
Thunderclap: Exploring
Vulnerabilities in Operating System IOMMU

Protection via DMA from Untrustworthy Peripherals

A. Theodore Markettos∗, Colin Rothwell∗, Brett F. Gutstein∗†,
Allison Pearce∗, Peter G. Neumann‡, Simon W. Moore∗, Robert N. M. Watson∗

∗ University of Cambridge, Department of Computer Science and Technology † Rice University ‡ SRI International
www.thunderclap.io theo.markettos@cl.cam.ac.uk

Abstract—Direct Memory Access (DMA) attacks have been
known for many years: DMA-enabled I/O peripherals have com-
plete access to the state of a computer and can fully compromise
it including reading and writing all of system memory. With the
popularity of Thunderbolt 3 over USB Type-C and smart internal
devices, opportunities for these attacks to be performed casually
with only seconds of physical access to a computer have greatly
broadened. In response, commodity hardware and operating-
system (OS) vendors have incorporated support for Input-Ouptut
Memory Management Units (IOMMUs), which impose memory
protection on DMA, and are widely believed to protect against
DMA attacks. We investigate the state-of-the-art in IOMMU pro-
tection across OSes using a novel I/O-security research platform,
and find that current protections fall short when faced with a
functional network peripheral that uses its complex interactions
with the OS for ill intent. We describe vulnerabilities in macOS,
FreeBSD, and Linux, which notionally utilize IOMMUs to protect
against DMA attackers. Windows uses the IOMMU only in
limited cases. and it remains vulnerable. Using Thunderclap, an
open-source FPGA research platform that we built, we explore
new classes of OS vulnerability arising from inadequate use
of the IOMMU. The complex vulnerability space for IOMMU-
exposed shared memory available to DMA-enabled peripherals
allows attackers to extract private data (sniffing cleartext VPN
traffic) and hijack kernel control flow (launching a root shell)
in seconds using devices such as USB-C projectors or power
adapters. We have worked closely with OS vendors to remedy
these vulnerability classes, and they have now shipped substantial
feature improvements and mitigations as a result of our work.

I. INTRODUCTION
Modern computers are a complex distributed system of

interlocking hardware/software components, even inside the
case. Direct Memory Access (DMA) allows programmable
peripheral devices – storage adapters, network adapters, USB
controllers, GPUs, and other accelerators – to access system
memory in order to improve performance. Historically, DMA
has been available only within the physical case of a computer
– e.g., PCI Express (PCIe) or on-chip interconnect. More
recently, DMA has been available via connections for external
devices – Firewire, and latterly Thunderbolt 2, and USB-C
with Thunderbolt 3. Adoption has been driven by rising

Fig. 1: Thunderbolt dock with FPGA implant, an implementation
of our I/O-security research platform

I/O performance requirements, such as flash storage and
multi-gigabit networking, and the trend towards smaller laptops,
with fewer ports and externally pluggable peripherals.

DMA introduces an intimate security relationship between the
general-purpose CPU, its memory, and peripheral devices (which
themselves frequently contain processors): it allows peripherals
the ability to read or overwrite key operating-system (OS) internal
data structures in kernel memory, placing the peripheral within
the OS’s Trusted Computing Base (TCB). The deployment of Fi-
rewire in the early 2000s led to the emergence of DMA attacks in
which external devices, as well as other Firewire-enabled comput-
ers, were used to extract data from, or gain privilege on, target sys-
tems [7], [12], [13], [16]. Both the performance and vulnerability
of DMA allowed for highly effective “drive-by” attacks extracting
confidential memory contents or compromising system integrity.

Contemporary hardware and OS vendors are aware of these
threats and employ an Input-Output Memory Management Unit
(IOMMU) to limit access by DMA-enabled peripherals to system
memory. MacOS, Linux, and FreeBSD, for example, can be
configured to open up only limited portions of kernel memory
to DMA, in order to prevent malicious devices from extracting
encryption keys or modifying kernel data structures. The principle
of this approach is similar to that of the Memory Management
Unit (MMU) used for memory protection on general-purpose
CPUs since the 1960s: the physical address space is virtualized to
produce a number of I/O virtual address (IOVA) spaces through
which DMA access from peripherals is transformed and limited
(Figure 2). Just as the OS imposes virtual address spaces on
processes to isolate them from kernel memory and one another,
the OS constrains PCIe devices to performing DMA via specific
I/O virtual address spaces that contain only mappings for memory

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23194
www.ndss-symposium.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/186326409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.thunderclap.io/


Fig. 2: The IOMMU translates I/O virtual to physical addresses and applies access control, similar to how the MMU translates
virtual addresses from processes.

intentionally exposed by the OS or corresponding device driver
– e.g., to allow packets to be read or written by a network card.
This approach recognizes that devices may be untrustworthy, and
allows such devices to be considered outside of the OS TCB. IOM-
MUs are widely believed to be effective in limiting DMA attacks.

In this paper, we explore IOMMU protection strategies
employed by a number of widely used operating systems, and
reveal a substantially more nuanced state of affairs. An essential
insight is that, while IOMMUs allow peripheral devices to be
constrained, the DMA interface between device drivers and
peripherals is a porous and complex attack surface that malicious
actors can manipulate to influence software behavior and trigger
vulnerabilities. The comparison with MMU-based OS protection
is apt: just as the system-call interface is one of the most critical
security interfaces in an OS, used to constrain untrustworthy
software requesting system services that access data provided
by the attacker and lead to complex (and potentially vulnerable)
kernel behavior, IOMMU-based protection is just as much about
communication as it is isolating malicious peripherals from
sensitive memory. And, as with MMUs, tradeoffs in IOMMU
use necessarily exist – especially with respect to performance,
where, just as with MMUs, TLB resources are limited, and
page-table walks trigger additional memory traffic and memory-
access latency, which constrain the acceptable vocabulary of this
interface even after years of optimization [3], [9], [40]–[43], [53].

However, there are important differences from the system-call
interface. The software side of peripheral DMA interfaces is
not implemented by carefully hardened kernel system-call code,
tested by decades of malicious attacks and fuzzing, but by
thousands of device drivers that have been designed around
historic mutual trust, hardware convenience, and performance
maximization. Unlike most system-call interfaces, many key
data structures shared between the kernel and peripherals are
via shared memory – eg., descriptor rings – rather than register
passing and selected copy avoidance. Prior work has suggested
that shared-memory interfaces are particularly vulnerable to race
conditions and other unsafe interactions [1], [25], [65].

To date, DMA attacks have focused on either systems
unprotected by IOMMUs, or the narrow class of race conditions
in which the IOMMU is left disabled or improperly configured
during early boot – e.g., on hardware reset, in firmware, or during
kernel startup [22], [24], [27], [46], [47], [59], [68]. To explore
the more interesting classes of vulnerabilities and corresponding
exploit techniques in the steady state of contemporary IOMMU-
aware OSes, we have developed a novel hardware platform, Thun-
derclap, which is an FPGA-based PCIe-enabled device suitable
for use with internal PCIe slots, external Thunderbolt 2 ports, and
external USB-C ports with Thunderbolt 3. We have designed sev-
eral physical embodiments of the FPGA-based platform including
malicious docking stations (Figure 1), USB-C chargers, and pro-

jectors – all devices that end users are comfortable casually con-
necting to notebook computer systems, and that they can reason-
ably expect to borrow without compromising their personal data.

Rather than simply issuing loads and stores to sensitive kernel
memory, we have developed a peripheral device emulation
platform, allowing us to engage with more complex OS and
device-driver behaviors by emulating full I/O devices that have
DMA access. We utilize a CPU on the FPGA to implement
a full software model of an arbitrary peripheral device, which
allows us to choose the device driver we interact with, and to
explore subtleties of interaction with shared-memory structures
such as network card descriptor rings. Implementing our new
adversarial model, we are able to interact deeply with OS
functions such as memory allocation and free, IOMMU mapping
creation and revocation, and so on. Thunderclap allows us to
explore rich device, OS, and device-driver specific behaviors
in this essential but largely unexplored vulnerability space.

The results are catastrophic, revealing endemic vulnerability in
the presence of a more sophisticated attacker despite explicit use
of the IOMMU to limit I/O attacks. We describe a range of new
vulnerability classes, but also how conventional exploit techniques
used in software-based attacks, and the mitigations used to limit
them, differ in the context of DMA-based attacks in the presence
of an IOMMU. Adversarial techniques differ substantially in this
new space; for example, attackers can trigger new vulnerable
behaviors – such as holding IOMMU windows open awaiting
a low-probability shared-memory race. We find that mitigation
techniques intended to limit userspace attackers via the system-
call interface, such as KASLR, are applicable but require careful
re-application in the DMA context due to historic assumptions
– for example, the common practice of leaking kernel pointers to
peripheral devices is no longer acceptable. Two years of interac-
tions with major OS and device vendors have led to significant
security updates, and explicit recognition that OS IOMMU bypass
vulnerabilities are within vendor threat models. We are able
to achieve IOMMU bypass within seconds of connecting on
vulnerable macOS, FreeBSD, and Linux systems across a range of
hardware vendors. Apple, Microsoft and Intel have issued security
updates to partially address these concerns. In this paper, we:

• Provide background on I/O, DMA, and IOMMUs.
• Present our methodology, including threat model and I/O-

security research platform with peripheral device models.
• Survey a range of current general-purpose operating

systems for vulnerabilities, demonstrating escalating
complexity as the sophistication of IOMMU use grows.

• Consider the suitability of existing access-control techniques.
• Discuss how these problems may be mitigated, including

considering performance constraints.
• Conclude with a consideration of related work, vulnerability

disclosures to date, and future areas of work.

2



II. BACKGROUND
In this section we introduce a number of key technologies, the

landscape of existing attacks, and modern defenses. We describe
how systems are currently structured and the vulnerabilities that
an expanded threat model exposes.

A. Interface classification
We can classify devices into two broad categories. The

first uses a protocol-based approach that may be described as
message-passing, where memory is not accessed directly. This
covers protocols such as native USB and SATA.

The second uses a shared-memory approach. We classify
shared-memory interfaces into several categories: inside-the-case
inter-chip communications, soldered or modular, typically inter-
connected with PCI Express; external ‘pluggable’ devices, typi-
cally via Thunderbolt; system-on-chip (SoC) devices, typically via
on-chip interconnect such as AXI; memory shared between com-
puters in a clustering arrangement (remote DMA or RDMA). To-
day, most peripherals of any scale, e.g. network cards and GPUs,
perform DMA, allowing them to access shared system memory.
Our experimental work focuses on PCI Express and Thunderbolt
for practical reasons, but would equally apply to on-chip devices.
We outline some of these technologies in subsequent sections.
B. Peripheral technologies
The PCI Express (PCIe) interconnect [51] is the backbone
of laptop, desktop, and server computers. Peripheral devices
such as those for networking and storage attach (directly or
indirectly) to PCIe. Each side (device and CPU/main memory)
can issue memory requests of the other. PCIe cards are mostly
used within the computer’s physical enclosure.
Thunderbolt [28] is Intel’s proprietary external cabling system
that combines hotpluggable PCIe and video. It is popular for
connecting docking stations and ‘dongles’ to laptops, which add
external PCIe devices (graphics, storage, networking) and/or addi-
tional video outputs. Thunderbolt 1 & 2 use the mini-Displayport
connector and are most prevalent on Apple laptops and desktops.
USB Type-C [64] is a multipurpose connector standard. By
default it carries USB, but devices may add a microcontroller that
can negotiate the port into an ‘alternate mode’, to carry a different
protocol. These include video (Displayport/MHL/HDMI), analog
audio, and Thunderbolt 3. Type-C also provides Power Delivery
modes and is a popular means of charging devices.
Thunderbolt 3 [30] is behaviorally similar to the previous
Thunderbolt 1 and 2 but with additional speed modes, and
is conveyed over the Type-C connector. Thunderbolt 3 is
increasingly widespread on middle- and high-end laptops.
The IOMMU (Input-Output Memory Management Unit) sits
between main memory and PCIe devices (including those
externalized via Thunderbolt), applying address translation
and protection against requests from devices. Originally
designed for virtualization – dedicating peripherals to different
virtual machines – it has since been repurposed to protect
non-virtualized machines against malicious peripheral DMA.
C. DMA attacks

The threat from peripherals first came to light with the spread
of Firewire, an early competitor to USB, used by vendors such
as Apple and Sony. Unlike USB, Firewire provided DMA to
external peripherals. This improved performance by reducing
host-controller-directed memory copying, allowing peripherals
to directly address host memory.

Initial DMA attacks used this Firewire feature to read
physical memory of a computer and then apply standard forensic

Fig. 3: Stack of a typical network or storage device. Lower
layers are standardized, while the DMA and application layers
vary among devices. Implementing all layers in a software
model allows us to explore vulnerabilities throughout the stack.

memory techniques to compromise the system, e.g., to steal
passwords or reveal disk encryption keys [7], [12], [13], [16].
With advances in technology, such attacks were updated to use
PCI, Cardbus, PCI Express and Thunderbolt – both externally
and internally [6], [19]–[21], [31], [56], [58].

In light of these attacks, operating systems had to improve
their use of system protections. A key landmark was macOS
10.8.2 in 2012, the first time the IOMMU was enabled by default
for protection against malicious peripherals. As a result, a large
swath of DMA attacks were blocked, resulting in a refrain from
attack authors that the IOMMU solved the DMA attack problem:

“IOMMU ... does appear to provide protection against
simple DMA attacks effectively” [32]
“DMA does not work! what to do?” [20]

(Further discussion of the literature is given in Section X).

D. IOMMU primer
Since the IOMMU is the primary place where protection

is implemented in the input/output (I/O) system, we outline
its operation here. Implementations, namely Intel VT-d [29],
AMD-Vi [2], and Arm’s System MMU [4], are broadly similar,
with minor differences.

The IOMMU implements a similar protection model for
devices as the MMU (memory management unit) does for
processes. Both involve the translation of addresses in memory
read and write operations, as well as access control.

In brief, the MMU translates virtual addresses (used by a
program or process on the CPU) to physical addresses (used by
the underlying hardware memory). It uses multiple levels of page
tables, each translating a smaller region of memory (address
space). Different tables are switched in and out each time the
processor switches to running a different process. Each unit of
translation (or ‘page’) may have different read, write, or execute
permissions, allowing one program to have its memory protected
from another. Because a full table lookup is slow, the Translation
Lookaside Buffer (TLB) is a cache of recently used translations.

The IOMMU mirrors the MMU operation, although for
accesses from peripheral devices. I/O devices generate their
own memory read and write transactions. Translations, this time
from I/O virtual addresses (IOVAs) to physical addresses, are
performed using the same table structure. However, because
multiple I/O devices may make accesses at the same time, we
can have a separate table for each device, comparable to the
use of a separate MMU page tables for each OS process. PCIe
allows 216 devices, so there are potentially 216 sets of tables

3



– although in practice a system may have only a few dozen
devices present. For performance, there exists an Input/Output
TLB (IOTLB) to cache recent translations. The arrangements
of MMU and IOMMU are shown in Figure 2.

OS IOMMU bypass vulnerabilities arise when a malicious
attacker is able to manipulate OS, device-driver, or application
behavior to bypass intended protections, allowing undesired
attacks on memory integrity or confidentiality. Spatial vulnera-
bilities occur when the 4KiB page (or superpage) granularity of
translations allows undesired access beyond the intended physical
memory range, or when permissions are set more broadly than
necessary – for example, if only a sub-page-size region of memory
is intended to be exposed by DMA. Temporal vulnerabilities
occur when IOMMU mappings are open longer than necessary,
allowing undesired accesses when memory may have been
reused for other purposes – e.g., if IOTLB invalidations are
performed asynchronously to allow DMA across memory reuse.
Previous work [37], [42], [53] hypothesized the IOMMU suffers
from such vulnerabilities but without describing any exploits.

III. METHODOLOGY
This section describes our threat model, including our aims

and the practical opportunities open to attackers. It describes
the features of our I/O-security research platform and our test
environment. It describes how our platform allows us to fully
explore the breadth of what can be achieved, with different
scenarios where devices are used. In subsequent sections we use
it to survey operating systems and then focus on them in detail.

A. Threat model
We consider malicious peripherals, i.e., hardware devices

that may be attached to a computer system for ill intent, or an
existing peripheral that may be compromised to the same ends
(e.g., via malicious firmware update).

We focus on peripherals that can read and write system
memory, directly or indirectly, via PCIe, Thunderbolt, or on-chip
interconnect. Message-passing peripherals such as USB or SATA
devices are not covered by our work and have different threat
models (e.g., [49], [57]). However, the host controllers (i.e., the
bridges from these protocols to memory transactions – usually
PCIe) – are in scope. An attack from a USB-only peripheral
(not via Type-C and Thunderbolt) would first require a host
controller exploit: it may be feasible, but we do not explore this.
Attacks may be external, via addition of a pluggable device,
or internal, via compromised firmware of an existing device.

Attackers can present themselves as whatever kind of
devices they wish by selecting their PCIe device ID, allowing
them to select the vulnerable device driver of their choice.
Peripherals may be external or internal; hot-pluggable, modular,
soldered-down, or on-chip. Physical form factor has limited
impact on the exploits a device can undertake, but it has a
substantial bearing on user expectations. The form factor can
be used to mislead users, shaping a device to look like one
object but act like another. Users may not understand how much
access they are granting to a device that they plug in.

Our platform fits into a number of physical forms to misdirect
user expectations, including a docking station, charger, and
projector. These are items users might borrow or connect to
without considering security implications. Additional scenarios
might be:
Compromised dongle. An existing Thunderbolt Ethernet or Wi-
Fi dongle that contains a standard PCIe chip has its firmware com-
promised (e.g., via [32] or [11]). The dongle is fully functional,

Fig. 4: Implementation of fully-functional network card using
a QEMU device model running on FPGA

yet with additional trojan functionality to exfiltrate data. The don-
gle is left in a meeting or hotel room for an unsuspecting visitor.
Supply-chain attack. The firmware of a PCIe network card
has exfiltration functionality added in the factory or in the supply
chain, before it is installed in a customer server. Alternatively,
a bad firmware update is applied in the field.

While we consider primarily PCI Express and popular laptop,
desktop, and server operating systems, our work generalizes
to any device where memory is exposed to peripherals. Our
focus is on use of the IOMMU for host protection. Hypervisors
using it to delegate peripherals to virtual machines, and to
protect from breaking out of VMs using IO devices, present
a related but distinct problem. The same IOMMU is used in
a very different way, with divergent threat models. This also
applies to OSs such as Qubes or Bromium that launch a separate
virtual machine for each task, using the IOMMU to delegate
peripherals to one specific VM.

B. The Thunderclap I/O-security research platform
To investigate deep interactions with peripherals, we required

a more intricate research platform than previously published.
The full peripheral stack is depicted in Figure 3, including
parts that are standardized and those that are device-specific.
Because the device-specific layers are those that have most
interaction with software, we needed an implementation that
extends substantially beyond the work of previous researchers,
who implemented only the standardized layers. To do this, we
needed flexibility to probe both hardware and software, and
so we built our research system using a complex software stack
running on an FPGA, as depicted in Figure 4.

For the hardware, we used the Arm Cortex A9 CPU on an
Intel Arria 10 FPGA to run a software-defined device model
extracted from the QEMU full-system emulator. Additionally
FPGA soft-logic allows it to generate arbitrary PCIe packets.

1) Baseline to reproduce the state of the art: The PCIe
transport layer imposes the semantics of memory on top of the
underlying layers that provide reliable end-to-end delivery of
packets. These transport layer packets (TLPs) may be reads
and writes classified as either memory, configuration, legacy-I/O,
or other messages (such as power control). The replies to
read requests are completion packets, which contain either the
requested data or an error code.

Our PCIe hardware delivers raw PCIe TLPs to programs
on the FPGA CPU through simple queues, which enables our
adversarial application to send and receive arbitrary packets. This
allowed us to build a baseline platform to test vulnerabilities
to generic PCIe devices, similar to prior literature. The baseline
software can perform DMA by generating arbitrary memory
read and write packets and interpreting their results, including
returned data and indications of errors.

4



CPU Motherboard Firmware enables IOMMU by default Connection Operating systems tested

Intel i7-7700HQ Dell XPS 15 9560 X Thunderbolt 3 Ubuntu, Windows 10 Pro
Intel i5-6360U Macbook Pro late-2016 X Thunderbolt 3 MacOS, Windows 10 Home/Pro
Intel i5-4278U Mac Mini late-2014 X Thunderbolt 2 MacOS
Intel i5-4570 iMac 27” late-2013 X Thunderbolt 2 MacOS
Intel i5-4670 Asus Z87 Deluxe Dual PCIe FreeBSD, Ubuntu
Intel i7-4770 Asus Q87M-E PCIe Windows 10 Enterprise
Intel i7-930 Intel DX58SE X PCIe FreeBSD, Ubuntu/RHEL/Fedora
Intel Xeon E5-2670 SR0KX Intel S2600CP2 PCIe FreeBSD, Ubuntu
AMD Ryzen 1600X MSI X370 Gaming Plus ‘Auto’ PCIe Ubuntu

TABLE I: Victim machines for experiments

2) Implementing a full device model: To go further, we wished
to emulate a functional device that would cause the driver to be
activated on the victim OS and expose data via the IOMMU. We
used a software model of an Intel 82574L Gigabit Ethernet Con-
troller from the QEMU full system emulator [8]. This device has
drivers for each operating system we investigated. We extracted
the QEMU e1000e device model and ran it on the FPGA CPU.
An extremely cut-down version of QEMU’s main loop has to be
run in order to keep the simulated model operating. Incoming
PCIe packets are translated into QEMU function calls in the
device model. Similarly, QEMU’s simulated ‘DMA’ is translated
into real PCIe DMA transactions. This enabled our emulated
device to generate the same memory reads, writes and interrupts
that a real device would generate. QEMU’s internal network stack
allows our fake network interface card (NIC) to generate plausible
traffic such as DNS and DHCP – we are not only a malicious
device, but one that functions correctly as far as the operating
system is concerned. The complex software dependencies required
by QEMU mandated the full POSIX environment provided by
Linux, in contrast with a real PCIe peripheral that usually runs
a much more minimal embedded software stack.

With a functional emulated device, which worked despite
the latency of software-generated packets, we could then add
a malicious payload. We added an adversarial component which
was made aware of the state of the emulated NIC and generated
additional malicious DMA traffic and additional PCIe state.

3) Platform form factors: Thunderclap runs on FPGA
evaluation boards, including the Arria 10 SoC Development
Kit. Noting that user expectations are molded by the physical
shape a platform takes, we have designed (although not fully
engineered) a number of embodiments of the platform into form
factors users might expect:

• A Thunderbolt docking station, where the Arm drives the
docking station I/O (ethernet, USB, etc)

• A USB-C projector, which has an internal FPGA as well
as a Thunderbolt bridge to extract video

• A USB-C charger, to charge a laptop as well as provide
a malicious Thunderbolt FPGA

C. Test environment
We attached the FPGA to a number of laptop, desktop, and

server systems to test different exploit paths, over a wide range
of operating systems. Full details of the hardware/software
combinations are shown in Table I.

We focus on the Intel and AMD IOMMUs in our study. In the
mobile space, ARM’s System MMU (SMMU) applies broadly
the same concepts, and a natural extension of our work would
consider use of the SMMU. However, we note that our study al-
ready covers the kernels used in Android (Linux) and iOS (XNU,
common with macOS). The most interesting attacks on these plat-
forms (malicious firmware in radio basebands, cameras or network

devices) would require more reverse engineering to implement,
since their software environment is proprietary. Additionally, these
platforms do not offer PCIe or Thunderbolt to external devices as
laptops do, so we could not reuse our existing research hardware.

D. Vulnerability space
Our aim is to investigate the shared-memory vulnerability

space. In doing so, we examine how it is exploited through
increasingly complex interactions with the operating system
and device drivers.

To illuminate this, we illustrate how kernel and device-driver
vulnerabilities allow us to extract private data (for instance, plain-
text VPN network traffic), change kernel behavior (for example,
change control flow by manipulating code pointers, allowing
construction of malicious programs from snippets of pre-existing
executable code by means of Return Oriented Programming
(ROP) techniques), and circumvent memory protections. We then
review our vendor interactions, the effectiveness of available
mitigations and potential future directions.

IV. OPERATING-SYSTEM SURVEY
To understand how the IOMMU is used in different OSs,

we performed an analysis of documentation, source code, and
(where necessary) IOMMU page tables of running machines.
A summary is given in Table II, which lists the OS versions
we used for subsequent experiments.

We found that many systems did not even turn the IOMMU
on: either it was disabled in the firmware, or the operating system
required obscure configuration to enable the IOMMU. MacOS
was the only OS to enable the IOMMU by default. It is notable
that even RedHat Enterprise Linux 7.1 (which is Common Criteria
EAL4+ certified [55]) did not enable the IOMMU by default. On
those systems without default enablement, we set the necessary
configuration to enable the IOMMU for device protection.

When the IOMMU is enabled, there are two broad modes that
are used. Shared mappings have a single IOMMU page table that
is used by all devices. Per-device mappings implement a different
page table for each PCIe device. We discuss the implications
of these design choices in following sections. Subsequently,
Section IX considers why the IOMMU is used the way it is.

V. ATTACKS WITHOUT OS INTERACTION
The most basic vulnerabilities may be explored with our

baseline platform, which is able to generate arbitrary PCIe
packets from software. Generating independent memory
transactions replicates prior work in that it has no interactions
with the kernel or any device drivers; it naı̈vely explores what
data it can access at a hardware level. In principle any PCIe
device with DMA capability could perform similar attacks,
though a particular product (as [20]) may have its own limitations.

A simple approach is memory probing, looking for accessible
memory regions. As an FPGA able to make PCIe memory

5



Operating system Build/ Can use Default IOMMU page mappings Vulnerability
kernel IOMMU enabled Shared Per-device Data leakage Kernel pointer Shared-allocator Spatio-temporal ATS

Windows 7 X X X n/a
Windows 8.1 9200 X X X n/a
Win 10 Home/Pro 1709 16299 X X X n/a
Win 10 Enterprise 1607 14393 X X X X X n/a ?
Win 10 Enterprise 1703 15063 X X X X X n/a ?
MacOS 10.10-10.13 X X X X < 10.12.41 n/a
Linux: Ubuntu 16.04 4.8/10 X X X X X X
Linux: Fedora 25 4.8 X X X X X X
Linux: RHEL 7.1 3.10 X X X X X X
FreeBSD 11 11 X X X X X
PC-BSD/TrueOS 10.3 10.3 X X X X X
1 Fixed after our disclosure.

TABLE II: Operating system survey, describing applicability of our vulnerabilities to different platforms

requests, we are able to scan I/O virtual addresses. When
reading, the PCIe transport layer returns either Unsupported
Request (indicating we were not allowed to read) or Successful
Completion (our read was permitted).

It turns out that most operating systems use relatively low I/O
virtual addresses, so scanning the first few gigabytes of memory
is sufficient. We call accessible regions windows, i.e., groups of
pages that the OS has intentionally or unintentionally exposed to
our device. On discovering a page is accessible, we can also look
inside and possibly change the contents. We used this as a starting
point for attacks against IOMMU and non-IOMMU systems.

A. Microsoft Windows
Of the operating systems that we studied, Windows uses the

weakest form of IOMMU protection. We were able to compromise
it using the baseline platform with no device model, with
minimal effort. These attacks are perhaps uninteresting in terms of
characterizing the attack surface, but their consequences are grave.
Attack story 1: Windows 7, 8.1, 10 Home/Pro
Most versions of Windows do not use the IOMMU and so are
entirely unprotected from DMA attacks. This includes versions
prior to Windows 10, and Windows 10 Home and Professional
editions. We verified that all memory is exposed to peripheral
devices, and so an attacker has full access to read and modify it.
A user of such a machine is entirely unprotected from malicious
devices. For example they can search for and replace parts of the
Windows code with their own, or read secret data from memory.
Attack story 2: Windows 10 Enterprise
The only version of Windows to support the IOMMU is
Windows 10 Enterprise, which uses it just for its optional
‘Virtualization-Based Security’ (VBS) feature.

VBS runs the primary ‘root’ Windows system inside a
Hyper-V virtual machine, running a second container alongside.
The container’s minikernel is intended to protect private data
such as encryption keys, constraining access from the root
OS. VBS can implement Device Guard (DG), which prevents
execution of malicious code; and Credential Guard (CG), which
prevents secret data being read. DG and CG are not enabled
by default, and the enablement process is sufficiently complex
that it would likely be usable only in a controlled corporate
environment. For example, DG and CG will not enable without
UEFI and Secure Boot being enabled.

The IOMMU is intended to prevent devices bypassing the
hypervisor’s protections. Extended Page Tables (EPT) in the
MMU are used to remap guest physical addresses to host
physical addresses to isolate the virtual machines; this applies
only to the CPU, so the IOMMU is used to prevent devices
attached to the root OS from accessing the secure container.

Build 14393 specifically allowed us to attach a debugger to
Hyper-V with VBS on, allowing us to examine the IOMMU page
tables. We found all devices share a single I/O page map, meaning
that memory exposed to one device is exposed to all. Furthermore,
the vast majority of physical pages are mapped 1:1 into I/O virtual
address space and read/write – whereas VBS may protect the
container and hypervisor, the root OS is unprotected. We verified
this with the FPGA: by scanning through physical memory,
almost all memory pages were accessible to the attack device.

Disclosure We first contacted Microsoft in 2016, and have
been in ongoing discussions. In 2018, they accepted that DMA
attacks are within their threat model and announced Windows
10 Kernel DMA Protection [44], where the IOMMU is enabled
in firmware [69] and Windows uses it for protection against
Thunderbolt devices (only). This sits in the PCIe memory
allocator and only opens IOMMU windows for memory
allocated to devices, protecting the majority of the Windows
system memory. It applies only to devices shipped with version
1803 and not to earlier systems upgraded to 1803 unless the
vendor ships a firmware update. It also requires changes to
third-party drivers to support DMA remapping.

Related work Our explorations augment growing interest in
DMA attacks on Windows [6], [15], [20]–[22], [61]. They are
included here as a demonstration of an OS that makes poor
use of the IOMMU to defend against DMA attacks and the
use of our platform to reproduce state of the art attacks.

Other OS MacOS, and FreeBSD and Linux when enabled,
use the IOMMU such that they do not give the attacker such
full access to system state.

VI. RICHER DEVICE-DRIVER INTERACTION
An attacker who behaves as a real device has greater power. Pre-

senting as a real peripheral, it interacts with the device driver and
operating system in a way that a baseline DMA platform does not.
In this and subsequent sections, we consider what it means to be a
full device attacking OSs with defenses against malicious devices.

To understand more complex vulnerabilities, it is useful to be
aware of the architecture of a modern peripheral such as a network
interface card (NIC), which we implement as our device model.
Conceptually, a network card can be viewed as a bidirectional
pipe: packets come in, packets go out. Several architectural
constructs make it efficient for both hardware and software,
which are common across vendors and across operating systems.
To understand the problems of device security, it is important to
understand how a NIC functions and how it interfaces to software.

The first problem is that packets are generated and consumed in
several stages. For instance, an outbound TCP packet might have
its payload generated by an application. The TCP layer prepends

6



a OS buffer chains b NIC ring buffer

Fig. 5: Common OS and network-card data structures

a TCP header. Then an IP header is prepended. Other layers such
as IPsec or VLAN tagging may add additional headers. Finally an
Ethernet header is prepended and a CRC may be appended. This
full packet is dispatched to the network hardware for transmission.

In a naı̈ve implementation, each prepend would involve
copying the packet to free up space for the new header. However,
performance dictates slow memory copying should be avoided.
Instead, a common design pattern stores the packet in a linked
list of memory blocks, allowing addition and removal of headers
just by changing pointers. For efficiency, pools of these blocks
are statically or semi-statically allocated, and typically there are
two types. The first is the inline buffer, where the linked-list data
structure contains a small fixed buffer that is enough for header
fields, acknowledgements, and other small packets. The second
uses an external cluster, where the linked list points to a larger
standalone memory block – typically used for large payloads.
This pattern exists in macOS and FreeBSD as the mbuf, Linux
as the skbuff and Windows as the NET BUFFER LIST. Figure
5a gives an illustration.

The next abstraction concerns the hardware/software interface.
Allowing the NIC to read and write packet data directly
from memory is more efficient than using the CPU. To avoid
hard-coding OS-specific data structures into silicon, the NIC
uses scatter-gather lists, lists of addresses and lengths that
the NIC should read to transmit a packet and where to write
received packets. The NIC driver translates between OS-specific
data structures like mbuf s and scatter-gather lists.

Since the drivers on the CPU and the NIC are processing
concurrently, the ring buffer data structure is typically used. This
provides a circular buffer of address/length tuples, a circular
scatter-gather list (Figure 5b). When sending, the CPU writes
pointers into one end of the buffer and the NIC consumes from
the other end. By moving the read and write pointers, the driver
indicates to the NIC there is new work, and the NIC confirms
when the work is done. The driver’s task is to allocate memory,
to keep the ring buffer full of any outbound work and dispatch
incoming packets to the network stack.

Finally, it is worth bearing in mind the performance
requirements. A 40Gbps NIC as used in a datacenter node
can transfer up to 60 million packets per second at line rate,
depending on packet size. Since each packet may have several
scatter-gather entries, O(108) individual DMA operations per
second might be needed for each direction.

A. IOMMU usage by network devices
When an IOMMU is in operation, the most obvious way to

use it for protection requires some changes to ring buffer usage.
First, packet data must be allocated from a pool of physical

memory that allows exposure to devices (some memory may
be inaccessible due to hardware limitations). Second, before
a data block is placed in the ring buffer for transmission, a
window must be opened for it to be accessible by the device.
This involves creating a mapping for the block in the IOMMU
page table. Third, the address written into the ring buffer is now
the I/O virtual address of the mapping, rather than the physical
address. Finally, when the device is finished with the data, the
operating system should close the window again, revoking the
mapping from the IOMMU page table and IOTLB.

While this is the obvious usage model, various OSs deviate
from it, as explained in subsequent sections.

B. IOMMU usage by other devices
While we have focused on NICs, other devices have similar

structures. NVMe flash storage is based around a similar ring
buffer for data blocks. The XHCI host controller interface
for USB uses scatter/gather rings, and the AHCI interface for
SATA uses in-memory pointer tables to indicate command and
data regions for transfer. In each case the pattern of following
pointers in host memory looks similar, though the semantics
of the payloads transferred is different. In Section IX-B we map
spatial utilization, including SATA and GPUs.

C. Our platform as a NIC
Our implementation emulates an Intel 82574L NIC, which

provides it with full visibility of the ring buffer and its data
payloads. We added a variety of adversarial functions to
the basic NIC to examine vulnerability to different exploit
techniques. Because we run a software model, it is relatively
easy to make substantial changes to its behavior.

At a basic level, an attacker can exploit the self-descriptive
nature of PCIe: that devices advertise features and those
advertisements are trusted. For example, the attacker can set
up configuration registers as needed to bypass whitelisting.

More deeply, our NIC has visibility of the ring buffer
structure and so is notified of the locations of packet data in
the I/O virtual address space. In theory, the NIC is notified only
about data buffers; thus, we can exploit the fact that IOMMU
mappings have a minimum granularity of 4KiB pages, and thus
can look for data on the same or nearby pages. Additionally, we
can change the way the NIC uses the ring buffer – e.g., failing
to indicate we are finished with data buffers, preventing their
IOMMU entries being invalidated.

At a higher level, we can also generate spurious network traffic
against the host (perhaps announcing a new default route to divert
connections to our NIC, ARP poisoning, HTTPS man-in-the-
middle and so on). However, we consider this a separate class of
attacks that does not require being a DMA-enabled peripheral and
has been covered in other work, for instance over USB [49].We
therefore consider them out of scope, but note that powerful
attacks may be possible with a combination of exploits: HTTPS
man-in-the-middle with additional knockout of the browser
certificate check functions could be very potent, for example.

In following sections, we demonstrate the additional power
that awareness and interaction with the device model gives to
the attacker.

D. Shared IOMMU mappings on macOS
MacOS was the first system to deploy default use of the

IOMMU, since early Firewire and Thunderbolt attacks focused
on Macs. Our investigations reveal macOS uses shared mappings,
a single IOMMU page map that is shared among all devices.

7



Therefore memory that is exposed to one device is exposed to all.
This means one device can snoop on memory intended for another
– examples might be a malicious peripheral keylogging via the
USB controller or reading the framebuffer. For example, the
framebuffer is always exposed on systems with discrete graphics.

In fact, macOS’s mbuf s are a special case – mbuf s are
allocated during early boot and remain exposed to all devices at
all times. Therefore every device has full visibility of network
traffic continuously. This is weaker than even shared mappings,
where most other peripherals’ buffers are protected once they
are de-allocated from the device. It appears this is due to the
network stack being derived from FreeBSD, which exists as
a semi-separate codebase within the macOS (XNU) kernel –
but also avoids any IOMMU mapping and unmapping expense
when transmitting and receiving packets.
Attack story 3: MacOS VPN cleartext data extraction
The first hurdle we encountered was that macOS does not attach
drivers to unapproved PCIe devices connected via Thunderbolt.
To overcome this, we changed the device and vendor IDs reported
by Thunderclap to be an Apple-approved device (as dictated by a
system configuration file). We set our NIC to mimic the version
of the 82574L inside Apple’s first-generation Mac Pro desktop.

We set up an IPSec VPN connection using the motherboard
BCM57765 ethernet controller and sent ‘secret’ traffic over it.
We then plugged in Thunderclap via Thunderbolt, recording
all the memory windows that were passed to the platform over
the course of the generic set up network traffic that macOS
carries out with newly attached network devices (DHCP, IPv6
solicitations, multicast DNS).

In the memory windows were mbuf s the motherboard NIC
had been asked to send. Reading through these windows, we
identified plaintext leaked from the secret connection in other
parts of the pages passed to our NIC; this is present due to
in-place decryption performed within IOMMU-exposed memory.
Attack story 4: MacOS root shell via kernel pointer
exposure
Using a similar technique, we were able to achieve a root shell on
macOS. Every mbuf is 256 bytes long, and starts with a variable
amount of metadata, including a pointer to the network data it car-
ries. For some mbuf s, this is allocated externally to the 256-byte
region: for others, it is internal. If the data is external to the mbuf ,
a pointer to a custom free function m free() (along with three
arguments to call it with) can be included in the mbuf metadata.

Due to the 4KiB page granularity, mapping the internal data
to the NIC also exposes the metadata. This means that, from
the NIC, we have access to a function pointer that the attacker
can set to any value, allowing them to change control flow.

In that we appear to be a valid NIC, we are naturally given
IOVA pointers to descriptor rings that point to the IOVAs of
mbuf s and have both read and write permissions. Specifically,
we scan the pages to find an mbuf with external storage, and
modify internal flags and structures to ensure that the custom free-
function will be called. We are then able to change the m free()
function pointer in the mbuf to point to an address of our choosing.
We also control timing of the function call, since the NIC indicates
it has transmitted an mbuf and when the OS should free it.

This is not enough; in order to make kernel code injection
attacks harder, macOS employs Kernel Address Space Layout
Randomization (KASLR). This adds a randomly-chosen offset
(the slide) to the address of everything in the kernel. We
determined that the slide is a multiple of 2MiB, meaning that

low 21 bits of each address in the kernel are the same regardless
of the value of the slide. We also found that the AHCI and USB
drivers shipped with macOS leak the randomized virtual address
of a kernel symbol through pages that they open to all peripherals
at boot time. Since the lower 21 bits of the symbol are constant,
we can scan I/O address space looking for symbols where these
bits match; with a high probability these will reveal the slide.

To demonstrate exploitability of this vulnerability, we caused
the CPU to execute the functions panic and KUNCExecute.
The latter allows us to execute programs as arbitrary users,
including root, from the kernel. We ran Terminal.app,
which gave us a root shell on the machine. Additionally, we
have found an instruction sequence that allows us set the stack
pointer to a value of our choosing. This should be sufficient
to allow an attacker to build a ROP attack on the kernel.

A simpler adversarial platform? The nature of shared
mappings means we can achieve a similar effect with a basic
device with no driver attachment. We can, for instance, scan
memory with the FPGA looking for memory windows containing
signatures that correspond with the BCM57765 descriptor rings.
These allow us to find out the I/O virtual addresses of mbuf
chains. We performed the whole attack using our non-NIC FPGA
and were equally successful, replacing the free pointer in all
mbuf s we found. Since we had no view of NIC state, this reduced
the accuracy of the exploit firing to a few seconds, additionally
filling the system log with (ignored) IOMMU page faults.

Disclosure We demonstrated this vulnerability in macOS
10.11.5 and disclosed it to Apple. Apple has since patched the
vulnerability in 10.12.4. Kernel function pointers in mbuf s are
now blinded by XORing with a secret cookie that is held in
kernel memory not exposed to the peripheral device. Because
the bottom 21 bits are known plaintext, we can generate a valid
function pointer to 2MiB of kernel code despite the blinding;
however, it is not called because the flags an attacker needs
to modify have been moved outside DMA-able memory (though
they can still cause the kernel to panic).

Other OS We identified a similar pattern on Windows using
the kernel debugger. The NET_BUFFER contains some opaque
structures, one of which sometimes contains a function pointer
into tcpip.sys, and a distinctive flags word that makes it
discoverable from the DMA device. We overwrote the function
pointer in the debugger with a pointer to KeBugCheckEx
(the ‘Blue Screen of Death’ function) and succesfully hijacked
control flow. These data structures were entirely exposed to our
FPGA (both NIC and non-NIC versions). We conclude that, were
Windows to improve its use of the IOMMU, it would still be vul-
nerable to such an attack. Windows applies per-module KASLR,
hence we must use tcpip.sys for initial ROP gadgets.

E. Per-device mappings on FreeBSD
FreeBSD uses a network stack with the same BSD origins

as macOS, with similar mbuf structures. However, it provides
per-device IOMMU mappings, with a different page map for
each device. The baseline platform has no windows opened in
its page map and is thus prevented from accessing any memory
at all. If the device reports that it has the vendor and device
ID of a NIC, but does not exhibit the expected behavior, the
driver fails to attach the device and no mappings are opened.

However, memory windows are opened when Thunderclap mas-
querades as a functional NIC, and it is notified of their locations
via the ring buffer.The mbuf s exposed contain free() function
pointers which an attacker can overwrite to hijack control flow.

8



Attack story 5: FreeBSD kernel privilege via control flow
Despite very different IOMMU configuration, we can adapt
attack 4 to work on FreeBSD. We used TrueOS (formerly
PC-BSD) 10.3, as it is a desktop FreeBSD distribution that by
default performs DHCP against an attached NIC; server FreeBSD
requires explicit configuration of new NICs (it is possible
broadcast configuration traffic may suffice for unconfigured
NICs, though we did not try it). We attached our malicious PCIe
NIC to the system. On boot, TrueOS performed DHCP against
our NIC; we were handed mbuf s whose free() function pointers
we could overwrite, enabling a call to kernel code of our choice.
Since FreeBSD does not do KASLR, kernel pointers are static.

The driver tells the NIC the I/O virtual address of the transmit
ring. We search it for the address of an mbuf by looking for
non-2KiB-aligned addresses. Then we modify an mbuf ’s flags
to appear to the host as having external data and a custom
free function. We also must create a reference count inside the
body of the mbuf , and set a field that works as a pointer to the
refcount to point to this value. To do this, we need the kernel’s
address for the mbuf . We derive this by masking the mbuf ’s
pointer to its internal data region.

An exploit using the custom free function is slightly more
complicated on FreeBSD than macOS. In contrast to macOS,
which gives full control over all three free function parameters,
FreeBSD always calls the function with the address of the
mbuf as the first parameter. However, with a gadget that allows
the stack pointer to be set to the value found in the second
argument register, there is enough to carry out a ROP attack.

Other OS Were macOS to use per-device mappings, a
similar attack would still work subject to defeating KASLR.
Linux prevents it since its skbuff locates function pointers and
data on different pages, and only the data is exposed to our NIC.
It is unclear if this is a deliberate design decision or an artifact
of the allocator.

VII. EXPLORING THE VULNERABILITY SPACE
Thus far, we described vulnerabilities in operating systems

that may be exploited using relatively simple malicious behavior
– there was no need for anything more complex.

However, the vulnerability space is much richer. Fundamentally,
the malicious device presents to the operating system with a series
of claims, about what it is, what resources it needs and how it
behaves. Operating systems are entirely credulous of these claims,
since they have no other means of distrusting them. As a result, a
device driver is attached and further interacts with the device, gen-
erally believing everything the device says. As part of this interac-
tion, memory is exposed to the device based on previous claims.

If the device is malicious, how can it manipulate the OS and
device driver to abuse the shared-memory interface?

A. Linux
Unlike macOS, Linux has no sharing of IOMMU page

mappings between devices – which should, in theory, provide
better security. On macOS we exploited a spatial vulnerability,
where more data is exposed to the NIC than it needs to operate.
On Linux, this is also possible – devices are exposed pages
of 4KiB granularity, and data is leaked from other parts of the
same page. Can an attacker, as a NIC, force further leakage?
Attack story 6: Poor allocators and kernel NAT dispatch
tables
We studied a Fedora 25/kernel 4.8 desktop with a genuine Intel
82574 motherboard NIC that used the e1000e driver. A primary

function of the driver is to allocate skbuff s for incoming packets.
These come from a pool, but the data buffers are allocated with
a general kernel allocator, based on the maximum packet size.
When 2KiB buffers are allocated, the other half of the 4KiB
page is a 2KiB allocation from another part of the kernel. Using
SystemTap tracing [54] we dumped pages that were exposed to
the read queue of the Intel NIC. In these we found much kernel
data, for instance the dispatch table for the nf_nat Network
Address Translation packet rewriting functions. Since the NIC
can write this table, a malicious function could be attached
which rewrites destination addresses of packets to exfiltrate to a
malicious Internet server.
Attack story 7: Spatio-temporal attack – UNIX domain
sockets and VPN traffic
Having been given a packet, the NIC should update the ring buffer
pointer to indicate the packet was accepted for transmission. Until
the NIC updates the pointer, Linux will keep the window open
assuming the NIC is still busy. We conceived a spatio-temporal
attack where a malicious NIC can thus force the window to
stay open and monitor data in other parts of the window.

We modified our FPGA NIC to drop return updates, causing
windows to be left open. We then watched as other parts of the
pages were reused over time. In the windows we saw syscall
kernel stacks (not writable, but enough to break ASLR for
kernel code and all data memory); UNIX domain socket traffic
(as used by security protocols such as SSH agent authentication)
and plaintext VPN traffic.

B. PCIe configuration vulnerabilities
PCIe allows devices to self-describe. A region of memory

called configuration space contains a description of the device,
accessed by special configuration request packets.

Configuration space provides information such as vendor,
device type and ranges of registers the device provides. Additional
features are indicated by capabilities, data structures that describe
optional functionality such as power control. Firmware and oper-
ating systems use this data to understand what devices are present
in the system and attach the appropriate software drivers to them.

This not only allows the attacker to select the device driver
to target, but also to manipulate configuration of PCIe by the
OS’s bus management framework to maximize advantage during
an attack.
Attack story 8: Full IOMMU bypass with ATS
PCIe can allow devices to carry out IOMMU translations
themselves, bypassing the central IOMMU, with the rationale
that devices can implement IOTLBs that are tailored to their
requirements. This feature is called ‘Address Translation
Services’ (ATS) in the PCIe specification, and ‘Device TLBs’ by
Intel. Memory requests that have been translated by the device
have a header bit set, which implies that the IOMMU does not
need to apply translation. A device that supports ATS has the
ATS capability in its PCIe configuration space, and the feature
must be enabled by the OS otherwise such requests are dropped.

Linux’s IOMMU subsystem allows any device with this PCIe
capability to use ATS. We modified our NIC model to report
support for ATS, and confirmed Linux enabled it.

Without the ATS capability, no memory windows were
accessible to our device. When the device advertised ATS support,
Linux enabled the ATS feature in the PCIe switches. Then we set
the ‘already translated’ bit in each memory packet, and we had un-
restricted access to memory. PCIe Access Control Services (ACS)
can block such ‘pre-translated’ requests however this was not

9



Fig. 6: When a malicious Thunderbolt device is attached,
Windows prompts for access without a description of what
rights are being requested. Users cannot make an informed
decision whether to enable a device.

enabled by default, perhaps due to performance considerations.
Other OS FreeBSD, macOS and (we suspect) Windows do

not support ATS, so are not vulnerable to vulnerabilities of this
nature. Of our test machines, only our server and Dell laptop
supported ATS.

VIII. DEVICE ACCESS CONTROL
In previous sections, we have explored the vulnerability space

of operating system IOMMU protection using the Thunderclap
platform. Here we briefly address access control security features
of peripheral interconnects. These are largely orthogonal to the
broader attack surface we have described but must be subverted
by an attacker in practice.

1) PCIe: lacks protections to vet, block, or audit unauthorized
devices. An attached device is automatically allowed to send and
receive packets. The IOMMU filters only memory traffic. PCIe
Access Control Services (ACS) can block other types but only in
limited circumstances. Apart from pluggable ExpressCards, most
PCIe devices are internal. Compromising the firmware of existing
internal devices is thus the primary attack vector against PCIe.

2) Firewire: has no access-control: all connected devices
are given rights to generate memory transactions. While mostly
obsolete, adaptors from Firewire to Thunderbolt still provide
an attack vector.

3) Thunderbolt (TBT): tunnels PCIe and DisplayPort (DP)
video, over USB Type-C or miniDisplayPort connectors. Users
can be (deliberately) confused whether a port supports TBT or
just native USB/video. TBT supports an access control protocol,
but it concerns only the TBT-PCIe bridge device and not the
PCIe device beyond it. A PCIe device can be replaced without
the access-control mechanisms being aware [21] and the system
cannot query a PCIe device before enabling DMA.

MacOS applies whitelisting for Thunderbolt devices, keyed
on their ID ROM. Apple’s requirements are unclear, but
generally a device sold as ‘Mac compatible’ will be on the
whitelist. Once whitelisted, a device is free to make PCIe
transactions, and all of the vulnerabilities that we describe
will apply. Any whitelisted Thunderbolt device could perform
our attacks. Many Thunderbolt to PCIe bridges (intended for
external GPU enclosures) are whitelisted, so the attacker has a
variety of choices. On a Mac, we could switch out the internal
PCIe board of our Thunderbolt docking station, and the new
PCIe device would be accepted by the OS without any messages
or prompts. For example, a Thunderbolt device shaped as a
‘charger’ is indistinguishable from a USB-C charger.

Windows: Windows currently uses a Thunderbolt prompt as
its only defense against DMA attacks: an approved device has
full access to all of system memory. UEFI firmware settings
allow TBT to operate in several modes – everything allowed;
USB/DisplayPort only; always prompt the user; or ‘secure
mode’, which checks a token previously saved on the device. On
our Dell laptop, the default firmware setting prompts for each
device. In Windows the user is prompted whether to disable
PCIe access, allow only once, or accept and remember the
setting. The prompt gives the TBT device name, which can be
content-free (Figure 6), and does not represent the actual PCIe
devices connected to the TBT bridge [21]. For a Thunderbolt
dock with a trojan PCIe device inside, the prompt is no
different. Additionally, replacing the PCIe board in an approved
Thunderbolt device with a malicious one does not cause a
subsequent re-authentication [21]. Since users become habituated
to prompts, and can be misled by the physical shape of the
device, they can be tricked into accepting a malicious device.

Linux will accept TBT devices that are authorized by the
firmware and connected at boot. Patches for approval of hotplug
devices have been produced by Intel [36] and distributions are
beginning to implement user interfaces.

FreeBSD has no TBT hotplug support, although it will
accept devices that are connected at boot and authorized by
the boot firmware, as they present as generic PCIe.

IX. DISCUSSION AND MITIGATIONS
Our work with vendors (see Section XI) has caused them

to ship mitigations to the specific attacks we have described.
However, many of the vulnerabilities we uncovered concern
the behavior of fundamental operating system components such
as kernel memory allocators, IOMMU-controlling subsystems,
and peripheral device drivers. In this section we consider how
vulnerabilities in operating system IOMMU protection may be
mitigated and why doing so is not necessarily straightforward.

A. New adversary models
Fundamentally, a change in threat model of operating systems

and device drivers is needed. Peripherals can no longer be
considered trustworthy and should be removed from system
TCBs. OS developers (and attackers) have long understood
that, despite using an MMU to separate kernel and user process,
the system-call interface is a rich attack surface on the kernel.
The interface offers breadth and depth of interaction with
complex kernel subsystems, any of which might suffer a security
vulnerability yielding ring-0 privilege. Our work shows that, with
a shift in adversary model, I/O peripheral DMA interfaces offer
an equally rich attack surface despite use of the IOMMU: the
complex performance-sensitive feature-rich concurrent shared-
memory interfaces used by peripherals can influence the behavior
of numerous kernel-resident device drivers and subsystems.

Some of our discoveries reflect simple and easily corrected
implementation mistakes. For example, I/O buffers should
not be allocated from the same pool as kernel jump tables.
Doing so would enable a malicious peripheral to gain arbitrary
privileged code execution trivially by exploiting spatial or
temporal vulnerabilities. More fundamentally, however, current
OS designs expose millions of lines of ring-0 device-driver code
to adversaries which they were never designed to protect against.
Even with careful review, drivers are unlikely to resist attacks –
and, as with system calls, the attacker is given their choice of code
to attack: PCIe devices can declare the device ID of the weakest
driver. Mitigations against system-call exploits, such as KASLR,

10



can be useful. However, they are no help if undermined elsewhere
– as for KASLR when device drivers leak kernel pointers.

B. Performance
Previous work describes two main performance problems with

the IOMMU. These are IOTLB pressure (caused by a large
number of in-flight mappings fighting for limited IOTLB space),
and the slow speed of IOTLB invalidations [3], [9], [48]. As a
result, there is considerable cost to turning on the IOMMU by
default, which may explain why Linux and FreeBSD do not do so.

These performance concerns complicate mitigating
vulnerabilities in operating system IOMMU protection.
Specifically, providing better protection may involve creating
more IOMMU mappings to isolate individual data objects (to
address spatial vulnerabilities) and invalidating the IOTLB more
frequently or in performance-critical code paths (to address
temporal vulnerabilities). Both of these techniques increase
IOTLB pressure and reduce overall system performance, which
makes adopting them less straightforward.

Some prior work describes improvements to the way the
IOMMU is used, which claims to ameliorate this cost [3],
[40]–[43], [53], although not addressing all of our vulnerabilities.
Markuze [42] proposed shadow buffering, an IOMMU driver
design that addresses both the spatial and temporal vulnerabilities.
It involves copying data to and from a region of memory
that is always accessible to a peripheral on map and unmap
calls. While shadow buffering provides protection from known
DMA attacks, its performance cost prevents it from providing
a complete solution in practice. They later improve with
DAMN [43], a scheme which implements a special allocator
for pre-IOMMU-exposed packets. Since these allocators are
dedicated to a particular NIC, it reduces invalidation and IOTLB
churn, although all received packets must still be copied out
of these buffers (increasing cache pressure) and inter-NIC traffic
(for example, when routing) would require double-copying.

Address utilization study. Much of the focus of prior work
has been on network stacks. We investigated whether similar
work would apply equally to other device classes. In particular,
much of the work focuses on either copying or pre-allocation
of IOMMU-exposed memory.

We ran a number of benchmarks to study physical address
usage across different device classes. The goal was to better
understand whether work improving network stacks will
generalise to other devices.

We tested Windows 10 Enterprise 1703 and Ubuntu 16.04
(kernel 4.14) with the IOMMU disabled, in each case recording
the ‘natural’ physical addresses devices use for DMA. We did this
by interposing a PCIe analyzer between the device’s PCIe card
and a slot on a Supermicro C9X299-RPGF motherboard, with
an Intel i9-7940X 14-core CPU and 16GiB of RAM. 10 Gigabit
Ethernet (Intel X520-DA), AHCI host controller for SATA storage
(ASM1061) and GPU (AMD RX460 2GiB) cards were tested.
Due to limitations of our PETracer ML analyzer, devices were
restricted to PCIe Gen1 x4 (10Gbps total bandwidth), and trace
recordings limited by the analyzer’s buffer (2GiB of packets after
filtering). These constraints reduce the speed of operation and the
length of recording time, but do not affect the general distribution
of measurements, which are not performance-sensitive.

We ran workloads designed to test behavior of full applications,
rather than microbenchmarks, mostly based on the Phoronix Test
Suite [35]. Due to OSes use of zero-copy techniques, microbench-
marks that replicate behavior of applications in a simplified way

– with a smaller memory utilization – may not be representative.
Figure 7 shows address heatmaps for network, storage and

graphics workloads that are representative of our dataset. They
plot addresses on a 12th-order Hilbert curve (after [45]) where
any contiguous address range appears as a block. For readability,
each pixel aggregates 256KiB of address space.

Figures 7a, 7b show the memory reach of networking is fairly
small, since packet buffers are often reused. This was repeated
across other benchmarks testing both small packet roundtrips
and bulk transfers which fully utilized the NIC.

Figure 7c is typical of storage behavior, in which much larger
blocks are transferred – even, as in this case, when accessing
small files. GPU workloads (figs. 7d, 7e) show a much broader
reach, but in small blocks surrounded by memory untouched
by the GPU. Figure 7e depicts a workload that will not fit in
GPU memory, leading to it spilling to system memory across
PCIe and yet broader memory footprint.

From these we can see that storage and graphics have much
richer, more complex patterns than networking. A difference can
be seen between purely communication devices, and those where
a dataset is truly shared between CPU and device, as with the
GPU. In particular, given small IOTLB sizes (64 in [48]), setting
up thousands or millions of mappings for pages for a GPU is
likely to cause heavy IOTLB pressure. Superpages, 2MiB or 1GiB
of contiguous physical address space per entry, may help to reduce
the IOTLB footprint. However, memory utilization in compute
workloads (such as 3D models) may be difficult to reorganize to
suit the IOMMU, or that may have an unacceptable performance
cost for the application. Other work, for GPUs and other accelera-
tors, indicates the performance problem is so bad that others [23],
[26] have proposed redesigning or removing the IOMMU com-
pletely. Thus, the IOMMU performance problem is still present.

C. Mitigations and feasibility
To completely protect against malicious peripherals, changes

in system design must be made to reflect their untrustworthy
nature and removal from the TCB. Specifically, we recommend
(1) exposing to peripherals only the minimum amount of
data required for them to function correctly, with the most
restrictive access permissions possible; (2) eliminating temporal
vulnerabilities by ensuring IOMMU mappings are completely
destroyed before IOMMU-mapped memory is processed, or
reused by the host; (3) enforcing per-device I/O virtual address
spaces to limit the ability of one malicious device to compromise
the function of non-malicious devices.

There is a trade-off space involving software techniques for
using IOMMU hardware: more safe use disrupts current software
practices (e.g., colocating I/O data and kernel metadata or passing
kernel pointers to devices) and performance (requiring additional
memory copying/zeroing, greater memory fragmentation, or
synchronous IOTLB invalidation). Adding expensive operations
to performance-critical code paths can significantly decrease
I/O throughput, which represents a barrier to implementing
better protections. Concern about code changes should also not
be underemphasized: seemingly Apple deemed restructuring
their network stack to avoid leaking kernel pointers too invasive,
instead encrypting them – contrasting with the preferable Linux
design choice of placing them in a separate unmapped page.

These performance and implementation costs make complete
protection from malicious peripheral devices challenging to
achieve in practice. There is currently no general-purpose
solution that provides protection from malicious peripheral

11



0

4GiB

6GiB

8GiB

10GiB

12GiB

14GiB

16GiB

a Linux 10G ethernet,
PostgreSQL pgbench, 100
remote clients

b Windows 10G ethernet,
PostgreSQL pgbench, 100
remote clients

c Linux AHCI SATA,
kernel compile, 28 threads

d Windows 10 GPU,
Final Fantasy XV DirectX
1080p, tutorial mode

e Windows 10 GPU,
Superposition DirectX 4K
benchmark

Fig. 7: Physical address heat maps for different I/O workloads. Storage and graphics workloads are much richer than networking which
often reuses smaller regions of memory buffers. Colors: white=unused, blue=lightly used, orange/red=heavily used. Each pixel aggregates
256KiB of address space, contiguous addresses form a block. (a) annotates the address layout of the 16GiB address space depicted.

devices without significant performance degradation, and many
partial mitigations are not implemented in commodity operating
systems, perhaps because of their impact on existing codebases.
Below we discuss some potential mitigations, briefly outlining
their effectiveness and implementation costs.

Device-specific I/O virtual address spaces can be implemented
with small changes to an IOMMU driver, mitigating the
ability of one malicious device to compromise the function of
non-malicious devices (although not in themselves preventing
PCIe ID forgery on DMA writes), and do not significantly affect
system performance.

Allocator hygiene is a basic improvement: I/O data structures
and sensitive kernel structures should not be allocated from the
same pools. This fixes obvious spatial vulnerabilities, but it does
not prevent I/O data structures from containing sensitive fields that
a malicious device could exploit and does not segregate I/O data
belonging to different devices or DMA transactions. This change
would cause a relatively minor impact on existing codebases and
performance, requiring the creation of new allocator pools and
modification of I/O subsystems to use them. Spatial segregation
extends allocator hygiene so that devices have access only to the
minimum amount of data required for them to function correctly.
I/O data is isolated from all other data (including kernel data and
control fields in existing I/O data structures) and from I/O data
belonging to different devices or DMA transactions. I/O control
structures such as descriptor rings necessary for the device to
function are similarly isolated. This change would eliminate
spatial vulnerabilities but come at a significant implementation
and performance cost. I/O data structures (e.g., network buffers)
would need to be redesigned to separate I/O data from other
fields, and the corresponding subsystem and device drivers
would require non-trivial code changes to use the new structures
and to isolate their data correctly. Isolating data in distinct pages
would reduce performance by increasing memory usage, the
number of IOMMU mappings, and hence IOTLB pressure.

Synchronous IOTLB invalidation would protect against tempo-
ral vulnerabilities by ensuring IOTLB invalidations are completed
before the IOMMU driver reports them as such. Adopting
synchronous IOTLB invalidation requires only trivial changes to
the IOMMU driver, but can reduce throughput by as much as 80%
for high-performance I/O workloads [42]. Alternatively, memory
for I/O data could simply not be reused or reused only once a
corresponding asynchronous IOTLB invalidation has completed,
which would require changes to I/O memory allocators and reduce

the efficiency of memory usage but perhaps have a less significant
effect on I/O throughput. However, this change for reuse would
not necessarily ensure that IOMMU mappings are completely de-
stroyed before their underlying memory is processed by the host.

Buffer pre-allocation (as in [42], [43]) involves allocating mem-
ory for device I/O from a special pool that is perpetually exposed
via the IOMMU. Some pre-allocation strategies involve copying
data to and from the pool on IOMMU map and unmap calls, and
some use memory from the pool for device I/O directly. Copying
techniques mitigate spatial and temporal vulnerabilities when
applied correctly, because they can provide protection at arbitrary
granularity and copy specific fields from existing data structures.
They require modifications only to existing I/O memory allocators,
but they introduce negative cache effects and a significant
performance overhead. Conversely, schemes that use memory
from pools directly require modification to I/O allocators, I/O data
structures, I/O subsystems (since the subsystems must determine
before allocation time with which device to associate I/O data).
They also introduce a new type of vulnerability because devices
could modify pool memory that is used to store I/O data after it
has passed system security checks (e.g., modifying the source IP
address of a network packet after it has passed a firewall filter).

Byte-granularity or non-paged IOMMUs could prevent spatial
vulnerabilities but would need a new hardware paradigm. Such
range-based IOMMUs would require new drivers and have
different properties related to translation lookup and IOTLB
caching and invalidation.

Memory encryption would allow devices to have arbitrarily-
sized memory regions only they can interpret. This would
need hardware changes and transforms the problem into one
of key distribution. Different components (NIC, PCIe switch,
driver, network stack) have complex relationships, and safely
distributing and revoking keys is a hard problem. AMD’s
memory encryption [33] does not handle this problem, allowing
DMA only when a single system-wide key is used.

X. RELATED WORK
We divide prior work into the categories of peripheral

memory access attacks that do not work against systems with
basic IOMMU protections, carried out by previous attack
platforms and by compromising firmware on existing devices;
attacks against IOMMU-enabled systems that mostly exploit
vulnerabilities in IOMMU configuration; and other uses of the
IOMMU. In some cases we build on this work; in other cases
prior work is orthogonal.

12



DMA attacks may be divided into those that involve attaching
a hardware/software platform to a victim system, and those that
compromise firmware of existing devices. The goals may be
similar, but the route is quite different.

DMA attacks and attack platforms. DMA attacks were of
concern even on 1960s machines [14]. More recently, DMA
attacks have been performed against modern systems, using
vectors such as Firewire, PCI and PCIe [6], [7], [12], [13], [16],
[31], [58]. A number of these have spawned generic DMA attack
platforms such as SLOTSCREAMER [19], PCILeech [20], [21]
and Inception [39]. These platforms can attack many operating
systems over various hardware interfaces. They steal sensitive data
like encryption keys, violate kernel security policies, and even
take complete control of a target machine. However, all of these
attack platforms depend on unrestricted memory access to scan for
sensitive structures or modify a specific location in memory. They
do not work against systems with basic IOMMU protections. Ad-
ditional reverse engineering efforts focused on Thunderbolt [56]
and demonstrated DMA attacks via Thunderbolt 2 [20] and
Thunderbolt 3 [21], but found them blocked by the IOMMU.

Compromised device firmware. Other work [59], [60],
[62], [63] replaced the firmware of existing devices: allowing
basic DMA attacks, but no more potent than those above.
Vulnerabilities of NICs [17], [18] and Wi-Fi chips [5] allowed
arbitrary code injection via crafted packets. DMA attacks were
thus possible remotely. Much of this work cites IOMMU use
as an effective mitigation.

Subverting the IOMMU. Most prior work on bypassing
the IOMMU to carry out DMA attacks focused on exploiting
architectural or boot-time configuration weaknesses, rather than
OS-controlled IOMMU protections.

Lone Sang [37] hypothesized a number of IOMMU attack
vectors without demonstrating them, and hence did not study OS
behavior. They suggest modifying IOMMU page table structures,
ACPI tables, and configuration registers. However, if an IOMMU
is configured to correctly protect memory, peripheral devices are
unable to modify these structures. The authors also suggested
ATS support might allow bypass of the IOMMU. The only
attack demonstrated in this paper is PCIe ID spoofing. Here, a
malicious device spoofs the bus-device-function (BDF) ID of a
legitimate NIC to inject malicious packets over DMA and poison
the ARP cache of a victim machine. This is a PCIe weakness
rather than an IOMMU one. Additionally, any NIC, even one
without DMA access, can poison the ARP cache without needing
to use this PCIe attack. Lone Sang later built a PCIe fuzzer that
found the same vulnerability [38]. (We accidentally verified this
weakness due to a bug when developing our platform, in our
case spoofing interrupts.) They also implemented a keylogger
that can read keyboard input and send keystrokes through
peer-to-peer PCIe legacy IO requests. These are different from
DMA and the IOMMU does not control this channel.

Other attacks have bypassed the IOMMU by racing the
IOMMU setup at system boot. Many devices enable DMA at
boot time, before the OS is launched and IOMMU enabled. Wo-
jtczuk [68] modified ACPI tables during boot so the OS believed
no IOMMU was present. ThunderGate [59] contains a firmware
image that deploys a malicious PCI Option ROM containing code
the system will execute – a result duplicated by others [50]. A
weaponization of this technique is the Thunderstrike bootkit [27]
and a similar attack was used by the CIA [24], and to attack
Windows VBS [22]. Morgan [46], [47] enabled DMA by rewriting
the IOMMU page tables while they were being created, before

the IOMMU was fully enabled. Apple and recently Microsoft
and partners have blocked such boot-time vulnerabilities.

Subsequent to our disclosure to vendors and to others in the
community, some further IOMMU attacks have been published.
Beniamini [10], [11] compromised the firmware of a Broadcom
PCIe Wi-Fi chip using an over-the-air exploit. They used this
device for DMA attacking the main OS, finding the ARM
IOMMU was not used on his Android platforms. On iOS a
custom IOMMU is used: they managed to exploit OS ring-buffer
handling code to modify IOMMU mappings. Kupfer [34]’s
masters thesis also reproduced some attacks similar to ours.

Other uses of the IOMMU. Additional work has been pub-
lished on the security and performance considerations of IOMMU
use by hypervisors to keep guest operating systems isolated,
while giving them direct access to peripheral devices [52], [66],
[67]. Hypervisor-related IOMMU work is both complementary
and orthogonal to our work. Other work addresses IOMMU
security but has a substantially different threat model [70].

XI. DISCLOSURE
We disclosed these vulnerabilities to OS vendors starting in

2016 and have collaborated on mitigations over two years.
To mitigate our control-flow attacks, macOS 10.12.4

introduced a new code-pointer blinding feature, used when mbuf
pointers are exposed via the IOMMU. This technique limits
the effectiveness of attackers in injecting kernel pointers, but
leaves open a number of data fields, including data pointers,
that could leave the system exposed to further vulnerabilities.

After ongoing dialogue, Microsoft announced Kernel DMA
Protection to enable IOMMU support in devices shipped with
Windows 10 1803 (but not earlier firmware). They confirmed the
vulnerabilities in this paper remain a concern, in particular, spatial
vulnerabilities caused by page-sharing given that I/O memory is
allocated from a general pool; they stated they will investigate
this for subsequent releases. Critically, documentation for device-
driver authors does not yet explain how to program robustly in
the presence of a DMA-capable attacker. However, enabling the
IOMMU will bring Windows into line with other platforms.

Linux’s kernel security team considers our attacks within their
threat model. They stated that, because Linux is used in many
different environments, the problems are difficult to solve in the
general case. For now, device authentication schemes remain the
primary defense. Citing our disclosure, Intel’s work in kernel 4.21
enables the IOMMU for Thunderbolt ports and disables ATS.

The FreeBSD Project indicated that malicious peripherals
are not currently within their threat model for security response,
although they were concerned about these attacks, and requested
a copy of the paper for further review.

In conversation with one vendor of widely used notebook
computers that do not currently include Thunderbolt 3, it was
clear that IOMMU-bypass attacks via Thunderbolt were both
within their threat model and would compromise intended
security protections of their system. They stated that they would
want to understand how to address these attacks before adding
Thunderbolt to new product lines.

We are continuing our outreach to further vendors to establish
whether these attacks are within their accepted threat models, and
what mitigations they may see as appropriate. The widespread
deployment of USB Type-C with Thunderbolt 3 increases the
relevance of this work across a range of mobile devices, where
physical access by attackers, as well as the promiscuous use
of adapters, dongles, and chargers will be a growing concern.

13



XII. FUTURE WORK
The vulnerability space available when the IOMMU is enabled

is much richer than might have been expected. This presages
a wide range of attacks. Most obviously, OSs unintentionally
expose data structures with a rich semantic content to peripherals.
Mining these structures for further vulnerabilities and exploit
techniques is likely to be a profitable field.

Additionally, device behaviors are complex, and the
IOMMU’s exposure depends on those device behaviors. Further
vulnerabilities are likely when a device opens new windows,
extends existing windows, or keeps windows open longer.

A natural extension of our work would consider mobile
and system-on-chip platforms. A system-on-chip comprises
a complex mesh of parts with access to memory, only some
of them labeled as processors. A control compromise in one
part (e.g., an LTE radio, audio controller, or vision processing)
affects safe operation of another (e.g., engine management or
navigation of a vehicle). The IOMMU is supposed to keep these
apart. In this space the OS, driver, and device stack are quite
different, yet have faced little scrutiny.

XIII. CONCLUSION
We have demonstrated that the vulnerability space exposed

to malicious peripherals can be broad and nuanced. Commodity
operating systems have largely recognized the threat, and use
the IOMMU to protect against DMA attacks.

However, it is not enough to simply isolate device memory, as
implemented by MacOS in 2012 and now Windows 10 1803. De-
vices interact deeply with the device driver, and with other parts of
the operating system. Like user processes using the system-call in-
terface, device implementations communicating over the IOMMU-
kernel shared-memory interface can stimulate complex vulnerable
behavior. Moreover, malicious devices can mold themselves to tar-
get vulnerable interfaces, choosing the weakest software to attack.

The threat models of operating-system vendors have failed
to take this into account. It is not sufficient to simply enable
basic IOMMU protections in the PCIe bus framework and
consider the job finished. Our findings show there is no defense
in depth: the layers beyond, such as communication stacks and
memory allocators, are not hardened against malicious devices.
Close engagement with multiple OS vendors has led to marked
improvement in IOMMU security and vulnerability mitigation
through now-deployed software updates.

In a world where computers are smaller and more devices are
externally pluggable (especially with the ubiquity of USB-C),
malicious peripherals can be powerful adversaries.

ACKNOWLEDGMENT
The authors would like to thank Herbert Bos, Chris Dalton,

Matt Evans, Antonio Galvan, Cristiano Giuffrida, Mark Hayter,
Xeno Kovah, Greg Kroah-Hartman, Markus Kuhn, Ben Laurie,
Steven Murdoch, Chris Riggs, Timothy Roscoe, and Benjamin
Serebrin for their feedback and suggestions. This work was
supported in part by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL),
under contracts FA8750-10-C-0237 (“CTSRD”) and HR0011-
18-C-0016 (“ECATS”). The views, opinions, and/or findings
contained in this report are those of the authors and should not
be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government. This work was
also supported by EPSRC EP/R012458/1 (“IOSEC”). We also
acknowledge Arm Limited and Google Inc. for their support.

REFERENCES

[1] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S. Tokubo,
and D. A. Webb, “Security analysis and enhancements of computer
operating systems,” NIST, Tech. Rep. NBSIR 76-1041, Apr. 1976.

[2] Advanced Micro Devices, Inc., “AMD I/O virtualization
technology: (IOMMU) specification,” Feb. 2015. [Online]. Available:
http://support.amd.com/TechDocs/48882 IOMMU.pdf

[3] N. Amit, M. Ben-Yehuda, and B.-A. Yassour, “IOMMU: Strategies
for mitigating the IOTLB bottleneck,” in 6th Annual Workshop on
the Interaction between Operating Systems and Computer Architecture
(WIOSCA), Jun. 2010.

[4] ARM Limited, “ARM System Memory Management Unit architecture
specification,” Jun. 2016.

[5] N. Artenstein, “Broadpwn: Remotely compromising Android and iOS
via a bug in Broadcom’s Wi-Fi chipsets,” Jul. 2017. [Online]. Available:
https://blog.exodusintel.com/2017/07/26/broadpwn/

[6] D. Aumaitre and C. Devine, “Subverting Windows 7 x64 kernel with
DMA attacks,” HITBSecConf Amsterdam, 2010.

[7] M. Becher, M. Dornseif, and C. N. Klein, “FireWire: all your memory
are belong to us,” Proceedings of CanSecWest, 2005.

[8] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings
of the USENIX Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41–46.

[9] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer, and
L. van Doorn, “The price of safety: Evaluating IOMMU performance,”
in OLS ’07: The 2007 Ottawa Linux Symposium, July 2007, pp. 9–20.

[10] G. Beniamini, “Over the air – vol. 2, pt. 3: Exploiting the
Wi-Fi stack on Apple devices,” Oct. 2017. [Online]. Available:
https://googleprojectzero.blogspot.co.uk/2017/10/over-air-vol-2-pt-3-
exploiting-wi-fi.html

[11] ——, “Over the air: Exploiting Broadcoms Wi-Fi stack,” Apr. 2017.
[Online]. Available: https://googleprojectzero.blogspot.co.uk/2017/04/
over-air-exploiting-broadcoms-wi-fi 4.html

[12] A. Boileau, “Hit by a bus: Physical access attacks with Firewire,” in
Ruxcon 2006, May 2006.

[13] R. Breuk and A. Spruyt, “Integrating DMA attacks in exploitation
frameworks,” University of Amsterdam, Tech. Rep., 2012. [Online].
Available: http://www.delaat.net/rp/2011-2012/p14/report.pdf

[14] D. D. Clark, “An input/output architecture for virtual memory computer
systems,” Ph.D. dissertation, Massachusetts Inst. of Technology, 1974.

[15] J.-C. Delaunay, “Practical DMA attack on Windows 10,” May 2018.
[Online]. Available: https://www.synacktiv.com/posts/pentest/practical-
dma-attack-on-windows-10.html

[16] M. Dornseif, “0wn3d by an iPod: Firewire/1394 Issues,” in Proceedings
of PacSec Applied Security Conference 2004, 2004. [Online]. Available:
https://pacsec.jp/psj04/psj04-dornseif-e.ppt

[17] L. Duflot, Y.-A. Perez, and B. Morin, “What if you can’t trust your
network card?” in Recent Advances in Intrusion Detection. Springer,
2011, pp. 378–397.

[18] L. Duflot, Y.-A. Perez, G. Valadon, and O. Levillain, “Can you still trust
your network card?” CanSecWest/core10, pp. 24–26, 2010.

[19] J. Fitzpatrick and M. Crabill, “Stupid PCIe tricks, featuring the NSA
Playset,” in Proceedings of DEFCON 22, 2014.

[20] U. Frisk, “Direct memory attack the kernel,” in Proceedings of
DEFCON’24, Las Vegas, USA, Aug. 2016.

[21] ——, “DMA attacking over USB-C and
Thunderbolt 3,” Oct. 2016. [Online]. Available:
http://blog.frizk.net/2016/10/dma-attacking-over-usb-c-and.html

[22] ——, “Public FPGA based DMA attacking,” in 34c3, 2017.
[23] H.-C. Fu, P.-H. Wang, and C.-L. Yang, “Active forwarding: Eliminate

IOMMU address translation for accelerator-rich architectures,” in 55th
Annual Design Automation Conference, 2018.

[24] S. Gallagher, “New WikiLeaks dump: The CIA built Thunderbolt
exploit, implants to target Macs,” Mar. 2017. [Online]. Available:
https://arstechnica.com/security/2017/03/new-wikileaks-dump-the-cia-
built-thunderbolt-exploit-implants-to-target-macs/

[25] T. Garfinkel, “Traps and pitfalls: Practical problems in system call
interposition based security tools,” in NDSS 2003.

[26] Y. Hao, Z. Fang, G. Reinman, and J. Cong, “Supporting address

14

http://support.amd.com/TechDocs/48882_IOMMU.pdf
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://googleprojectzero.blogspot.co.uk/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.co.uk/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
http://www.delaat.net/rp/2011-2012/p14/report.pdf
https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.html
https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.html
https://pacsec.jp/psj04/psj04-dornseif-e.ppt
http://blog.frizk.net/2016/10/dma-attacking-over-usb-c-and.html
https://arstechnica.com/security/2017/03/new-wikileaks-dump-the-cia-built-thunderbolt-exploit-implants-to-target-macs/
https://arstechnica.com/security/2017/03/new-wikileaks-dump-the-cia-built-thunderbolt-exploit-implants-to-target-macs/


translation for accelerator-centric architectures,” in High Performance
Computer Architecture (HPCA), Feb 2017.

[27] T. Hudson and L. Rudolph, “Thunderstrike: EFI firmware bootkits for
Apple MacBooks,” in Proceedings of the 8th ACM International Systems
and Storage Conference. ACM, 2015, p. 15.

[28] Intel Corporation, “Thunderbolt technology: Technology brief,” 2012.
[29] “Intel R©Virtualization Technology for Directed I/O Architecture

Specification,” Intel Corporation, 2014.
[30] Intel Corporation, “ThunderboltTM 3 – the USB-

C that does it all,” May 2015. [Online]. Available:
https://thunderbolttechnology.net/blog/thunderbolt-3-usb-c-does-it-all

[31] A. Ionescu, “Getting physical with USB Type-
C,” in Recon Brussels, 2017. [Online]. Available:
http://alex-ionescu.com/publications/Recon/recon2017-bru.pdf

[32] S. S. John, “Thundergate.” [Online]. Available: http://thundergate.io/
[33] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” Apr. 2016.

[Online]. Available: http://amd-dev.wpengine.netdna-cdn.com/wordpress/
media/2013/12/AMD Memory Encryption Whitepaper v7-Public.pdf

[34] G. Kupfer, “IOMMU-resistant DMA attacks,” Master’s thesis, Technion
- Israel Institute of Technology, May 2018.

[35] M. Larabel and M. Tippett, “Phoronix Test Suite v8.0.0.” [Online].
Available: https://www.phoronix-test-suite.com/

[36] Linux kernel development community, “The Linux kernel user’s
and administrator’s guide: Thunderbolt.” [Online]. Available:
https://www.kernel.org/doc/html/v4.13/admin-guide/thunderbolt.html

[37] F. Lone Sang, E. Lacombe, V. Nicomette, and Y. Deswarte, “Exploiting
an I/OMMU vulnerability,” in 5th International Conference on Malicious
and Unwanted Software (MALWARE), 2010.

[38] F. Lone Sang, V. Nicomette, and Y. Deswarte, “A tool to analyze potential
I/O attacks against PCs,” IEEE Security & Privacy, vol. 12, no. 2, pp.
60–66, Mar 2014.

[39] C. Maartmann-Moe, “Inception.” [Online]. Available:
https://github.com/carmaa/inception

[40] M. Malka, N. Amit, M. Ben-Yehuda, and D. Tsafrir, “rIOMMU: Efficient
IOMMU for I/O devices that employ ring buffers,” in 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015.

[41] M. Malka, N. Amit, and D. Tsafrir, “Efficient intra-operating system
protection against harmful DMAs,” in 13th USENIX Conference on File
and Storage Technologies (FAST 15), 2015.

[42] A. Markuze, A. Morrison, and D. Tsafrir, “True IOMMU protection from
DMA attacks: When copy is faster than zero copy,” in 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2016.

[43] A. Markuze, I. Smolyar, A. Morrison, and D. Tsafrir, “DAMN:
Overhead-free IOMMU protection for networking,” in 23rd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2018.

[44] Microsoft, “Kernel DMA protection for Thunderbolt 3,” Oct. 2018.
[Online]. Available: https://docs.microsoft.com/en-us/windows/security/
information-protection/kernel-dma-protection-for-thunderbolt

[45] R. Monroe, “Map of the Internet,” 2006. [Online]. Available:
https://xkcd.com/195/

[46] B. Morgan, É. Alata, V. Nicomette, and M. Kaâniche, “Bypassing
IOMMU protection against I/O attacks,” in 2016 Seventh Latin-American
Symposium on Dependable Computing (LADC), Oct 2016, pp. 145–150.

[47] B. Morgan, É. Alata, V. Nicomette, and M. Kaâniche, “IOMMU
protection against I/O attacks: a vulnerability and a proof of concept,”
J. Brazilian Computer Society, vol. 24, no. 1, p. 2, Jan 2018.

[48] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,

and A. W. Moore, “Understanding PCIe performance for end host
networking,” in SIGCOMM 2018, Aug. 2018.

[49] K. Nohl, S. Krißler, and J. Lell, “BadUSB – on accessories that turn
evil,” in BlackHat U.S. 2014.

[50] D. Oleksiuk, “Dmytro’s rogue PCI-E device,” Apr. 2017. [Online].
Available: https://firmwaresecurity.com/2017/04/07/dmytros-rogue-pci-
e-device/

[51] PCI-SIG, “PCI Express base specification revision 3.0,” Nov. 2010.
[52] G. Pék, A. Lanzi et al., “On the feasibility of software attacks on

commodity virtual machine monitors via direct device assignment,” in
9th ACM Symposium on Information, Computer and Communications
Security (ASIA CCS ’14), 2014.

[53] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir, “Utilizing the IOMMU
scalably,” in 2015 USENIX Annual Technical Conference (USENIX ATC
15), Jul. 2015.

[54] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and J. Chen,
“Locating system problems using dynamic instrumentation,” in 2005
Ottawa Linux Symposium, 2005, pp. 49–64.

[55] Red Hat Inc., “Red Hat achieves Common Criteria Security certification
for Red Hat Enterprise Linux 7,” Oct. 2016. [Online]. Available:
https://www.redhat.com/en/about/press-releases/red-hat-achieves-
common-criteria-security-certification-red-hat-enterprise-linux-7

[56] R. Sevinsky, “Funderbolt: Adventures in Thunderbolt DMA attacks,” in
BlackHat USA, 2013.

[57] O. Shwartz, A. Cohen, A. Shabtai, and Y. Oren, “Shattered trust: When
replacement smartphone components attack,” in WOOT’17, 2017.

[58] snare and rzn, “Thunderbolts and Lightning – very, very frightening,”
in Proceedings of SyScan Singapore 2014, Apr. 2014.

[59] S. St. John, “Thunderbolt: Exposure and mitigation,” Fall 2013. [Online].
Available: http://www.thundergate.io

[60] P. Stewin and I. Bystrov, “Understanding DMA malware,” in 9th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA’12), 2013.

[61] A. Trikalinou and D. Lake, “Taking DMA attacks to the next level,” in
BlackHat USA, Jul. 2017.

[62] A. Triulzi, “Project Maux Mk. II, I 0wn the NIC, now I want a shell,”
in Proceedings of PacSec 2008, 2008.

[63] ——, “The Jedi Packet Trick takes over the Deathstar,” in Central Area
Networking and Security (CANSEC 2010), Mar. 2010.

[64] USB Implementers Forum, “USB Type-C cable and connector
specification,” Jul. 2017.

[65] R. N. M. Watson, “Exploiting concurrency vulnerabilities in system call
wrappers,” in Proceedings of the First USENIX Workshop on Offensive
Technologies, ser. WOOT ’07, 2007.

[66] P. Willmann, S. Rixner, and A. L. Cox, “Protection strategies for direct
access to virtualized I/O devices,” in USENIX 2008 Annual Technical
Conference, 2008.

[67] R. Wojtczuk and J. Rutkowska, “Following the White Rabbit:
Software attacks against Intel VT-d technology,” 2011. [Online].
Available: http://www.invisiblethingslab.com/resources/2011/Software%
20Attacks%20on%20Intel%20VT-d.pdf

[68] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Another way to circumvent
Intel Trusted Execution Technology,” 2009.

[69] J. Yao, V. J. Zimmer, and S. Zeng, “A tour beyond BIOS: Using IOMMU
for DMA protection in UEFI firmware,” 2017. [Online]. Available:
https://firmware.intel.com/sites/default/files/Intel WhitePaper Using
IOMMU for DMA Protection in UEFI.pdf

[70] Z. Zhu, S. Kim, Y. Rozhanski, Y. Hu, E. Witchel, and M. Silberstein,
“Understanding the security of discrete GPUs,” in Proceedings of the
General Purpose GPUs, ser. GPGPU-10, 2017.

15

https://thunderbolttechnology.net/blog/thunderbolt-3-usb-c-does-it-all
http://alex-ionescu.com/publications/Recon/recon2017-bru.pdf
http://thundergate.io/
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.phoronix-test-suite.com/
https://www.kernel.org/doc/html/v4.13/admin-guide/thunderbolt.html
https://github.com/carmaa/inception
https://docs.microsoft.com/en-us/windows/security/information-protection/kernel-dma-protection-for-thunderbolt
https://docs.microsoft.com/en-us/windows/security/information-protection/kernel-dma-protection-for-thunderbolt
https://xkcd.com/195/
https://firmwaresecurity.com/2017/04/07/dmytros-rogue-pci-e-device/
https://firmwaresecurity.com/2017/04/07/dmytros-rogue-pci-e-device/
https://www.redhat.com/en/about/press-releases/red-hat-achieves-common-criteria-security-certification-red-hat-enterprise-linux-7
https://www.redhat.com/en/about/press-releases/red-hat-achieves-common-criteria-security-certification-red-hat-enterprise-linux-7
http://www.thundergate.io
http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf
https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf

	Introduction
	Background
	Interface classification
	Peripheral technologies
	DMA attacks
	IOMMU primer

	Methodology
	Threat model
	The Thunderclap I/O-security research platform
	Baseline to reproduce the state of the art
	Implementing a full device model
	Platform form factors

	Test environment
	Vulnerability space

	Operating-system survey
	Attacks without OS interaction
	Microsoft Windows

	Richer device-driver interaction
	IOMMU usage by network devices
	IOMMU usage by other devices
	Our platform as a NIC
	Shared IOMMU mappings on macOS
	Per-device mappings on FreeBSD

	Exploring the vulnerability space
	Linux
	PCIe configuration vulnerabilities

	Device access control
	PCIe
	Firewire
	Thunderbolt (TBT)


	Discussion and mitigations
	New adversary models
	Performance
	Mitigations and feasibility

	Related work
	Disclosure
	Future work
	Conclusion
	References

