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A long cylindrical cavity through a soft solid forms a soft microfluidic channel, or models a
vascular capillary. We observe experimentally that, when such a channel bears a pressurized fluid,
it first dilates homogeneously, but then becomes unstable to a peristaltic elastic instability. We
combine theory and numerics to fully characterize the instability in a channel with initial radius a
through an incompressible bulk neo-Hookean solid with shear modulus µ. We show instability occurs
supercritically with wavelength 12.278....a when the cavity pressure exceeds 2.052....µ. In finite
solids, the wavelength for peristalsis lengthens, with peristalsis ultimately being replaced by a long-
wavelength bulging instability in thin-walled cylinders. Peristalsis persists in Gent strain-stiffening
materials, provided the material can sustain extension by more than a factor of six. Although
naively a pressure driven failure mode of soft channels, the instability also offers a route to fabricate
periodically undulating channels, producing, for example, waveguides with photonic/phononic stop
bands.

A channel through a soft solid is the prototypical el-
ement of biological plumbing [1], guiding fluid through
the vascular, lymphatic, digestive, reproductive, renal
and respiratory systems. Soft channels also underpin the
blossoming field of soft microfluidics [2], which exploits
the convenience of soft lithography for rapid prototyp-
ing [3, 4], the deformability of soft channels to actuate
valves and pumps [2, 5, 6], and the mechanical compati-
bility between soft solids and soft tissues to build organs-
on-chips and medical implants [7, 8]. Here we investi-
gate how soft channels deform as their internal pressure
increases. Thin-walled elastic tubes famously undergo
long-wavelength bulging, bending and ballooning insta-
bilities [9–18] under inflation, but a channel through a
bulk solid arises in the opposite (divergently thick walled)
limit. We combine theory, numerics and experiment (Fig.
1) to show that, while modest fluid pressure causes sim-
ple dilation, the channel undergoes a finite-wavelength
elastic instability and adopts a peristaltically undulating
morphology when the pressure becomes comparable to
the solid’s shear modulus,

The hallmark of soft solids, including elastomers, gels,
and many biological tissues, is that they can sustain geo-
metrically large elastic strains (& 100%) without failing,
exposing them to the full complexity of large deformation
geometry. This generates a range of geometrically moti-
vated elastic instabilities, including buckling [19], creas-
ing [20–25] and wrinkling [26, 27] under compression; fin-
gering [28–32], fringing [33, 34] and beading [35–38] un-
der tension; and ballooning [9, 13, 16, 18, 39], aneurysm
[39, 40] and cavitation [41–43] under inflation. These in-
stabilities are important failure modes [44], but have also

FIG. 1. Schematic (top), numerics (middle, neo-Hookean)
and experiment (bottom, polyacrylamide) showing the shape
evolution of a cylindrical channel through a soft solid under
increasing internal pressure. At modest pressure the channel
dilates simply, but at high pressures it undergoes an elastic
instability and adopts a peristaltic shape (right).

been exploited by evolution to sculpt developing brains
[45, 46], guts [47, 48] and other organs [49–53], and by
engineers to make shape-switching devices [54–57].

We start by considering a cylindrical cavity, with initial
radius a, running through soft elastic material occupying
a < r < b, as shown in Fig. 1. If the channel is sub-
ject to an internal pressure Pin, it will dilate, deforming
the solid and causing it to store elastic energy Eel. The
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observed dilation will be determined by the minimum of
the effective energy

Etot = Eel − PinV, (1)

where V is the dilated channel’s volume. If the deformed
solid has displacement u, its local shape change is de-
scribed by the deformation gradient tensor F = I +∇u
(I being the identity matrix, and ∇ the gradient opera-
tor) and its elastic energy density is of the form W (F ).
We model the solid as an incompressible (Det (F ) = 1)
neo-Hookean material [58] with shear modulus µ, requir-
ing W (F ) = 1

2µTr
(
F · FT

)
− P (Det(F ) − 1) where P

is a Lagrange multiplier pressure field enforcing incom-
pressibility. This model is exact for Gaussian polymer
networks, and valid until deformations of several hundred
percent in lightly cross-linked gels/elastomers [59] includ-
ing our polyacrylamide gels [60]. It is also the simplest
large-deformation elastic model, and correspondingly of-
fers the clearest exposition of geometrically motivated
instabilities.

Minimizing Etot with respect to variations in u and P
gives the expected equations of mechanical equilibrium,
and the constraint of incompressibility,

∇ · σ = 0, Det(F ) = 1, (2)

where σ = ∂W
∂F =

(
µF − PF−T

)
is the large deformation

“first Piola-Kirchhoff” stress, a two-point tensor relating
forces in the deformed configuration to reference config-
uration areas. These equations are augmented by the
natural inner and outer boundary conditions:

(σ + PfF
−T ) · r̂

∣∣
r=a,b

= 0, (3)

where the boundary fluid pressure Pf = Pin, 0 at r = a, b
respectively, and r̂ is the radial unit vector.

We first consider a simple radial dilation: u = u0(r)r̂,
P = µP0(r). Incompressibility requires

R ≡ r + u0(r) =
√
c2 + r2, (4)

where the constant of integration, c, parameterizes the
degree of cavity dilation, with the inner radius rising by
a factor of λ =

√
1 + c2/a2. Mechanical equilibrium (∇·

σ = 0) then gives the form of the pressure field which,
taking account of the stress-free outer boundary, is

P0 =
1

2

[
r2

c2 + r2
+

b2

c2 + b2
+ ln

(
b2(c2 + r2)

r2(c2 + b2)

)]
. (5)

Finally, the inner boundary condition gives an implicit
solution for the channel dilation, λ, which, introducing
g(x) ≡ (1/x)− log(x), can be written

Pin =
µ

2

[
g
(
1 + (a/b)2(λ2 − 1)

)
− g

(
λ2
)]
. (6)

This predicted dilation is plotted for a range of values of
a/b in Fig. 2. Dilation rises monotonically with Pin, and

FIG. 2. Dilation factor, λ, of a neo-Hookean cylindrical chan-
nel as a function of its interior pressure Pin, for a range of
aspect ratios b/a. Predicted dilation (solid lines) diverges at
Pin = µ log(b/a) but a channel through a bulk solid (b→ ∞)
never diverges. Experimental points are individual constant-
pressure measurements from three channels through polyacry-
lamide slabs, reproducing the bulk neo-Hookean theoretical
dilation.

diverges at Pin = µ log(b/a). If b = a + t ≈ a, (a pipe
with thin wall thickness t) this critical pressure reduces to
Pin ≈ µt/a, the signature scaling of elastic instabilities in
membrane tubes [9–18]. Conversely, in the b → ∞ limit
eqn. (6) becomes

Pin =
µ

2

[
1 + log(λ2)− λ−2

]
, (7)

showing that the channel dilates, but only diverges at
infinite pressure. In contrast, the result for a spherical
cavity in a bulk solid, Pin = µ

2

[
5− 4λ−1 − λ−4

]
, diverges

at Pin = 5
2µ, a celebrated result known as solid cavitation

[41].
We investigated the stability of cylindrical cavities un-

der inflation experimentally by cross-linking a 1mm thick
rectangular slab of polyacrylamide gel around a 30 µm
wire (see experimental SI for details). The wire was
then removed (leaving a cylindrical channel), and the gel
was equilibrated in a phosphate buffered saline solution
(PBS). Finally, one end of the channel was plugged with a
glass bead, and the channel was inflated by pumping ad-
ditional PBS in through a glass capillary inserted at the
other end. We used a computer controlled air pressure
source to vary the pressure in the cavity, and monitored
the evolving shape of the channel with a CMOS camera
sensor fitted to a Leica stereomicroscope eyepiece. As
seen in Fig. 2, at modest pressures the channels simply
dilates, in good agreement with the prediction for a chan-
nel through a bulk neo-Hookean. However, as seen in Fig.
1 and video E1, beyond a critical pressure, the channel
adopts a new peristaltically undulating morphology. The
transition is reversible, and occurs at quasi-static rates
of inflation, suggesting a purely elastic mechanical insta-
bility.

To understand this transition, we examine the linear
stability of uniform dilation to small perturbations, u =
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FIG. 3. Theoretical, numerical and experimental treatment of the peristaltic instability in a channel through a bulk solid.
(a) Peristaltic fields for the first unstable mode from the stability analysis, plotted against the undeformed coordinate r. (b)
Critical pressure for instability as a function of shear modulus. (c) Critical pressure for instability at each wavelength. (d)
Simulated amplitude as a function of Pin, showing a supercritical transition without hysteresis.

u0r̂ + δu, P = µP0 + δP , which, in turn, induce first or-
der changes to the deformation gradient (δF = ∇δu) and
the stress (δσ = µδF − δPF−T0 − µP0δ(Det (F )F−T )).
Expanding eqns. (2-3) to first order, we see the per-
turbation must satisfy ∇ · δσ = 0 (mechanical equilib-
rium), Tr(F−10 · δF ) = 0 (incompressibility) and (δσ +
Pfδ(Det (F )F−T )) · r̂|r=a,b = 0 (boundary conditions).
Substituting a peristaltic form

δu = fr(r) cos(kz)r̂ + fz(r) sin(kz)ẑ (8)

δP = µP1(r) cos(kz), (9)

and using Lagrange’s derivative notation, f ′ = ∂f
∂r , the

condition of incompressibility reduces (see theoretical
supplement) to

R (Rf ′r + krfz) + rfr = 0, (10)

the equations of mechanical equilibrium become

kfr
(
r2 −R2

)2
+ rR3

(
rf ′′z +f ′z−k2rfz+krP1

)
= 0 (11)

rR4 (rf ′′r + f ′r −RP ′1) + r2fr
(
r2 −R2

(
k2R2 + 2

))
+ kRfz

(
r2 −R2

)2
= 0 (12)

and the boundary conditions (at both r = a, b) become

Rf ′z − krfr = 0 (13)

rR2f ′r − r2fr − kr2Rfz −R3P1 = 0. (14)

Given R ≡ r+u0 =
√
a2 (λ2 − 1) + r2, equations (10-14)

form a fourth order generalized eigensystem for the criti-
cal degree of dilation, λ, required for instability. Previous
authors have solved this system for modestly thick tubes
[15] (b − a ∼ a) which, like their thin-walled counter-
parts, first become unstable via long-wavelength modes.
Such modes vanish beyond a critical wall thickness, lead-
ing these authors to conclude that sufficiently thick pipes

are stable. However, inspired by our experimental obser-
vations, we use matlab’s bvp4c routine to search, nu-
merically, for finite wavelength solutions (k ∼ 1/a) in a
tube which is sufficiently thick (b = 1000a) to approx-
imate a bulk solid. The first unstable mode occurs at
λ = 4.824... (requiring Pin = 2.052...µ) and with finite
wavelength 2π/k = 12.278...a. We plot the form of this
solution in Fig. 3A, showing the fields take maximum
values near the cavity, and only penetrate a distance
∼ 10a into the bulk, confirming the outer boundary is
effectively at infinity. The variation of threshold pres-
sure with wavelength is plotted in Fig. 3C. Although the
resulting threshold curve is very flat, it does have a min-
imum (indicated with a star) corresponding to the first
unstable mode.

In Fig. 3B-C we also compare these predictions with
bespoke [45, 61] axisymmetric [38, 62] finite element cal-
culations (b/a ≥ 60, details in numerical supplement)
and threshold measurements obtained in “unloading” ex-
periments, in which a channel is pressurized well beyond
the point of instability then quasi-statically depressur-
ized until peristalsis vanishes. In particular, we show in
Fig. 3B that both numerical and experimental cavities
are indeed unstable above Pin = 2.05...µ over a range of
gel moduli [63]. This linearity in gel modulus is the hall-
mark of a purely elastic instability. In finite elements,
long cavities select the expected 2π/k = 12.278...a wave-
length (theory SI Fig. 2), but we can artificially fix the
wavelength via periodic boundary conditions. In Fig. 3C,
we confirm these alternative wavelengths become unsta-
ble at the corresponding (higher) predicted pressures. In
experiments, we cannot prescribe a wavelength, but we
find the instability naturally occurs with a broad range
of wavelengths (a signature of the very flat theoretical
wavelength-threshold curve) and, in each case, peristal-
sis vanishes close to the predicted threshold pressure for
that wavelength. The experimental instability is often
observed at pressures slightly below the theoretical value,
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FIG. 4. Effect of finite outer radius (a-c) and finite extensibility (d-f) on the critical dilation (a,d), critical wavelength (b,d)
and critical pressure (c,f) of the peristaltic elastic instability. Straight dashed lines indicate the bulk neo-Hookean solution,
while solid lines indicated the full finite b/a solution (a-c) and Gent material solution (d-f). The curved dashed line in (c) is
the pressure, at finite b/a, required to produce the bulk critical dilation λ = 4.82...

which we attribute to the finite slab thickness.

Unlike stability analysis, our finite element calculations
can explore peristalsis beyond threshold. We conducted
a numerical loading/unloading cycle in a bulk solid (Fig.
3D and video N1), which shows the amplitude growing
and shrinking continuously above threshold without hys-
teresis; the instability is supercritical. Repeating this ex-
ercise with different wavelengths reveals that the energy-
minimizing wavelength lengthens slightly (theory SI Fig.
3) beyond threshold.

Overall, our analysis leads to a simple conclusion: the
driver for peristalsis is that, for a given inflated channel
volume, the peristaltic form requires less shape change
and saves elastic energy. An instructive comparison is
to the Plateau-Rayleigh instability [35, 38, 64], in which
peristalsis occurs because it reduces a cylinder’s surface
area, and hence reduces its surface energy. Here, peri-
stalsis will also reduce the channel’s inner surface area,
relieving the base-state stretch and saving elastic energy.
The base-state stretch (4) decays into the bulk over the
length scale a, and the energetically optimal peristaltic
fields will penetrate this dilated region, where they re-
lieve strain, but not further where they would add strain
and cost energy. As is characteristic of oscillating elastic
fields, the peristaltic field’s penetration distance is set by
their wavelength, resulting in an optimal wavelength pro-
portional to a. Since this is a geometric mechanism, we
expect peristalsis to be generic in sufficiently deformable
elastic channels. In the final section of our study, we in-
vestigate how robust peristalsis is to changes in geometry
and choice of elastic material.

First, we analyze peristalsis at finite b/a, by nu-
merically solving the stability equations (10-14) to plot
threshold pressure vs wavelength in cavities with a range
of values of b/a (theory SI Fig. 1). The equations only
depend on Pin via the dilation (λ) it produces, and only
depend on b via the outer boundary condition where the
fields are in any event decayed. The instability thus has
a universal form in all channels with modestly large b/a

which all become unstable at the bulk wavelength and di-
lation. In Fig. 4A-B we show the full form of the thresh-
old dilation, and wavelength as a function of b/a. As
anticipated, these only deviate from the bulk form when
b/a . 10, with wavelength growing and dilation falling in
finite systems. However, the critical pressure (Fig. 4C)
drops from the bulk value rather earlier, as the pressure
required to produce this dilation is reduced in finite sys-
tems, in accordance with eqn. (6). Peristalsis is replaced
by a long-wavelength axisymmetric bulging instability for
b/a . 7, the mode previously identified in thick-walled
tubes [15], which sets the ultimate limit of peristalsis in
finite systems.

Secondly, we analyze peristalsis beyond Hookean
materials. Most elastomers/gels are neo-Hookean at
modest strains, but have a finite extensibility, ow-
ing to their finite length chains. The resulting stain-
stiffening is captured by the Gent model [65], W (F ) =
− 1

2µJm log
(
1− (Tr

(
F.FT

)
− 3)/Jm

)
− P (Det (F ) − 1),

which reproduces the neo-Hookean energy when the
strain measure Tr

(
F.FT

)
−3 is small, but diverges when

it approaches Jm, a phenomenological parameter en-
coding finite extensibility. Repeating the bulk linear-
stability analysis, we find the base state is identical,
whilst the stability equations become more complicated,
but still admit numerical solution. We display the criti-
cal dilation, wavelength and pressure as a function of Jm
in Fig. 4C-E, showing that finite extensibility generates
only modest changes in the form of peristalsis, but elim-
inates the instability entirely for Jm < 35, corresponding
to materials with limiting uniaxial extension factor of
λ . 6.

In summary, we have shown that a cylindrical channel
through a soft solid will spontaneously adopt a peristalti-
cally undulating shape when bearing a pressure compara-
ble to the solid’s shear modulus. The instability takes a
simple form in channels through bulk neo-Hookean solids,
occurring at a critical pressure (2.05...µ) proportional to
the channel shear modulus, and with a wavelength which
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FIG. 5. Instability when an embryonic stem cell tissue grows
inside a channel. Dashed lines indicate initial channel di-
ameter d = 2a (top), and predicted threshold diameter for
instability (4.8d, middle, bottom).

is a multiple of the cavity radius. Assuming a finite
threshold and wavelength, these scalings are an inevitable
consequence of the scale invariance of elasticity which
means a is the only length scale in the problem, and µ is
the only stress scale. Several one-length-scale elastic fin-
gering phenomena produce analogous wavelengths [30–
32, 66–69], and solid cavitation of bulk spherical cavities
follows the same stress scaling (Pc = 2.5µ), though bulk
peristalsis of cylindrical cavities requires less pressure.

Peristalsis is also expected in finite solids, provided
b/a & 7, and strain-stiffening materials provided they
are sufficiently deformable. In some less-deformable elas-
tic media, the strain concentrations associated with peri-
stalsis will precipitate fracture and failure, suggesting
peristalsis places a fundamental limit on the pressure a
channel can bear, just as Euler-buckling limits loading
of columns. Conversely, in sufficiently deformable solids,
peristalsis offers a route to reversibly introduce period-
icity into a channel, potentially allowing a highly reflec-
tive photonic/phononic stop-band [70, 71] to be switched
within a deformable waveguide.

We speculate that the peristaltic instability will also
manifest in biology, sculpting channels during both
pathological and developmental processes. Indeed, we
first observed peristalsis in hydrogel channels containing
growing mouse embryonic stem cell tissues (Fig. 5). More
precisely, we injected a dense suspension of murine em-
bryonic stem cells into a 35µm diameter (a = 17.5µm)
channel, which rapidly adhered into a monolithic tissue.
This tissue grew for ten days within the channel, nour-
ished by cell culture media ([72, 73] and experimental SI).
Such embryonic stem cell tissue is a soft incompressible
solid with a finite yield stress, and dilates the channel
as it grows. The tissue solidity arises because the cells
are both individually elastic (with moduli ∼ 100Pa [74])
owing to their cytoskeleton, and adhere to each other by
expression of e-cadherin [75]: we found disrupting either
aspect (using Cytochalasin D [76] or EDTA [77] respec-

tively, see experimental SI and Fig.3) lead to a tissue
which could no longer deform the hydrogel. With the
undisrupted culture, peristalsis appeared on day seven,
when the central channel dilation achieved the expected
threshold of λ ≈ 4.8. As in pressure controlled exper-
iments, peristalsis had uneven wavelengths, varying be-
tween 7a and 12a, reflecting the instability’s flat disper-
sion curve.

In biology, one commonly encounters thin-walled tubes
through soft tissues. Such tubes can be included in the
current framework by adding a thin tube of different elas-
tic material, with modulus µtube = ηµ, at the inner ra-
dius of the channel. Under inflation this system must
span from conventional long-wavelength tube instabili-
ties at high η, to finite wavelength peristalsis at low η,
and mapping this transition is likely to be a rich and
biologically relevant subject for future investigations.
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