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Abstract
Is the capacity of short-term memory fixed, or does it improve with practice? It is already known that training on complex
working memory tasks is more likely to transfer to untrained tasks with similar properties, but this approach has not been
extended to the more basic short-termmemory system responsible for verbal serial recall. Here we investigated this with adaptive
training algorithms widely applied in working memory training. Serial recall of visually presented digits was found to improve
over the course of 20 training sessions, but this improvement did not extend to recall of either spoken digits or visually presented
letters. In contrast, training on a nonserial visual short-term memory color change detection task did transfer to a line orientation
change detection task. We suggest that training only generates substantial transfer when the unfamiliar demands of the training
activities require the development of novel routines that can then be applied to untrained versions of the same paradigm
(Gathercole, Dunning, Holmes, & Norris, 2019). In contrast, serial recall of digits is fully supported by the existing verbal
short-term memory system and does not require the development of new routines.

Keywords Short-termmemory .Memory training

In this study, we askedwhether the capacity of short-termmem-
ory (STM) can be improved with practice. In recent years there
has been strong interest in the potential of cognitive training
programs to enhance mental capacity (Bavelier, Green, Pouget,
& Schrater, 2012; Simons et al., 2016) Many training programs
employ complex working memory (WM) activities that com-
bine serial recall of memory sequences with other processing
demands. For example, participants may be required to engage
in distractor activities interpolated between the presentation of
memory items (Chein & Morrison, 2010) or to continuously
update the sequence of memory items to be remembered
(Dahlin, Neely, Larsson, Backman, & Nyberg, 2008; Jaeggi,
Buschkuehl, Jonides, & Perrig, 2008). In these programs, the
difficulty of the training task adapts as performance improves
with practice. After more than a decade of research in this field,
the consensus is that this kind of training generates reliable near

transfer to untrained WM tasks with similar task demands.
However, there is little far transfer to different activities that
are also associated with WM, such as attentional control, rea-
soning, and learning (Cortese et al., 2015; Melby-Lervåg &
Hulme, 2013, 2016; Simons et al., 2016).

To explain this restricted pattern of transfer we have pro-
posed that training on complexWM tasks involves acquiring a
new cognitive skill (Gathercole, Dunning, Holmes, & Norris,
2019). The suggestion is that to accomplish the unfamiliar
tasks present in most WM training programs, trainees must
develop novel routines that coordinate the cognitive processes
required. Learning a new routine follows the usual course of
the acquisition of any cognitive skill (Anderson, 1982;
Taatgen, 2013). With practice, the routine becomes more effi-
cient and less demanding of general cognitive resources, and
performance improves. Transfer will only occur if the routine
can be successfully applied to a new task, and this will only
happen if the task demands are closely matched. Consistent
with this framework, a meta-analysis of WM training studies
showed that substantial transfer following WM training is
largely restricted to cases in which both the trained and un-
trained tasks share the same complex WM paradigm
(Gathercole et al., 2019).

We have made the strong claim that new routines will only
be developed if existing mechanisms and processes are not
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available to support the training activities. If existing mecha-
nisms are available, a new routine is not required, and there
will therefore be little transfer. It is proposed that verbal STM
measures such as digit span are examples of tasks that do not
demand a new routine (Gathercole et al., 2019). Highly spe-
cialized processes in verbal STM are responsible for the
encoding, maintenance, and retrieval of phonological material
in its original sequence, with key phenomena being success-
fully simulated by computational models incorporating sepa-
rate item- and order-encoding mechanisms (Hurlstone, Hitch,
& Baddeley, 2014). These processes are frequently engaged in
everyday situations outside of the laboratory, including learn-
ing new words (Baddeley, Gathercole, & Papagno, 1998;
Gathercole, 2006), following complex verbal instructions
(Engle, Carullo, & Collins, 1991; Jaroslawska, Gathercole,
Logie, & Holmes, 2016), and performing mental arithmetic
(Adams & Hitch, 1997; Geary, Hoard, Byrd-Craven, &
DeSoto, 2004; McLean & Hitch, 1999). On this basis, the
cognitive-routine framework predicts that, in contrast to com-
plex WM paradigms, training on verbal STM measures will
generate little transfer to other verbal serial-recall tasks.

Surprisingly little research has applied the adaptive com-
puterized algorithms widely employed inWM training studies
to more simple verbal STM tasks. Older studies involving
small numbers of individuals training on single tasks over
extended periods have demonstrated that performance on digit
serial recall can improve with practice. In the first study of its
kind, two adults received more than 50 sessions of digit span
testing spread across a period of four months (Martin &
Fernberger, 1929). Span increased by about 40% in both
cases, and this was accompanied by reports of grouping
strategies. Striking evidence that memory span gains across
training are driven by mnemonic strategies was provided by a
study by Chase and Ericsson (1981) of S.F., an adult whose
digit span increased from seven to 79 items over 2 years of
practice. This was achieved by recoding digit sequences into
long-distance running times that he was familiar with as a
long-distance runner. However, the increase in S.F.’s memory
span was entirely restricted to digit sequences. When the
memory sequences were composed of letters, his span
remained at seven across the full training period.

A second long-distance runner, D.D., was instructed to use
the same strategy S.F. had developed, and his span also in-
creased substantially (for a detailed analysis of D.D.’s recall
strategies, see Ericsson & Staszewski, 1989; Staszewski,
1990; Yoon, Ericsson, & Donatelli, 2018). Other studies have
also demonstrated that digit span expands when participants
use other elaborate encoding and retrieval strategies, such as
the method of loci, the method of mental imagery, and asso-
ciations between digit sequences and famous historical dates
(Kliegl, Smith, Heckhausen, & Baltes, 1987, and Susukita,
1933, cited in Kliegl et al., 1987). Adopting a rather different
approach, Reisberg, Rappaport, and O’Shaughnessy (1984)

trained participants to map digits onto finger movements. In
this study, digit span increased by up to 50%.

In each of these cases, the increase in span was accompa-
nied by the use of complex mnemonic strategies that combine
existing knowledge with either sequences of multiple digits or
well-learned sequences that could be used as cues for retrieval.
The gains therefore appear to be a consequence of using long-
termmemory to support the encoding and retrieval of memory
items, in conjunction with fixed-capacity verbal STM (Norris,
2017). There is little evidence for fundamental capacity
changes in verbal STM with extensive practice.

In the only study of its kind, to our knowledge, Harrison
et al. (2013) employed an adaptive computerized STM train-
ing regime that consisted of two simple serial tasks—letter
span and a spatial span task involving recall of the spatial
locations of cells highlighted successively in a matrix. They
compared simple span training with two adaptive training
programs employing complex span and visual search tasks.
Although performance on untrained STM tasks of word span
(a verbal serial-recall task) and arrow span (spatial serial re-
call) improved following training, equivalent benefits were
also found for visual search training. There was therefore no
selective enhancement of simple memory span by serial-recall
training. Other studies have also failed to detect significant
transfer of the Cogmed WM training program to digit span,
despite its inclusion of a letter span task included in a small
number of training sessions (Brehmer, Westerberg, &
Bäckman, 2012; Dunning & Holmes, 2014; Gray et al.,
2012; Hardy, Willard, Allen, & Bonner, 2013).

In the present study, we tested directly whether the capacity
of verbal STM can be enhanced through task-specific training
of verbal serial recall. Transfer to untrained STM tasks was
compared in three groups, each receiving adaptive training on
one of the following STM tasks: digit span, circle span, and
color change detection. Circle span involves the serial recall
of spatial locations highlighted in a sequence at presentation
(Minear et al., 2016). Like the dot matrix (Alloway,
Gathercole, Kirkwood, & Elliott, 2008), Corsi block
(Darling, Della Sala, Logie, & Cantagallo, 2006), and span-
board (Wechsler, 1981) tasks, circle span is considered to tap a
limited-capacity visuospatial STM system (Logie & Pearson,
1997). The color change detection task has been widely used
as a measure of the capacity of visual STM (e.g., Awh, Barton,
& Vogel, 2007). Developed by Luck and Vogel (1997), it
involves participants detecting changes in the colors of indi-
vidual squares presented simultaneously and briefly in a
multi-item visual display. It provides the ideal active-control
training condition for the two serial-recall training conditions
of digit and circle span, as it does not require the retention of
serial order. Performance on this task has already been shown
to improve with training. With an adaptive algorithm,
Buschkuehl, Jaeggi, Mueller, Shah, and Jonides (2017) report-
ed that set size increased from 6.3 to 8.8 over ten sessions of
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300 trials each. In a related nonadaptive task in which only the
target square was presented at test, rather than the entire dis-
play, Xu, Adam, Fang, and Vogel (2018) reported an increase
in memory capacity from 2.1 to 3.0 across 60 days of training.
Harrison et al. (2013) reported no changes in change detection
following training on two complex span tasks involving serial
recall. This suggests that the paradigms tap independent STM
and WM systems.

The primary aim of the present study was to investigate
what changes occur following digit span training. We set out
to track transfer by systematically varying the individual fea-
tures of the trained tasks in a set of untrained tasks adminis-
tered before and after training. The untrained verbal serial-
recall tasks were spoken digit span (a change in presentation
modality from the visual trained task) and visual letter span (a
change in verbal category). Substantial experimental evidence
has shown that each of these input forms gains ready access to
the phonological storage component of verbal STM
(Baddeley, Lewis, & Vallar, 1984).

The design of this study allowed us to address several hy-
potheses regarding the transferability of STM training. In each
case, we did this by comparing the training program of interest
with the most appropriate active-control program to test each
hypothesis. The first hypothesis was that there would be no
transfer following digit span training to other verbal serial-
recall tasks, because such tasks depend on specialized pro-
cesses that are already in place in verbal STM (Gathercole
et al., 2019). As a consequence, they would not require the
development of the novel routines proposed to be the primary
source of transfer to untrained tasks with compatible struc-
tures. There should therefore be no transfer across verbal
serial-recall tasks, even though they place comparable de-
mands on the retention of phonological serial-order informa-
tion. This should be evident when comparing the impact of
digit span training with that of circle span training, the most
similar active-control condition, which differed in the domain
of STM, but not in the requirement for serial recall. Such an
outcome would indicate not only that the fundamental capac-
ity of verbal STM is impervious to training, but also that any
substantial on-task training gains are mediated by processes
that operate largely outside of STM, such as recoding or
chunking (Ericsson, Chase, & Faloon, 1980; Martin &
Fernberger, 1929). Later in this article, we speculate that more
subtle improvements may nonetheless result from optimiza-
tion or fine-tuning of the task model to its unique combination
of features.

An alternative hypothesis is that verbal STM can be
trained. This would be consistent with claims that the cogni-
tive and neural processes that underpin the broader WM sys-
tem in which STM is embedded can be modified by intensive
training (Astle, Barnes, Baker, Colclough, & Woolrich, 2015;
Klingberg, 2010). If transfer does extend to untrained serial-
recall tasks, the key question is: to which tasks? If the serial-

order mechanism is both trainable and specific to verbal STM,
transfer should not extend beyond verbal serial-recall tasks to
any other untrained tasks, including the circle span measure of
spatial STM. In this way, the data have the potential to inform
long-standing debate about the extent to which the STM
mechanisms for retaining serial order are domain-specific or
domain-general (Abrahamse, Van Dijck, Majerus, & Fias,
2014; Alloway, Gathercole, & Pickering, 2006; Bayliss,
Jarrold, Gunn, & Baddeley, 2003; Engle et al., 1991;
Hanley, Young, & Pearson, 1991; Hurlstone et al., 2014;
Majerus et al., 2010). We asked whether transfer is restricted
to serial-recall tasks in the same domain (from digit span to
letter span and spoken digit span) or extends across domains
(from digit span to circle span or circle span to digit span).
Here, the critical comparison to evaluate the specificity of
transfer would be digit span training versus nonserial color
change training.

To further test the limits on transfer, other untrained tasks
were included that did not require memory for serial order.
Pattern span involves recall of the pattern of filled cells in a
static grid. This measure of visual STM involves the recall of
filled cells in a grid that are displayed simultaneously and can
be recalled in any order. Under some conditions, performance
on this test has been found to be dissociable from serial spatial
STM tests such as Corsi block recall, possibly reflecting frac-
tionation of visuospatial STM into separate visual and spatial
components (Della Sala, Gray, Baddeley, Allamano, &
Wilson, 1999). We might therefore anticipate no transfer from
either digit span or circle span training (relative to color
change detection training) to pattern span.

An untrained line orientation change detection test was also
included, in which the array was composed of multiple lines at
different orientations and in which participants judged wheth-
er the orientation of a single element had changed or remained
the same. Alongside color change detection training, this
allowed us to test whether training in verbal or spatial serial
recall generates benefits that extend to nonserial visual STM.
We predicted that it would not, as serial recall appears to
reflect a distinct and purely visual system of temporary stor-
age. The inclusion of this training condition also provided an
opportunity to explore whether training in one visual change
detection task (color change detection) transfers to the ability
to detect changes in other visual features in a similar task
environment. To date, there has been little research on transfer
following training on this paradigm; only a single study has
been performed, and this showed no transfer across to variants
of the same paradigm with minor changes (Gaspar, Neider,
Simons, McCarley, & Kramer, 2013). A finding of positive
transfer to orientation change detection following color
change detection training would provide preliminary evidence
for training-related improvement in the ability to detect mis-
matches in the properties of visual displays, rather than more
specifically to detect changes in the colors of individual
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objects. In the absence of strong hypotheses regarding the
outcome, comparisons were made between the color change
training group and each of the other three training groups,
including a passive control group that received no training,
as well as the digit and circle span training groups, which
formed the two active controls.

Method

Participants

Eighty English-speaking adults between 18 and 35 years of
age were recruited from the Medical Research Council
Cognition and Brain Sciences Unit (CBU) Volunteer Panel.
Participants received a payment for their time and travel ex-
penses. The study was approved by the University of
Cambridge Psychology Research Ethics Committee
(CPREC 2014.76). The Participant Information Sheet provid-
ed in advance of recruitment outlined a standard hourly pay-
ment for participation in the study and reimbursement for
travel expenses. It explained that participants would be ran-
domly allocated to conditions, with 10 h of paid home-based
iPad training for some but not all individuals. The participants
were allocated to training conditions (digit span, circle span,
change detection, and no training) on a random basis, subject
to the constraint that there were 20 participants in each training
condition. This sample size yields power of .91 to detect a
large effect size, f2 = .35 with a general linear regression mod-
el (GLM), and .55 to detect a medium effect size, f2 = .35. The
sample size was determined on the basis of the outcomes of a
meta-analysis of near transfer followingWM training reported
by Gathercole et al. (2019). On the basis of the limited avail-
able evidence, they concluded that, in contrast to the robust
transfer found following training on complexWM tasks, gains
in verbal STM are at best “small in magnitude and may be
reliably detected only under conditions of higher statistical
power than the standard WM training study” (p. 20). The
present sample size of 20 participants per training group falls
within the standard range for WM training studies (Dunning
& Holmes, 2014; Harrison et al., 2013; Henry, Messer, &
Nash, 2014).

Procedure

Individuals made two 3-h visits to the CBU. On the first visit,
each person was given an iPad with a retina display, for use
only in the experiment, that provided access to the training
program. Participants first completed eight iPad transfer tasks
and then eight tests from the Automated Working Memory
Assessment (AWMA). The data from the AWMA are reported
for completeness only. The training program was then dem-
onstrated, and participants took the iPad away with them to

perform the training. The second visit took place shortly after
the final session, approximately three weeks later. Participants
again completed the iPad and AWMA transfer tests, and then
they returned the iPad. All phases of the experiment apart
from administration of the AWMA were presented on iPads
with a display resolution of 2,048 × 1,536 pixels in landscape
mode. At both the pre- and posttraining sessions, there was
also a resting-state magnetoencephalography session, the data
from which will be reported elsewhere.

Transfer

Each of the following tasks was administered at the two visits
to the CBU, before and after completing the training program.
The eight tasks were presented on the iPad, with common
designs and structures where possible. After each session of
transfer and training, the data were automatically uploaded to
a server at the CBU. Two participants did not complete the
pretraining line orientation change detection task, and a fur-
ther participant did not complete the posttraining line orienta-
tion task.

Visual digit spanDigits were presented at a rate of one per 750
ms, with each digit being displayed for 500 ms and a blank
interval of 250 ms between digits. At the end of the digit
sequence, a numeric keyboard (the digits 1–9 in 3 × 3 tele-
phone keypad layout) was displayed, and participants pressed
the keys in the order in which the digits had appeared. Below
the keyboard was a “Done” key that participants pressed after
recall had been completed.With list lengths of nine or less, the
digits were sampled randomly without replacement from the
digits 1–9. With list lengths greater than nine, the initial set of
nine digits was supplemented with a further, randomly sam-
pled N digits. No digits appeared twice in succession, and
there were no runs of three or more consecutive ascending
or descending digits. Testing began with a block of six trials
with a list length of four, and increased by one when partici-
pants got four or more of the six trials at that length completely
correct. Testing continued until participants failed to reach this
continuation threshold. Span was determined to be the longest
list length for which four or more lists were recalled correctly.
Once span had been determined, 12 further trials were pre-
sented at each of the lengths span + 1 and span + 2. The
measure of performance was 2 * the number of items recalled
correctly during span setting + the numbers of items recalled
correctly at span + 1 and span + 2. This gave equal weight to
trials at each list length.

Spoken digit span This task was identical to the visual digit
task, except that the stimuli were digits spoken by a male
speaker. The digit sound files were padded out with silence
to be 500 ms long. Each digit sound file was followed by
250 ms of silence. The method for determining span and the
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numbers of trials at each of span + 1 and span + 2 were
identical to the methods employed for visual digit span.

Letter span This task was also identical to the visual digit span
task, except that the stimulus set was composed of the conso-
nants B, F, H, J, L, M, Q, R, and S. The letters on a 3 × 3
keyboard were arranged in alphabetical order. The method for
determining span and the numbers of trials at each of span + 1
and span + 2 were identical to the methods employed for
visual digit span.

Circle span Participants were presented with an array of
pseudorandomly positioned circles with a radius of 81 pixels
and a minimum center-to-center separation of 272 pixels. All
circles were colored medium blue on a gray background and
then, in random sequence, each circle turned light blue for 250
ms. The rate of presentation was 750 ms per circle. At the end
of the sequence, all circles remained visible, and participants
were instructed to touch the circles in the order in which they
had been displayed. The method for determining span and the
numbers of trials at each of span + 1 and span + 2 were
identical to the methods employed for visual digit span.
Although this task has been used elsewhere as a test of spatial
STM (Minear et al., 2016), the possibility cannot be ruled out
that participants might attempt to encode the location of the
circles verbally. This could introduce an element of verbal
STM training in the circle span task. This possibility should
be minimized here by the fact that the configuration of the
circles varied randomly from trial to trial, making it difficult
to assign a set of consistent verbal labels to the locations of the
circles.

Pattern span On each trial a 6 × 6 grid was presented for 500
ms. Initially, four of the cells in the grid were displayed in red.
After a delay of 1,000 ms, an empty grid was presented, and
participants had to touch the squares that had been presented
in red. The squares could be touched in any order. The method
for determining span and the numbers of trials at each of span
+ 1 and span + 2 were identical to the methods employed for
visual digit span.

Color change detection The procedure was based on that used
by Luck and Vogel (1997). Participants saw an array contain-
ing between three and 23 colored squares presented for 250
ms. The colors of the squares were chosen at random with
replacement from a set of seven readily discriminable colors.
The locations of the squares (38 pixels) were random, subject
to the constraint that a minimum distance of 117 pixels should
separate the centers of the squares.

After a blank retention interval of 1,000ms, a probe display
appeared for 500 ms. The probe was constructed by repeating
the previous array, but with one square chosen at random to be
the probe square. The color of the probe square either

remained the same as in the initial display or, in 50% of the
trials, was changed to another randomly chosen color. The
location of the probe square was indicated by a red rectangle.
Participants had a maximum of 5,000 ms to judge whether the
color of the probe square had changed. In all, 20 trials were
presented for each of the array sizes 6, 9, and 12. Cowan’s K
was used to provide a measure of STM capacity for this task
(Cowan, 2001; Cowan et al., 2005), where K = display size ×
(proportion hits – proportion false alarms). The mean K was
computed over the three array sizes, and this measure was
used for the purposes of analysis.

Direction change detection The orientation change detection
task was identical to the color change detection task, except
that the colored squares were replaced by black lines that
could appear in one of four orientations (vertical, horizontal,
or either diagonal). On each probe trial, one line was cued by a
red circle, with a 50% probability that the orientation of the
line would have changed. The mean K was computed, as in
the color change detection task. Due to technical problems,
there were incomplete data on this transfer task for two par-
ticipants in the circle-training condition. Their data were omit-
ted from the reported analyses.

Automated Working Memory Assessment The following tests
from the AWMA (Alloway, 2007), a standardized test battery
of STM and WM tests, were administered on a desktop PC.
Each employed a span procedure. The tests were word span
and nonword span tests (verbal STM), dot matrix and mazes
memory (visuospatial STM), listening span and counting span
(verbal WM), and Mr X and spatial span (visuospatial WM).
The analysis was based on raw scores. It should be noted that
these tasks shared fewer presentational and task features in
commonwith themost closely matched training activities than
did the iPad transfer tasks. On this basis, no strong predictions
could be made regarding the impact and potential specificity
of the training conditions on these transfer tests. For complete-
ness, the data and statistical outcomes are reported in the sup-
plemental material.

Matrix reasoning This test of nonverbal reasoning from the
Wechsler Adult Intelligence Scales involves selecting the
missing part to complete visuospatial patterns. Raw scores
were used for the purpose of analysis.

Training

Each participant completed either digit span, circle span, color
change detection training, or no training. The participants in
the three active training conditions were asked to complete 20
sessions in total on their iPad program. The maximum time
allowed for completion of a session was 40 min, with no more
than three sessions per day and an interval of nomore than two
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days between successive training sessions. Training could on-
ly be performed between 7 a.m. and 11 p.m.

Digit span training Each training session consisted of eight
blocks of ten trials employing the same procedure as the visual
digit span transfer test, with the exception that set size was
varied adaptively. Training began with a sequence of three
digits, and increased by one when participants got eight or
more trials completely correct in a block. The length of the
sequence decreased by one if participants got two or fewer
trials correct. Due to technical problems, the data for one par-
ticipant in the digit training condition were lost for the 12th
session. The missing score was replaced by the mean score
from the 11th and 13th sessions. On average, participants
completed the training sessions in in 13.8 days (min 10, max
16, SD 1.8). The principal score for the purposes of analysis
was the span reached in the final block of each session.

Circle span training Each training session consisted of eight
blocks of ten trials employing the same procedure as the circle
span transfer task. Training began with a display of three cir-
cles and increased by one when participants got eight or more
trials completely correct in a block. The number of circles
decreased by one if participants got two or fewer trials correct.
On average, participants completed the training sessions in
13.25 days (min 10, max 15, SD 1.55). The principal score
for the purposes of analysis was the span reached in the final
block of each session.

Color change detection training In each training session there
were eight blocks of 30 trials, employing the same presenta-
tion procedure as in the color change detection transfer task.
The size of the array was increased by one if participants got
27 or more trials correct, and decreased by one if they got 18
or fewer correct. On average, participants completed the train-
ing sessions in 13 days (min 10, max 15, SD 1). Twomeasures
derived from each session were used for the purposes of anal-
ysis: The first was the capacity measure K (Cowan, 2001;
Cowan et al., 2005), and the second was the difficulty level
(set size) reached by the end of each block.

Analysis plan

The training and transfer data were analyzed using both tradi-
tional null-hypothesis significance testing (NHST) methods
and corresponding Bayesian methods. This allowed us to
quantify the strength of evidence both in favor of the null
hypotheses of the absence of training/transfer effects, and in
favor of the alternative hypothesis that there were positive
effects. The Bayesian analyses were conducted using JASP
(JASP Team, 2015). Bayes factors (BF10) were interpreted as
follows (Jeffreys, 1961): BFs < 0.33 provide evidence for the
null hypothesis; BFs 0.33–3 provide equivocal evidence for

both hypotheses; BFs > 3 provide evidence favoring the alter-
native hypothesis; BFs > 10 and < 0.01 are considered strong
evidence in either direction; and BFs > 100 and < 0.001 pro-
vide decisive evidence in either direction.

Training effects for the three active training conditions
were analyzed in one-way analyses of variance (ANOVAs)
with session as the independent variable. Interactions between
training conditions and trials were not computed, due to the
different performance metrics used for the span and color
change detection tasks. For all training conditions, the metric
was the difficulty level achieved by each participant in the
final block of each session. For digit and circle span, this
was the number of items in the sequence, and for color change
detection, it was K. Both Bayesian and non-Bayesian
ANOVAs were performed.

To evaluate the specificity of transfer following training,
Bayesian and non-Bayesian linear regression analyses were
performed for each combination of the training task of interest
and each transfer test. The posttraining transfer measure was
the dependent variable, and the pretraining measure and the
particular training group contrast were entered as dependent
variables in each case. Four group contrasts were made for
each transfer measure. Three comparisons contrasted pairs of
active adaptive training conditions: digit span versus circle
span (testing the domain specificity of serial-recall training),
digit span versus color change detection (testing the specific-
ity of serial-recall training), and circle span versus color
change detection (testing the specificity of change detection
training). A final contrast compared color change detection
trainingwith no training, as a test of whether there was transfer
across serial and nonserial STM paradigms. For the NHST, a
Bonferroni correction was applied on a family-wise basis for
the transfer tests, yielding an α of .007. For each group con-
trast and transfer measure combination, initial linear regres-
sion analyses were run testing for interactions between
pretraining scores and group. Where these were considered
to be significant or to favor the alternative hypothesis (p <
.05 or BF > 3), the group term reported here is taken from
the analysis that included the interaction term. If the interac-
tion terms did not meet these criteria, the model was rerun
excluding the interaction term, and the group term from this
analysis is reported.

Results

Training data

The mean scores achieved at the end of each training session
(span for digit and circle training, and both capacity K and
difficulty level for color change detection) are shown in
Fig. 1. Gains across training sessions were considerably great-
er for color change detection than for either digit span or circle
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span training. Performance increased from the first to the final
training session, by 18% for digit span training and by 13% for
circle span training. For color change detection training, the
increase was 51% for the capacity measure K, and 83% for the
difficulty level. This reflects an increase in the number of
elements in the array from 8.45 to 15.50.

Bayesian and non-Bayesian one-way ANOVAs were per-
formed on the scores in each session for each training condi-
tion. In each case, performance increased significantly across
training. For NHST, these results were: digit span, F(19, 361)
= 7.691, MSE = .497, p < .001; circle span, F(19, 361) =
6.275, MSE = .358, p < .001; color change detection K,
F(19, 361) = 8.774, MSE = 1.227, p < .001; color change
detection difficulty, F(19, 361) = 50.574, MSE = 1.447, p <
.001. Tested against the null model, the BF10 values were >
100 for digit span, circle span, color change detection K, and
color change detection difficulty level. These outcomes pro-
vide decisive evidence that performance improved with train-
ing on each task and for each measure.

Transfer data

Descriptive statistics and analyses of the transfer measures are
shown in Table 1. Our first question was whether there is
domain-specific transfer to other verbal span tasks following
digit span training. This was addressed by comparing
posttraining scores on the untrained verbal span tests for the
digit and circle span training groups. Unsurprisingly, digit
span led to a substantially greater enhancement of digit span
performance than did circle span training, according to both
NHST and Bayesian analysis. This represents a further dem-
onstration of on-task training. For the two untrained verbal
span measures, the evidence for a selective advantage follow-
ing digit span training was weak. For spoken digit span (a
change in the modality of the memory items), the NHST
was nonsignificant, and the Bayesian outcome was equivocal,
weakly favoring the null hypothesis. For letter span, too, the p
value was nonsignificant and the Bayes factor value
equivocal.

The second question was whether there are domain-general
benefits to serial-recall training. This was addressed in two
ways. The first was by comparing the digit span and color
change detection training groups on the circle span transfer
measure. There was no substantial evidence of transfer: The p
value was nonsignificant, and the Bayes factor was equivocal,
weakly favoring the null hypothesis. The second comparison
was between circle span and color change detection training
for the three verbal span measures. In each case, the NHST
was nonsignificant and the Bayes factor value substantially
favored the null hypothesis. We therefore found no substantial
evidence for cross-domain transfer across serial-recall tasks in
either direction.

The third question was whether there were paradigm-
general benefits to training that extended across all three
STM training and transfer tasks. This was addressed by com-
paring the posttraining performance of the color change de-
tection and no-training groups on the five transfer tests that did
not involve change detection. It should be noted that this com-
parison between an active-training and a no-contact control
condition was likely to overestimate any potential benefits,
and therefore increase the likelihood of a false-positive result
(Simons et al., 2016). For two of the three verbal span mea-
sures (spoken digit span and letter span), the analyses provid-
ed no evidence of training benefits, with nonsignificant p-
values and Bayes factor values showing substantial support
for the null hypothesis. For visual digit span, the p value was
nonsignificant, and the Bayes factor was equivocal and mildly
favored the null hypothesis. For circle span, though, we did
find evidence of strong transfer, by both NHST and Bayesian
analysis. This provided unexpected evidence for transfer from
visual STM training to visuospatial serial recall. However, it is
notable that there was no evidence for a symmetrical pattern of
transfer from circle span training to the color change detection
task: With circle training, capacity K increased from 5.28 to
5.73. For the no-training condition, a similar increase from
5.26 to 5.71 was observed.

The final question was whether color change detection
training generates benefits for a line detection task employing
the same paradigm. Here the statistical outcomes were clear.
Relative to circle span training, color change detection train-
ing was associated with greater improvements in the untrained
line orientation change detection task, as indicated by a
strongly significant p value and a Bayes factor substantially
favoring the alternative hypothesis.

Discussion

Performance improved on all three STM tasks across the
course of training. The performance gains across training were
relatively small for the two serial-recall tasks—15% for digit
span and 12% for circle span training. For color change de-
tection training, the increases were considerably greater, with
an estimated STM capacity increase of 51%, and an 83%
increase in the size of the array by the end of training.

We observed no positive evidence for transfer from digit
span training to circle span, or vice versa. Neither was there
strong evidence that digit span training benefited performance
on the untrained verbal serial-recall tests of spoken digit span
or letter span. The lack of transfer across verbal serial tasks is
consistent with the predictions of the cognitive-routine frame-
work (Gathercole et al., 2019). According to this theory, trans-
fer occurs only when the demands of the training tasks cannot
readily be met by existing STM mechanisms and processes.
Only under these conditions will participants need to develop
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new cognitive routines that control and coordinate the pro-
cesses involved in performing the task. When training in-
volves only simple verbal serial-recall tasks, no new routines
are required because a well-established and highly practiced
set of mechanisms is already in place within verbal STM.
There should therefore be no substantial transfer, as we indeed
found. As was noted byGathercole et al. (2019), the exception
to this would be individuals with an underdeveloped verbal
STM system. In children who do not yet rehearse, rehearsal
training does indeed increase memory span (Broadley &
MacDonald, 1993; Johnston, Johnson, & Gray, 1987).

The absence of transfer from either serial-recall training
program to untrained serial-recall tasks therefore provides no
evidence that the capacity of STM can be expanded with in-
tensive training. This is particularly noteworthy for digit span,
as the transfer tasks were distinguished only by a single
feature—input modality for spoken digit span (visual to audi-
tory), and semantic category for letter span (digits to letters).
According to the current understanding of verbal STM, each
of these three stimulus forms should be equally readily repre-
sented in verbal STM (Baddeley et al., 1984). If training had
acted to increase STM capacity, the benefits of this extra ca-
pacity should therefore extend to both tasks. One possibility is
that training on a single task allows participants to develop
category-specific complex recoding strategies that reduce
memory load by permit chunking of multi-item sequences
(Ericsson et al., 1980; Martin & Fernberger, 1929).
Although this hypothesis may explain the corresponding lack
of transfer to letter span, it is not consistent with the corre-
sponding absence of transfer to spoken digit span. With equal
access to phonological storage for visual and auditory inputs,
any beneficial effects of digit-specific encoding strategies
would be expected to extend to digits presented in either
modality.

Training-induced changes therefore appear to be tied to the
semantic category and input modality of the memory items, as
well as to paradigm. Why, then, should performance on the

trained task improve at all if, as the absence of transfer sug-
gests, the capacity of verbal STM is unchanged? The present
data showed a relatively modest increase of 18% in digit span
with training. This is considerably smaller that the gains ob-
served in studies that had explicitly trained digit span strate-
gies involving recoding (Ericsson & Staszewski, 1989; Kliegl
et al., 1987; Reisberg et al., 1984; Yoon et al., 2018).
Moreover, the gains that we found in digit span in the present
study appear to be tied to the specific conjunction of the
trained task features. One way of explaining this is that exten-
sive training on a single task in which all parameters are fixed
(e.g., perceptual, timing, and categorical) allows participants
to fine-tune their task model. This could be conceived as a
form of learning that takes place within the established system
of verbal STM. If performance is finely tuned to all features of
a single task, even superficial deviations from the trained task
might be sufficient to render the model suboptimal. In this
way, subtle changes within an existing system could be de-
tectable in training effects when all task features are preserved,
but not generalize to other variants of the same paradigm.

Training on the color change detection measure of visual
STM generated both substantial on-task training gains and
transfer to another task, in which participants detected changes
in the orientation of lines in a multi-item array. To our knowl-
edge, this is the first time that training-induced change has
been demonstrated for static visual STM, a resource-limited
memory system that has been extensively investigated in re-
cent years (e.g., Alvarez & Cavanagh, 2004; Bays, Catalao, &
Husain, 2009). There are several possible explanations for this
outcome. Applying the rationale extended to findings of near
transfer following WM training (Dahlin et al., 2008; Jaeggi
et al., 2008; Klingberg, 2010), it could be interpreted as
reflecting genuine plasticity in the capacity of visual STM.
An alternative possibility is that the change detection para-
digmmay require the establishment of a new cognitive routine
(Gathercole et al., 2019), and that this is the source of transfer.
The very brief presentation of displays containing highly
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similar objects for a binary change detection judgment certain-
ly imposes highly unfamiliar cognitive demands that quite
plausibly might not be met solely through the processes in
place within visual STM. The relatively large magnitude of
the training gains seen in this task is certainly consistent
with mediated learning. Perhaps, then, trainees develop a
change detection routine to optimize their performance
that—unlike the highly specific tuning to the specific task
features seen in digit span training, which shows no substan-
tial generalization—can be readily adapted to the untrained
orientation detection task with its very similar demands.

Alternatively, transfer across change detection tasks re-
flects learning by the participant about the statistical properties
of the displays. Such learning might underpin the robust
training and transfer gains found for change detection tasks.
Orhan and Jacobs (2014) have suggested that the apparent
capacity limitations in visual STMmight be due to a mismatch
between the participant’s internal model and the true statistics
of the stimuli. For example, our change detection tasks had a
statistical structure of the elements within the display: Colors
were not positioned at random but were constrained to have a
minimal separation. This became even more constraining as
the number of stimuli in the display increased. When the max-
imum number of items were in the display, they were closely
packed, and there was much less room for variation in position
than with fewer items. The orientation change task had the
same statistical properties. Perhaps, then, learning about the
statistics of the displays in one task could readily transfer to
the other. An important question as yet unanswered is whether
transfer to other change detection tasks would persist if the
statistics of the displays changed between the trained and un-
trained activities.

Participants might also learn about the characteristics of
their internal representations of stimuli in change detection
tasks. To optimize the readout of information from memory,
participants need to have an accurate model of the internal
representation that will be produced by a particular input. In
Bayesian terms, they need to develop an accurate generative
model of the task. This form of learning or adaptation is likely
to be tied to the low-level perceptual properties of the stimuli.
In the case of serial recall with letters or digits, this might
involve nothing more than fine-tuning, but for a completely
novel task like change detection, more work might need to be
done.

In summary, on-task performance improves after extensive
practice with serial recall of visually presented digits.
However, there is little evidence that this improvement con-
fers any advantage to recall of visually presented letters, au-
ditorily presented digits, or sequences of spatial locations.
Changing either the stimulus domain, the presentation modal-
ity, or the category of the memory items eliminated the bene-
fits of training. Digit span training does not substantially im-
prove the capacity of verbal STM. In contrast, training on an

unfamiliar color change detection task produces large gains in
performance that transfer to a line orientation change detection
task. The large improvement in change detection was unex-
pected, as change detection is often used to estimate core
visual STM capacity. This might have been a consequence
of learning how to perform a novel task, in much the same
way as for more complexWM tasks, and also how to optimize
performance by exploiting the statistical properties of the
displays.
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