
Detecting Incorrect Build Rules
Nándor Licker, Andrew Rice

Department of Computer Science and Technology
University of Cambridge

Cambridge, UK
{nl364, acr31}@cam.ac.uk

Abstract—Automated build systems are routinely used by
software engineers to minimize the number of objects that need
to be recompiled after incremental changes to the source files of
a project. In order to achieve efficient and correct builds, devel-
opers must provide the build tools with dependency information
between the files and modules of a project, usually expressed in
a macro language specific to each build tool. Most build systems
offer good support for well-known languages and compilers, but
as projects grow larger, engineers tend to include source files
generated using custom tools. In order to guarantee correctness,
the authors of these tools are responsible for enumerating all
the files whose contents an output depends on. Unfortunately,
this is a tedious process and not all dependencies are captured
in practice, which leads to incorrect builds. We automatically
uncover such missing dependencies through a novel method that
we call build fuzzing. The correctness of build definitions is
verified by modifying files in a project, triggering incremental
builds and comparing the set of changed files to the set of
expected changes. These sets are determined using a dependency
graph inferred by tracing the system calls executed during a
clean build. We evaluate our method by exhaustively testing
build rules of open-source projects, uncovering issues leading
to race conditions and faulty builds in 30 of them. We provide a
discussion of the bugs we detect, identifying anti-patterns in the
use of the macro languages. We fix some of the issues in projects
where the features of build systems allow a clean solution.

Index Terms—build tools, exhaustive testing, verification

I. INTRODUCTION

Automated build systems are at the heart of all software
projects, executing the set of actions required to build appli-
cations either from scratch or by incorporating incremental
changes into temporary outputs. Clean builds of modern soft-
ware engineering projects, such as the Linux kernel or MySQL
Server, can take a significant amount of time, but developers
rarely change more than a handful of files between subsequent
builds. In order to maintain productivity, incremental builds are
vital: whenever some files change, automated build systems
recompile only the minimal subset of outputs which depend on
the changes. To enable incremental builds, build tools must be
made aware of the dependencies among the files and modules
in a project. Our goal is to automatically find errors in the
definitions of these dependencies.

In the case of projects which span hundreds of thousands
of lines of code, contain multiple modules, and include a
large number of dependencies, the dependency graphs are
complex and tedious to describe manually. Languages such
as C, C++, Java, and Rust carry, in their syntax, dependency
information which can be exploited to construct dependency

graphs. Instead of manually specifying arguments to compiler
invocations in the macro languages of tools like GNU Make
[1] or Ninja [2], developers provide brief definitions to build
file generators such as CMake [3], Autotools [4], and SCons
[5], describing the high-level structure of a project. Build files
are generated out of these definitions, along with dependency
information extracted by partially parsing the source code
of languages known to the build system generator. Such
generators also permit the integration of custom tools, but
require developers to manually enumerate dependencies.

When engineers write build definitions manually or integrate
custom tools into definitions generated by build system genera-
tors, they might forget to enumerate all dependencies correctly.
These mistakes lead to incorrect incremental builds, where the
final executables are linked with stale objects which were not
recompiled, despite changes to their sources. Parallel clean
builds can also fail because of race conditions: if the build
systems does not know about a dependency between an input
and an output, the job generating the input can be scheduled at
the same time as the job reading it, failing the build. Detecting
and identifying such issues is a time-consuming process —
GNU Make itself was developed because of frustration with
stale builds [6]. A single-threaded clean build which discards
all temporary objects is the easy, yet timewise expensive
fix, wasting engineering resources which could be used more
productively. Lack of proper tooling increases the difficulty of
creating correct build definitions and integrating custom tools
which generate source files into builds.

Consider the following CMake rule from an open-source
project with over 200 stars1 on GitHub:
add_custom_command(
OUTPUT ${expanded_files_h}
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${root}.h.t
COMMAND
${PYTHON_EXECUTABLE} ${PYTHON_DASH_B}
${CMAKE_CURRENT_BINARY_DIR}/generate_helper.py
${root} ${root}.h.t ${ARGN})

Even though the input file is mentioned among the de-
pendencies, the Python script is not included, nor are the
other Python files imported into the root script. A change to
any of those scripts will fail re-generate the desired header
and recompile the binaries that might include it, leading to
bugs which are hard to detect. This is just one example of
a buggy build definition: throughout our evaluation, we un-
cover issues with out-of-source builds, dependencies on tools,

1https://github.com/bastibl/gr-ieee802-11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/186326349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

complex build scripts, the handling of external dependencies,
and manual dependency management, as well as attempts to
address these problems which lead to redundant work.

We describe a new technique, which we call build fuzzing,
to detect these problems. We treat a build as a black box,
without inspecting any of the user-provided or automatically
generated definitions, relying solely on observing the interac-
tions between the build process and the underlying operating
system. We identify the input files of a project and we
update each of them in turn, triggering an incremental build
afterwards. The set of outputs changed during a build is
compared with the set of files expected to change based on
the inferred dependency graph. We report whether the build
tool fails to rebuild any of the expected targets or rebuilds
targets which do not actually depend on the changed input.
We identify race conditions by locating rules which can be
triggered before all of their dependencies are built. We evaluate
our method using open-source projects from GitHub.

The contributions of this paper are:
• A novel method to infer dependency graphs, check the

correctness of incremental and parallel builds, discovering
missing dependencies and race conditions

• Evidence that our approach solves a significant problem,
we tested a large number of open-source projects and
found redundant or missing dependencies in 30 of them,
including the Linux kernel, MySQL Server and Redis

• An analysis and characterisation of the uncovered bugs,
along with a discussion of the deficiencies of build
systems and engineering practices which cause those bugs

All our tools are released under the MIT License and
available at https://github.com/nandor/mkcheck. Artefacts are
available at https://doi.org/10.17863/CAM.35270.

II. BACKGROUND AND RELATED WORK

Build systems come in many flavours, but at their core
they parse a set of definitions typically defined in macro
languages with imperative or functional syntax [1], [7], [8].
These definitions describe the dependency graph among the
modules and files of a project statically before a build (Make,
Ninja, SCons), or specify the steps required to determine the
graphs dynamically during the build (Bazel). Relying on these
dependency graphs, build tools can compile projects from
scratch or identify the minimal set of actions to be executed
to correctly rebuild all outputs after incremental changes.

In the past, there has been little motivation to study issues
with build rules, especially with the goal of finding systematic
problems in build definitions. Previous research considered
the correlation between the size and complexity of projects
and the size and complexity of the build rules that compile
them, as well as the evolution of the build definitions along
with the evolution of the source code compiled by them [9],
[10]. Such studies show that most developers frequently fix
build issues they encounter, but only a few knowledgeable
contributors create new build rules or improve existing ones.
The high impact of build definition maintenance on developer

productivity was quantified without considering the root cause
of the bugs on which developers waste time [11], [12].

We are mostly concerned with extensibility: even though
most solutions satisfy the needs of end-users and offer good
support for the languages they were designed for, the macro
languages they expose to developers of custom tools are fairly
limited and difficult to use. Projects frequently include sources
generated from domain-specific languages using external tools,
requiring custom definitions to be integrated with other build
rules. Unfortunately, even modern build systems assume that
those definitions are developed by a few, knowledgeable
people and fail to offer features to ensure correctness. Only a
few of them offer built-in features which allow the underlying
build graphs to be visualised. We describe the 5 widely used
build systems and build system generators we inspected, along
with their debugging facilities, in Section II-A.

Existing verification methods which analyse the actions
executed by build systems along with the source code of
the rules defining the actions, explored in Section II-B, do
not generalise well because of the difficulties involved in
parsing and understanding the static definitions, which are
fundamentally different across all the build tools.

A. Build Systems

Make [1] has been around for the past 50 years and still
sees widespread use. It trakcs the dependencies of individ-
ual modules, rebuilding the minimal set of targets which
depend on a particular file. Nowadays developers can avoid
writing raw Makefiles, relying on build system generators
which can output Makefiles from brief definitions instead,
automatically detecting and tracking certain dependencies.
Make has multiple implementations and variations available
on GNU, BSD and Microsoft systems. bmake [13], available
on BSD, incorporates dynamic information from system call
traces to rebuild targets whenever system libraries or utilities
change, in addition to the dependencies specified in build rules.
The target of our evaluation was the canonical GNU Make
implementation, available on most Linux distributions.
Ninja [2] is a more recent build tool which performs similar
functions to make, except it was not designed to be human-
readable. Instead, rules are meant to be generated from higher-
level definitions: the tool was first used in the Chromium
project alongside the gyp (generate-your-project) generator.
Ninja outperforms GNU Make when comparing incremental
build speeds and most build system generators support it. The
tool aids debugging by producing a visual representation of
the graph it parses from definitions.
SCons [5] is a highly extensible build system which does not
rely on a custom macro language, allowing developers to write
definitions in Python instead. It has built-in support for auto-
matically discovering C and C++ dependencies dynamically
and can dump a textual representation of dependency graphs.
CMake [3] is a widely-used build system generator. It natively
supports a large number of languages such as C, C++, Fortran
and various assembly dialects. CMake generates complex
recursive Makefiles from concise definitions, detecting and

updating C and C++ dependencies [14]. Both Ninja and
GNU Make definitions can be generated. The macro language
allows developers to specify custom rules, but requires all
dependencies to be manually enumerated in order to ensure
the correctness of incremental builds. Build system generators
require significantly less effort from developers: for example,
in the case of MySQL server, 4000 lines of CMake definitions
generate more than 130,000 lines of GNU Make rules.
Bazel [15] and Buck [16] are modern distributed build systems.
They distinguish themselves by allowing developers to define
their build rules in languages similar to Python and by building
individual targets in the cloud, instead of a single local work-
station. They offer some support for automatically detecting
dependencies between C++ files, however they encourage
programmers to specify the full dependency graphs manually.
In the case of custom rules, they still require dependencies
to be manually enumerated. Similarly to Ninja, dependency
graphs can be queried and visualised.

B. Dependency Graph Inference

In a typical build system the actions required to build some
output are specified along with all the inputs to the underlying
tools. The dependency information is used to enforce the
order in which actions are executed and to identify the set
of outdated targets during an incremental build. Since the
tools are arbitrary processes, the build system has no means of
preventing those tools from inspecting files other than the ones
listed as dependencies. Because of this, dependency graphs
defined by users of build tools cannot be trusted, however
more accurate information can be extracted by inspecting the
interactions among processes and the file system by capturing
the system calls executed during a build. System call tracing
has been previously used to recover true dependency graphs,
by connecting the files written by a process to files produced
by processes which read them. These graphs were applied to
build system migration, linting and refactoring.

CloudMake [17] is a distributed build system by Microsoft
which exposes an interface based on TypeScript to specify
build definitions. As with all new build systems, this project
faced adoption issues as well: the company already had
millions of lines of code compiled using definitions based on
another system. To ease the transition, existing build scripts
were automatically migrated. In order to translate an existing
set of build definitions, dependency graphs were recovered
through system call tracing by instrumenting calls to the
Win32 APIs. Through pattern matching, the nodes represented
by processes were replaced with human-readable build rules,
defined in a higher-level language. Automatic refactoring
was applied to simplify and coalesce build rules. The build
language of CloudMake was formally specified and verified,
however the proofs are limited to a subset of known tools
specified through axioms [18].

depslint [19] is a Python script for linting build rules of
projects using the Ninja build system. It traces system calls
during clean builds and validates incremental builds, emitting
warnings whenever files other than the ones mentioned among

the dependencies are read from during the execution of a build
action. This tool is limited by the fact that it only supports
a single build system whose definitions were not meant to
be written manually, by design. This creates difficulties in
correlating the warnings emitted by the tool with the high-
level definitions which yield the erroneous definitions.

MAKAO [20] is a dependency graph inference tool suc-
cessfully used to reverse engineer the build definitions of the
Linux kernel [21]. This tool is tailored for the GNU Make
build systems and recovers dependency information through a
hybrid approach, by parsing Makefiles and the command line
strings used to invoke the gcc compiler, captured through the
Bourne shell’s xtrace option. The dependency information
was used to gain a deeper understanding of the Linux kernel’s
source code by visualising the dependency graph.

III. OUR APPROACH

Our testing approach is inspired by existing tools which
inspect system calls in order to gain more information about
the underlying dependencies. Instead of using this information
to migrate build rules to a new language or refactor build rules,
we check the correctness of build definitions, regardless of
the build system, in order to find mistakes causing incorrect
incremental builds or race conditions during clean parallel
builds. This approach applies to build systems which performs
compilation in a separate process invoked by the build tool. We
assume that clean builds succeed and that all actions defined
in the rules are correct, if that is not the case, tools such as
MkFault [22] can be used to localise errors.

In order to obtain accurate dependency information for a
project, we perform system call tracing, presented in Sec-
tion III-A, to infer the dependency graphs outlined in Sec-
tion III-B. These graphs can be used to check the correctness
of incremental builds interactively, as developers work on
a project, however we focus on fuzz testing open-source
projects. We describe a method to automatically detect missing
dependencies in Section III-C and race conditions in Sec-
tion III-D. Our system call tracer can infer dependency graphs
for arbitrary projects, provided clean builds are correct.

A. System Call Tracing

Any data persisted by a process must be either an argument
to a system call, written to a memory-mapped files or passed to
another process using an inter-process communication mech-
anism, such as shared memory or pipes. A process can be
viewed as a pure function, transforming input files into one or
more output files. The goal of system call tracing is to recover
the inputs and outputs which link the functions together.

Most systems offer facilities to trace the system calls exe-
cuted by a process, through the operating system (on Linux),
by instrumenting library calls (on Windows through the Win32
APIs and on OS X through libc) or by instrumenting the
kernel (dtrace on OS X and eBPF on Linux). Performance
and complexity vary wildly. Dependency graph reconstruction
requires capturing a subset of all system calls, those which

perform I/O (read, write, mmap, ...) and those which
transfer data between processes (pipes, shmget, ...).
ptrace is a Linux system call, allowing a tracer process to

stop and inspect the registers and memory of a tracee process
whenever a system call is entered or exited in the tracee.
Through ptrace, all system calls executed by a process
can be captured. This approach is expensive: besides the two
context switches between the kernel and the tracee, at least
4 other context switches are required between the tracer and
the kernel to inspect and resume a syscall. The tracee must be
stopped even when the syscall is not relevant to the graph.

Dtrace and eBPF probes can be used to trace relevant
system calls on OS X, Linux and Solaris. Unfortunately,
this method requires disabling System Integrity Protection on
OS X and the installation of additional kernel modules on
Linux. Even though this approach offers significantly better
performance compared to ptrace, it is highly inconvenient.
Furthermore, dtrace does not guarantee intercepting all system
calls since information might be dropped in order to maintain
performance under heavy loads.

On Windows and OS X, system calls are performed through
the standard library: manually invoking the syscall instruc-
tion is highly discouraged. By relying on the functionality
of dynamic loaders or other readily-available instrumentation
tools, the interfaces between builds tools and the system
libraries can be modified in order to capture all system calls.
Unfortunately, this approach is more complex as it not only
requires changes to all system call wrappers (open, close,
write, etc.), but most standard C functions must be modified
as well (fopen, fread, etc.) since the system call wrappers
might be inlined inside the library.

Our inference method uses ptrace, targeting Unix-based
build environments. Unlike existing tools such as BSD make’s
meta mode, our approach correctly traces and handles pipes
and the close-on-exec behaviour of file descriptors. Support
for pipes is important since tools which dump their output to
stdout are commonly used to generate code during builds.

Some build systems make network requests to download
packages (for example, it is fairly common for a build based
on CMake to download external dependencies through wget).
In such cases, we assume that the remote resources never
change once they are downloaded. We do not consider system
calls which read system parameters (such as getrlimit and
getrusage) since these parameters seldom change, nor do
we intercept calls returning the current time, which in the
glibc implementation rely on vDSO instead of executing
actual system calls (gettimeofday).

B. Dependency Graphs

Relying on the arguments and return values of system
call intercepted by ptrace, we use Algorithm 1 to capture
information about all files and processes involved in a build.
The result is a graph with two kinds of nodes, representing
files and processes along with specific metadata. File nodes
track whether the file is a temporary or a persisted object,
along with a list of dependencies to represent renamed files and

symbolic links. Process nodes track their inputs, outputs and
parent processes. During the execution of the algorithm, the
file descriptors introduced by open are tracked and files are
added to the set of inputs or outputs of a process when an I/O
action is performed (read, mmap, ...). The close-on-execute
(CLOEXEC) flag is tracked in order to correctly propagate file
descriptors from parent to child processes.

For example, when the pipe system call is encountered in
cat a.txt | md5 > b.txt, the tracer adds two virtual
files to the state of the process, corresponding to the read and
write ends of the pipe. An additional dependency is added
between the read end and the write end of the pipe. md5
receives the read end of the pipe and calls read on it,
adding the virtual file to its inputs. cat receives the write
end and outputs to it using write, adding the virtual file to
its outputs, allowing the dependency from a.txt to b.txt
to be followed transitively through the virtual files and the
additional dependency between them.
Algorithm 1 Dependency Graph Inference

procs ← { traced process }, files ← ∅
while a child is running do

pid, call details ← PTRACE
p ← procs[pid]
switch call details do

case child = fork():
procs[child] ← p
procs[child].pid ← child
procs[child].parent ← p.pid

case exit(): p.running ← false
case execve(image):

p.ins ← ∅, p.outs ← ∅, p.image ← image
p.files ← files without cloexec from p.files

case fd = open(path, cloexec):
files[path] ← { deleted: false }
p.files[fd] ← { path, cloexec }

case rd, wr = pipe(cloexec):
rdn, wrn ← create unique names for pipes
p.files[rd] ← { rdn, cloexec }
p.files[wr] ← { wrn, cloexec }
files[rdn].deps ← files[rdn].deps ∪ wrn

case read(fd): p.ins ← p.ins ∪ p.files[fd].path
case write(fd): p.outs ← p.outs ∪ p.files[fd].path
case unlink(path): files[path].deleted ← true
case rename(src, dst):

files[src].deleted ← true
files[dst].deps ← files[dst].deps ∪ src

end while
Figure 1 illustrates a dependency graph recovered through

system call tracing during a typical build. Nodes and edges in
green represent the process hierarchy, encoded in the parent
field of the process objects, of the tools invoked by GNU
Make, as well as the various other tools invoked by the gcc
compiler driver. Incoming black edges (ins field) originate
from inputs, while outgoing edges point to outputs (outs field).
Some output files are temporary, indicated by red text: these
are temporary objects deleted by the compiler after emitting
the object files. They are still relevant to the graph as the input
sources are connected transitively to the output objects through
the intermediary assembly files. Additionally, dependencies
between files, stored in the deps field of files, exist between the
two ends of a Unix pipe and also occur when files are moved or

a.c
gcc

cc1

a.h

cc1

cc1

cc1

b.c gcc

b.h

c.c gcc

c.h

main.c gcc

/tmp/cc6TopHE.s as

/tmp/ccbnuR2C.s as

/tmp/ccjWBLhA.s as

/tmp/ccVev01v.s as

out/c.o

out/b.o

out/a.o

out/main.o
gcc ldcollect2 out/main

Fig. 1: Dependency graph inferred from a C project built by GNU Make. Green edges and nodes represent the process hierarchy
of the invoked build tools, the black nodes and edges represent the files which are the inputs and outputs of processes. The
files in red are not persisted after the build. The process running GNU Make itself was omitted.

symbolic links are created. This allows us to correctly handle
pipes, ignored by existing tools such as depslint or bmake.

For the purpose of our analyses, process nodes are only used
to identify the name of the executable which generated a file.
Such nodes are otherwise collapsed, forming a dependency
graph of files. Even though inter-process edges carry a data
dependency through the arguments and environment passed
from a parent to a child process, they are ignored. In a
typical build, the process belonging to the build tool reads
from every file without writing to any, creating a cycle from
outputs to inputs through the process edge which connects
the build system to the tools it invokes. Ignoring these edges
excludes dependencies on build files read by the build tool,
potentially containing the command line arguments passed on
to compilers. Since build files are usually generated from third-
party sources before a build, we are not including them in our
analyses as they would uncover issues with generators, which
are unlikely to occur, instead of validating handwritten rules.

Our graphs are only an approximation of all data dependen-
cies between all objects involved in a build. Since some edges
might be missing (underconstraining) or some outputs might
be redundantly connected to some inputs (overconstraining),
our analyses can result in false positives or negatives.

1) Overconstraining: An overconstrained graph introduces
false positives and negatives: the analysis might report that
a file should be changed when an input is touched, while in
reality data from the touched file does not actually determine
the output. If the build system unnecessarily rebuilds an output
after an input is changed and a redundant path is present in
the graph, the analysis fails to identify the problem.

The granularity of the dependency graph is limited to
processes: if a process produces multiple outputs, dependency
inference cannot distinguish which inputs determine which
output, considering all outputs to be dependants of all inputs.
This is usually not a concern in C/C++/Assembly projects
compiled using GNU Make or CMake since most tools in-
volved in a build either generate a single outputs or all outputs
they generate depend on all inputs.

The lack of information about the flow of data inside a

process prevents our analyses from running Java projects. Java
build systems, such as Maven [23] and Gradle [24], invoke the
compiler as a library instead of creating a separate process.
Since our analysis would create a node having all source files
as inputs and all class files as outputs, the results would not
be relevant. An example of such a graph, inferred by our tool,
is shown in Figure 2. In large Java projects which rely on the
Java Native Interface (JNI), our approach could still be used
to determine the correctness of the native components.

Another source of false positives are Unix pipes. Even
though only data derived from a subset of the inputs might be
transmitted over the pipe, all inputs are dependencies of the
outputs of the reading process, due to transitivity. Pipes are
routinely used in shell scripts, but we have not encountered a
script large enough to introduce redundant edges.

pom.xml

java
multi-module/server/.../Greeter.class

single-module/.../Greeter.class

multi-module/pom.xml

multi-module/server/pom.xml

multi-module/webapp/pom.xml

single-module/pom.xml

multi-module/server/.../Greeter.java

single-module/.../Greeter.java

Fig. 2: An example of an overconstrained graph, obtained by
tracing a Maven build on a sample project. Since Java builds
run in a single process, all inputs are connected to all outputs
through the single process running the Java Virtual Machine.

2) Underconstraining: The inferred dependency graphs
might lack edges between files whose contents depend on
each other, leading to both false negatives and positives in our
analyses. If an edge is missing but the build system specifies
a dependency between the two files, the output is considered
to be redundantly rebuilt. If a dependency exists, but neither
our graph, nor the build system are aware of it, then we fail
to emit a warning if the dependant object is not recompiled.

Despite capturing all interactions between a process and the

operating system, some edges might be missing from the re-
covered graph. Our analysis only considers system calls which
succeed, however failing ones are also important. For example,
C++ compilers search through a large number of directories
in order to locate input files during their preprocessing step:
creating a file in such a directory should trigger a build. We
do not consider the addition or deletion of files to a project, as
we are only concerned with checking existing dependencies,
thus this issue does not affect our results.

Another source of problems are arguments and environment
variables passed to child processes through execve and its
variants: the parameters passed introduce a data dependency,
which we omit to avoid cycles in our graphs, potentially
introduced by the build tools which spawn processes. This
prevents our analysis of builds which involve tools reading
arguments from files, passing them on to child processes.
Algorithm 2 Fuzz Testing Procedure

dependencies ← ∅, ins← ∅, outs← ∅, built by ← ∅
for file ∈ files do

for dep ∈ file.deps do
dependencies[dep] ← dependencies[dep] ∪ file

end for
end for
for proc ∈ procs do

ins ← ins ∪ proc.ins, outs ← outs ∪ proc.outs
for out ∈ proc.outs do

built by[out] ← proc.image
for in ∈ proc.ins do

dependencies[in] = dependencies[in] ∪ out
end for

end for
end for
function ALL-DEPS(file, deps = ∅)

if file /∈ deps then
deps ← deps ∪ {file}
for f ∈ dependencies[file] do

deps ← deps ∪ ALL-DEPS(f, deps)
end for

end if
return deps

end function
for file ∈ ins \ outs do

t0 ← READ-TIMESTAMPS(outs)
TOUCH-AND-BUILD(file)
t1 ← READ-TIMESTAMPS(outs)
changed ← {t|t ← outs, t1[t] > t0[t]}
for f ∈ ALL-DEPS(file) \ changed do

REPORT-MISSING(f, built by[f])
end for
for f ∈ changed \ ALL-DEPS(file) do

REPORT-REDUNDANT(f, built by[f])
end for

end for

C. Fuzz Testing

Our build fuzzing method, which identifies the files in a
project which trigger incorrect incremental builds, is outlined
in Algorithm 2. First, the dependency graph is simplified
by collapsing process nodes and temporary files, retaining a
mapping from output files to the processes that write them.
Next, all relevant input files are identified and incremental
builds are triggered by modifying each file in turn. In the case
of build systems which rely on content hashing, an additional
null terminator or newline is added to the file. Otherwise, the
modification timestamp is simply updated. The set of files

affected by a build is identified by comparing the timestamps
of files before and after the build, retaining the changed
ones. If the set of changed files does not match the set of
expected changes, computed using a depth-first traversal of the
dependency graph starting from the changed file, a diagnostic
message is emitted, identifying the dependencies which were
not rebuilt or were redundantly rewritten, along with the tools
which should have been invoked to build them.

The set of tested files is determined based on the type of
the tested project. Only those files which were read without
being modified during a clean build are considered: in the de-
pendency graph, these are the file nodes without any incoming
edges. Files involved in built-in rules, as files created by the
configuration step of the project, specific to each build system,
are excluded to speed up testing, as they are likely correct.

a.c

out/a.o

a.h out/b.o

out/c.o

out/main.o

b.c

b.h

c.c

c.h

main.c

out/main

Fig. 3: Missing dependencies: blue edges represent the depen-
dencies defined in the Makefile, red edges the missing ones

Figure 3 illustrates a dependency graph used by build
fuzzing, obtained by collapsing the processes and temporary
files of the inferred graph shown in Figure 1. Fuzzing triggers
an incremental build after modifying each of the inputs: the C
header and source files. Incorrect builds are triggered after 3
of the headers are modified, as they are not enumerated in the
dependencies of the object files in the Makefile. The missing
edges, obtained by intersecting the set of outgoing edges of a
node with the set of stale dependants, are highlighted in red.

D. Race Condition Detection

In addition to identifying files which trigger incorrect
incremental builds, our method can be extended to detect
potential race conditions in builds. We consider that a race
condition occurs during a build if the job building an object
is executed before all of its dependencies are built. Because
of race conditions, clean parallel builds can fail spuriously,
as rules can be scheduled to read from missing files. During
incremental builds, objects might be rebuilt from stale inputs.

Our method to detect races is outlined in Algorithm 3.
Through fuzzing, we first find the missing outgoing edges by
intersecting the set of objects reported missing by Algorithm 2
with the set of outgoing edges of a node for all files involved in
a build, not only inputs. For each object we find the set of all
of its transitive dependencies, excluding inputs, in the inferred
dependency graph: the size of the sets indicates how many

objects need to be built before the command generating an
object can be triggered. If the execution order of all commands
was linearised, the size of the set represents the earliest point in
time an object can be built. We compute this index in the graph
with the missing edges removed as well: if the index of a file is
less in this graph, it means that the build system might trigger
the rule generating it sooner in time, before all dependencies
are generated, indicating a potential race condition.
Algorithm 3 Race Condition Detection

function FIND-SCHEDULE(g)
gt ← TRANSPOSE(g), deps ← ∅, schedule ← ∅
for file ∈ TOPO-SORT(g) do

for pred ∈ gt ∩ outs do
deps[file] ← deps[file] ∪ {pred} ∪ deps[pred]

end for
end for
for file ∈ g do

schedule[file] = |deps[node]|
end for
return schedule

end function
partial ← dependencies
for from, to ∈ missing edges do

partial[from] = partial[from] \ {to}
end for
s0 ← FIND-SCHEDULE(dependencies)
s1 ← FIND-SCHEDULE(partial)
for f ∈ files do

if s then1[f] < s0[f]
REPORT-RACE(f)

end if
end for

Figure 4 illustrates a dependency graph with a race con-
dition detected by our method: b.c includes a.h, but the
dependency is not present in the build file. The build tool is
free to schedule the compilation of b.c before the generation
of a.h, leading to an error. In the correct graph, a.o can be
scheduled earliest at time 3 and b.o can be scheduled at time
4. In the graph defined in the build file, both objects can be
scheduled at time 3, indicating the possibility of a race.

a.in
a.h

a.c

a.o

b.o
b.in

b.h

b.c

a.out

b.out

Fig. 4: Race condition: the missing dependency, shown in red,
allows b.o to be built before a.h, failing a parallel build

IV. EVALUATION

A. Supported Build Systems

Even though we only subjected projects relying on CMake,
GNU Make and SCons to build fuzzing, we tested our tools on
a wide range of build systems to ensure we can recover useful
dependency graphs. For various languages and build systems,
we evaluated existing projects or we created small projects
to compile multiple isolated modules of the same language
into an executable. We inspected the dependency graphs to

check whether they had any redundant edges connecting the
two isolated modules, negatively affecting our analyses.

Build Tool Language Supported/Issues
GNU Make C X
Ninja C X
SCons C X
Bazel C deadlock under ptrace
Maven Java overconstraining
Ocamlbuild Ocaml X
go build Go X
cargo Rust X
cabal Haskell X

TABLE I: Dependency graph inference from build systems
Table I reports the automated build tools we have evalu-

ated and the issues we encountered with dependency graph
inference. The list does not include build system generators,
only the tools for which they generate inputs. Our method
generalises well across various build systems, allowing a larger
range of projects to be tested, compared to what was possible
with existing tools. We encounter problems with build systems
that invoke compilers as libraries instead of shelling out to a
separate process, as in the case of Java. Due to our reliance
on ptrace, we serialize system calls executed by all parallel
threads in a process, deadlocking tracees such as Bazel. Using
another provider which does not alter the tracees behaviour,
such as dtrace, would avoid such problems.

B. Build Fuzzing

We evaluated the effectiveness of our tool by automatically
identifying incorrect builds and race conditions in a large
number of projects built using CMake, GNU Make and SCons.
We searched for projects using the GitHub code search API
to find roughly 500 projects which relied on handwritten
Makefiles or included custom rules into CMake or SCons
builds using add_custom_command or env.Command.
We built and tested projects satisfying the following criteria:

• Projects had to contain a CMakeLists.txt, a
Makefile or a SConstruct in the root folder: this
excluded some poorly written projects with no documen-
tation, or large projects with complex build instructions

• Projects which bundled large external dependencies were
excluded: issues found in the dependencies would have
outnumbered the issues in the smaller project and would
have been representative of the build system of the
dependency, not the one used to build the project itself

• Projects had to compile out of the box or with minimal
changes: we excluded old projects which were outdated to
the point of irrelevance and relied on deprecated libraries.

CMake can generate both Ninja builds files and GNU
Makefiles, however some projects rely on features which can
only be translated to GNU Make. Where possible, we have
tested projects using both build systems, obtaining identical
results. We filtered CMake-specific configuration files and
C/C++ header and source files from the inputs, as the built-in

rules emitted by CMake can correctly handle these. For the
same reason, we also excluded C/C++ sources and headers
from SCons projects. SCons can detect changes by checking
both timestamps and content hashes: we have modified SCons
to force the use of the timestamp mechanism for our tests.
All files were considered in projects relying on handwritten
Makefiles, with the exception of the Linux kernel where we
omitted reliable configuration files and C source files.

Tables II, III and IV present the list of projects where we
encountered errors or false positives. Each row indicates the
authors and names of the projects, the number of stars on
GitHub which is correlated with the relevance of a project,

the number of tested files, the number of files which triggered
incorrect incremental builds and the number of files which
triggered builds that recomputed unnecessary targets, a check
mark indicating whether we fixed the build or an explanation
why a fix was not possible otherwise, along with a short
explanation of the root cause of the uncovered build problems.

In order to confirm the validity of our results, we iden-
tified the faulty build rules associated with each of the files
reported by our evaluation, aided by the information emitted in
diagnostic messages. Wherever a fix possible in a reasonable
amount of time without substantially re-engineering a project,
we modified the Makefiles or CMake definitions to fix the

Project Stars Files Errors Fixed Issues
torvalds/linux 61 462 27 6 / 11 71 missing dependencies, false positives
antirez/redis 28 241 545 87 / 4 71,2 races, subproject dependencies
tinyCC/tcc 163 26 6 / 1 74 races, manual C dependencies
pyssling/namespaced parser 159 4 2 / 0 3 races, manual C/C++ dependencies
jkbenaim/cboy 17 67 42 / 0 74 races, manual C/C++ dependencies
dcdelia/tinyvm 6 21 7 / 0 3 manual C/C++ dependencies
nicknytko/x86-thing 2 52 20 / 52 71 unconditional rules, manual deps
sadiredd-sv/CacheSimulator 1 7 2 / 0 3 manual C/C++ dependencies
coldbloodx/lec 1 74 1 / 0 3 manual C/C++ dependencies
kostrahb/Generic-C-Project 0 3 1 / 0 72 manual C/C++ dependencies
percivalgambit/hindsight-is-8080 0 19 8 / 0 72 manual C/C++ dependencies
radekvit/reon 0 15 1 / 2 74 manual deps and globbing
apron - 190 147 / 69 74 races, manual C dependencies

TABLE II: GNU Make stale/redundant incremental builds

Project Stars Files Errors Fixed Issues
mysql/mysql-server 2 533 21 1 / 20 71 inputs to custom tools
anbox/anbox 656 24 9 / 23 71,2 unconditional, inputs to custom tools
ICTeam28/PiFox 326 41 23 / 0 72 races, manual dependencies
bastibl/gr-ieee802-11 239 7 2 / 0 3 python import
uwsampa/grappa 106 89 0 / 9 71 unconditional rules
qknight/automate 11 86 23 / 0 73 races, manual deps
regmi007/ALang 11 3 2 / 0 3 manual deps
geodynamics/specfem3d geotech 9 25 20 / 0 73 races, unsupported language
DavidPeicho/tiny3Dloader 5 26 20 / 6 7 unconditional rules, false positives
davidzchen/decaf 6 2 2 / 0 3 in-source
prozum/sppl 3 5 0 / 1 73 unconditional rules
lukedodd/Pixslam 2 20 4 / 2 3 races, in-source, tool dependency
leidav/tetris 0 6 2 / 0 3 no dependency on tool
calendarium-romanum/libcalrom 0 4 2 / 0 3 in-source

TABLE III: CMake stale/redundant incremental builds

Project Stars Files Errors Fixed Issues
nieklinnenbank/FreeNOS 219 54 54 / 54 7 false positives due to scons
blitz/baresifter 12 27 0 / 12 72 unconditional rules
profmaad/steppinrazor 1 15 13 / 0 72 no dependencies between ASM files
brouhaha/nonpareil - 18 1 / 0 72 custom build rules
fsp/fsp - 40 40 / 40 7 unconditional rule, false positives due to scons

TABLE IV: SCons stale/redundant incremental builds

1 Requires extensive changes to project structure
2 Build system lacks features or language support

3 Broken third-party build rule
4 Project too large for correct manual dependency management

build rules and re-tested the project, identifying no issues and
proving that the initial original rules were faulty. Out of the
32 projects we found problems in, we managed to fix 10.
We added additional dependencies to makefiles an adjusted
add_custom_command macros in CMake to include all
outputs, even transitive dependencies of the generator scripts.
Some projects were too large to fix, manually tracking depen-
dencies for a significant number of sources, or required ex-
tensive reorganisation to eliminate certain targets which were
unconditionally rebuilt at all times. Others required features
which were not present in the build systems: discovering
dependencies dynamically as targets are built, extracting them
from the contents of the files they are building. In certain
CMake projects, we found issues in third-party rules we did
not fix. Most notably, in projects using flex and bison, we
found that the build rules generating the C headers and sources
do not enumerate all outputs. Where we could not fix issues,
we confirmed them by adding breaking changes to files and
triggering incremental builds which succeeded since nothing
was recompiled due to missing dependency information.

The projects we tested contained too many files for us to
manually check for the presence of false negatives, however
we encountered false positives due to missing or unnecessary
edges in the inferred graphs. In 3 projects, namely DavidPe-
icho/tiny3Dloader, nieklinnenbank/FreeNOS, and fsp/fsp, we
report false positives due to the granularity of processes: the
build system’s process performs a significant amount of work,
copying files from one location to another. Based on our
graph we expect the whole batch to unnecessarily change, even
though only one file is updated. In the Linux kernel, a header
file is regenerated every minute, containing a minute-accurate
timestamp. We do not expect files dependant on the header to
change as we do not model the time as an input to our graph.

C. Classes of Bugs

By manually inspecting and checking the issues reported
through testing, we discovered some patterns in the bugs,
allowing us to relate the issues to problems with the feature
sets of modern build systems. We discuss why these bugs occur
in some build systems and how other tools or environments
might be able to solve them. Since we do not correlate
problems with their definitions in the macro languages of build
systems, this process is not automated.

Issues with Out-of-source Builds This issue was uncovered
before testing: even though one of the selling points of CMake
are out-of-source builds which allow compilation artefacts
to be placed in a directory tree separate from the sources,
some of the projects did not compile correctly if the build
folder was separate. The developers of the projects did not
use the proper macros to point to the expected location of
inputs and outputs to their tools, leading to failed builds. More
recent build systems such as Buck and Bazel provide more
intuitive syntax to define the inputs and outputs to the rules,
automatically formatting them to point to a correct isolated
location. Encountered in: davidzchen/decaf, lukedodd/Pixslam,
calendarium-romanum/libcalrom

Dependencies on Tools Build rules for automatically gener-
ated files must include dependencies on the inputs to the tools,
as well as on the tools themselves. Even if the tool is external
and provided by the system, a dependency on it should exist to
ensure that outputs are rebuilt when the system is updated. In
some cases, this issue is avoided by running tools uncondition-
ally during each build or by generating files once, when the
project is configured. None of these solutions are satisfactory
as generating files and recompiling files generated during each
build can be time consuming. Some build systems solve this
issue by offering more complex macro languages, requiring
the tool to be a target defined in the project, not an arbitrary
shell command passed to a shell. Encountered in: prozum/sppl,
lukedodd/Pixslam, leidav/tetris, ghewgill/emulino

Transitive Dependencies Adding a dependency on the entry
point of an interpreted script is not enough: scripts include
other modules from inside the project which are not marked
as dependencies. This problem exists when using languages
which do not bundle all their sources into compact executables.
Unfortunately, Python, Perl and Ruby are popular choices for
generator scripts and they fall into this category. Some build
system generators, such as CMake, bundle template engines
to generate configuration files which solve this issue, however
the languages are not powerful or intuitive enough to ensure
wide use. Encountered in: torvalds/linux, bastibl/gr-ieee802-
11, tinyCC/tcc, prozum/sppl, brouhaha/nonpareil

Handling of External Dependencies C and C++ do not have
standard package management systems, thus most projects rely
on the package managers of operating systems to place headers
and shared objects in locations known to the project. If the
project requires a specific version of the package, developers
then to include it as a submodule or as a copy in their
projects. Build fuzzing is likely to identify all files from the
dependency as erroneous, as there no link between the shared
object built from them and the final executable into which they
are linked. Languages such as Haskell, Rust and Go integrate
package management in their build systems and distributed
tools systems such as Buck and Bazel offer only very limited
support for external dependencies, adhering to the monorepo
philosophy [25]. Encountered in: antirez/redis

Unconditional Rules In order to avoid all the problems that
arise from having to correctly integrate automatically gener-
ated sources and track all dependencies, some create uncondi-
tional rules that recompile everything, without considering the
changes since the last build at all. Such a design increases the
cost of incremental builds, as the files might be expensive to
generate, as is the case with Thrift protocols. Encountered in:
nicknytko/x86-thing, prozum/sppl, uwsampa/grappa, fsp/fsp,
anbox/anbox, DavidPeicho/tiny3Dloader

Manual and Static Dependency Management We found
issues in all non-trivial projects we considered which defined
their build rules in handwritten Makefiles. Most build
systems rely on static dependency graphs: the dependencies
of a file cannot be defined in the file itself, as is the
case with C/C++ headers. The presence of these bugs in
Makefiles justifies the existence of build system generators

such as CMake or Autotools and the use of build systems
with dynamic graphs, such as Bazel. Encountered in:
pyssling/namespaced parser, jkbenaim/cboy, dcdelia/tinyvm,
mysql/mysql-server, tinyCC/tcc, sadiredd-sv/CacheSimulator,
kostrahb/Generic-C-Project, qknight/automate, anbox/anbox,
apron, coldbloodx/lec, percivalgambit/hindsight-is-
8080, radekvit/reon, geodynamics/specfem3d geotech,
regmi007/ALang

Race Conditions This issue does not usually affect clean,
single-threaded builds since the scheduling algorithm in most
build systems is likely to deterministically and accidentally
order jobs correctly, however the non-determinism introduced
by parallelism is likely to reveal these problems, causing
builds to fail. Usually developers avoid these problems by
disabling parallelism, wasting valuable time. Encountered in:
tinyCC/tcc, antirez/redis, pyssling/namespaced parser, jkbe-
naim/cboy, apron, ICTeam28/PiFox, qknight/automate, geody-
namics/specfem3d geotech, lukedodd/Pixslam

D. Severity

The severity of the bugs which can be detected using our
tool varies: if a buggy target has few dependants, developer
time is wasted since a time consuming clean build is required
after each change. In such a case, a solution is valuable.
If a large portion of a project depends on the target, then
an incremental build might be as slow as a clean one and
investing time in a fix might not be worthwhile. The detected
race conditions reduce parallelism, increasing build times and
wasting resources due to randomly failing builds.

E. Performance

All tracing methods involve some overhead on the traced
process. Our tool, which relies on ptrace, slows down builds
by a factor of two and is around 20% faster than strace,
as measured on clean builds running on 4 threads. Other
tracing approaches, such as dtrace or instrumentation, should
reduce this overhead to around 10%. This should not impact
developers who create custom build rules as we only trace
clean builds once to infer the dependency graph.

Fuzzing times depend on project incremental build times.
Even though it is valuable to subject a project to such tests,
they do not need to be executed often as build rules are seldom
changed, thus it is acceptable to wait for some amount of time
for the tests to finish. Since build definitions might contain race
conditions and multiple projects are free to write to shared files
located outside their project folders, we did not parallelise the
clean builds to ensure the correctness of build graphs.

V. ALTERNATIVE METHODS

A. Dynamic Taint Analysis

Since system call tracing cannot track how a process uses
its inputs to produce outputs, we considered finer-grained
instrumentation in order to refine the dependency graph and
enable the verification of Java builds, which run in a single
process. In order to test the idea, we created a custom LLVM
pass and a support library to instrument GNU Make with

dynamic taint tracking in an attempt to identify which files
are inspected before a build is triggered.

Unfortunately, we identified issues with build systems that
prevent this method from yielding useful results. Such tools
are likely to rely on traversing a directed acyclic graph,
building targets after all of their dependencies. A build stops
whenever a target fails to build, which means that the set
of taint values affecting control flow constantly increases due
to the conditional branches which determine whether a target
succeeded or not. Control flow information is both absolutely
necessary and useless: taint must be propagated from the
comparison which inspects the timestamps of the stat system
call, but the control flow decisions involved graph traversals
lead to a large amount of overtainting.

B. Parsing Build Definitions

In an attempt to increase the efficiency of the verification
process and to verify our results, we considered parsing build
definitions in order to compare the defined dependency graphs
with the inferred ones. Even though the two graphs can
be trivially compared, statically analysing Makefiles can be
quite problematic, especially when they are handwritten and
not generated. Some projects contain Makefiles for multiple
build systems (mixing Python’s setuptools with GNU Make,
for example), preventing dependencies to be traced through
arbitrary processes. Creating custom parsers also involves
substantial engineering effort since a new parser must be
created for each build system (GNU Make, Ninja, SCons, etc).

VI. CONCLUDING REMARKS

We developed a novel method, build fuzzing, to test the
correctness of the build definitions in automated build systems
by finding missing dependencies and race conditions. We eval-
uated our implementation of build fuzzing and race condition
detection on publicly available open-source projects relying on
3 different build systems and build system generators. Based
on the diagnostic messages emitted by our tools, we provided
solutions to the issues in some of the evaluated projects.

Unlike existing systems, our approach relies solely on
capturing the interactions of build tools with the underlying
operating system or file system. We do not rely on parsing
build definitions, thus our tool can be used to test a large
number of projects, built using arbitrary code generators and
compilers managed by a wide range of build systems.

Our search revealed numerous problems in 30 projects,
producing only a small number of false positives. We found
issues in both small hobby projects as well as in mature
ones such as the Linux kernel. We analysed the bugs to
categorise the underlying problems, identifying anti-patterns
and scenarios where the feature sets of existing build systems
do not provide adequate support. The issues we found can
potentially waste valuable developer time if users are forced to
run single-threaded builds, to constantly perform clean builds
after changing files or to debug issues introduced by stale files.
Our tools can be integrated into the workflows of developers,
saving on time spent debugging or waiting for builds.

REFERENCES

[1] S. I. Feldman, “Make a program for maintaining computer programs,”
Software: Practice and experience, vol. 9, no. 4, pp. 255–265, 1979.

[2] E. Martin, “Ninja, a small build system with a focus on speed,” https:
//ninja-build.org, 2012.

[3] K. Martin and B. Hoffman, Mastering CMake: a cross-platform build
system. Kitware, 2010.

[4] J. Calcote, Autotools: A Practitioner’s Guide to GNU Autoconf, Au-
tomake, and Libtool. No Starch Press, 2010.

[5] S. Knight, “Scons design and implementation,” in 10th International
Python Conference, 2002.

[6] E. S. Raymond, The Art of Unix programming. Addison-Wesley
Professional, 2003.

[7] R. Levin and P. R. McJones, “The vesta approach to precise configu-
ration of large software systems,” in SRC Research Report 105, Digital
Equipment Corporation, Systems Research. Citeseer, 1993.

[8] A. Mokhov, N. Mitchell, and S. Peyton Jones, “Build systems à la carte,”
Proceedings of the ACM on Programming Languages, vol. 2, no. ICFP,
p. 79, 2018.

[9] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant
build systems,” in Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on. IEEE, 2010, pp. 42–51.

[10] M. Shridhar, B. Adams, and F. Khomh, “A qualitative analysis of soft-
ware build system changes and build ownership styles,” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2014, p. 29.

[11] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proceedings of the
33rd international conference on software engineering. ACM, 2011,
pp. 141–150.

[12] G. Kumfert and T. Epperly, “Software in the doe: The hidden overhead
of”the build”,” Lawrence Livermore National Lab., CA (US), Tech. Rep.,
2002.

[13] A. de Boor, “Bsd make meta mode,” http://www.crufty.net/help/sjg/
bmake-meta-mode.htm, 2013.

[14] P. Miller, “Recursive make considered harmful,” AUUGN Journal of
AUUG Inc, vol. 19, no. 1, pp. 14–25, 1998.

[15] Google, “Bazel - a fast, scalable, multi-language and extensible build
system,” https://bazel.build/, 2015.

[16] Facebook, “Buck: A fast build tool,” https://buckbuild.com/, 2015.
[17] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen, I. Narasamdya,

and B. Livshits, “Automated migration of build scripts using
dynamic analysis and search-based refactoring,” in Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’14. New York,
NY, USA: ACM, 2014, pp. 599–616. [Online]. Available: http:
//doi.acm.org/10.1145/2660193.2660239

[18] M. Christakis, K. R. M. Leino, and W. Schulte, “Formalizing and
verifying a modern build language,” in International Symposium on
Formal Methods. Springer, 2014, pp. 643–657.

[19] M. Kalaev, “Depslint,” https://github.com/maximuska/depslint, 2013.
[20] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design

recovery and maintenance of build systems,” in Software Maintenance,
2007. ICSM 2007. IEEE International Conference on. IEEE, 2007, pp.
114–123.

[21] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution
of the linux build system,” Electronic Communications of the EASST,
vol. 8, 2008.

[22] J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen, “Fault localization for
build code errors in makefiles,” in Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
600–601.

[23] F. P. Miller, A. F. Vandome, and J. McBrewster, “Apache maven,” 2010.
[24] B. Muschko, Gradle in action. Manning, 2014.
[25] R. Potvin and J. Levenberg, “Why googl stores billions of lines of code

in a single repository,” Communications of the ACM, vol. 59, no. 7, pp.
78–87, 2016.

