reinforcement feedback given was based on the resulting
noisy reach angle (�noisy; Fig. 1b,c). The SD of the noise was
proportional to each subject’s baseline SD, which was com-
puted based on the reach angles produced in the first base-
line block on day 1 of the experiment (60 trials). Noise was
added to increase the baseline reach angle SD by 50% in
the low-noise condition and 150% in the high-noise condi-
tion. The value for the high-noise condition was chosen
because it approximated the difference in motor noise ob-
served between control and groups of patients with cere-
bellar damage in Therrien et al. (2016).

To determine the noise that needed to be added to
achieve the desired increases, we used the following
calculation:

��bl
2 � �x

2 � �·�bl (1)

Or,

�x � ���2 � 1�·�bl (2)

Here, �, represents the multiplier on the baseline SD in
each noise condition. It was set to 1, 1.5 and 2.5 for the
control, low-noise and high-noise conditions, respec-
tively. �x, represents the SD of the noise added to the
subject’s movements to achieve the desired total variabil-
ity in each noise condition. This variability was added to
participants’ reaches by calculating the reach angle on
each trial as the index finger crossed a radius 10 cm from
the home position (Fig. 1b, hand reach angle, �hand). A
new reach angle (Fig. 1b, noisy reach angle, �noisy) was
then randomly sampled from a Gaussian distribution cen-
tered on the hand reach angle and with a SD of, �x. To
facilitate comparison for each subject across noise con-
ditions and performance across subjects we used the
same sequence of noise scaled by each subject’s base-
line variability (Thoroughman and Shadmehr, 1999; Bren-
nan and Smith, 2015). This controlled for the possibility
that any differences between the low-noise and high-
noise conditions, or between subjects, was the result of
differences in the particular samples drawn from the
Gaussian distribution. As participants only experienced
this sequence of 360 random variables twice (which only
affects whether they are rewarded or not), it is unlikely that
the repetition would affect performance through any form
of learning.

Closed-loop reinforcement feedback was based on the
noisy reach angle. Sometimes, noise did not affect the
outcome of the reach, so that a correct hand reach angle
was still rewarded and an incorrect one was not. Other
times, noise did affect the outcome such that a correct
hand reach angle would be pushed out of the reward zone
by noise and not be reinforced. Conversely, an incorrect
hand reach angle could be pushed into the reward zone
and be reinforced. The effect of noise on reinforcement in
this task is illustrated in Figure 2.

Experiment 2: Effect of reward rate on reinforcement-
based learning

In the high-noise condition of experiment 1, participants
received reinforcement on 45.8% of trials. However, only
33.8% of trials were reinforced when the hand reach
angle was actually correct (i.e., the hand and noisy reach
angles were both in the reward zone), and 12% were
reinforced when the hand reach angle was incorrect (i.e.,
the hand reach angle was outside the reward zone and
the noisy reach angle was in it). Thus, it was unclear
whether learning in the high-noise condition of experiment
1 was slowed by the reduced reinforcement of correct
reaches or the reinforcement of incorrect reaches. We
tested this in experiment 2 over 2 separate days. Partic-
ipants performed two sessions of the same reaching task,
as in experiment 1. In one session, participants performed
the same control condition as in experiment 1 (control),
and in the other session the reinforcement rate was
clamped at 33.8% (clamp), corresponding to the re-
warded trials that were correct in the high-noise condition
of experiment 1. To clamp the reinforcement, we com-
puted the average reinforcement rate accumulated over
the session and withheld reinforcement for correct move-
ments when this average exceeded 33.8%. Importantly,
all positive reinforcement feedback given was veridical
(i.e., no noise was added in this experiment), but some-
times reinforcement of a correct reach was withheld to
keep the average rate at the clamped value. Both rotation
direction and session order were counterbalanced across
participants.

Comparison with patients with cerebellar damage
We compared the performance of participants in exper-

iment 1 to a group of patients with cerebellar damage who
had previously completed the closed-loop reinforcement
learning task. In a previous experiment, subjects with
cerebellar damage experienced a single 15º visuomotor
rotation (this was part of a study published in Therrien
et al., 2016). To match trial numbers between the two
groups, we compared the final 40 trials of the second
baseline block and the 100 trials of the first rotation in
experiment 1 to the 40 trial baseline and the first 100 trials
of the visuomotor rotation performed by the patients with
cerebellar damage in the study by Therrien et al. (2016).

Measurement and analysis
Behavioral analysis

We calculated the hand reach angle at the point where
the finger crossed a radius 10 cm from the home position.
We converted reach angle data for each subject (by ap-
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propriately flipping the signs) to correspond to a single
order of rotation directions, clockwise then counterclock-
wise. Separate repeated-measures ANOVA was used to
compare group means for reach angle and reinforcement
rate. This was done using the factors condition (control,
low-noise, and high-noise conditions) and block (means
of the end of the first baseline block: trials 21-60; end of
the second baseline block: trials 81-120; and the two
rotation blocks: trials 181-220 and trials 381-420). In ex-
periment 2, the mean reach angle was compared using
repeated-measures ANOVA with factors condition (con-
trol and clamp) and the same factor of block used in
experiment 1. In experiment 2, the reinforcement rate was
compared across conditions using a paired-samples t
test.

For the low-noise and high-noise conditions of experi-
ment 1 and the control and clamp conditions of experiment
2, we performed trial-by-trial analysis of the absolute change
in reach angle following rewarded and unrewarded trials
(Pekny et al., 2015). For experiment 1, we parsed trials into
the following four categories: rewarded when the hand reach
angle was correct (rewarded-in zone); rewarded when the
hand reach angle was incorrect (rewarded-out zone); unre-
warded when the hand reach angle was incorrect (unre-
warded-out zone); and unrewarded when the hand reach
angle was correct (unrewarded-in zone). Separate repeated-
measures ANOVA with factors reward (rewarded and unre-
warded) and accuracy (in zone and out zone) were used to
compare group means of the absolute change in reach
angle for the four trial types for the low-noise and high-noise
conditions. For experiment 2, trials were categorized into
rewarded and unrewarded trials only because no noise
was added in this task. Repeated-measures ANOVA with
factors condition (control and clamp) and reward (re-
warded or unrewarded) was also used to compare the
absolute change in reach angle for each feedback type
across control and clamp conditions.

For the comparison between experiment 1 and the
sample of patients with cerebellar damage, group means
for the early learning rate (slope over the first 40 rotation
trials, computed using linear regression), total learning
(mean of the final 40 rotation trials minus the mean of the
baseline), and reinforcement rate were compared across
groups using independent-samples t tests.

All post hoc analyses were performed using simple
effects analysis with Bonferroni corrections on an � value
of p � 0.05 for multiple comparisons. All data were tested
for normality using the Shapiro–Wilk test. Homogeneity of
variance was also examined using Mauchly’s test of sphe-
ricity and Levene’s test for the ANOVA and t tests, re-
spectively. Unequal variances in ANOVA were corrected
using Greenhouse–Geisser corrections to ensure that sig-
nificant effects were robust to heteroscedasticity. Statis-
tical analysis was performed using SPSS software.

Model analysis
We modeled subjects’ learning in experiment 1 using a

simple mechanistic model that incorporates both explo-
ration and motor noise based on the fitting procedures
used in Therrien et al. (2016). The model code is available
as Extended Data. The model assumes that on any trial, t,

participants have an internal estimate of the reach angle
that will lead to success, xt. When subjects make a reach
based on this internal estimate, we add two sources of
variability that each affect the final reach direction: explo-
ration variability and motor noise. The key difference be-
tween these sources of variability is that it is assumed
participants are fully aware of their exploration, but are
unaware of their motor noise. Thus, the model assumes
that there is a total variability in participants’ reaches, but
they are only able to correct for a proportion of this
variability.

On each trial, exploration and motor noise are modeled
as random draws from zero mean Gaussian distributions
with SDs of �e and �m, respectively. We allow for the
exploration noise, �e, to take on two different values,
depending on whether the last trial was rewarded or not,
as variability is known to increase after a nonrewarded
trial (Pekny et al., 2015). We modeled the noisy reach
angle on each trial, yt, as yt � xt � et � mt. Here, et and mt

are single draws of the exploration variability and motor
noise, respectively. If a reach is not reinforced, then the
internal estimate of the correct reach direction remains
unchanged (xt � 1 � xt). However, if the reach is reinforced,
the estimate of the correct reach angle is updated by the
exploration noise applied on that trial (xt � 1 � xt � et).

A particle filter was used to fit this stochastic model
using the BADS optimization package (Acerbi and Ji,
2017). For each parameter setting, all particles were ini-
tialized at the average reach angle of the first baseline
phase. Particles represented estimates of the perturba-
tion such that xt

r is the rotation estimate for particle, r, at
time, t. Each of the following T steps (corresponding to the
number of trials) of the simulation involved the following:
computing the weight of each particle, r

wt
r � P�yt�xt

r� � N�yt, xt
r, ��m

2 � �e
2� (3)

calculating an estimate of the likelihood for that data point

lt � �1/R� �
r

wt
r � P�yt�y1, �, yt�1� (4)

normalizing the weights to a sum of 1 across all particles

ŵt
r � wt

r/ �
t

wt
r (5)

resampling R particles so that for each sample, the prob-
ability of sampling particle, r, corresponds to ŵt

r and
If t � T, go to 1 with t� t � 1.

We simulated R � 10,000 particles for each setting of
the three model parameters. For each subject, we found
the parameters that maximized the log-likelihood.

To provide a measure of goodness of fit for each con-
dition, we compared the mean reaching behavior over
subjects with the mean of the predictions. By averaging in
this manner, we reduce the noise components (i.e., indi-
vidual draws of motor noise and exploration variability)
that we do not expect the model to predict on each trial
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and instead measure how well the model can explain the
mean behavior.

We also compared the full three-parameter model to
two reduced models: one with no motor noise and one
with exploration noise that does not depend on whether
the last trial was rewarded or not (Therrien et al., 2016).
We did not examine a model with motor noise only as
such a model cannot show any learning. We used the
Bayesian information criterion (BIC) to compare the mod-
els by controlling for their differing number of free param-
eters. To compute an overall BIC across subjects, we
summed the degrees of freedom, number of trials, and
log-likelihoods for each model.

Independent-samples t tests were used to compare
experiment 1 fits to the fitted parameters for a group of
patients with cerebellar damage. Paired-samples t tests
were used to compare the fit between the control and
clamp conditions of experiment 2. Model-fitting proce-
dures were performed using software custom written in
MATLAB (MathWorks).

Results
Experiment 1

The first experiment examined how adding noise af-
fects reinforcement motor learning in healthy subjects.
Figure 3a shows the group mean time series for all three
experimental conditions in which no noise, or low or high
levels of noise were added (green, yellow, and red curves,
respectively). Participants’ average reaches during the
baseline phase of each condition, both before and after
the addition of noise, were very similar (Fig 3b). This
suggests that simply adding noise did not impair their
baseline ability to perform the task.

When subjects performed the control condition (i.e.,
with no noise added), they showed strong learning to the
initial rotation, followed by a return to baseline, and finally
strong learning of the second opposite rotation. In this
condition, subjects hit a mean reach angle of 12º (in the
direction countering the rotation) across the final 40 trials
of each rotation phase (Fig 3b, green). Similar levels of
adaptation (�10º) were seen when subjects had a low
noise level added (Fig 3b, yellow), although they had a
significantly lower reward rate (61% vs 77%). However, in
the high-noise condition (Fig. 3b, red), subjects showed
significantly reduced adaptation (�5º) and a lower reward
rate (46%).

We performed a repeated-measures ANOVA for aver-
age hand reach angle in the final 40 trials of each block
(Fig 3a, BL1, BL2, R1, and R2) and condition. This showed
a significant main effect of block (F(2,20) � 47.950, p �
0.001; Greenhouse–Geisser corrected, F(1.248,12.480) �
47.950, p � 0.001) and condition (F(2,20) � 10.402, p �
0.001) as well as a significant block by condition interac-
tion (F(4,40) � 12.349, p � 0.001; Fig. 3b). Post hoc anal-
ysis showed no significant differences between the first
and second baseline blocks in any of the experimental
conditions (all p � 0.05). However, in all three conditions,
there was significant adaptation during both the first ro-
tation block (all p � 0.001) and the second rotation block
(control and low noise, p � 0.001; high noise, p � 0.028)

compared with their respective baselines. In the rotation
block, reach angle adaptation in the high-noise condition
was significantly reduced compared with both the control
(p � 0.002) and low-noise (p � 0.006) conditions. No
significant difference was found in learning between the
control and low-noise conditions (p � 1.00). Overall, these
results suggest that participants were able to use rein-
forcement feedback to significantly alter their reach angle
in all three experimental conditions, but this was reduced
in the high-noise condition.

Figure 3c shows that the reinforcement rate was high-
est in the control condition and dropped in the low-noise
and high-noise conditions (72%, 61%, and 46%, respec-
tively; F(2,30) � 37.405, p � 0.001). Note that the reinforce-
ment rate showed a statistically significant decrease with
each level of added noise (all post hoc tests, p � 0.001).

To parse the influence of reinforcement feedback on
subjects’ behavior in the noise conditions, we computed
the absolute change in reach angle as a function of
whether a trial was rewarded or not (Pekny et al., 2015)
and whether the true reach was in or out of the reward
zone. Figure 4 shows that subjects changed their reach
angle more following unrewarded trials compared with
rewarded trials, regardless of whether they were in or out
of zone. The main effect of reward for the low-noise and
high-noise conditions were F(1,10) � 29.179, p � 0.001
and F(1,10) � 29.179, p � 0.001, respectively. In the low-
noise condition, there was also a main effect of reach
accuracy (F(1,10) � 9.299, p � 0.012). Finally, there were
significant reward by accuracy interactions in both the
low-noise condition (F(1,10) � 7.006, p � 0.024; Fig. 4a)
and the high-noise condition (F(1,10) � 14.270, p � 0.004;
Fig. 4b).

Experiment 2
The second experiment examined whether slower

learning in the high-noise condition of experiment 1 re-
sulted from reinforcing errors by clamping the reinforce-
ment rate at 33.8% (clamp) in a new group of participants.
This was done to match the proportion of the trials rein-
forced in the high-noise task when the hand reach angle
was correct. The high-noise and clamp tasks were now
similar, except that the latter was not reinforced on any
error trial (12% of trials in the high-noise task). To ensure
that the reinforcement rate was indeed held at a fixed
value throughout the clamp condition, we analyzed the
group mean reinforcement rate at the following four
phases of the task: the final 40 trials of the second base-
line phase; the final 40 trials of the first rotation; the final
40 trials of the return to baseline; and the final 40 trials of
the second rotation. Repeated-measures ANOVA showed
no significant differences across the phases (F(3,27) �
1.637, p � 0.204).

A paired-samples t test showed that the difference in
reinforcement rate between the control and clamp condi-
tions was significant (t(9) � 14.1524, p � 0.001; Fig. 5b).
Figure 5a shows the group mean time series for the two
conditions. The average reach angle during the baseline
phase of the clamp condition was similar to that during
the control condition, indicating that the reduction in re-
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inforcement rate did not impair participants’ baseline abil-
ity to perform the task. We also found that the lower
reinforcement rate of the clamp condition did not affect
the learning of the initial rotation, return to baseline, or the
learning of the second opposite rotation. Repeated-
measures ANOVA showed only a significant main effect of
block (F(2,18) � 30.734, p � 0.001; Greenhouse–Geisser
corrected: F(1.286,11.572) � 30.734, p � 0.001; Fig. 5c). Post
hoc analysis showed that the main effect was driven by
significant differences between the two baseline blocks
and the rotation block (both p � 0.001). There was no

significant difference between the first and second base-
line block (p � 1.00). Within both the control and clamp
conditions, there was significant adaptation in both the
first and second rotations (all p � 0.001) compared with
both baseline blocks. This suggests that the reduced
learning rate in the high-noise group from experiment 1
was due to the 12% of erroneous reaches that were
rewarded when �hand was outside the reward zone.

As in experiment 1, we analyzed the absolute change in
reach angle as a function of reinforcement feedback.
Repeated-measures ANOVA showed only a significant
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main effect of reward (F(1,9) � 12.490, p � 0.006; Fig. 5d).
That is, participants showed a greater change in reach
angle following unrewarded trials compared with re-
warded trials. There was no effect of condition (F(1,9) �
0.416, p � 0.535) or reward by condition interaction (F(1,9) �
0.469, p � 0.511). This suggests that although participants
altered their behavior following unrewarded trials more than
following rewarded trials, they did not change their behavior
from the control and clamp conditions.

Comparison with patients with cerebellar damage
We compared subjects’ learning of the first rotation in

experiment 1 to the performance of a group of individuals
with cerebellar degeneration who learned a single 15º
rotation using the same closed-loop reinforcement feed-
back as part of a previous study (published in Therrien
et al., 2016). Figure 6 shows the time series data compar-

ing the performance of the group with cerebellar damage
to the groups in control (Fig. 6a), low-noise (Fig. 6b), and
high-noise (Fig. 6c) conditions of experiment 1. The group
of patients with cerebellar damage was able to reach
within the target zone at baseline, but were unable to
reach to the new target zone in the rotation block. This
differed from the control and low-noise conditions of
experiment 1, where participants were able to learn to
rotate their reach angles to the new target zone. Similar to
the patient group, participants were unable to reach the
final target zone in the high-noise condition of experiment
1. However, participants in the high-noise condition still
showed a faster learning rate than patients with cerebellar
damage.

Using independent-samples t tests, we compared the
mean values of the group with cerebellar damage for early
learning rate, total learning, and reinforcement rate for
each condition of experiment 1 (Fig. 6d–f). Participants in
the control condition showed significantly greater total
learning (t(21) � �3.2648, p � 0.004), early learning rate
(t(21) � 4.3910, p � 0.001), and reinforcement rate (t(21) �
�3.8324, p � 0.001) compared with the group of patients
with cerebellar damage. Participants also showed signif-
icantly greater total learning (t(21) � �3.9907, p � 0.001)
and early learning rate (t(21) � 5.3784, p � 0.001) in the
low-noise condition compared with the patients with cer-
ebellar damage. The difference in reinforcement rate be-
tween the low-noise condition and the group of patients
with cerebellar damage was not significant (t(21) �
�1.1919, p � 0.247).

Finally, comparing the high-noise condition to the pa-
tients with cerebellar damage, we found that total learning
was not significantly different between groups (t(21) �
�1.861, p � 0.249). However, there were significant dif-
ferences in early learning rate (t(21) � 3.6563, p � 0.002)
and reinforcement rate (t(21) � 2.4292, p � 0.024). The
early learning rate was greater for participants in the
high-noise condition compared with patients with cere-
bellar damage. However, patients with cerebellar damage
showed a greater reinforcement rate than participants in
the high-noise condition. Overall, these results suggest
that adding noise to the reaches of neurologically healthy
participants’ impaired reinforcement learning in our task,
but did not completely replicate the behavior of the pa-
tient group.

Modeling results
The objective of experiment 1 was to test the hypoth-

esis that increased variability from motor noise would
impair reinforcement learning in a similar way to patients
with cerebellar degeneration. While behavioral data showed
similar total learning between the high-noise and patient
groups, the high-noise group showed a faster early learn-
ing rate. To determine the source of this discrepancy, we
modeled subjects learning in the three conditions of ex-
periment 1 using a simple mechanistic model of the rein-
forcement learning task. The reach angle executed on
each trial is modeled as the sum of an internal estimate of
the correct reach angle and two sources of behavioral
variability, as follows: exploration variability and motor
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noise. The model assumes that participants have access
to the variability from exploration, but do not have access
to motor noise. As a result, if a reach is reinforced, the
model only updates the internal estimate of the correct
movement by the draw of exploration variability on that
trial. When a reach is not reinforced, the internal estimate
is not updated. The model has three parameters: the SDs
of the Gaussian distributions that generate motor noise
and exploration variability following rewarded and unre-
warded trials. We fit the model to each subject’s data in
each condition of experiment 1 as well as each subject’s
data in each condition of experiment 2. We also fit the
data for each patient with cerebellar damage. The model
was fit using maximum-likelihood estimation.

Comparing mean parameter values between subjects in
experiment 1 and the group of patients with cerebellar dam-
age revealed significant differences in motor noise (Fig. 7a).
Patients with cerebellar damage had significantly greater
motor noise than participants in the control (t(21) � 3.5707, p
� 0.002) and low-noise (t(21) � 3.1929, p � 0.004) conditions
of experiment 1. The difference between patients with cer-
ebellar damage and participants in the high-noise condition
was not significant (t(21) � 1.3225, p � 0.200), suggesting
that this condition effectively matched the motor noise of
patients with cerebellar damage. There were no differ-
ences between groups across the conditions of experi-
ment 1 for exploration variability following rewarded trials
(control condition: t(21) � �0.6409, p � 0.529; low-noise
condition: t(21) � 1.0964, p � 0.285; high-noise condition:
t(21) � 1.2381, p � 0.229; Fig. 7b). However, patients with
cerebellar damage showed significantly smaller explora-
tion following unrewarded trials compared with partici-
pants in all three conditions of experiment 1 (control
condition: t(21) � �2.5702, p � 0.018; low-noise condi-
tion: t(21) � �4.5549, p � 0.001; high-noise condition:
t(21) � �2.8990, p � 0.009; Fig. 7c). Thus, adding noise in
experiment 1 did not reduce participants’ exploration fol-

lowing errors relative to the control condition. This left
them greater variability from which to learn compared with
patients with cerebellar damage.

There were no differences in fitted parameter values
between the control and clamp conditions of experiment
2 (Fig. 7d: �m, t(9) � �1.7678, p � 0.111; Fig. 7e: �e after
rewarded trial, t(9) � �0.2686, p � 0.794; Fig. 7f: �e after
unrewarded trial, t(9) � �0.4655, p � 0.653). This sug-
gests that withholding reinforcement of correct move-
ments did not change participants’ motor noise or
exploration variability relative to the control condition.

To determine the goodness of fit of our model, we
compared the mean reaching behavior over subjects in
each condition of experiments 1 and 2 to the mean of the
model simulations. This resulted in R2 values of 0.95, 0.91,
and 0.66 for the control, low-noise, and high-noise con-
ditions of experiment 1. For experiment 2, R2 values were
0.87 and 0.76 for the control and clamp conditions, re-
spectively.

Finally, to examine the importance of each model param-
eter we compared the full three-parameter model to two
reduced models (one with no motor noise and one with
exploration variability) that did not depend on whether the
previous trial was rewarded or not (Therrien et al., 2016). We
did not examine a model with motor noise only because
some exploration variability is needed to show learning.
Model comparisons using the BIC showed that the three-
parameter model best fit the data for experiments 1 and 2,
while the reduced model with exploration that was indepen-
dent of reward on the previous trial best fit the data for
patients with cerebellar damage (Table 1).

Discussion
We examined whether perturbing neurologically healthy

individuals by adding noise to their reach endpoints would
impair reinforcement learning in a manner similar to what
has been observed in individuals with cerebellar damage
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(Therrien et al., 2016). Adding a low level of noise, to
increase participants’ baseline variability by 50%, did not
impair learning relative to a control condition where no
noise was added. However, adding a high level of noise
(to increase baseline variability by 150%) significantly
impaired learning. Increasing variability affects the mapping
of hand location to reward. That is, in the presence of noise
it is possible for the hand to be within the reward zone yet
not be rewarded or, conversely, be rewarded when outside
it. To assess whether reinforcing errors could account for
impaired learning with high noise, we performed an addi-
tional experiment in which we artificially reduced (clamped)
the reinforcement rate to match the reinforcement corre-

sponding to reaches where both the hand and noisy loca-
tions were in the reward zone. In contrast to the noise
conditions, in this additional task participants were never
rewarded when the hand location was outside the reward
zone. Reducing reward yielded learning similar to that in a
control condition. Together, these results suggest that the
reduced learning in the high-noise condition was driven by
the reinforcement of incorrect behavior, rather than not re-
inforcing correct behavior. Finally, comparing performance
in the high-noise condition to that of a group of patients
with cerebellar damage showed similar total learning
between the groups, but faster early learning in the
high-noise condition.
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Similar to previous work (Pekny et al., 2015), we found a
larger change in reach angle following unrewarded trials,
suggesting that participants tend to explore more following
errors than after successful movements. However, when
noise was added, this exploratory behavior was modulated
by whether outcome feedback matched the true hand po-
sition. That is, participants showed greater change following
unrewarded trials when the hand reach angle was outside
the reward zone (i.e., an appropriate withholding of reward)
compared with when the hand reach angle was actually
correct (i.e., a false withholding of reward). In experiment 2,
the change in reach angle was also greater for the unre-
warded versus rewarded trials. However, there was no dif-
ference between control and clamp conditions. This is in
contrast to the results of Pekny et al. (2015), who found that
clamping reinforcement at a lower level increased variability
following unrewarded trials. This discrepancy may have

been the result of methodological differences between the
two tasks. In their study, Pekny et al. (2015) clamped the
reinforcement rate during a prolonged period where no ro-
tation perturbation was applied. Thus, many subjects would
have reached a plateau in performance before experi-
encing the clamp. A sudden reduction in the reward
rate under these conditions may have prompted sub-
jects to change their behavior to search for a new
solution to the task. In our study, however, the clamp
was applied during the rotation phase. Here, subjects
would naturally experience changes in the reinforce-
ment rate as the task solution changed with each rota-
tion. As a result, subjects in our study may have been
less likely to change their behavior, relative to the con-
trol condition, on the introduction of clamp.

Adding a high level of noise to reaches of healthy
participants matched the total learning of a group of
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Figure 7. Model analysis of closed loop reinforcement learning in patients with cerebellar damage and healthy individuals in
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Table 1: Results of model comparisons using Bayesian information criterion

Three-parameter model (�m, �e, rewarded, �e, unrewarded) Two-parameter model (�m, �e) One-parameter model (�e)
Experiment 1 0 1735 392
Experiment 2 0 389 272
Cerebellar 184 0 1232

Our model comprised three parameters: the SDs of the Gaussian distributions of motor noise (�m) and exploration following rewarded (�e, rewarded) and unre-
warded (�e, unrewarded) trials. To examine the relative importance of each model parameter, we compared the full model to two reduced models: one where
exploration variability does not depend on reward history (two-parameter model: �m and �e) and one that does not include motor noise (one-parameter mod-
el: �e). Model comparisons using BIC show the three-parameter model best fit the data from experiments 1 and 2, and the two-parameter model best fit data
from the group with cerebellar damage. For each experiment, we show the difference in BIC relative to the best model (i.e., the one with 0).
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patients with cerebellar damage. However, healthy partic-
ipants still showed a faster early learning rate than the
patient group. To describe how variability from noise
influenced learning in our task, we expanded a model
developed in our previous work (Therrien et al. (2016). The
simple mechanistic model assumes that trial-to-trial vari-
ability in subjects’ reach angles stems from two broad
sources termed “exploration variability” and “motor noise.”
The important distinction between these sources of vari-
ability is that the sensorimotor system has access to the
amount of exploration on any trial, but it does not have
access to the motor noise on that trial. Although the
model is framed in terms of motor noise and exploration
variability, it is equally valid to view the motor noise as
proprioceptive noise (or a combination of both motor and
sensory noise), so that this noise limits the ability to
localize the limb. As a result, when a reach is reinforced,
the motor system can only learn from the magnitude of
exploration that contributed to it. Thus, high motor
noise may decrease the efficiency of learning by alter-
ing the mapping of the reach angle to the reinforcement
signal. Here, we allowed exploration to vary depending
on whether the previous trial was rewarded or not.
Fitting the model to an individual participant’s task
performance revealed that added noise increased the
fitted motor noise in healthy participants to match that
found in patients, but there were group differences in
exploration variability. While patients with cerebellar
damage showed similar exploration following rewarded
trials compared with healthy control subjects with and
without added noise, their exploration following unre-
warded trials was reduced. This suggests that the pa-
tient group was less able to modify their behavior
following errors than healthy participants, even when
the level of noise was matched between groups.

A discrepancy in error sensitivity between our high-
noise condition and the patients with cerebellar damage
could have arisen for a number of reasons. Studies of
visuomotor adaptation have shown that healthy individu-
als are able to detect false or variable feedback and
explicitly alter their behavior so as to learn normally (Bond
and Taylor, 2017; Morehead et al., 2017). Added noise in
the present study was akin to providing participants with
false feedback. Given that they had normal proprioceptive
precision, it is possible they were aware of a discrepancy
between the movements performed and the feedback
received, which may have reduced their sense of agency
over feedback about performance errors (Parvin et al.,
2018). Furthermore, healthy participants may have been
able to use an estimate of the discrepancy to adjust their
response to achieve more rewarding feedback. In con-
trast, pathological motor variability from cerebellar dam-
age is considered to be the product of faulty predictions
of limb states (Miall et al., 2007; Miall and King, 2008),
which result in poor compensation for limb dynamics and
interjoint interaction torques during movement (Bastian
et al., 1996; Bhanpuri et al., 2014). Therefore, in patients
with cerebellar damage, noise may increase uncertainty
about the movement performed—that is, decrease pro-
prioceptive precision (Bhanpuri et al., 2013; Weeks et al.,

2017a,b). While the feedback resulting from such move-
ments can also be viewed as false, patients with cerebel-
lar damage are likely to be less able to detect and
estimate the discrepancy, making it difficult to detect the
source of errors.

Previous work has addressed how motor noise can alter
learning in a variety of motor tasks. There are several studies
of error-based learning that have artificially added noise into
various sensorimotor tasks. These have shown that, al-
though performance degrades, participants change their
behavior so as to be close to optimal in performance given
the noise (Baddeley et al., 2003; Trommershäuser et al.,
2005; Chu et al., 2013). Our finding that motor noise can
impair motor learning is in agreement with a recent study of
reinforcement learning by Chen et al. (2017). The purpose of
that study was to understand the similarities between motor
reinforcement and decision-making using tasks that were
designed to have similar structures. They found that the
decision-making task was learned faster and suspected that
this was due to the motor noise present in the motor rein-
forcement task. In a separate experiment, they measured
the level of motor noise outside of the reinforcement learning
task and showed that the level of noise was inversely related
to learning. That is, participants with more noise learned
slower. However, they were able to equilibrate performance
by artificially adding noise into the decision-making task.
This suggested, as in our experiment, that variability from
noise limits the ability to learn from reinforcement feedback.

In conclusion, we have shown that adding external
noise to the movements of neurologically healthy individ-
uals alters reinforcement learning in a motor task. Our
findings suggest that high levels of noise primarily impair
learning through the attribution of reinforcement to incor-
rect behavior. Not reinforcing correct behavior did not
impair learning in our task, suggesting that it is less det-
rimental to the motor system. Additionally, adding noise
to healthy individuals’ reaches reduced total learning to a
level similar to that of a group of patients with cerebellar
damage. However, healthy participants showed a faster
initial learning rate. We suggest that this may result from a
discrepancy between the form of noise in the present
study and the source of noise in the patients with cere-
bellar damage. That is, the added noise in our experiment
did not disrupt participants’ estimate of their actual behavior.
This left a sufficient proportion variability accessible to the
sensorimotor system, which may have supported a faster
learning rate.
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