## Insights into pediatric non-alcoholic fatty liver disease from genetic variants

Jiawen Dong<sup>1</sup>, Yuri Im<sup>1</sup>, Jake P. Mann<sup>2,3</sup>

<sup>1</sup>Clinical School of Medicine, University of Cambridge, Cambridge, UK <sup>2</sup>Metabolic Research Laboratories – Institute of Metabolic Science, University of Cambridge, Cambridge, UK <sup>3</sup>Department of Paediatrics, University of Cambridge, Cambridge, UK

Corresponding author: Dr. Jake P. Mann Department of Paediatrics, University of Cambridge, Box 116, Addenbrooke's Hospital, Cambridge, CB2 0QQ, Jm2032@cam.ac.uk T: +44 1223 763480, F: +44 1223 336996

Word count: 1,311 Number of figures: 1 Number of tables: 1

Abbreviations: NAFLD, non-alcoholic fatty liver disease; SNP, single nucleotide polymorphism; PNPLA3, patatin-like phospholipase domain-containing protein 3; GCKR, glucokinase regulator; TM6SF2, Transmembrane 6 superfamily 2; TMC4, transmembrane channel-like protein 4; MBOAT7, membrane-bound O-acyltransferase domain-containing protein 7; LPIN1, lipin 1; UCP2, uncoupling protein 2; ACTR5, actin-related protein 5; CNR2, cannabinoid receptor 2; ETS1, ETS proto-oncogene 1; IL18RAP, Interleukin 18 receptor accessory protein; IRS-1, insulin receptor substrate 1; KLF6, Kruppel-like factor 6; MnSOD, manganese superoxide dismutase; MTP, microsomal triglyceride transfer protein; PPARGC1A, peroxisome proliferator-activated receptor gamma coactivator 1 alpha; SDK1, Sidekick cell adhesion molecule 1; TNFA, tumour necrosis factor alpha; TRAPPC9, trafficking Protein Particle Complex 9; UGT1A1, UDP-glucuronosyltransferase 1A1; LITMUS, Liver Investigation: Testing Marker Utility in Steatohepatitis; RDH16, retinol dehydrogenase 16; HSC, hepatic stellate cell; RBP4, retinol-binding protein 4; RXR, retinoid X receptor; HSD17β13, 17-beta-hydroxysteroid dehydrogenase 13; LYPLAL1, Lysophospholipase Like 1; PPP1R3B, Protein Phosphatase 1 Regulatory Subunit 3B.

The authors have no conflicts of interest to declare. This work did not receive any funding. Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a significant genetic contribution to its pathogenesis and progression. Over the past decade, there has been much investigation into genetic variants associated with NAFLD in adults<sup>1</sup> but there have been only a handful of studies focusing on children<sup>2</sup>. In this issue, Hudert et al.<sup>3</sup> combines candidate single nucleotide polymorphism (SNP) testing with proteomics and computational modelling in a cohort of 70 children with biopsy-proven NAFLD to deepen our understanding of these genetic variants. Exploring the role of genetic variants in pediatric NAFLD is particularly important due to its unique histology with periportal/zone 1-predominant localisation of steatosis and inflammation, which is associated with more advanced fibrosis<sup>4</sup>.

Hudert et al.<sup>3</sup> selected 14 SNPs previously associated with adult NAFLD, of which 3 were significantly associated with disease in pediatric NAFLD compared to a control group: rs738409C>G in PNPLA3, rs1044498A>C in ENPP1 and rs780094C>T in GCKR, but not rs58542926C>T near TM6SF2 or rs641738C>T near TMC4-MBOAT7.

When SNP-histology associations were examined, rs738409C>G in PNPLA3 and rs13412852C>T near lipin 1 (LPIN1) were significantly associated with the severity of steatosis. Critically, PNPLA3 was associated with periportal/zone 1-predominant steatosis (Figure 1). These histological features are relatively specific to NAFLD in children, particularly those who are pre-pubertal. The same SNP was also associated with an increased risk of progression to fibrosis, along with rs780094C>T in GCKR, rs1260326C>T in GCKR, and rs659366C>T near UCP2.

rs738409C>G in PNPLA3 is recognised as the most important genetic variant in NAFLD. Whilst there have been some conflicting reports, data from several pediatric studies support these findings (Table 1). However, this is the first identification of a genetic variant associated with periportal localisation of disease. What causes the periportal predominant histology of pediatric NAFLD is unclear. Hypotheses have included dietary factors, circulating androgens, and intestinal dysbiosis. It is known that zonal hepatocyte specification causes altered lipid accumulation in NAFLD<sup>5</sup>. It is likely that the Ile148Met variant in PNPLA3 is one factor that primes the periportal area for steatosis and lipotoxicity, which is exacerbated in the context of obesity and insulin resistance, similar to findings in adults<sup>6</sup>.

This is the first study to show a correlation between GCKR rs780094C>T and presence of fibrosis in pediatric NAFLD. rs780094C>T in GCKR is well established as a pleomorphic variant associated with insulin resistance and multiple metabolic traits<sup>7</sup>. The group from Berlin went on to perform proteomic analysis using mass spectrometry. rs780094C>T was correlated with decreased hepatic GCKR protein. GCKR regulates the activity of the glucokinase enzyme by forming an inactive complex with the enzyme and transporting it from the cytoplasm to the nucleus; thus, decreased levels of GCKR allow increased glucokinase activity. Pathway enrichment analysis linked the GCKR rs780094 T/T genotype to altered lipid metabolism and mathematical modelling suggested that increased glucokinase activity leads to hepatic fat accumulation, *de novo* fatty acid synthesis and increased glucose uptake. The same variant has been similarly implicated in adult disease, where it has also been associated with increased intrahepatic fat accumulation, risk of NAFLD, and fibrosis<sup>8</sup>. It will be interesting to see whether rs780094C>T achieves genome- or exome-wide significance in larger studies of histologic NAFLD, such as from the European NAFLD Registry / LITMUS consortium<sup>9</sup>.

In this study, proteomics revealed that the PNPLA3 SNP resulted in decreased retinol metabolism and decreased hepatic protein levels of retinol dehydrogenase 16 (RDH16), where lower RDH16 levels also correlated with the severity of fibrosis. Precisely how this PNPLA3 variant alters retinol metabolism is unclear. Retinol is a lipid-soluble nutrient that is stored mostly as retinyl esters in lipid droplets of hepatic stellate cells (HSCs). PNPLA3 encodes adiponutrin, an enzyme with retinyl-palmitate lipase function that has been shown to cause retinol release from lipid droplets in response to insulin in HSCs *in vitro* and *ex vivo*<sup>10</sup>. This retinyl-palmitate lipase function is reduced with the PNPLA3 polymorphism, resulting in reduced retinol release from HSCs<sup>10</sup>. Evidence suggesting that wild-type PNPLA3-mediated retinol release reduces secretion of extracellular matrix metalloproteases<sup>11</sup> could explain the relationship of retinol metabolism and liver fibrosis.

Hudert et al. also confirm that hepatic levels of retinol-binding protein 4 (RBP4) are independently associated with fibrosis, while serum RBP4 levels are negatively associated with fibrosis. Studies have linked alterations in liver molecular trafficking and protein catabolism in NAFLD and hepatitis C-associated cirrhosis to accumulation of RBP4<sup>12</sup>. RBP4 was proposed to encourage hepatic steatosis by interfering with the RXR-retinol interaction and to act on adipocytes to interfere with insulin signalling<sup>12</sup>. These hypotheses require further evaluation, but could provide some explanation as to why PNPLA3 Ile148Met is so strongly associated with fibrosis compared to other genetic variants associated with steatosis.

rs72613567T>TA in HSD17 $\beta$ 13 is the most recently described genetic variant associated with NAFLD<sup>13</sup>. This variant has a protective function, reducing risk of cirrhosis and severity of histological NAFLD. It also seems to mitigate the harmful effect of rs738409C>G in PNPLA3. Interestingly, recent data have suggested that HSD17 $\beta$ 13 acts as a lipid droplet retinol dehydrodgenase<sup>14</sup>. The current study was unable to test for this SNP but the combination of these data may provide a mechanism for interaction between HSD17 $\beta$ 13 and PNPLA3 through retinol metabolism.

UCP2 is an inner mitochondrial membrane protein that is expressed in adipose tissue and liver. Akin to GCKR, variants in UCP2 have been associated with many metabolic traits including adiposity<sup>15</sup>, BMI, and insulin resistance, in addition to NAFLD<sup>16</sup>. This is the first study to identify a role in pediatric NAFLD. Modelling implicates reduced UCP2 in increased hepatic triacylglycerol storage, as would be expected if uncoupling were reduced. Similar data exists for ENPP1, which is known to modulate insulin receptor signalling and obesity<sup>17</sup>, but has relatively little data supporting an effect on NAFLD histology. It remains unclear to what extent these variants have a specific effect on NAFLD or reflect changes in adipose dysfunction and insulin resistance.

There are some notable differences between this study's findings and existing literature in adults. rs58542926C>T near TM6SF2 has been associated with steatosis and fibrosis progression in adults<sup>18</sup>. This SNP was not associated with histological severity in this current study, perhaps given its low allele frequency and the relatively small cohort. Similarly, rs641738C>T near TMC4-MBOAT7 was only weakly associated with fibrosis, though some data on this genetic variant in adults is conflicting<sup>19</sup>. No effect was found for rs12137855C>T near LYPLAL1, which had genome-wide significance effect on hepatic fat content in adults and rs4240624 G>A near PPP1R3B was not assessed in this cohort<sup>20</sup>. It will be interesting to see in larger studies whether these reflect a true difference in the genetic aetiology between pediatric and adult disease.

Though this study advances our understanding of genetics and histology, it is limited by a small sample size, which reduces the number of variables that can be controlled for in analyses. This is a common theme pediatric studies as the combination of histology and DNA for genotyping is rarely available. A further consideration for these data is the single (tertiary) centre nature of the cohort, which may bias the spectrum of histology seen. Therefore, the generalisability of these findings may be limited in cohorts of different genetic ancestries.

## Summary and future directions

These data complement our understanding of genetic variants in pediatric NAFLD. Firstly, PNPLA3 has zonal-specific effects on histology, suggesting that this variant primes the periportal region for more severe NAFLD in children, but the other factors involved are still unclear. This, and other recent data, provide a possible link between PNPLA3 and HSD17 $\beta$ 13 via retinol metabolism. More generally, there are significant differences between genetic variants in children and adults. Whilst these may be influenced by sample size and natural history of the disease, these data support the notion that the pathophysiology of pediatric NAFLD is, at least partially, distinct from that of adults. The results of larger studies, including exome and genome sequencing, will shed further light on these questions.

## References:

1. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. *J Hepatol*. 2018;68:268–279.

2. Goyal NP, Schwimmer JB. The Genetics of Pediatric Nonalcoholic Fatty Liver Disease. *Clin Liver Dis*. 2018;22:59–71.

3. Hudert CA, Selinski S, Rudolph B, et al. Genetic determinants of steatosis and fibrosis progression in pediatric non-alcoholic fatty liver disease. *Liver Int*. 2018;In Press:doi:10.1111/liv.14006.

4. Mann JP, Vito R De, Mosca A, et al. Portal inflammation is independently associated with fibrosis and metabolic syndrome in pediatric nonalcoholic fatty liver disease. *Hepatology*. 2016;63:745–753.
5. Hall Z, Bond NJ, Ashmore T, et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. *Hepatology*. 2017;65:1165–1180.

6. Stender S, Kozlitina J, Nordestgaard BG, Tybjærg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. *Nat Genet*. 2017;49:842–847.

7. Qi Q, Wu Y, Li H, et al. Association of GCKR rs780094, alone or in combination with GCK rs1799884, with type 2 diabetes and related traits in a Han Chinese population. *Diabetologia*. 2009;52:834–843.

 Speliotes EK, Butler JL, Palmer CD, et al. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. *Hepatology*. 2010;52:904–912.
 McPherson S, Hardy T, Dufour JF, et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. *Am J Gastroenterol*. 2017;112:740–751.

10. Pirazzi C, Valenti L, Motta BM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. *Hum Mol Genet*. 2014;23:4077–4085.

11. Pingitore P, Dongiovanni P, Motta BM, et al. PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis. *Hum Mol Genet*. 2016;25:5212-5222

12. Petta S, Tripodo C, Grimaudo S, et al. High liver RBP4 protein content is associated with histological features in patients with genotype 1 chronic hepatitis C and with nonalcoholic steatohepatitis. *Dig Liver Dis*. 2011;43:404–410.

13. Abul-Husn NS, Cheng X, Li AH, et al. A Protein-Truncating *HSD17B13* Variant and Protection from Chronic Liver Disease. *N Engl J Med*. 2018;378:1096–1106.

14. Ma Y, Belyaeva O V., Brown PM, et al. HSD17B13 is a Hepatic Retinol Dehydrogenase Associated with Histological Features of Non-Alcoholic Fatty Liver Disease. *Hepatology*. 2018;In press:doi: 10.1002/hep.30350.

15. Esterbauer H, Schneitler C, Oberkofler H, et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. *Nat Genet*. 2001;28:178–183.

16. Fares R, Petta S, Lombardi R, et al. The UCP2 -866 G>A promoter region polymorphism is associated with nonalcoholic steatohepatitis. *Liver Int*. 2015;35:1574–1580.

17. Meyre D, Bouatia-Naji N, Tounian A, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. *Nat Genet*. 2005;37:863–867.

18. Liu Y-L, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. *Nat Commun.* 2014;5:4309.

19. Sookoian S, Flichman D, Garaycoechea ME, et al. Lack of evidence supporting a role of TMC4-

rs641738 missense variant - MBOAT7- intergenic downstream variant - In the Susceptibility to Nonalcoholic Fatty Liver Disease. *Sci Rep.* 2018;8:5097.

20. Speliotes EK, Yerges-armstrong LM, Wu J, et al. Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits. *Plos Genet*. 2011;7:e1001324.

Figure legends:

Figure 1. Genetic variants associated with zonal-specific histology in pediatric NAFLD. Unlike adult NASH, pediatric NAFLD shows periportal predominant histology with a lack of ballooning, particularly in pre-pubertal children. Hudert et al<sup>3</sup> found common genetic variants in several genes to correlate with periportal histological features. Other variants were associated with histology without a zonal pattern.

Table legends:

Table 1. Common genetic variants associated with radiological or histological NAFLD in children from candidate gene studies and genome-wide association studies. See Supplementary Material for full references.

| <b>Gene</b><br>Polymorphism                                              | Chr: bp                                      | Variant(s) | Study                   | Population                                                                                         | NAFLD<br>assessment<br>modality | Results                                                                                                                                                                                                    |
|--------------------------------------------------------------------------|----------------------------------------------|------------|-------------------------|----------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTR5<br>rs6128907 (T>C)<br>rs6124026 (A>G)<br>rs6128918 (G>A)           | 20: 37387862<br>20: 37399987<br>20: 37391432 | Intronic   | Wattacheril et al, 2017 | Hispanic boys within NASH Clinical Research<br>Network (CRN) sample<br>Median age: 12.0<br>n = 208 | Biopsy                          | Three variants (rs6128907[C], rs6124026[G], rs6128918[A]) associated with fibrosis                                                                                                                         |
| <b>CNR2</b><br><i>rs35761398</i> (CAA/CGG)                               | 1: 23875429                                  | Q63R       | Rossi et al, 2012       | Italian hospital<br>Mean age: 10.2<br>n = 118                                                      | Biopsy                          | CB2 Q63R variant associated with severity of inflammation and presence of NASH                                                                                                                             |
| <b>ENPP1</b><br>rs1044498 (A>C)                                          | 6: 131851228                                 | L121G      | Hudert et al, 2018      | Berlin adolescent NAFLD cohort<br>Age = 10-17<br>n = 70                                            | Biopsy                          | ENPP1 rs1044498 [C] variant associated with NAFLD                                                                                                                                                          |
| <b>ETS1</b><br>rs3935794 (A>G)                                           | 11: 128390677                                | Intronic   | Wattacheril et al, 2017 | Hispanic boys within NASH Clinical Research<br>Network (CRN) sample<br>Median age: 12.0<br>n = 208 | Biopsy                          | ETS1 rs3935794 [G] variant associated with fibrosis                                                                                                                                                        |
| GCKR<br>rs780094 (C>T)<br>rs1260326 (C>T)<br>(in linkage disequilibrium) | 2: 27518370<br>2: 27508073                   | P446L      | Hudert et al, 2018      | Berlin adolescent NAFLD cohort<br>Age = 10-17<br>n = 70                                            | Biopsy                          | GCKR rs780094 [T] variant associated with NAFLD and decreased levels of GCKR<br>protein<br>GCKR rs780094 [T] and rs1260326 [T] variants associated with fibrosis and<br>decreased levels of GCKR protein   |
|                                                                          |                                              |            | Lin et al, 2014         | Obese Taiwanese children<br>Age = 7-18<br>n = 797                                                  | Ultrasound                      | GCKR rs780094 [T] variant associated with increased risk of NAFLD                                                                                                                                          |
| <b>IL18RAP</b><br>rs11465670 (T>C)                                       | 2: 103034440                                 |            | Wattacheril et al, 2017 | Hispanic boys within NASH Clinical Research<br>Network (CRN) sample<br>Median age: 12.0<br>n = 208 | Biopsy                          | IL18RAP rs14465670 [C] variant associated with fibrosis                                                                                                                                                    |
| <b>IRS-1</b><br>rs1801278 (A>G)                                          | 2: 226795828                                 | G972A      | Dongiovanni et al, 2010 | Italian children<br>Mean Age = 11<br>n = 71                                                        | Biopsy                          | rs1801278 variant associated with increased risk of fibrosis (however, only 2 patients were staged as F>1)                                                                                                 |
| <b>KLF6</b><br>rs3750861 (C/T)                                           | 10: 3782241                                  | IVS1-27A   | Nobili et al 2014       | Italian hospital<br>Age = 6-18<br>n = 152                                                          | Biopsy                          | IVS1-27A variant associated with reduced risk of fibrosis                                                                                                                                                  |
| <b>LPIN1</b><br>rs13412852 (C>T)                                         | 2: 11774815                                  | Intronic   | Valenti et al, 2012     | Italian hospital<br>Mean age: 10.2<br>n = 142                                                      | Biopsy                          | LPIN1 rs13412852 [T] variant associated with reduced NAFLD severity and lower prevalence of fibrosis                                                                                                       |
|                                                                          |                                              |            | Hudert et al, 2018      | Berlin adolescent NAFLD cohort<br>Age = 10-17<br>n = 70                                            | Biopsy                          | LPIN1 rs13412852 [T] variant associated with steatosis                                                                                                                                                     |
| <b>MnSOD</b><br>rs4880 (T>C)                                             | 6: 159692840                                 | A16V       | El-Koofy et al, 2018    | Egyptian paediatric obesity clinic<br>Age = 2-15<br>n = 76                                         | Biopsy                          | NASH patients had a higher incidence of the rs4880 (T) variant                                                                                                                                             |
| MTP promoter<br>rs1800591 (G>T)                                          | 4: 99574331                                  |            | El-Koofy et al, 2018    | Egyptian paediatric obesity clinic<br>Age = 2-15<br>n = 76                                         | Biopsy                          | NASH patients had a higher incidence of the [G] variant                                                                                                                                                    |
| <b>PNPLA3</b><br>rs738409 C>G                                            | 22: 43928847                                 | I148M      | Hudert et al, 2018      | Berlin adolescent NAFLD cohort<br>Age = 10-17<br>n = 70                                            | Biopsy                          | PNPLA3 rs738407 [G] variant associated with severity of steatosis, zone<br>1/periportal disease and fibrosis<br>PNPLA3 rs738407 [G] variant associated with decreased retinol metabolism                   |
|                                                                          |                                              |            | Rotman et al, 2010      | NIH centre patients<br>Mean age = 12.4<br>n = 223                                                  | Biopsy                          | No association between PNPLA3 rs738407 [G] variant with histological<br>parameters<br>PNPLA3 rs738407 [G] variant associated with a younger age of presentation                                            |
|                                                                          |                                              |            | Valenti et al, 2010     | Italian hospital<br>Age: 6-13<br>n = 149                                                           | Biopsy                          | PNPLA3 rs738409 [G] variant strongly associated with steatosis severity,<br>hepatocellular ballooning, lobular inflammation and presence of fibrosis<br>No association with PNPLA3 and periportal fibrosis |
| <b>PPARGC1A</b><br>rs8192678 (G>A)                                       | 4: 23814039                                  | G482S      | Lin et al, 2013         | Taiwanese obese children<br>Age: 7-18<br>n = 781                                                   | Ultrasound                      | PPARGC1A rs8192678 [A] variant associated with NAFLD                                                                                                                                                       |
| <b>RAB37</b><br>rs12942311 (T>C)                                         | 17: 72710796                                 | Intronic   | Wattacheril et al, 2017 | Hispanic boys within NASH Clinical Research<br>Network (CRN) sample<br>Median age: 12.0<br>n = 208 | Biopsy                          | RAB37 rs12942311 [C] variant associated with fibrosis                                                                                                                                                      |
| <b>SDK1</b><br>rs688020 (T>C)                                            | 7: 4228553                                   |            | Wattacheril et al, 2017 | Hispanic boys within NASH Clinical Research<br>Network (CRN) sample                                | Biopsy                          | SDK1 rs688020 [C] variant associated with fibrosis                                                                                                                                                         |

|                                                                                       |                                                              |       |                         | Median age: 12.0<br>n = 208                                                                            |            |                                                                                                                                                        |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|-------------------------|--------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>TM6SF2</b><br>rs58542926 (C>T)                                                     | 19: 19268740                                                 | E167K | Goffredo et al, 2016    | American paediatric obesity clinic<br>Mean age: 13<br>n = 454                                          | MRI        | TM6SF2 rs58542926 [T] variant associated with high hepatic fat content in Caucasians and African Americans, but not Hispanics                          |
|                                                                                       |                                                              |       |                         | Patients from four centres: Milan, Palermo,                                                            |            | TM6SF2 rs58542926 [T] variant associated with increased risk of NASH,                                                                                  |
|                                                                                       |                                                              |       | Dongiovanni et al, 2015 | Rome, Kuopio<br>n = 1201                                                                               | Biopsy     | advanced fibrosis, increased serum aminotransferase levels, decreased serum lipid levels                                                               |
| <b>TNFA promoter</b><br>TNF-α -238/rs361525 (G>A)<br>TNF-α -308/rs1800629 (G>A)       | 6: 31575324<br>6: 31575254                                   |       | Yang et al, 2012        | South Korean hospital<br>n = 111                                                                       | Biopsy     | No association between TNF- $\alpha$ variants and increased risk of NAFLD Two TNF- $\alpha$ variants (G308A, G238A) associated with insulin resistance |
| TRAPPC9<br>rs11166927 (C>T)<br>rs11166926 (G>A)<br>rs2242181 (T>C)<br>rs7836476 (T>C) | 8: 140796420<br>8: 140795752<br>8: 140819819<br>8: 140819819 | ?     | Wattacheril et al, 2017 | Hispanic boys within the NASH Clinical<br>Research Network (CRN) sample<br>Median age: 12.0<br>n = 208 | Biopsy     | Four TTRAPC9 variants (rs11166927, rs11166926, rs2242181, rs7836476)<br>associated with increased NAS score                                            |
| <b>UCP2</b><br>rs659366 (C>T)                                                         | 11: 73983709                                                 | G866A | Hudert et al, 2018      | Berlin adolescent NAFLD cohort<br>Age = 10-17<br>n = 70                                                | Biopsy     | UCP2 rs659366 [T] variant associated with fibrosis                                                                                                     |
| <b>UGT1A1</b><br>rs4148323 (G>A)                                                      | 2: 233760498                                                 | G71R  | Lin et al, 2009         | Taiwanese obese children<br>Age: 6-13<br>n = 234                                                       | Ultrasound | UGT1A1*6 rs4148323 [A] variant associated with a reduced risk of NAFLD                                                                                 |

 Table 1. Common genetic variants associated with radiological or histological NAFLD in children from candidate gene studies and genome-wide association studies. See Supplementary Material for full references.



Figure 1. Genetic variants associated with zonal-specific histology in pediatric NAFLD. Unlike adult NASH, pediatric NAFLD shows periportal predominant histology with a lack of ballooning, particularly in prepubertal children. Hudert et al found common genetic variants in several genes to correlate with periportal histological features. Other variants were associated with histology without a zonal pattern.

631x452mm (72 x 72 DPI)