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ABSTRACT

Somatoform disorders (SD) are common medical disorders with prevalence rates between 3.5% and 18.4%, de-
pending on country and medical setting. SD as outlined in the ICD-10 exhibits various biological, social, and psy-
chological pathogenic factors. Little is known about the neural correlates of SD. The aims of this meta-analysis are
to identify neuronal areas that are involved in SD and consistently differ between patients and healthy controls.
We conducted a systematic literature research on neuroimaging studies of SD. Ten out of 686 studies fulfilled the
inclusion criteria and were analyzed using activation likelihood estimation. Five neuronal areas differ between
patients with SD and healthy controls namely the premotor and supplementary motor cortexes, the middle fron-
tal gyrus, the anterior cingulate cortex, the insula, and the posterior cingulate cortex. These areas seem to have a
particular importance for the occurrence of SD. Out of the ten studies two did not contribute to any of the clusters.
Our results seem to largely overlap with the circuit network model of somatosensory amplification for SD. It is
conceivable that functional disorders, independent of the clinical impression, show similar neurobiological pro-
cesses. While overlaps do occur it is necessary to understand single functional somatic syndromes and their
aetiology for future research, terminology, and treatment guidelines.
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Middle frontal gyrus
Anterior cingulate cortex
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Posterior cingulate cortex
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1. Introduction

Somatoform disorders (SD) are highly prevalent in many medical
settings. In German psychosomatic hospitals, 18.4% of the inpatients ful-
filled the criteria of the ICD-10 (WHO, 1992) for SD (Pieh et al., 2010). It
is estimated that SD have a prevalence of 16.1% in primary care settings
in the Netherlands (de Waal et al., 2004), a life-time-prevalence of 12.9%
in Germany (Meyer et al., 2000) and a 12-month prevalence of 6.3%
(Wittchen et al., 2011) in Germany. General practitioners overestimate
the prevalence of patients with SD in their medical practice consider-
ably with 27.7% (Boeckle et al., 2014). Because of high medical costs
and indirect costs, such as those caused by times of un-employability
and early retirement, patients with somatoform disorder generate
high economic costs for the health system (Rief and Henningsen,
2011). Patients with somatoform disorders (F45.-) have physical symp-
toms that suggest a medical condition but are not or not fully explained
by any other medical condition and are related to psychological factors
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(WHO, 1992). The symptoms must cause impairment in occupational,
social or other areas, or clinically relevant stress (WHO, 1992).

While many potential pathogenic factors have been discussed for
somatoform disorders (SD) and related diagnoses, the pathogenesis of
the symptoms is still unclear. There is some evidence that physically
and sexually abused people have a higher risk of developing a
somatoform disorder (Paras et al., 2009), as are persons with insecure
or disorganized/disoriented attachment style (Waller et al., 2004).
Barsky (1992) describes a cognitive style called “somatosensory ampli-
fication”, which can be applied to many patients with somatoform dis-
order. Patients with somatoform disorder often exhibit a heightened
focus on their own bodies, perceiving their bodily complaints quicker
as illness than healthy people do. The term “central sensitization” has
recently been used to describe a neurobiological process, which as-
sumes that symptom onset is associated with a hyper-responsive neural
network in high-risk individuals (Bourke et al., 2015; Nijs et al., 2012;
Phillips and Clauw, 2011). Patients with SD rate normally innocuous
stimuli as painful stimulation due to an alteration of the network
(Bourke et al., 2015). Additionally, patients perceive their complaints
as illness and thus display augmented bodily attention (Barsky, 1992).

2213-1582/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Risk factors for SD are, amongst others, personality traits like neuroti-
cism and alexithymia, childhood adversity, physical trauma, infections
as triggers, and changes in the hypothalamic-pituitary-adrenal axis or
in the immune system (American-Psychiatric-Association, 2013;
Bourke et al., 2015; Burba et al., 2006; Rief and Henningsen, 2011).
Neuroimaging methods, such as functional magnetic resonance im-
aging (fMRI), positron emission tomography (PET) and voxel-based
morphometry (VBM) enable us to investigate neuronal activities and
structural differences between different subpopulations. For instance,
Yildirim et al. (2012) found smaller pituitary volumes in somatization
patients than in a healthy control group, while Atmaca et al. (2011) ex-
amined differences in hippocampal and amygdalar volumes. Bourke
et al. (2015) report that the most commonly found components of the
neural network in central sensitization are, on the one hand the insula,
which is involved in multimodal pain input (Peyron et al., 2002), threat
detection (Critchley et al., 2002), interception (Craig, 2003a) emotional
regulation (Gray et al., 2007), and motivation (Balleine and Dickinson,
2000), and on the other hand, the striatum (Zink et al., 2003), function-
ing in salience detection (Itti and Koch, 2001) in relation to onset speed
(Iannetti et al., 2006), novelty (Iannetti et al., 2008), and context
(Nddtdnen et al., 2007). Although neuroimaging findings have led to a
better understanding of the pathogenesis of SD and other functional so-
matic syndromes (FSS), the evidence of neurobiological changes of FSS
is still contradictory, as is true for SD. Additionally, there is evidence to
support that FSS might be based on changes of the central nervous sys-
tem, resulting in a common central augmentation of innocuous stimuli
to pain (Bourke et al., 2015). The aims of this meta-analysis are to iden-
tify consistently differing neuronal areas that are involved in SD. Addi-
tionally, we hypothesize that identified areas coincide with theoretical
models, e.g. central sensitization (Bourke et al., 2015; Perez et al., 2015).

2. Material and methods
2.1. Literature search

We searched the scientific databases Pubmed, ISI web of knowledge,
Scopus, Cochrane database, Psycinfo, and Psyndex for relevant publica-
tions with the following terms: (“somatic symptom disorder” OR
“somatoform disorder” OR “somatization” OR “functional somatic
symptoms” OR “functional somatic syndrome” OR “somatization disor-
der”) AND (“neuro imaging” OR (“magnetic resonance imaging” OR
(“magnetic” AND “resonance” AND “imaging”) OR “magnetic resonance
imaging” OR “fmri”) OR (“magnetic resonance imaging” OR (“magnetic”
AND “resonance” AND “imaging”) OR “magnetic resonance imaging” OR
“mri”) OR PET OR VBM). Abstracts and titles were scanned by MB and
CP, according to the a priori defined criteria (English publication;
human adult subjects; no reviews, case reports, letters to editors or ed-
itorials: only original research; imaging methods PET, MRI, SPECT; in-
cluding coordinates in Talairach space or MNI; differences between
healthy subjects and patients; SD). Publications were included in the
full text review if one of the raters found no exclusion criterion,
resulting in a conservative approach and preventing the exclusion of
possible full texts. We adopted the guidelines of the “PRISMA State-
ment” to provide transparent data selection (Moher et al., 2009). Only
studies on somatoform disorder according to ICD or DSM matching
ICD criteria were included. Although other pain related functional disor-
ders, such as irritable bowel syndrome (IBS) or fibromyalgia syndrome
(FMS) have partially similar diagnostic criteria (Eich et al., 2008). We
specifically excluded IBS and FMS even though they are often described
as syndromes sharing specific aspects (Hdauser and Henningsen, 2014;
Henningsen et al., 2007) while it is repeatedly emphasized that these
syndromes are not the same (Bourke et al., 2015; Hduser and
Henningsen, 2014; Lacourt et al., 2013; Rief and Isaac, 2014; White,
2010, 2013). Even though there are arguments for lumping FSS together
as well as arguments for separate syndromes, we decided to base our

selection criteria for the meta-analysis to a clear diagnosis in order to
enhance interpretation of our results.

2.2. Meta-analysis

All coordinates from eligible publications were analyzed with an Ac-
tivation Likelihood Estimation (ALE) using a Java-Version of GingerALE
2.3.5 (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012). ALE is a quan-
titative and meta-analytical approach to calculate consistent differences
in gray matter volume and/or activation, based on reported statistical
differences in the literature. ALE is possible to conduct on structural as
well as functional neuroimaging studies solely as well as in combination
of structural and functional neuroimaging studies. We calculated two
analysis, one including functional and structural studies, another focus-
ing on functional studies. A subcategory analysis for structural imaging
modality or certain paradigm was not feasible due to sample size. We
included all coordinates that presented relevant differences between
healthy controls and patients into our analysis.

All coordinates reported in MNI were recalculated into Talairach
space via the icbom2tal tool (Laird et al., 2010; Lancaster et al., 2007) pro-
vided by brainmap.org (Eickhoff, 2014). We calculated a cluster-level of
0.05 with 1000 threshold permutations, a minimum cluster size of
240 mm? and Cluster forming value of 0.001. ALE maps were visualized
with Mango version 3.7 (1415) (Mango, 2014) to investigate threshold
maps that were superimposed on a standard anatomical image
(Colin.1.1.1.nii).

We summed healthy controls and patients to quantify our number
of subjects. To calculate the most conservative ALE analysis, for each
dataset we entered the number of individuals participating in the ex-
periment with the lowest number of participants. Publications analyz-
ing the same individuals were subsumed under one publication, in
order to prevent overestimating the influence of these individuals on
the whole sample. All reported foci of these publications entered ALE
analysis, including the foci lying outside of the mask, as small propor-
tions of outside foci do not influence results. In the results, the nearest
gray matters within 45 mm are reported.

3. Results
3.1. Study selection

The systematic literature search yielded 686 research articles on SD
(Fig. 1). Search results included 143 duplicates, resulting in 543 studies
eligible for abstract and title review. The title and abstract review result-
ed in 507 excluded studies, leaving 36 studies for full text analysis. After
the exclusion of non-eligible publications (n = 27), ten studies (Table 1)
were included in the meta-analysis. Several studies were based on the
same population; namely two by de Greck and colleagues (de Greck
et al., 2012; de Greck et al., 2011) as well as three publications by a
working group from China (Song et al., 2015; Su et al., 2014; Zhang
etal, 2015). We subsumed all of the results based on the sample within
one dataset to prevent pseudo-replication and overestimating the influ-
ence of these individuals on the results. We analyzed seven datasets
when using all studies, six when excluding structural studies. Thus,
243 individuals entered the full analysis including structural and func-
tional studies, while 204 subjects the analysis focusing on functional
studies (Table 1). Five foci were outside the mask in both analyses,
whereby functional and structural analysis has a total of 107 foci and
functional analysis 90 foci.

3.1.1. ALE clusters of somatoform disorders

Five brain areas have been identified to repeatedly differ between
patients with SD and healthy controls (Table 2) according to the calcu-
lated clusters. Out of the ten publications contributing to the calcula-
tions two did not contribute to any of the ALE clusters (Giindel et al.,
2008; Yoshino et al., 2014).
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somatoform disorder
results n=686
Cochraine (n=29)
Psyndex (n=79)
Medline (n=55)
Psycinfo (n=97)

I1SI WOK (n=99)
Scopus (n=327)

v

686 search results —> 143 duplicates removed

v

543 studies included after

507 studies excluded after reading

duplicates removed ] abstract and title
36 full text studies assessed N 26 studies excluded after reading fulltext:
for eligibility

\l/ 2 EEG studies

1 connectivity study
2 no primary literature
5 no somatoform disorder

10 included studies:
8 functional studies
2 structural studies

\1/ 2 region of interest analysis
3 no coordinates reported
11 no coordinates reported for
differences between patients and
healthy controls

datasets:
functional and structural:
7 (N=243 individuals)
functional:
6 (N=204 individuals)

Fig. 1. Flow chart of review process. Number of publications (n) and number of individuals
(N) are indicated.

3.1.2. Functional areas of ALE clusters of SD in functional studies

In cluster 1 the dorsal posterior cingulate cortex (dPCC, Brodmann
area (BA) 30 & 31) was identified to be significantly different across
studies comparing patients and HC (Egloff et al., 2009; Song et al.,
2015; Su et al., 2014; Zhang et al., 2015), while in Cluster 2 (de Greck
et al.,, 2011, 2012; Stoeter et al., 2007) the anterior prefrontal cortex
(aPFC, BA 10) and in cluster 3 (Egloff et al., 2009; Stoeter et al., 2007)
the insula (BA 13).

3.1.3. Functional areas of ALE clusters of SD in structural and functional
studies

In cluster 1 the aPFC (BA 10) was identified to be significantly differ-
ent between patients and HC across several studies (de Greck et al.,
2011, 2012; Song et al., 2015; Stoeter et al., 2007; Su et al., 2014;
Zhang et al., 2015). The premotor and supplementary motor cortex
(PSMC, BA 6) including the lateral and medial supplementary motor
area (BA 8), which is significant in cluster 2 (de Greck et al., 2011,
2012; Egloff et al., 2009), is also within the 5 mm boundary in SD.
While in cluster 3 (Egloff et al., 2009; Song et al., 2015; Su et al., 2014;
Zhang et al., 2015) the dPCC (BA 30 & 31) is differentially activated. In

Table 1
Studies included in the analysis. Type of disorder as indicated in the original publication.

cluster 4 the anterior cingulate cortex (ACC, BA 24 & 32) (Egloff et al.,
2009; Valet et al., 2009) varies significantly between patients with SD
and healthy controls (Fig. 2).

4. Discussion

In this meta-analysis, we present the results of an ALE-analysis on SD
using the results of published neuro-imaging (MRI, SPECT, PET) studies.
We herewith provide a first attempt to combine various studies to find
consistent significant neurobiological differences between healthy con-
trols and patients with SD. In both analyses combined we identified five
areas showing functional and/or structural differences between the two
groups of interest, namely the dorsal posterior cingulate cortex, anterior
cingulate cortex, the anterior prefrontal cortex, the insula and the
premotor and supplementary motor cortex.

We found significant differences between patients and controls in
the ACC (Egloff et al., 2009; Valet et al., 2009). Functional studies
showed that the ACC processes amongst others emotion (Kawamoto
et al,, 2012; Killgore and Yurgelun-Todd, 2007), attention (Nebel et al.,
2005), and pain (Biichel et al., 2002; Lloyd et al., 2004). Changes in the
ACC have been reported in cases of pain-induced depression (Barthas
et al., 2014) and anxiety disorder (Shinoura et al., 2013). Patients with
FSS experience alterations of attention, anticipation, and pain memories
that correlate with increased activity of the ACC. These also correlate
with the prefrontal areas and the ACC when stimulated below pain
thresholds in both patients with FMS (Cook et al., 2004; Peyron et al.,
2000) and IBS (Andresen et al., 2005; Naliboff et al., 2001). Additionally,
studies on FMS repeatedly report reduced activation of the ACC during
noxious stimulation (e.g.: Gracely et al., 2002; Jensen et al., 2009; Lee
etal., 2013). The interaction of the ACC with prefrontal areas is in corre-
lation with the negative forecasting while catastrophizing (Seminowicz
and Davis, 2006).

The changed interaction between ACC and prefrontal areas might be
represented in our data, as we also found changes in the aPFC, a part of
the middle frontal gyrus (de Greck et al., 2011, 2012; Stoeter et al.,
2007). Chronic back pain disrupts normal functioning in the default
mode network (DMN) also represented in the middle frontal gyrus of
our results (Laird et al., 2009; Tagliazucchi et al., 2010). Changes in cor-
tical thickness in the middle frontal gyrus have been shown to be re-
versible with back pain surgery (Seminowicz et al., 2011), whereby
the resulting increases in gray matter in the MFG resulted in a reduction
of pain and physical disability (Seminowicz et al., 2011). Patients with
IBS show reductions of gray matter (Seminowicz et al., 2010) similar
to the reductions of gray matter in the MFG in patients with SD, as
well as reductions of activation in the middle frontal gyrus (de Greck
etal, 2011, 2012; Song et al., 2006; Stoeter et al., 2007).

Another important area for the occurrence of SD and that shares im-
portant interactions with the ACC is the insula. The insula is known to be
important for pain processing (Fitzek et al., 2004; Kong et al., 2006;
Schoedel et al., 2008; Strigo et al., 2003) and in paradigms when painful

Citation Type of disorder

Number of participants

Imaging Task
method

de Greck et al. (2011) Somatoform disorder

de Greck et al. (2012) Somatoform disorder
Giindel et al. (2008)  Somatoform pain disorder
Egloff et al. (2009)
Song et al. (2015)
Stoeter et al. (2007)
Suet al. (2014)
Valet et al. (2009)
Yoshino et al. (2014)
Zhang et al. (2015)

Somatization disorder

Somatoform pain disorder

Somatization disorder

Pain disorder, without any somatic cause
Somatoform pain disorder

Somatization disorder

P:9(4); HC: 20 (13)  MRI
P: 25 (21f); HC: 28 (22) MRI

P:20 (12f); HC: 20 (12f) MRI (1.5T) Monetary reward task
P:20 (12f); HC: 20 (12f) MRI (1.5T) Emotional empathy
P:12 (12f); HC: 20 (13f) MRI (1.5T) Noxious heat stimuli
Chronic pain, not explained by peripheral tissue damage P: 11 (6f); HC: 12 (6f)  PET
P: 25 (21f); HC: 28 (22) MRI ( )
P:17 (11f); HC: 17 (11f) MRI ( )
P: 25 (21f); HC: 28 (22) MRI ( )
P:14 (14f); HC: 14 (14f) MRI (1.5T) VBM structural scan
(1.5T)
(3.0T)

Glucose metabolism resting state

Resting state (ReHo)

Pin-prick stimulation, emotional and cognitive stress
Resting state (fALFF)

3.0T
1.5T
3.0T

1.5T
3.0T

Resting state (ReHo)
DTI structural scan

P: patients; HC: healthy controls; T: Tesla; f/MRI: magnetic resonance tomography; PET: positron emission tomography; f: number of females; ReHo: regional homogeneity; fALFF: frac-

tional amplitude of low-frequency fluctuations.
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Table 2
ALE clusters.
Cluster # # of Gray matter at center Additional gray matter Center Vol. mm? Studies included
datasets within 5 mm
Functional studies Cluster 1 2 BA 31: dorsal BA 30: part of posterior CC x=—132 384 Egloff et al. (2009), Song et al.
posterior CC y=—62.6 (2015), Su et al.
z=15.1 (2014), Zhang et al. (2015)
Cluster 2 2 BA 10: anterior x =234 304 de Greck et al. (2011, 2012),
prefrontal cortex y =503 Stoeter et al. (2007)
z=173
Cluster 3 2 BA 13: Insula x=—373 256 Egloff et al. (2009), Stoeter
y=—-21.1 et al. (2007)
z=19.8
Structural & functional Cluster 1 3 BA 10: anterior x =218 808 de Greck et al. (2011, 2012),
studies prefrontal cortex y =509 Song et al. (2015), Stoeter et al.
z=175 (2007), Su et al.
(2014) Zhang et al. (2015)
Cluster 2 2 BA 6: premotor and BA 8: lateral and medial X = —432 376 de Greck et al. (2011, 2012),
supplementary motor supplementary motor area y =146 Egloff et al. (2009)
cortex z=48.7
Cluster 3 2 BA 31: dorsal BA 30: part of posterior x=133 352 Egloff et al. (2009), Song et al.
posterior CC cingulate cortex y=—625 (2015), Su et al. (2014),
z=15.1 Zhang et al. (2015)
Cluster 4 2 BA 32: anterior CC BA 24: part of anterior CC X=—6.2 272 Egloff et al. (2009),
y =337 Valet et al. (2009)
z=—22

Brodmann Area (BA), Cingutale cortex (CC), number (#), X-, y-, z-coordinates in Talairach space.

stimulation is expected (Sawamoto et al., 2000). Activation of the insula
has been reported primarily for cutaneous pain rather than visceral pain
(Strigo et al., 2003). In patients with FMS, the activation of the insula
was connected to experiments on pain expectation (Gracely et al.,
2002; Kim et al., 2013). Egloff et al. (2009) show that in cases of non-
dermatomal somatosensory deficits in patients with chronic pain, the
posterior part of the insula shows hypo-metabolic activation. This is es-
pecially significant as the area is essential for vibro-tactile and temper-
ature discrimination tasks (Brooks et al., 2005). Contrary to the
findings of Egloff et al. (2009); Stoeter et al. (2007) describe an in-
creased activation of the insula as a result of the first application of
pain in patients in comparison to healthy controls. The lateral nocicep-
tive system, of which the insula is a part, indicated consistent hyper-
perfusion, whereas the ACC and the more affective-motivational system
did not (Stoeter et al., 2007). The increased activation in the insula may
be correlated with the exaggerated expectancy of pain and attention in
SD patients (Stoeter et al., 2007). This might be correlated with the an-
terior part of the insula, which is associated with cognitive-affective as-
pects of pain (Craig, 2003b). In FSS patients, the increased insular
activation is correlated with heightened sensory coding of stimuli,
which are coded as innocuous in healthy patients (Cook et al., 2004;
Peyron et al., 2000). This effect has also been shown in patients with
IBS (Berman et al., 2008). Medial and posterior parts of the insula are
hypothesized to be involved in these somatosensory discriminative
abilities (Craig, 2003b). It is hypothesized that an increased
interoception is at work and is mediated via missing inhibitory descend-
ing prefrontal input and/or continued ascending arousal (Berman et al.,
2008). The insula specifically the posterior part does receive somatosen-
sory information of the thalamus and was brought into connection for a
neural circuit model of somatosensory amplification (Perez et al., 2015).
This circuit model proposes the thalamus to play an important part in
SD (Perez et al., 2015). While the thalamus was not significantly differ-
ent in our meta-analysis it shares many connections as important relay-
ing area with areas that we found to be significantly changed in SD
patients like the insula, cingulate cortex, prefrontal areas, and motor
areas. Of the motor network we found the PSMC, which shares afferent
and efferent connections with the thalamus, to be significantly changed
across studies about SD.

Changes in the PSMC have previously been described in patients
with chronic somatoform pain (Noll-Hussong et al,, 2010). These chang-
es often correlate with chronic pain because patients reduce movement

in order to avoid painful stimulation (Rodriguez-Raecke et al., 2013).
This explanation is supported by the increase of gray matter in correla-
tion with time and improvement of motor function found in patients
following a successful treatment for chronic pain, (Rodriguez-Raecke
et al., 2013; Seminowicz et al., 2011). Outside changes in the motor cor-
tex due to general chronic pain, alterations in the motor cortex are doc-
umented for patients with pain syndromes (Flor et al., 2001; Maihofner
et al, 2007; Swart et al,, 2009). FSSs are related to modifications in the
PSMC. IBS patients show urge-related differences in the PSMC (Kwan
et al., 2005). Additionally, patients with fibromyalgia-syndrome show
a reduction in the gray matter in the motor cortex (Puri et al., 2010).

Another significantly different area that is connected with the thala-
mus but also frontal brain areas like the BA 10 is the PCC (Maddock,
1999; Vann et al., 2009). The PCC is found to correlate with functional
or structural changes in patients with SD. Increased activation in BA
23 correlates negatively with BA 30 activation, and BA 30 has a positive
correlation with BA 31 (Cauda et al., 2010). In IBS and FMS, the PCC (BA
23, BA 31) and agranular retrolimbic area (ARA) differ between HC and
patients (Boeckle et al., 2016). As PCC and ARA seem to be important
parts of the DMN (Vann et al., 2009), a function already consistently
found in 2-week-old infants (Gao et al., 2009), changes in DMN might
underlie SD in general. Hyper-activation and hyper-connectivity in the
DMN in schizophrenia are related to overtly increased self-reference, at-
tention deficits, and impairments of working memory, while in depres-
sive patients hyper-activation of the DMN might correlate with negative
rumination (Whitfield-Gabrieli and Ford, 2012). Out of the four core re-
gions (Whitfield-Gabrieli and Ford, 2012) of the DMN (medial prefron-
tal cortex (BA 10, 24, 23); PCC and retrosplenial cortex (BA 29, 30, 23,
13); left and right inferior parietal lobules (BA 39, 40)) all except the in-
ferior parietal lobules seem to be dysfunctional in patients with SD. The
DMN is also related to personal introspection, autobiographical memo-
ries, and thoughts about the future. Thus, disruptions of the DMN can
lead to alexithymia as well as increased introspection and reflections
of others (Buckner et al., 2008; Saxe et al., 2004; Whitfield-Gabrieli
and Ford, 2012), aspects often observed in patients with SD.

In our analysis we found that evaluative regional areas like PCC, ACC,
and insula are likely to have a high influence on the occurrence of SD.
Thus it might be similar to sleep deprived individuals, who show an in-
creased pain sensitivity (Schrimpf et al., 2015) that is based on changes
of the evaluative brain network, which influences clinical pain com-
plaints but not pain thresholds (Busch et al.,, 2012). Therefore, it seems
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B) functional and structural
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Fig. 2. Results of the activation likelihood estimation (ALE) of A) functional studies and B) of functional and structural scans. Five areas were identified that were consistently differential in
the comparison between healthy controls and patients with pain-related somatoform disorder (the premotor and supplementary motor cortexes, anterior prefrontal cortex, anterior
cingulate cortex, insula, dorsal posterior cingulate cortex). Differential areas in A) functional analysis are dorsal posterior cingulate cortex, anterior prefrontal cortex, and insula and in
B) functional and structural analysis the anterior prefrontal cortex, premotor and supplementary motor cortex (including lateral and medial supplementary cortex), dorsal posterior
cingulate cortex, anterior cingulate cortex. Z coordinates in Talairach space are reported. Scale bar shows z-scores of ALE statistics with increasing significance from left to right. Only sig-

nificant clusters are indicated with a cluster level above 0.05 and a p-value below 0.001.

that central mechanisms like central sensitization might have a higher
impact than peripheral mechanisms like spinal sensitization. This un-
specific network of higher brain functions was also called ‘neuromatrix’
(Melzack, 2001). This network that previously was also called
‘painmatrix’ (Iannetti and Mouraux, 2010) is not specific for pain as it
is active in various conscious processes (Melzack, 2001). The
‘neuromatrix’ has been divided in three subsystems, namely the lateral
(sensory and discriminative), medial (affective and motivational) and
frontal (cognitive and evaluative) system (Apkarian et al., 2005;
Melzack, 2001). SD patients appear to have mainly changes in medial
and frontal parts of the neuromatrix, responsible for affective and eval-
uative responses. This has specifically shown for pain where affective
components were processed in dACC, while sensory components are
processed by primary and secondary somatosensory cortex (S1, S2)
and the posterior part of the insula (PI) (Treede et al., 1999). According
to our meta-analysis the somatosensory cortex is not found to be differ-
ent between SD patients and HC in our study. Though, differences in the

posterior part of the insula, responsible for somatosensory processes of
pain, do show differences.

4.1. Limitations

By undertaking an ALE analysis of SD, we were able to include a sam-
ple of 243 (204 functional) individuals from ten respectively 8 function-
al studies, and nine (7 functional) datasets. In our analysis two studies
did not contribute to any of the resulting clusters (Giindel et al., 2008;
Yoshino et al., 2014). This resulted in a sample, with which we were
able to identify neurobiological similarities within this disorder. We
have to report, that the foci included in our study are uncorrected for in-
tervening factors, such as varying experimental design, imaging param-
eters, analysis software, etc. Still, we think that due to the meta-analytic
approach, it was possible to identify some commonalities amongst pa-
tients via this ALE analysis. Especially when comparing our results
with previous theoretical models based on various imaging studies
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across paradigms and neuroimaging methods, our meta-analytical per-
spective bases its conclusion on statistical testing and can thus contrast
to merely theoretically driven functional models. Still, as some of the
studies that were included for the proposal of the circuit model did
not report any coordinates and were thus not included in our analysis,
some differences between the model of Perez et al. (2015) and ours
might be based on the difference between inclusion criteria. Additional-
ly, most studies used mainly female participants. Thus, all results may be
applicable to female patients with SD only. In future studies, it would be
highly advantageous to look for studies including male patients with SD,
as it has been shown that differences between male and female patients
do exist in somatoform disorders (Labus et al., 2008, 2013). Finally,
specificity of our results for SD might be limited, as Hsu et al. (2009)
has shown that gray matter changes in FMS patients are dependent on
affective disorder rather than on FMS. A similar effect might underlie
the selected studies. This might be especially critical, as it has been
found that SD and depression are highly comorbid (Busch et al.,
2012). Thus, future functional and structural studies should control for
affective disorders. Additionally, a recent meta-analysis revealed that
changes in the dorsal ACC, as well as the left and right insula are com-
mon to all psychiatric diagnoses (Goodkind et al.,, 2015) and might not
be specific to SD.

5. Conclusions

This meta-analysis underlines neurobiological aspects of SD. In SD,
the premotor and supplementary motor cortex, the middle frontal
gyrus, the anterior cingulate cortex, the insula and the posterior cingu-
late cortex seem to be of particular importance. Furthermore, these re-
sults seem in line with the hypothesis of “central sensitization” (CS)
(Bourke et al., 2015) especially when looking at the neurobiological
model (Perez et al., 2015). Still discrepancies do exist and future re-
search is needed in order to better understand the underlying brain net-
work and mechanisms. However, it is important to also consider the
influence of a co-morbid depression. Hsu et al. (2009), for example,
found no consistent difference in gray matter volume between FMS
patients when controlling for affective disorder (Hsu et al., 2009).
Thus, future neuroimaging studies should consider the role of affective
disorders when investigating somatoform disorder. Still, it is conceiv-
able that many FSS, independent of the clinical impression, show similar
neurobiological processes. However, we expect specificities to be at
work in each single FSS and thus presented results for SD only. Investi-
gating neurobiological mechanisms of various FSS like SD will help to
understand the aetiology of the disorders, lead away from medically un-
explained syndromes, and might in the long run help to develop better
treatment programs for patients suffering from SD.
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