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Abstract
The theory of financial markets is well developed, but before any of it can be applied
there are statistical questions to be answered: Are the hypotheses of proposed models
reasonably consistentwithwhat data show? If so, howshouldwe infer parameter values
from data? How do we quantify the error in our conclusions? This paper examines
these questions in the context of the two main areas of quantitative finance, portfolio
selection and derivative pricing. By looking at these two contexts, we get a very
clear understanding of the viability of the two main statistical paradigms, classical
(frequentist) statistics and Bayesian statistics.
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1 Introduction

If Sit denotes the price of asset i (i = 1, . . . , d) at the end of day t , then a very common
modelling assumption is that

Xt ∼ N (μ, V ), (1)

where

Xt ≡
(
X1
t , . . . , X

d
t

)
≡

(
log

(
S1t /S

1
t−1

)
, . . . , log

(
Sdt /Sdt−1

))

is the vector of day-t returns. Here, the mean μ and the covariance V are unknown,
but it is assumed that they are constant over time and that returns on different days
are independent. If we ask the very natural question, ‘How should we invest in this
market?’, then there is no shortage of answers to this question; commonly, we suppose
that we know some objective that wewish to optimize, that we know the parameter θ ≡
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(μ, V ) of the return distribution, and then we do some analysis to derive an investment
strategy that optimizes our objective, and which will depend on the parameter θ .
Assuming that we know the objective to be optimized is innocent, because we are
free to choose it, but assuming that θ is known is not, and this is where statistics
comes in. So in Sect. 2, we start with returns distributed as (1) and see in more detail
how this would lead to an investment strategy—which of course must depend on θ—
and how we would make use of statistics to represent our knowledge about θ . Even
in this simplest setting, the inconsistencies and impossibilities of classical statistics
are immediately visible. In contrast, Bayesian statistics buys us a path free from all
of these problems for the price of making subjective inputs. In the struggle for the
soul of statistics, the Bayesian approach is usually attacked because the statistician
has to make a subjective choice of prior for the parameter θ . In truth, the weakness
of subjectivity happens before that, when we choose the family of models to use—
making an assumption about a prior distribution over that family is a much smaller
leap of faith. But if we recognize that, then this subjectivity affects classical statistics
in exactly the same way—subjectivity is not a weakness only of Bayesian statistics!

So Sect. 2 gives us some kind of framework for answering the question, ‘How
should we invest in this market?’ In Sect. 3, we look at the question we should have
asked first, namely ‘Are the modelling assumptions reasonable?’—in other words, can
we suppose that returns are IID multivariate Gaussian? Not surprisingly, the answer
is ‘No’. However, as we shall see, this is not as bad as it seems, because simple
transformations change the data into something that is reasonably like IID Gaussian,
and the theory developed in Sect. 2 may actually be fairly relevant. We then take a
look in Sect. 4 at investing in the S&P500 and see what some of these ideas give us.

The next section of the paper looks at derivative pricing, and once again the incon-
sistencies of classical statistics surface in a big way almost immediately. Once again,
Bayesian statistics offers an escape.

2 Portfolio selection

Recall that we are assuming (1) that returns are IID multivariate Gaussian. We let Ft

denote the σ -field of information at the end of day t . The portfolio investment decision
requires us to choose portfolio ht at end of day t − 1 to hold for day t ; then,

wt = (1 + r)(wt−1 − ht · 1) + ht · (St/St−1). (2)

Here, 1 is the vector with all entries equal to 1, and hit denotes the dollar amount
invested in the i th asset for day t , an Ft−1-measurable random variable. Solving a
problem with a multi-period objective involves dynamic programming of some form,
which is rarely amenable to closed-form solution, so we just focus for now on a
single-period objective, which already illustrates the issues: we aim to find

sup
ht

E[U (wt )|Ft−1], (3)
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Sense, nonsense and the S&P500 449

whereU is C2 strictly concave and increasing. In order to calculate this objective, we
need to know the conditional law of Xt given Ft−1, which is of course N (μ, V )—but
what are μ, V ?

2.1 What does classical statistics say?

The classical statistical paradigm is that the value of θ ≡ (μ, V ) is fixed but not
known—so within that paradigm, we are unable to compute objective (3), because we
do not know θ—and if we cannot compute the objective, we certainly cannot optimize
it! The classical statistician would respond that observation of the data informs us
about the possible values of θ , which would allow us to exclude values of θ which are
poorly supported by the data. So after observing returns for some time, we would have
some confidence set C for the values of θ , and we might then propose some minimax
version of the original objective:

sup
ht

inf
θ∈C Eθ [U (wt )]. (4)

Now this might work for the simplest examples from Statistics 101, such as univariate
Gaussian datawith knownvariance,wherewewould be perverse to take the confidence
setC to be anything other than some interval symmetric about the samplemean, but for
multivariate Gaussian data, there is no obvious choice for C . We might try to exclude
values of θ that are ‘extreme’ in some sense, but the definition of ‘extreme’ requires
us to choose some statistic, and it is hard to see what we could pick here; how would
we say that a covariance matrix V was too extreme given observations X1, . . . , XN ?
Even if we could answer that, trying to calculate (4) is in general computationally
infeasible, given that the set C (even if we could say what it was) is a subset of some
high-dimensional Euclidean space. So in practice the classical approach to statistics
is used by calculating some estimator (μ̂, V̂ ) and pretending that these are the true
values. This is not the case of course, but since it is so hard to quantify the error
being made by this assumption, the preferred response in practice appears to be to
ignore it.

So just by thinking briefly about classical statistics in the context of the portfolio
selection problem (3), we see that it just cannot work!

2.2 What does Bayesian statistics say?

Bayesian statistics also treats the parameter θ as unknown, but proposes that it has a
known distribution π0. Then, after seeing X1, . . . , Xt , the distribution of θ has evolved
to

πt (dθ) ∝ π0(dθ)

t∏
s=1

f (Xs; θ)

∝ π0(dθ)

(det V )t/2
exp

{− 1
2 t(μ − X̄t ) · τ(μ − X̄t ) − 1

2 t tr
[
τ V̂t

]}
, (5)
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where τ ≡ V−1 is the precision matrix, and

μ̂t = X̄t ≡ t−1
t∑

s=1

Xs, (6)

V̂t = t−1
t∑

s=1

(Xs − X̄t )(Xs − X̄t )
T . (7)

Nowwe can approach the optimization (3) of the objective because we really do know
the law of Xt givenFt−1—the law of θ = (μ, V ) is given by (5), and conditional on θ

the law of Xt is N (μ, V ). So all of the difficulties of the classical approach evaporate,
provided we are willing to make the subjective choice of the prior π0.

More has been said about the choice of the prior than we could ever summarize, but
my view is that this is a relatively innocent subjective choice. In practice, one would
run the analysis for a number of widely different priors as a diagnostic; if the answers
are broadly similar, then the choice of prior was not particularly critical, and if the
answers vary a lot, then we learn that there was not so much information in the data,
again useful to know. A far more important subjective choice, already mentioned, is
the choice of the family of models allowed.

As we shall see, taking a Bayesian view deals completely with all the theoretical
aspects of statistical inference, but the price we end up paying is that the computational
aspects become a lot more onerous.

3 Are S&P500 returns IID Gaussian?

We continue to illustrate the themes of this paper by simplifying the model (1) we
began with to one asset, the S&P500 index. The model assumption is that the daily
returns are IID Gaussian, but are they?

3.1 Are returns identically distributed?

Figure 1 plots the daily returns of the S&P500 from 1 July 1954 to 4 May 2017,
and just looking at this plot, we would not believe that the returns are IID; there are
obvious periods of higher and lower volatility, which would not happen if the returns
were IID. Another plot which shows this quite clearly is to plot the cumulative sum
of the squared returns (the realized quadratic variation), which we see in Fig. 2.

If the returns were IID, we should expect to see a plot that goes up roughly as a
straight line, and this is obviously not the case. However, we can transform the returns
into something much closer to IID by the simple trick of vol rescaling, which goes
like this.

Make an initial estimate of the volatility of the returns series by choosing some
integer N and calculating

σ̂ 2
0 = N−1

N∑
t=1

X2
t . (8)
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Sense, nonsense and the S&P500 451

Fig. 1 Raw returns of the S&P500

Fig. 2 Cumulative sum of squared returns of the S&P500

Then, update recursively, starting at t = 0:

Y = max{−K σ̂t , min{K σ̂t , Xt }}
σ̂ 2
t+1 = βWY 2 + (1 − βW )σ̂ 2

t

X̃ t+1 = Xt+1/σ̂t+1
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Fig. 3 Raw and rescaled returns of the S&P500

Here, K is some cut-off constant (K = 4 would do) whose purpose is to prevent
occasional very large returns from impacting the running vol estimate σ̂t too much.
The exponential weighting parameter βW ∈ (0, 1) smooths the vol estimates; in the
calculations of this paper, itwas taken to be 0.025. This corresponds to amean lookback
of 40 days, roughly 6 weeks—not too long, not too short. Other values could be used
of course. Once we do this, the plots of the rescaled returns and the cumulative sum
of rescaled returns are shown in Figs. 3 and 4.

These plots show that the rescaled returns look quite time homogeneous.

3.2 Are returns Gaussian?

The classical diagnostic for a Gaussian distribution is to take the sample and make
a q–q plot of it. When we do this, we see Figs. 5 and 6. The first is quite close to a
straight line in [− 2, 2], which includes more than 90% of the range of the standard
Gaussian, but the second is quite close to a straight line in [− 3, 3] (which includes
99.9% of the standard Gaussian), so this looks closer to Gaussian. We cannot expect a
perfect straight line, because there are going to be days when something big happens
and the return on those days will be out of line with the usual behaviour, but if we
have a story that is good for 999 out of 1000 days, this is saying that an unusual day
happens roughly once every four years, which seems plausible.

3.3 Are returns independent?

If returns are independent, then when we plot the autocorrelation function (ACF) of
the time series of returns, we should see something that is essentially zero for all
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Fig. 4 Cumulative sum of squared returns and squared rescaled returns of the S&P500

Fig. 5 q–q plot of the returns of the S&P500

positive lags. The same should be true when we plot the ACF of absolute returns.
The corresponding plots for the raw and rescaled returns of the S&P500 are shown in
Figs. 7 and 8 and are entirely typical of what these plots show. The ACF of raw returns
and of rescaled returns is essentially zero at all positive lags, but the ACF of absolute
raw returns remains positive for many lags, which is explained by the fact that the
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Fig. 6 q–q plot of the rescaled returns of the S&P500

Fig. 7 ACF of the raw and scaled returns of the S&P500

raw returns exhibit volatility clusters, with big returns coming together. Interestingly
though, the ACF of the rescaled absolute returns is close to zero at all positive lags.
This is a necessary (but not sufficient) condition for the returns to be independent.
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Fig. 8 ACF of the raw and rescaled absolute returns of the S&P500

So to summarize, on thebasis of these simple exploratory analyses,wemaymake the
working hypothesis that the vol-rescaled returns are IID Gaussians. For multivariate
return data, we may need to be more circumspect, but for this univariate return series,
we can suppose that the rescaled return series are IID Gaussian, with variance equal
to 1. Our interest then focuses on understanding the mean μ, which we expect to be
quite small relative to the variance (otherwise, it would be a simple matter to generate
huge profits from investment). In practical terms, we can take the original return data
and rescale them, treating the rescaled return data as if they were the actual returns;
because our portfolio analysis will tell us each day how many units of rescaled asset
we should hold through tomorrow, and then we can immediately work out how many
units of the original asset we need to hold. For portfolio selection problems then,
broadly speaking

non-constant vol does not matter, non-constant mean returns do.

4 Howwell does Bayesianmodel averaging work?

If we invested a constant $1 in the S&P500 over the 63 years of data used above, then
the Sharpe ratio is 23.39%. If we invest a constant $1 in the vol-rescaled returns, we get
a slight improvement to a Sharpe ratio of 26.14%. These are rather primitive strategies
however. In a Bayesian model averaging, we take some finite family of J models, each
of which makes an assumption about the conditional distribution of Xt given Ft−1,
and we let Bayes’ theorem update the posterior distribution over the models. In more
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Fig. 9 P&L from simple Bayesian model averaging

detail, if model j says that1

X̃t |Ft−1 ∼ N (μt ( j), 1) (9)

then the updating of the posterior probabilities is

πt (k) ∝
∑
j

πt−1( j) p jk γ (X̃t − μt (k)), (10)

where γ is the standard Gaussian density. The trading strategy comes from a simple
myopic rule, where we choose ht to maximize (3), whereU (x) = − exp(−x). To keep
the story realistic, we assume there are proportional transaction costs ε|ht−ht−1|when
we switch positions, so there will be situations where the cost of switching exceeds
the gain in utility, and we therefore choose not to switch portfolio.

In Fig. 9, we see the P&L generatedwhenwe take just twomodels, the first of which
thinks that μt (1) = 0.15 for all t and the second of which thinks that μt (2) = −0.15
for all t—in other words, the index is either growing at 15% per annum, or shrinking at
15% per annum. Taking the transactions costs to be 3 bp, we find that the Sharpe ratio
of the strategy is 41.00%, substantially higher than the two constant-dollar strategies.
The P&L shown in Fig. 9 displays relatively little drawdown. The positions shown
in Fig. 10 fluctuate between − 0.15 and 0.15, the extremes we would expect if the
posterior probabilities were at their extreme values. It is interesting to see that periods

1 We suppose that the variance is 1, since we have done volatility rescaling.
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Fig. 10 Positions in simple Bayesian model averaging

when the position is strongly negative, such as 1973–1974, 2001–2003, 2008–2010,
correspond to periods when the global economy was under significant stress.

This looks like (and is) an impressive demonstration of the power of Bayesian
modelling techniques. But it is worth underlining that some cherry-picking has been
going on here; if we include a third model into the comparison which says X̃t |Ft−1 ∼
N (0, 1), then the same analysis leads to a Sharpe ratio of 30.18%.Changing the various
parameters of the model can make a big difference to the conclusion, and we need
to be aware of this; searching around for a ‘sweet spot’ is a form of data snooping.
We would be outraged if someone proposed a trading strategy that needed to know
all future returns, but if we search for ‘good’ parameter values in some parametric
model, we are in effect making use of information about the entire future evolution of
returns, even if the individual model selected at the end does not. I have seen this done
in practice; a model gets adopted and then fails to deliver the returns that historical
analysis gave. It is good practice to leave several years of data locked up until the
model has been chosen, and then see what happens once those data are unlocked—
out-of-sample testing. Even so, the future may not cooperate.

5 Derivative pricing

When it comes to derivative pricing, we work in the pricing measure in which the
growth rate of the asset is replaced by the riskless rate. The great industry of the
implied volatility surface shows that the non-constancy of the volatility is a very
important matter in derivative pricing, so in contrast to the situation with portfolio
selection,
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non-constant mean returns do not matter, non-constant vol does.

Some derivatives are very liquid, so their prices are taken to be the market prices—any
model should match those prices very closely, if not perfectly. More exotic derivatives
on the other hand are made to order, and there is no market price, so the price has to
come from some (parametric) model, as a function of observable state variables Xt

and unobserved parameters θ . The parameter θ of the model will not be known, so
we have to carry out some statistical procedure to identify it, and as with portfolio
selection, there are the two main paradigms to consider.

5.1 What does classical statistics say?

The conventional model calibration procedure of the industry takes the prices Ya
t ,

a = 1, . . . , A of some liquid derivatives and compares those to the model prices
ϕa(Xt , θ). Then, some ‘best-fitting’ choice θ∗

t of the parameter is found by solving

inf
θ

∑
a

|Ya
t − ϕa(Xt , θ)|2. (11)

Then, the price of some exotic is calculated by assuming that θ = θ∗
t . There are various

issues with this approach, some more important than others.

1. The model prices ϕa(Xt , θ) may not exactly match market prices Ya
t .

2. Tomorrowwe recalibrate and arrive at a value θ∗
t+1—so howdowemark-to-market

and hedge a derivative that we sold on day t? Using θ = θ∗
t ? Using θ∗

t+1? Using
some other θ value?

3. Would some other model be ‘better’?
4. θ∗

t is an estimate—what account do we take of estimation error?

The first point need not cause insuperable problems, because market prices are not
always taken simultaneously, and the market price is in any case a bid-ask spread, so
exactly fitting some ideal value is not essential. But the second issue is very real—the
derivative priced and sold on day t was calculated on the assumption that θ∗

t was
the true parameter value, unchanging for all time, and yet on the very next day, we
abandon that assumption by saying that θ = θ∗

t+1! This is a fundamental inconsistency
of the calibration approach. The third point cannot be answered in this framework,
because no models outside the chosen parametric model are admitted. The fourth
point is again unanswerable in most situations, because of the difficulty of specifying
a confidence set and searching over it for extremes; so the estimation error is either
ignored completely or treated in a very crude manner.

So overall the conventional calibration approach is inconsistent and cannot account
for estimation error.
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5.2 What does Bayesian statistics say?

In the Bayesian approach, we choose and fix a finite set of J models: under model j ,
the underlying state process X is Markovian, with transition density

p j (x, x
′) = Pj (Xh ∈ dx ′|X0 = x)/dx ′ ( j = 1, . . . , J ), (12)

where h > 0 is the time step. As before, we give ourselves some prior distribution
π j (0) over the possible models. Model j has pricing function ϕa

j (·) for derivative a.
We select some loss function Q(ϕ j (X),Yt ), which for the sake of the discussion we
might take to be

Q(y, y′) = α‖y − y′‖2 (13)

for some α > 0. The log-likelihood � j (t) of model j at time t then updates as

� j (t) = � j (t − h) + log p j (Xt−h, Xt ) − Q(ϕ j (Xt ),Yt ). (14)

In practice, it is a good idea to allow the data-generating model to change with a small
probability each period, according to some Markov chain with transition matrix P .
This prevents the Bayesian inference from getting stuck at some long-term average
values as the number of time steps increases, and reflects a natural requirement that
data from the distant past should have less influence on our inference than more recent
data. The posterior distribution then updates as

π j (t) ∝
∑
k

πk(t − h) pkj exp(� j (t)). (15)

Now everything is easy:

• The law of Xt+h conditional on Ft has density
∑

j π j (t) p j (Xt , ·);
• If model j gives the price of an exotic to be ξ j , then take the overall price to be

ξ̄ ≡
∑
j

π j (t) ξ j , (16)

the posterior mean;
• What is the error in ξ̄? It is the mean of a discrete distribution over the values ξ j
with weights p j (t), so we know the variance and all other moments;

• If model j gives delta hedge2 Hj , then to first order we have a delta hedge given
by

∑
j π j (t)Hj .

If we revisit the issues that were problematic for the classical approach, we have
answers:

1. Themodel pricesϕa(Xt , θ)may not exactlymatchmarket pricesYa
t .TheBayesian

approach does not say that the prices must be any particular value—it says that
any price is a random variable whose distribution we know completely.

2 That is, a hedge which to first order cancels out the effect of moves of the underlying.
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2. Tomorrowwe recalibrate and arrive at a value θ∗
t+1—so howdowemark-to-market

and hedge a derivative that we sold on day t? Using θ = θ∗
t ? Using θ∗

t+1? Using
some other θ value? At all times, the price from the Bayesian approach is the
posterior mean of the price—there is no inconsistency;

3. Would some other model be ‘better’? Other models can be compared simply by
adding them to the universe of models in the Bayesian comparison;

4. θ∗
t is an estimate—what account do we take of estimation error? Nothing is esti-
mated in the Bayesian approach.

At this point, it might appear that the Bayesian approach to inference deals tri-
umphantly with all the conceptual difficulties and inconsistencies of the classical
approach, which it does. However, this is not to say that all problems have been elimi-
nated, and in fact there remain very considerable difficulties in applying the Bayesian
methodology effectively, to do with computation. To apply the Bayesian approach in
the way we have just described requires us in the first place to make a choice of the
finite family of models considered, and this is the major issue. If we were only going
to consider a one-parameter family of models, we could select a finite set of parameter
values (perhaps just a few thousand) which effectively cover the parameter space, and
the computational analysis will run ahead with no issues. But if we were looking at a
family of models indexed by some parameter θ ∈ R

8, then it will be hard to distribute
even one million points in the parameter space in such a way as to cover reasonably
effectively, and at this point the computational Bayesian method starts to struggle. We
are talking here about particle filtering (also known as sequential Monte Carlo), and
although much effort has in the last 30 years been directed towards doing this well, it
remains far from a finished technology. All manner of variants of the basic approach
have been proposed—more than we could possibly begin to summarize here—which
just goes to show that obvious general implementations must often fail.

6 Summary

This survey has taken a look at how statistical methodology helps in the analysis of
financial asset returns, whether for portfolio selection or for derivative pricing. The
conclusion is that statistics helps up to a point, but falls far short of what we would like
to be able to do. The classical paradigm is an unworkable conceptual framework for
studying data; its shortcomingsmay be hiddenwhenwe look at experimental data from
the physical sciences, where the signal-to-noise ratio is much smaller than in financial
data, but once we try to use it in finance and economics, it simply fails. Nevertheless,
the methods of classical statistics provide very useful exploratory tools; if we were
given ten years of daily returns on 2000 assets, we would almost certainly begin by
calculating sample mean returns, and the sample covariance matrix, then we might try
to pull out some principal components. Such calculations would very quickly tell us
stylized facts of the data and direct our attention to questions of interest.

Hopefully, this article has well made the point that if we want a statistical method-
ology that is consistent, then it has to be Bayesian. Sadly, when it comes to trying
to use Bayesian statistics in practice, the computational challenges quickly become
overwhelming. Nevertheless, with patience and computational resources, we canmake
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progress. As always, choosing very simple models pays off, and it is here that some
judicious use of classical methodology to discover stylized facts and then using amore
thorough Bayesian analysis of a simple model expressing those facts can be success-
ful. Though the tools of statistics have changed little over time, there is no uniform
recipe for using them; in the end, applying experience and an open-minded approach
to a new data context is the best we can do.
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