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Experiments have shown that self-propelled particles can slide along the surface of a circular
obstacle without becoming trapped over long times. Using simulations and theory, we study the
impact of boundary conditions on the diffusive transport of active particles in an obstacle lattice.
We find that particle dynamics with sliding boundary conditions result in large diffusivities even at
high obstacle density, unlike classical specular reflection. These dynamics are very well described
by a model based on Run-and-Tumble particles with microscopically derived reorientation functions
arising from obstacle-induced tumbles. This model, however, fails to describe fine structure in
the diffusivity at high obstacle density predicted by simulations for pusher-like collisions. Using a
simple deterministic model, we show that this structure results from particles being guided by the
lattice. Our results thus show how non-classical surface scattering introduces a dependence on the
lattice geometry at high densities. We discuss implications for the study of bacteria in complex
environments.

I. INTRODUCTION

The field of active matter covers the broad spectrum
of particles which move by consuming energy from their
environment [1]. These range from flocks of birds and in-
sect swarms [2, 3], to cell tissues [4], microswimmers [5],
microtubuli [6, 7], and enzymes [8]. Microswimmers
such as bacteria and Janus particles self-propel at low
Reynolds numbers, the latter being directly powered by
an asymmetric chemical reaction on the particle surface,
the former by rotating helical filaments. The propul-
sive mechanisms set up complicated hydrodynamic flows,
which determine the characteristics of interactions, both
with other microswimmers, and with the boundaries of
their environment. These boundary interactions may
perform an essential function in nature. Surface-induced
accumulation is an important step in the formation of
biofilms, which are involved in many chronic diseases and
pathogen spread [9, 10]. Blood pathogens are adapted to
swimming in crowded environments [11], sperm cells fol-
low the wall of the genital tract to reach the egg cell [12–
14], and artificial Janus particles have been guided along
microfluidic edges [15] and through obstacle arrays [16–
18].

The nature of particle-surface interactions relies on a
microswimmer’s propulsion mechanism, including steric
and hydrodynamic effects. Microalgae, which are
“puller” type swimmers, are scattered off surfaces [19–
21], leading to billiard-like motion in polygon struc-
tures [22]. In contrast, “pusher” type swimmers, such as
bacteria or Janus particles, are trapped by hydrodynamic
effects near flat surfaces, where they accumulate [23–25].
When the surface is instead convex, this trapping time
can be reduced [26]. In particular, bacteria trace along
convex surfaces such as microfluidic pillars before escap-
ing with a small angle [27].
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The modelling of these scenarios typically follows one
of two approaches: hydrodynamic models, or random
walk models. With a full hydrodynamic approach, the
particle-surface interactions can be studied by modelling
the active particle as a hard sphere with defined tan-
gential surface velocity [28]. A recent study explored the
migration of active particles through a body-centered cu-
bic lattice of spheres of the same size as the particle [29].
Depending on the swimmer type and packing density,
the authors found trapped, random walk and straight
trajectories. The computational demands of the simu-
lations, however, prevented study of long-time behavior.
Random walk models can be used to study the diffusive
behavior of active particles. Diffusion in complex media
has been studied for several boundary interactions: for
model particles that evade obstacles [30], particles that
are trapped before being randomly reorientated [31], and
particles that interact with obstacles via an excluded vol-
ume potential [32]. Hydrodynamic boundary interactions
have been shown to play an important role in active sys-
tems, e.g. in the control of flow-induced phase separation
[33]. Similarly, pusher-type boundary interactions may
guide microswimmers through their environment [15, 34],
which would facilitate diffusion.

In this paper, we study theoretically how these dif-
ferent modes of boundary scattering influence the diffu-
sive transport of active particles in ordered arrays of ob-
stacles. We consider particles specularly reflected from
boundaries, as in the Lorentz gas model [35]; parti-
cles that scatter by sliding around obstacles, like push-
ers [26, 27]; and particles that interact with obstacles via
a steric, torque-free interaction, which we refer to here
as a “slide-off” condition [32]. For these ‘pusher-like’
collisions, our simulations and a run-and-tumble parti-
cle model predict, counterintuitively, that large diffusive
transport is possible even at high obstacle densities. This
result contrasts sharply with the expected low diffusivity
of Lorentz gas particles at high densities. We show for
the sliding condition, using a simple deterministic model,
how this large diffusion at high density is caused by par-
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FIG. 1. Boundary conditions. Typical trajectory of a particle
governed by Eqs. (1) and (2) with (a) a sliding, (b) a slide-
off, or (c) a reflecting boundary condition. For the sliding
condition, particle leaves at a tangent to the obstacle after
traversing a fixed central angle α. For the slide-off condition,
the central angle α̂ depends on the incident angle, the obsta-
cle radius, and the magnitude of rotational diffusion on the
obstacle.

ticle guiding by the lattice. Simulations show that the
same effect occurs for the slide-off condition, but not for
Lorentz gases. Our results highlight the previously un-
explored role of lattice geometry in active particle trans-
port.

II. MODEL

We consider NP active particles in a two-dimensional
space in which obstacles are placed in a hexagonal lattice.
The centers of the obstacles are fixed with distance d, and
the obstacle radius R is varied. The equations of motion
for the i-th particle are given by

ẋi = v p(ϕi) (1)

ϕ̇i =
√

2DRξi(t), (2)

where dot denotes the time derivative, v is the particle
speed, xi and ϕi correspond to the position and moving
direction of the i-th particle, respectively, and the unit
vector p = [cosϕ, sinϕ]. The white noise in Eq. (2)
obeys 〈ξ(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). Thus,
the moving direction undergoes rotational diffusion with
〈ϕ(t)2〉 = 2DRt. As a result, the particle performs a per-
sistent random walk with persistence length lp = v/DR

[36].
Recent microfluidic experiments [26] and hydrody-

namic models [26, 27] have shown that pillars with radii
above a critical threshold strongly trap pushers, which
escape at long times by rotational diffusion. We consider
in this study only pillars with radii below this critical
threshold (and so choose parameters motivated by ex-
periment [34, 37]). In this case, swimmers collide with
an obstacle at an angle β, defined as the angle between
the tangent at the collision point and the orientation p.
If β < π/2, the particle travels clockwise around the ob-
stacle; if β ≥ π/2, the particle travels counter-clockwise.
After the collision, the angle between it and the obstacle
surface tangent decreases until escape [27].

To capture the non-classical particle-surface interac-
tion, we introduce a sliding boundary condition [26].

Consider a collision with an obstacle: β is defined as the
angle between the tangent at the collision point and the
orientation p. The particle moves along the obstacle to
traverse a central angle α (Fig. 1(a) inset). A model of
stochastic dynamics could determine, for a given incident
β, the resulting distribution of central angles α (leaving
times). However, such a model has yet to be developed.
We know from modelling and experiments that after
collision, the particle quickly rotates, through phoretic
and/or hydrodynamic interactions with the surface, to
align its orientation vector with the surface, regardless of
the orientation of the particle upon collision [10, 38]. This
rotation generally occurs on a much faster timescale than
the trapping time of the particle. Therefore, we choose
to neglect the dependence of the sliding angle α on β,
i.e., model the probability distribution of α as P (α) in-
stead of as P (α|β), with P (α) peaked at some value αmax

determined by the competition between rotational diffu-
sion and deterministic alignment with the surface. In this
work we explore the effect of boundary conditions assum-
ing a fixed central angle α and further assume that, when
a particle leaves an obstacle, its orientation p is tangent
to the obstacle surface. This is a necessary simplification
of the hydrodynamic behaviour of pusher-type particles
at convex obstacles. Our model also neglects any poten-
tial impact of the chemical field surrounding synthetic
active particles. The neglect of stochasticity in α can
be checked by simulations. Results (not shown) with a
fixed (mean) α are qualitatively the same to those ob-
tained with a distribution of α, provided the latter is
peaked about its mean (e.g. a Gamma distribution).

As a comparison, we also consider a slide-off bound-
ary condition, and a reflecting boundary condition. In
the slide-off condition, when a particle collides with an
obstacle, it retains its orientation vector, and advances
around the obstacle depending on the component of its
velocity parallel to the obstacle surface (initially β) , i.e.
v = v0 cosβ, as shown in Fig. 1(b). The angle between
particle orientation and obstacle tangent decreases as the
particle moves around the obstacle’s surface. It will leave
the obstacle when the orientation vector is parallel to (or
pointing away from) the obstacle’s surface. In the ab-
sence of rotational diffusion, this means that the particle
will traverse a central angle of α̂ = min(β, π − β), and
so it bears some resemblance to the sliding condition.
However, while sliding is motivated by hydrodynamic ef-
fects, the slide-off condition is motivated by steric effects,
and has been used in various potential-based simulation
studies to model Janus particles and active disks [32, 39].

For the reflecting condition, a particle is reflected with
an angle equal to the incident angle, as illustrated in
Fig. 1(c). This interaction type implies time-reversibility,
which is an assumption underlying gas kinetic models
derived for bacteria transport in porous media [40, 41].
By contrast, both the sliding and slide-off boundary con-
dition are not time-reversible and violate detailed bal-
ance [5]. The system of Eqs. (1) and (2) is solved numer-
ically, and example particle tracks are shown in Fig. 1.
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FIG. 2. An illustration of the lattice geometry in the reflecting
boundary condition calculation. A hexagonal lattice can be
patterned by rhombi of side length equation to the lattice
spacing, as shown in (a). The shaded area is the area available
to particles per unit cell, A, while the orange arcs highlight
the obstacle surface per unit cell P = 2πR. In (b), an extra
circular boundary is added, with a radius of the persistence
length, to account for reorientation via rotational diffusion,
and preventing an infinite mean free path at low densities.

We derive the diffusion coefficient from NP simulated
particle tracks by fitting the mean square displacement
as 〈δx(t)2〉 = 4Defft + 4Deffη[exp(−t/η) − 1] (a result
easily derived for self-propelled particles using a stan-
dard method, see for example [42]), where the time scale
of ballistic motion, η, is the second fitting parameter.

We first establish the diffusive properties of active par-
ticles with a reflective boundary condition. Here, we rec-
ognize an analogy to the Lorentz gas model, in which
particles move ballistically between obstacles [35]. The
Santalo formula is a well-known result for the mean-free
path of a Lorentz gas [43] given by λ = πA/P , where A
and P are the free area and obstacle perimeter in a unit
cell (shown for a hexagonal lattice in Fig. 2(a)), respec-
tively. Since the active particles move diffusively at large
time scales, we derive an active version of Santalo’s for-
mula with a circle of radius lp as an additional boundary,
as in Fig. 2(b). This yields the mean-free path of an ac-

tive particle as λ̃lp = πNA/(NP + 2πlp), where N is the
number of unit cells included in the circle of radius lp.
For a hexagonal lattice of circular obstacles, we obtain
A =

√
3d2/2 − πR2, P = 2πR and N = πl2p/(

√
3d2/2).

Note that in order to obtain the fit in Fig. 3(a), we find
that this mean free path has to be scaled by π/2, i.e.

λlp = 2λ̃lp/π. We believe that this is due to the choice of
averaging conditions made in earlier work [43]. As shown
in Fig. 3(a), applying this adjusted mean-free path in
D = λlpv/2 matches the simulations. The inset plots
the theoretical prediction and the diffusion coefficient
fitted from simulations on a lin-log scale, showing that
at large R/d the diffusion coefficient scales as ln(1/ρ),

where obstacle density ρ = 2π/
√

3 (R/d)2. If we vary
the obstacle separation d instead of the obstacle radius
R, we see, as expected, that the diffusion coefficient ap-
proaches D0 when d � lp (results not shown). We can
understand the reduction in diffusion coefficient qualita-
tively: as the obstacle density increases, particles spend
most of their time in the wells between triplets of obsta-

τc

τc

B

(a) (b)

FIG. 3. Diffusion with reflecting and slide-off boundary con-
dition. (a) Diffusion with reflecting boundary condition, Dref ,
is scaled by diffusion coefficient in the absence of any obsta-
cles, D0 = v2/2DR. Simulations agree with Santalo’s formula
that was adjusted for rotational diffusion, λlP (green dotted
curve). The run-and-tumble model in Eq. (3) with Santalo
mean free path λ in τc = λ/v (orange dashed) is compared
to RTP model with τBc = 1/ρ [31] (purple dashed-dotted)
and 〈cosψ〉 = −1/3. (b) Diffusion with slide-off boundary
condition, DSO, is scaled by the free diffusion coefficient. If
the particle orientation is fixed on the obstacle (i.e. DR = 0
on obstacle), diffusion is enhanced at large obstacle densities
(purple markers). With stochastic slide-off boundary condi-
tion (i.e. DR 6= 0), the diffusion coefficient decreases with
increasing obstacle density. If DR is increased (both free
space and on obstacle), the relative decrease in diffusion coef-
ficient, DSO/D0, due to obstacle collisions is smaller (orange
vs. green markers). Note that absolute value ofDSO is smaller
for larger DR. The dashed lines are the respective theoreti-
cal approximations to the simulations (details given in section
III). Parameters: NP = 1000, DR = 0.1 s−1, v = 20 µm s−1,
d = 60 µm, unless otherwise stated.

cles in the hexagonal lattice, and their motion becomes a
jump-diffusion process from well to well, as described by
Machta and Zwanzig [35] and illustrated by the particle
track in Fig. 1(c).

The slide-off boundary condition preserves the parti-
cle orientation p at the point of collision. Here, we con-
sider two different cases: i) when rotational diffusion is
fully suppressed while on the obstacle, here called the
deterministic slide-off condition, and ii) when rotational
diffusion remains the same as in free space while on the
obstacle, here called the stochastic slide-off condition. In
both cases, the diffusion coefficient DSO is equal to the
free diffusion coefficient D0 in the limit of small (or very
separated) obstacles, as shown in Fig. 3(b). However, at
higher obstacle densities, the deterministic slide-off diffu-
sion coefficient increases significantly over the free space
case (see the purple markers in Fig. 3(b)). This increase
appears despite the decrease in speed on the obstacle.
As the speed on the obstacle is given by v = v0 cosβ, the
particle will propagate very slowly when it is oriented
at right angles to the surface. Restoring rotational dif-
fusion on the obstacle surface dramatically changes the
dependence of DSO on the obstacle density. The stochas-
tic slide-off diffusion coefficient decreases monotonically,
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(a) Simulations (b) RTP model

FIG. 4. Diffusion with sliding boundary condition. (a)
Simulations reveal dependence on both obstacle density and
central angle. (b) Theoretical prediction Eq. (3) with τc =
λ/v in τ = τc + τR and 〈cosψ〉 given by Eq. (6). Parameters:
NP = 1000, DR = 0.1 s−1, v = 20 µm s−1, d = 60 µm.

but this is still much higher than the Lorentz gas result
(compare the green markers in Fig. 3(b) to the markers
in Fig. 3(a)). If the rotational diffusion is increased both
in free space and on the obstacle, the effect of the obsta-
cle lattice on the relative diffusion is reduced (green vs.
orange markers in Fig. 3(b)).

Numerical solutions of Eqs. (1) and (2) with a sliding
boundary condition reveal that diffusion depends both
on the obstacle density ρ and the central angle α [see
Fig. 4(a)]. A large diffusive transport can be sustained
even at large obstacle density ρ for certain values of α.
Despite frequent obstacle collisions, the reorientation is
small because the sliding boundary condition conserves
the major component of the velocity vector for small to
intermediate values of α. Large values of α, on the other
hand, cause a particle to retrace much of its track. The
typical pusher surface interaction can, thus, lead to an
increase in effective diffusion compared to the classical
reflection.

III. RUN-AND-TUMBLE FRAMEWORK

While the active Santalo formula matches the reflective
simulations well in Fig. 3(a), it cannot account for the
persistence introduced by the sliding and slide-off bound-
ary conditions, and a different approach is required. We
derive a theoretical description based on the model of
run-and-tumble particles (RTP) [44, 45]. Here an effec-
tive ‘tumble’ means an obstacle-induced reorientation of
the particle, and the ‘run’ between obstacle collisions is
influenced by rotational diffusion. The diffusion coeffi-
cient for an RTP also undergoing rotational diffusion is
known to be

D =
v2

2[DR + (1− 〈cosψ〉)/τ ]
, (3)

where τ is the mean run time and ψ = ψ(α, P (β)) is
the reorientation angle during a tumble [46, 47]. In the
following, we will derive expressions for the parameters

in Eq. (3): i) the reorientation function 〈cosψ〉, ii) the
mean run time τ , and iii) the effective speed v based on
the microscopic details of the sliding, the reflecting and
the slide-off boundary conditions. We will then apply
the RTP model with those parameters to the simulations
presented in the previous section.

Reorientation function

The reorientation angle is the combination of align-
ment upon collision with the obstacle, β, and sliding ac-
cording to the central angle, α: ψ = α − β (see Ap-
pendix B for derivation). The average 〈cosψ〉 is per-
formed over the collision angle β, with probability distri-
bution P (β).

To derive the distribution, we consider a single circular
obstacle of radius R. A particle can start at any distance
x from the centre of the obstacle, with its initial direction
φ uniformly distributed (see Appendix A for schematic).
The particle moves in a straight line, and may or may
not collide with the obstacle. We ask: given a uniform
distribution of starting directions, what is the observed
collision angle distribution P (β)?

For this, we need only consider a truncated distri-
bution P (φ) = 1/(2 cos−1(R/x)) between the angles
− cos−1(R/x) ≤ φ ≤ cos−1(R/x), where the particle will
only graze the obstacle at a tangent to its surface. Be-
yond this range of angles, the particle will not hit the
obstacle. From the sine rule, we can see quickly that

x

sin(π/2 + β)
=

R

sinφ
, (4)

and so φ(β, x) = sin−1
(
R
x cosβ

)
. The transfor-

mation between the uniform initial angle distribu-
tion P (φ) and the collision angle distribution Px(β)
is given by Px(β) = P (φ)|dφ/dβ|, where |dφ/dβ| =

R sin(β)(x
√

1− (R2 cos2 β)/x2)−1 is the Jacobian of the
transformation. We can write the collision angle distri-
bution averaged over all space as

P (β) =

∫ L
R
dx 2πx Px(β)∫ π

0
dβ
∫ L
R
dx 2πx Px(β)

=
sinβ

2
, (5)

where L is the system size. Here, the factors of 2πx arise
from summing over annular regions of starting points.
The denominator is a normalisation factor. Despite using
deterministic trajectories to calculate this distribution, it
fits the observed collision angle distribution for simula-
tions at low densities. Performing the average gives the
reorientation function as:

〈cosψ〉 = 2

∫ π/2

0

cos(α− β)P (β)dβ

=
1

4
(2 cosα+ π sinα), (6)
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noting that cosψ is even about β = π/2. This framework
is general, and so can be adapted for specific boundary
conditions, as long as the reorientation function 〈cosψ〉
can be determined. For the reflecting boundary condi-
tion, ψ = 2β, and 〈cosψ〉 = −1/3. For the determinis-
tic slide-off condition, there is by definition no reorien-
tation, and so 〈cosψ〉 = 1. For the stochastic slide-off
condition, however, the particle can deviate in its ori-
entation while on the obstacle, and so the reorientation
function 〈cosψ〉 ≤ 1. For this condition, the reorienta-
tion function depends on the obstacle radius compared
to the persistence length, R/lp = RDR/v. This parame-
ter gives an idea of whether diffusion (DR) or movement
around the pillar (v/R) has a larger effect on the par-
ticle’s orientation. To see this, consider an extremely
large obstacle (large R/lp). Then, change in the parti-
cle’s surface angle due to movement around the obstacle
will be very small, as the curvature is low. Therefore, dif-
fusion will dominate the reorientation, and 〈cosψ〉 < 1.
Conversely, a small obstacle will not allow much time
for reorientation due to rotational diffusion before the
particle leaves again. Modelling reorientation for the
stochastic slide-off condition is challenging, and it is not
possible to find an exact expression, but numerical solu-
tions show that a very good approximation for small to
medium R/lp (for details, see Appendix C 1) is given by

〈cosψ〉 ≈ 1− 1
2

√
R/lp.

Residence time

The second parameter in the RTP model (3) is the
mean run time τ , which corresponds to the time between
obstacle collisions. Because the characteristic time be-
tween collisions is independent of the details of the ran-
dom walk and depends purely on confinement [48], we
use the mean collision time τc = λ/v for all boundary
conditions, where λ is the mean free path given by San-
talo’s formula. For the sliding boundary condition, the
mean run time is adjusted by the time spent on an ob-
stacle, i.e. τ = τc + τR, with residence time τR = Rα/v.
For the deterministic slide-off condition τR = πR/2v (for
details see Appendix C 2). Note that this is not equal
to Rα̂/v, because v is reduced on the obstacle, and so
τR > Rα̂/v. The addition of rotational diffusion also
changes the residence time. For the stochastic slide-off
condition we must solve a complicated mean first pas-
sage time problem (again, for details see Appendix C 2).
Nevertheless, it turns out that a very reasonable fit to
numerical solutions of the residence time is given by:

τR =
πR

2v

1

1 + πR/2lp
. (7)

This expression gives the deterministic time τR → πR/2v
at low rotational diffusion (small R/lp), and the expected
time to exit the free space interval {0, π} for large rota-
tional diffusion (large R/lp): τR → 1/DR. This latter
time assumes that we can neglect the contribution from

deterministic drift at large enough rotational diffusion
values.

Effective speed

A final consideration is that travelling on the ob-
stacle causes an effective reduction in velocity. When
the particle traces along the pillar, it travels a distance
l < vτR, which gives vobs = l/τR. By the cosine rule,
l = R

√
2− 2 cosα for the sliding boundary condition.

It follows that l = R
√

2− 2 cos(1) for the determinis-
tic slide-off condition. For the stochastic slide-off condi-
tion, we require the average reorientation angle α̂. This
is solved by averaging over the initial angle distribution
(for details on α̂, see Appendix C 1):

α̂ =

∫ β

0

dβ α̂(β) sinβ. (8)

Again, this can be solved numerically, and we find a good
approximation to α̂ for small to medium R/lp (see Ap-
pendix C 3) is:

α̂ ≈ 1−

√
πR

2lp
+

(
R

2lp

)3/2

, (9)

and then, the average distance travelled for the stochas-
tic slide-off condition is l = R

√
1− cos α̂. Using those

distances travelled, the effective speed in Eq. (3) is then
veff = vτc/τ + vobsτR/τ = vτc/τ + l/τ .

Comparison with simulation

We first apply the RTP theory to simulations with re-
flecting boundary condition, using 〈cosψ〉 = −1/3 and
τR = 0. As shown in Fig. 3(a), the RTP model with
τ = τc yields a good approximation of the simulation re-
sults. As a comparison, the RTP model with a recently
derived mean collision time [31], where τBc = 1/ρ, ap-
proximates the simulations at low densities but diverges
in the high density regime.

For the deterministic slide-off condition, we observed
an increase in diffusion coefficient compared to the free
diffusion in Fig. 3(b). We suspect the supression of rota-
tional diffusion as cause for this increase, and, thus, use
an effective rotational diffusion Deff

R = DRτc/τ in Eq.(3).
With this correction, the RTP model is a good approxi-
mation of the simulation results, see dashed purple line.
For the stochastic slide-off condition, the RTP model in
Fig. 3(b) reproduces the trends seen in the simulation re-
sults: we see a reduction in the diffusion coefficient as the
obstacle density increases. The relative decrease in the
diffusion coefficient to that of free space is smaller as the
persistence length decreases: if the particle is more prone
to reorientation in free space, the effect of reorientation
due to the obstacles is smaller, as can be seen by com-
paring the green and orange dashed curves in Fig. 3(b).
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FIG. 5. Geometric effects for sliding BC. (a) The discrepancy between the RTP model and the hexagonal lattice simulation
results at high density (R/d = 0.47) is centred around the deterministic stable regions [shaded as in (c)], revealing influence
of geometry. Inset: Diffusion coefficient for a square lattice. (b) Schematic of a 1-D system, considering a flight along one
channel in the lattice. The leaving angle at each pillar is given by θn. The lower schematic shows possible termination of flights
in a horizontal channel. (c) Iterative map of the leaving angle as a function of the previous leaving angle for different central
angles α, θn+1 = f(θn) + α. The shaded regions correspond to regions of stable flights. Stable fixed points cross the dashed
θn+1 = θn line with a gradient between -1 and 1 (a mapping with a stable fixed point is shown in the lower shaded region, with
an example trajectory in pink). An example of a bounded mapping of leaving angles is shown as orange trajectory.

However, the RTP model predicts a much sharper decline
in the diffusion coefficient at larger values of R. This is
the first hint that the obstacle lattice may be playing a
large role at high densities.

For the sliding boundary condition, the RTP frame-
work reproduces the main features of the simulations,
see Figs. 4(a) and 4(b): it maintains a large diffusion
coefficient for small to intermediate α. Since τc is inde-
pendent of the boundary condition, this must stem from
the reorientation function 〈cosψ〉 in Eq. (6), which has
a maximum at α ≈ π/3 and a minimum at α ≈ 4π/3.
These extrema coincide with the predicted maximum and
minimum of the diffusion coefficient observed for small to
intermediate R/d in Fig. 4(b). Beyond α = 4π/3, any in-
crease in the diffusion coefficient due to the reorientation
function is suppressed by the increase in residence time
τR at large R and α. Note that, since the RTP model
is oblivious to obstacle arrangement, these results also
apply to random lattices at low densities.

IV. HIGH-DENSITY GEOMETRICAL EFFECTS

While the RTP model accounts for the diffusion coef-
ficient Dslid of the sliding boundary condition at low to
intermediate obstacle densities, it fails to completely de-
scribe the simulations at high density. Figure 5(a) shows
fixed R/d = 0.47 (the largest value) cross-sections of the
surfaces in Figures 4(a) and 4(b). At this high density,
the diffusion coefficient for the hexagonal lattice simula-
tions has peaks that exceed the RTP model. There are
two of these peaks at low α as well as smaller overshoots
at higher α. However, if we instead perform the simula-
tions in a square lattice, we get a different peak structure,

with a single peak at low α. We will show that this is
due to the geometry of the lattice, and its guiding effect
on the self-propelled particles.

For the geometry of the lattice to influence the parti-
cle paths, there must be a correlation between successive
collisions with pillars. This means that the particle must
not lose the memory of its orientation between collisions,
i.e. the obstacle separation must be much smaller than
the persistence length, d − 2R � lp. In this case, a
purely deterministic model (DR = 0) provides a good
approximation to explore correlations between collisions.
In such a model, the particle travels in a straight line
between pillars, and is reoriented by α by sliding scat-
tering. We consider a ‘channel’ defined by two rows of
pillars within the lattice (Fig. 5(b)). A particle traverses
the channel by skirting around pillars, leaving the sur-
face of the nth pillar with a polar angle θn. For deter-
ministic (ballistic) dynamics between collisions, we can
completely specify a trajectory by the ‘flight’ {θn}Nn=1,
the sequence of leaving angles from successive collisions,
as in Fig. 5(b). The sequence size N defines the flight
length. Successive leaving angles are determined by the
recurrence relation: θn+1 = gα(θn) = f(θn) + α, where,
in this deterministic model, f(θn) is a function deter-
mined solely by the geometry (see Appendix D for the
functional form).

As the particle moves along a channel during a flight,
it can transition between pillars on the opposite ( e.g.
θn−1 → θn) or same (e.g. θn+2 → θn+3) side of the

channel, as shown in Fig. 5(b). For R/d >
√

3/4 (the
close-packed limit of overlapping pillars), a critical angle
θn = θ∗ emerges that determines on which side of the
channel a particle will next hit. If θn ≤ θ∗, the particle
will cross over to an obstacle on the other side of the
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channel, while if θn > θ∗, it will move to one on the
same side. This means the map gα(θn) is discontinuous
at θn = θ∗, as in Fig. 5(c).

The flights considered in the deterministic model cor-
respond well to what we observe in our simulations. At
high densities, these show particle trajectories made up
of long flights along lattice channels, interrupted by ‘tum-
bles’ into the next long flight. The deterministic model
allows to establish if the flights are geometrical in ori-
gin. In this model, a flight terminates when the leaving
angle θn becomes too small (θn < θmin) or too large
(θn > θmax) as it will be deflected out of the chan-
nel on its next collision, illustrated in Fig. 5(b). Sta-
ble flights are trajectories that remain in the region
θmin ≤ θn ≤ θmax indefinitely. This can happen in two
ways: (i) a stable fixed point may exist (a point θ such
that gα(θ) = θ, and |g′α(θ)| < 1), so that long trajectories
have a single repeated leaving angle; (ii) the map gα(θn)
is bounded within the allowed region of leaving angles:
θmin ≤ gα(θn) ≤ θmax for all θmin ≤ θn ≤ θmax, so that
no trajectory may leave the allowed region. Example
trajectories of both types are illustrated in Fig. 5(c).

The iterative map θn+1 = gα(θn) is plotted for R/d =
0.47 in Fig. 5(c). Two stable ranges (shaded regions) are
seen to emerge corresponding to ranges of α, which con-
trols stability. For θn < θ∗, increasing α causes a stable
fixed point to develop. Increasing it further, in the range
that defines the lower region (shaded in blue), provides a
map bounded in the interval [θmin, θmax]. Flights in this
lower shaded region bounce from one side of the channel
to the other. If α is increased further, the map again be-
comes unbounded (gα(θn) > θmax) and stability is lost.
For θn > θ∗, the upper region (shaded in pink) has a sta-
ble fixed point, so that particles perform stable flights by
running along only one side of the channel in this region.
Stable trajectories from the deterministic model cannot
give rise to diffusive behaviour. However, any rotational
diffusion, however small, will eventually cause a devia-
tion of trajectory large enough to take the particle out of
the stable interval [θmin, θmax]. This will cause flights to
terminate, and this is why the observed transport is dif-
fusive, not superdiffusive. In view of the large persistence
length of flights for stable values of α, the diffusion coeffi-
cient for such flights is expected to be large compared to
that corresponding to other values of α. By plotting the
stable regions of α predicted by the deterministic model
against the simulation results at high density in Fig. 5(a),
we see that this is indeed the case: the spikes in diffusion
coefficient for the simulations correspond well to the sta-
ble regions in the deterministic model. It is important to
note that the obstacle sizes we are considering here are
below the critical trapping radii tyically found [26, 27]. It
is possible to reach a high density state where the obsta-
cle separation is larger than the persistence length, where
our results wouldn’t hold. However, in this regime, the
obstacles would be much larger than the trapping radius,
and so particles would be trapped for long periods on ob-
stacles [26, 27], making diffusion very slow. Finally, it is

not only in the sliding boundary condition that we see
significant deviation from the RTP model. The stochas-
tic slide-off collision rule also exhibits an increase over
the bare RTP model as R/d gets very large. Although
we do not try to model this here, it is clear from particle
trajectories in the simulations (see e.g. Fig. 1(b)) that in
this case there is also a geometrical guiding effect (this is
also the case for the deterministic slide-off rule).

V. DISCUSSION & CONCLUSIONS

To conclude, we find that non-classical surface inter-
actions significantly impact the active diffusive transport
in complex environments, such as ordered obstacle ar-
rays. Compared to a high-density Lorentz gas model,
where particles get trapped in the wells of lattices, and
the behaviour is jump-diffusive, the sliding and slide-off
boundary conditions allow particles to escape these wells
and traverse the lattice efficiently. These boundary con-
ditions share certain general features and differences to
the classical specular reflection boundary condition. The
most striking is that they are not invertible; given an
outgoing orientation and leaving point, we cannot infer
both the incoming angle and collision point. The sliding
condition maps particles with different orientations upon
collision to the same leaving point, and so information
on the incident angle is lost. Similarly, the deterministic
slide-off condition maps particles with the same incident
angles but different collision points onto the same leav-
ing point. The stochastic slide-off condition loses both
pieces of information. We believe this non-invertibility
provides a stabilising effect on trajectories due to geo-
metrical guiding at high obstacle densities.

Our results highlight the importance of choosing real-
istic microscopic boundary conditions to obtain realistic
macroscopic dynamics. In particular, models employing
reflective boundary conditions, e.g. those used in [40, 41]
to describe bacteria in porous media, should not give re-
alistic results for active particles. While this is generally
obvious considering detailed balance [5], the theoretical
framework we have developed allows the formulation of
particular predictions to be tested experimentally, for in-
stance, using bacteria in microfluidic arrays. In particu-
lar, it would be interesting to test our prediction of large
diffusive transport in dense arrays. The RTP model pre-
sented here is general in the sense that it can be applied
for different lattices and particles. A different lattice of
obstacles requires the re-calculation of 〈cosψ〉 and τc. A
change in the scattering interaction, on the other hand,
requires specification of 〈cosψ〉, τR, and potentially vobs,
e.g. using experimental measurements. While the de-
scription was developed for lattices, we note that, when
the number of obstacle contacts is low, our results hold
for random environments too.

Finally, since the time bacteria spend on an obstacle is
a function of its curvature and the force dipole strength
of the bacterium [26, 27], it is interesting to consider
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the diffusive transport of bacterial species with differ-
ent dipole strengths. The latter depend on body shape
and propulsion mechanism, which vary between species.
It would be interesting to investigate if certain species,
e.g. soil bacteria, have hydrodynamic properties tailored
towards guided transport in complex environments[34].
This could be achieved combining our theoretical frame-
work and microfluidic experiments.
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Appendix A: Collision angle distribution

Figure 6 shows the geometry considered when we ask
for the collision angle distribution P (β). We consider
a single point in space, and then average over all space
using circular shells (giving the factors of 2πx in the in-
tegrals in Eq. (5)).

x

R

ϕ

β

FIG. 6. Schematic of the set-up to determine the incoming
angle distribution. A particle starts a distance x from the
centre of the pillar, and then travels at an orientation φ rela-
tive to the line joining the centre of the circle to the particle’s
origin, hitting the circle at an angle β to the tangent of the
circle.

Appendix B: Reorientation function - sliding
condition

A

B

C

D

O

E

F

G

H

β

β α

ψ
α

FIG. 7. Schematic of the reorientation angle θ as a function
of α and β. The sliding particle travels along the path ABCD.
Lines OB and CF are parallel, as are lines AB and CG, and
lines EB and CH.

By construction (see Fig. 7), angle FCH must be a
right angle. Since the particle leaves at a tangent, OCD
is also a right angle. By the alternate angle theorem,
OCF=α, and so DCF=π/2 − α. Therefore, ψ = π/2 −
β − (π/2− α) = α− β.

Appendix C: Slide-off boundary condition: RTP
parameter derivations

1. Reorientation function

To model the dependence of the reorientation function
for the stochastic slide-off condition, we must look at the
underlying Langevin equation of the angle the particle
makes with the obstacle surface, Θ:

Θ̇ = − v
R

cos Θ +
√

2DRξ(t). (C1)

The deterministic drift comes from movement around the
surface of the pillar. We want to know the average dis-
tance traversed around the pillar for a given incident an-
gle, α̂(β). We find this by adding up all the contributions
of the particle’s movement over the surface during its in-
teraction with the pillar:

α̂(β) =

〈∫ T

0

dt
v

R
cos Θ(t)

〉
Θ(0)=β

, (C2)

where T is the time at which the particle angle Θ first
reaches 0 or π and leaves the obstacle. We can substitute
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〉
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D  = 0.5

R
R

FIG. 8. Numerical solution for the reorientation function
in Eq. (C4) (thick curves) vs. the analytical approximation
(dashed curves) in Eq. (C5) for DR = 0.1s−1 (blue curves)
and DR = 0.5s−1 (red curves). Other simulation parameters
as in the main text.

using the Langevin equation (C1):

α̂(β) =

〈∫ T

0

dt
(
−Θ̇ +

√
2DRξ(t)

)〉
Θ(0)=β

= β − 〈Θ(T )〉Θ(0)=β .

(C3)

Here we have made the assumption that the stochastic
integral vanishes, which is not obviously true, as we are
not averaging over all trajectories at the time T , only
those ones that reach the boundaries for the first time.
However, this seems reasonable, given we may exit the re-
gion on both sides. To get the reorientation, we integrate
over the incident angle:

〈cosψ〉 = 2

∫ π/2

0

cos(α̂(β)− β)P (β)dβ

=

∫ π/2

0

dβ sinβ cos〈Θ(T )〉x(0)=β .

(C4)

This expression can be evaluated numerically, and a
very good approximation for small to medium R/lp (see
Fig. 8) is given by:

〈cosψ〉 ≈ 1− 1

2

√
R

lp
. (C5)

2. Residence time

To get the residence time for the deterministic slide-off
condition, we must take into account speed reduction on
the obstacle. Accordingly, we may write the residence
time as an integral:

τR(β) =

∫ 0

β

RdΘ

v cos Θ

=
R

v
ln

[
1 +

2

cos(β/2)− 1

] (C6)

0.1 0.2 0.3 0.4

2

4

6 D  = 0.1
D  = 0.5

R
R

τR

R/d

FIG. 9. Numerical solution of Eq. (C7) (thick curves) com-
pared to the analytical approximation in Eq. (C9) (dashed
curves). These are plotted for DR = 0.1s−1 (blue curves) and
DR = 0.5s−1 (red curves). Other simulation parameters as in
the main text.

The residence time averaged over the incident angle dis-
tribution is then

τR =

∫ π/2

0

dβ τR(β) sinβ =
πR

2v
. (C7)

Addition of rotational diffusion on the obstacles makes
analysis more difficult. Now, the residence time can be
characterised by the mean hitting time of the Langevin
equation (C1) on the exiting boundaries. This has a
known expression [49]:

τR(β) =
1

DR

∫ β

0

dy elp sin y/R

∫ π/2

y

dΘ e−lp sin Θ/R,

(C8)
where we assumed a reflecting boundary at Θ = π/2 and
an absorbing boundary at Θ = 0. Again, it is possible
to make headway by asymptotics on this integral, but it
turns out a more intuitive approximation suffices. For
small rotational diffusion lp � R, we find that drift time
τdrift = πR/2v dominates the mean first passage time.
However, for large rotational diffusion lp � R, we may
expect that diffusion time, τdiff = 1/DR – calculated as
the mean first passage time out of a flat potential for the
incident angle distribution P (β) – dominates. It turns
out that a very reasonable fit to numerical solutions of
the integral is

τR =
τdriftτdiff

τdrift + τdiff
=
πR

2v

1

1 + πR/2lp
, (C9)

see Fig. C 2.

3. Effective speed

To find the effective speed we have to find the average
angle travelled over the pillar, α̂. Using that

α̂ =

∫ π/2

0

dβ α̂(β) sinβ, (C10)



11

0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8
D  = 0.1
D  = 0.5

R
R

R/d

α̂

FIG. 10. Numerical solution of α̂ (thick curves) vs. the
analytical approximation in Eq. (C11) (dashed curves), for
DR = 0.1s−1 (blue curves) and DR = 0.5s−1 (red curves).
Other simulation parameters as in the main text.

and the definition of α̂(β) in Eq. (C3), we can find α̂
numerically. It turns out the numerical solution is very

close to an analytical approximation:

α̂ ≈ 1−

√
πR

2lp
+

(
R

2lp

)3/2

, (C11)

as shown in Fig. 10.

Appendix D: Geometrical guiding effect

When the radius R >
√

3d/4, the lattice has a near-
est neighbour horizon; any straight line drawn from the
surface of a pillar must hit one of its nearest neighbours.
In this case, for the sliding boundary condition, in a sim-
plified lattice of two rows, we can find the sequence of
leaving angles from pillars along a run, as detailed in
the main text. The function f(θn) can be determined
through geometry, and takes the form

f(θn) =


cos−1

(
1 +

d

R
sin
(π

6
− θn

))
− θn, θn < θ∗

θn − cos−1

(
1 +

d

R
cos θn

)
, θn ≥ θ∗

(D1)
The angle θ∗ = 2π/3− cos−1(R/d) is a transition angle.
For θn < θ∗, the particle will hit a pillar on the opposite
side of the channel, and for θ ≥ θ∗ the particle will hit
on the same side of the channel.
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