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Abstract

The circadian oscillator, an internal time-keeping device found in most organisms, enables

timely regulation of daily biological activities by maintaining synchrony with the external envi-

ronment. The mechanistic basis underlying the adjustment of circadian rhythms to changing

external conditions, however, has yet to be clearly elucidated. We explored the mechanism

of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens the period of

circadian rhythms, to understand the regulation of circadian period. To identify the key

mechanisms involved in the circadian response to nicotinamide, we developed a systematic

and practical modeling framework based on the identification and comparison of gene regu-

latory dynamics. Our mathematical predictions, confirmed by experimentation, identified

key transcriptional regulatory mechanisms of circadian period and uncovered the role of

blue light in the response of the circadian oscillator to nicotinamide. We suggest that our

methodology could be adapted to predict mechanisms of drug action in complex biological

systems.

Author summary

Circadian oscillators are internal timing devices that produce rhythms with a period of

about 24 hours to regulate a wide range of biological processes for nearly all organisms.

Circadian oscillators adjust phase and period in response to external cues such as light

and temperatures and internal cues such as metabolites to maintain synchrony with the

daily timing of light and dark cycles resulting from Earth’s rotation. We investigated the

dynamical response of the Arabidopsis thaliana circadian network to nicotinamide, a

metabolite that lengthens the period of circadian rhythms, to uncover key transcriptional
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mechanisms required for the adjustment of daily biological activity. The identification of

the mechanisms of drug response is challenging, as a complex cascading effect causes

large section of the transcriptome to be differentially expressed, despite not being directly

affected by the drug. To identify the source of the change in circadian period, we intro-

duce a modelling strategy based on the identification and comparison of gene regulatory

dynamics before and after the perturbation occurred. The Dynamical Differential Expres-

sion (DyDE) methodology uses a reverse engineering approach that favours both the iden-

tification of unknown Gene Regulatory Network (GRN) topology and the interpretation

of the possible dynamical changes, without the need to cover extensive experiments or to

make prior assumptions of network dynamics. Subsequently, we show that our methodol-

ogy can reliably identify the source of a perturbation in complex regulatory systems such

as the circadian network. The proposed mathematical framework is scalable and flexible,

so that it can be applied to large datasets with scarce sampling.

Introduction

The synchronization of physiological rhythms with the external environment is important for

nearly all organisms. Circadian oscillators are internal timing devices that produce rhythms

with a period of about 24 hours to regulate a wide range of biological processes. Circadian

rhythms maintain synchrony with the daily timing of light and dark cycles resulting from

Earth’s rotation by constantly integrating environmental signals. This process of synchroniza-

tion is called entrainment. Studying the mechanisms that dynamically adjust circadian period

and phase, therefore, is critical to understand the control of daily biological activities.

In Arabidopsis thaliana, the circadian oscillator consists of a complex circuit of highly con-

nected transcriptional regulators. Together, they coordinate global transcript accumulation

and diverse biological processes, such as photosynthesis, hormone signaling, hypocotyl elonga-

tion and plant-pathogen interactions [1,2,3,4,5]. The light perception of the circadian oscillator

is conferred by a suite of photoreceptors. The photoreceptors are split into two classes: phyto-

chromes (principally PHYA and PHYB), that primarily sense the red portion of the spectrum

[6] and cryptochromes (CRY1 and CRY2) that are sensitive to blue light [7,8,9].

Recent studies have demonstrated a role for metabolism in regulating and entraining the

circadian oscillator of Arabidopsis thaliana. The primary metabolite sucrose accelerates the cir-

cadian oscillator (i.e., reduces its period) through regulation of the morning expressed gene

PSEUDO RESPONSE REGULATOR (PRR) 7 [10], while GIGANTEA (GI) has been identified

as a necessary sucrose-signaling mediator in the dark [11]. Another metabolite, nicotinamide

(NAM), a breakdown product of nicotinamide adenine dinucleotide (NAD), causes long

period of the circadian oscillator in all organisms tested [12,13]. The mode of action of NAM

is uncertain: various mechanisms having been proposed, including inhibition of the produc-

tion of the Ca2+-agonist cyclic adenosine diphosphate ribose (cADPR), inhibition of polyADP

ribose polymerases and histone modifications [12,13,14]. The goal of this study was to use

NAM as a tool to identify the processes responsible for a change in circadian period, which

might be required for circadian entrainment and homeostatic adjustment [15,16,17].

The discovery of drug modes of action, however, is still a costly and inefficient process,

which often requires considerable prior knowledge of a biological system and/or a vast amount

of data in several experimental condition (e.g. mutations). A major difficulty is the complex

ripple effect of treatments affecting transcriptional networks. Large sections of the transcrip-

tome can be differentially expressed, despite not being directly affected by the treatment (off-
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targets) (Fig 1). Due to the large number of feedback loops involved in a complex and relatively

small Gene Regulatory Network (GRN), such as the circadian clock, this effect is particularly

significant as a perturbation anywhere in the network typically strongly affects all molecular

concentrations. Additionally, as the perturbations induced by NAM in the circadian clock are

intrinsically related to changes in circadian period, a large part of the transcripts will typically

be differentially expressed. Thus, Differential Expression (DE) analysis, the traditional

approach used to identify the mechanisms that alter biological behavior in response to drugs,

environmental signals or genetic lesions [20], will usually fail to identify the small number of

genes central to the biological perturbation. The main reason is that DE only performs statisti-

cal analysis of changes in gene expression levels [21,22]. As an alternative to the DE analysis,

we devised a modeling framework that identifies and characterizes differentiated regulatory

dynamics between genes to capture key mechanisms involved in NAM-induced perturbations

in the circadian system of Arabidopsis. The rationale behind this approach is that not only

genes, but also their interactions, are affected by a drug. This reasoning is further supported by

[18,23,24], which highlight the fact that drugs and diseases mechanisms should be regarded as

network instead of gene-centric perturbations. We designed our modelling strategy so that it

could be applied to scarce data without the need to cover extensive experiments or to make

prior assumptions of network dynamics. In particular, we consider only gene expression data

with and without NAM.

Fig 1. Treatments effects in transcriptional networks. Treatment effects can be perceived as perturbations in

molecular networks [18,19]. In transcriptional networks, such perturbations usually only affect a very small number of

regulatory links directly. For example, only the red links have been directly affected by the treatment. All other links

are unchanged, although all nodes (concentrations) in the Figure have been (indirectly) affected due to cascading and

feedback effects. Hence, Differential Expression (DE) might not distinguish between direct and indirect effects of a

treatment. Dynamical Differential Expression (DyDE), therefore, investigates how and why changes occur, instead of

simply measuring what and how much is produced by those changes.

https://doi.org/10.1371/journal.pcbi.1006674.g001
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On one hand, complex nonlinear models have the potential to capture the dynamical rela-

tionships between genes with great precision. A successful application of Michaelis-Menten

dynamics to reverse engineer network topology from multiple experiments, circadian time-

series data is presented and compared to state-of-the-art strategies in [25]. Alternatively, a

community-driven comparison of (non)linear approaches (e.g. mutual information-based,

Bayesian networks, random forests, neural-networks, etc.) for the inference of (non-circadian)

gene regulatory networks has been achieved in [26,27]. On the other hand, high model com-

plexity can lead to overfitting (fitting the noise instead of the dynamics) without sufficient data

or detailed knowledge such as network topology, types of nonlinear interactions, or potentially

some of the model parameters (e.g. Hill coefficients). As for non-model based methods, such

as [28,29,30,31], it is not clear how they can be used to compare subtle changes in dynamics

caused by perturbations, and pinpoint the source of those perturbation. We developed, there-

fore, a systematic and scalable dynamical modeling framework named Dynamical Differential

Expression (DyDE). DyDE uses a black box-type modeling approach to reverse-engineer sim-

ple yet consistent and comparable gene regulatory dynamics from time-series data. In addi-

tion, it does not use any prior information and, hence, it is unbiased towards prior knowledge

of network topology and dynamics. By comparing changes in both topology and subtle

dynamic modifications of regulatory mechanisms, we were able to considerably narrow down

potential targets of NAM in the circadian clock.

The findings predicted by DyDE are experimentally tested and demonstrate the role of the

circadian gene PRR7 as a key regulator of dynamics adjustment of the circadian clock. In addi-

tion, TIMING OF CAB EXPRESSION 1 (TOC1) and the interplay between PRR7 and PSEUDO
RESPONSE REGULATOR 9 (PRR9) are identified as the main mediators of the circadian sys-

tem response to NAM.

The modeling insights also identified alterations in CRY2 dynamics resulting from the

NAM treatment. Therefore, we also investigated the role of blue light in the circadian period

change of NAM-treated plants. In particular, we found that blue light regulates circadian oscil-

lations of [Ca2+]cyt through a NAM-sensitive pathway. These new perspectives contribute to

the understanding of the mechanistic details underlying the regulation of period of circadian

oscillators.

Overall, the results suggest that DyDE is a useful tool to generate reliable hypothesis from

time-series data for the identification of drug targets in complex biological systems.

Methods

To investigate how NAM might regulate the period of the circadian oscillator we first used sta-

tistical tools to identify those transcripts that have circadian rhythms in abundance in both

untreated and NAM-treated plants. Then, we introduce the Dynamical Differential Expression

(DyDE) approach to characterize altered dynamics within the circadian regulatory network of

NAM-treated plants.

The hypothesis generated by DyDE were experimentally tested using genetic mutant and

physiological experiments in different light conditions. Finally, we extended DyDE to the

whole rhythmic transcriptome to further investigate clock period regulation.

Statistical characterization of circadian transcripts

To assess whether genes are regulated by the circadian oscillator, most methods take advantage

that circadian regulation of transcript abundance resemble a sinusoid. To estimate circadian

period of the regulation of a particular transcript, the main idea is to find the sinusoid that

most closely matches its abundance over time [32,33]. However, in NAM-treated plants the

DyDE and the period control of the Arabidopsis circadian oscillator
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changes in abundance of circadian-regulated transcripts have a considerable number of non-

sinusoidal profiles (S1 Fig). To overcome this problem, we devised a learning approach based

on pseudo-sinusoidal functions to properly assess the rhythmicity and the corresponding cir-

cadian period of signals from gcRMA normalized microarray data of NAM treated plants. To

infer period, phase and amplitude, linear trends are eliminated by removing the best straight-

line fit and pseudo-sinusoidal functions are fitted to each signal to minimize the 2-norm error.

Pseudo-sinusoidal functions account for many signals that are periodic but not sinusoidal.

Pseudo-sinusoidal functions are constructed by joining together two sinusoids with different

periods. Hence, a complete oscillation of a pseudo-sinusoidal function consists of the first

sinusoid (of period p1) in the first half-oscillation, and the second sinusoid (of period p2) in the

second half-oscillation (Fig 2A). The resulting period of the pseudo-sinusoidal function is

defined as p ¼ p1þp2

2
. This can be expressed by:

S ¼
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where A is a scaling factor that accounts for the amplitude of the signal and φ1 is the phase of

the signal. The algorithm searches possible combinations of p1 and p2 to minimize the least

square distance between pseudo-sinusoidal functions and the data. We allowed periods p1 and

p2 to vary between 12 and 36 hours. A perfect sinusoid gave a high fit for the wild-type back-

ground dataset. We found that three periodic signals were highly represented in the dataset. In

particular, those with p1, p2 equal to: p/2, p/2 (pure sinusoid); p/2+3.8, p/2–3.8 (p1 is greater

than p2); and p/2–7.3, p/2+7.3 (p1 is smaller than p2) (Fig 2A).

We used a logistic regression framework to generate a probabilistic discriminative model

that estimates the probability of a gene to be rhythmic given its time course data. In this case,

the classification problem only contains two classes: rhythmic (C1) and arrhythmic (C2). For

each transcript, a set of 8 features x = {X1,X2,. . .,X8} is computed and empirically believed to be

crucial to distinguish between rhythmic and arrhythmic transcripts.

The features were computed from 2 signals: the first signal (A) corresponds to the average

of replicates and (B) being a single replicate for which the L2-norm error with the best fitted

pseudo-sinusoidal function is lower than for the other replicate. The following features were

computed: ratio of power in the 18–32 hours frequency range (of (A) and (B)), L2-norm of the

error to the best fit of pseudo sinusoidal function (of (A) and (B)), the variance of the power

spectrum (of (A) and (B)) and the amplitude of the best fitted pseudo-sinusoidal function (of

(A) and (B)).

The log of the ratio of probabilities between the two classes, also known as the log odds, is

given by [34]:

ln
pðrhythmicjxÞ

pðarrhythmicjxÞ

� �

¼ ln
pðC1jxÞ
pðC2jxÞ

� �

¼ ln
s

1 � s

� �
¼ logit sð Þ

The goal of the logistic regression is to estimate σ for a linear combination of the Xn features

such that:

logitðsÞ ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn

The weights bi of the independent variables Xi were estimated using the mnrfit function

in MATLAB. The algorithm is initially trained with a mix of 100 rhythmic and 100 arrhyth-

mic transcripts randomly chosen from the dataset and visually inspected to show clear

DyDE and the period control of the Arabidopsis circadian oscillator
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(ar)rhythmicity. Finally, the decision boundary was set so that if p(C1|x)>0.5, the gene was

classified as rhythmic, and vice versa. Our approach, therefore, is inspired by the patterns

observed in the dataset but not strictly constrained to pure cosine shapes. With the inclu-

sion of the S function, we allow the search for asymmetric signals, which represent a large

part of the transcriptome. A main distinction with the previously introduced algorithms,

therefore, is the data-specific, learning approach devised to allow for a wider range of peri-

odic signals. However, this offers additional advantages such as a dedicated way to handle

noise between replicates, or the information in the frequency domain of the signal, which

are both learned from the data. Comparison of performances with standard periodicity

assessment tools is shown on S2 Fig.

Network inference and analysis by DyDE

Like most biological systems, circadian clocks have a large number of feedback loops. Hence, a

perturbation anywhere in the network typically affects all nodes (in this case, their molecular

Fig 2. The effects of NAM on the circadian regulation of the transcriptome. (A) Illustration of the shape of S. The

first panel shows two period of a perfect sinusoidal shape, whereas the second panel displays the segmentation of the

period P into p1 and p2, where p1 is greater than p2. p1 and p2 follows the formula: P = (p1 + p2)/2. The last panel

displays the case were p1 is smaller than p2. (B) Number of periodic transcripts that have been identified in untreated

and NAM-treated plants, as well as the intersection. (C) Circadian period of untreated and NAM-treated transcripts

plus minus standard deviation. The mean increase of period following the NAM treatment is of 3.3h. (D) Amplitude

analysis (normalized) for the same transcripts.

https://doi.org/10.1371/journal.pcbi.1006674.g002
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concentration and time profiles), which makes the problem of inferring the entry point of a

perturbation hard using DE analysis. We proposed, instead, that key mechanisms involved in

NAM-induced perturbations in the circadian system of Arabidopsis can be captured by identi-

fication and comparison of regulatory dynamics before and after the perturbation occurred.

Assume that a perturbation, such as NAM, changes the regulatory dynamics between two

genes (e.g. by binding to a transcription factor) while leaving intact the rest of the system. Due

to feedback interconnections, all the clock genes would change their expression, which, in

turn, would change the expression of all circadian genes. While thousands of genes change

their expression, only one regulatory link was actually affected. Our goal is to find this link (or

links, in case of multiple perturbation entry points). To achieve this, we developed DyDE that

looks for changes in links, instead of nodes. DyDE uses Linear Time-Invariant (LTI) models, a

type of black box model, to systematically capture the dynamics underlying the biochemical

mechanisms of circadian gene regulation, without relying on a priori knowledge of the system

or extensive database. Such models benefit from a rich theory and a well-established collection

of tools that makes the analysis of its dynamical properties straightforward, as contrast to

detailed mechanistic models. In addition, the estimation of the parameters of such models is

reliable and computationally efficient. The description of biological mechanisms of the Arabi-

dopsis circadian clock from time-series data by LTI models has been studied in [35]. More

recently, the performances of such linear modelling approach to reverse engineer the clock

topology were compared for two extensively used Arabidopsis oscillator models [36] and con-

firmed that the majority of oscillator links can be represented by simple linear dynamics. How-

ever, the use of LTI models to detect dynamical perturbation in the gene regulatory network

resulting from chemical treatments is novel.

The first step of DyDE consists of uncovering dependencies and quantifying dynamics

between genes with LTI models. Our mathematical framework estimates a collection of Single

Input-Single Output (SISO) models between pairs of genes to characterize the system dynam-

ics. The limited number of available time points restricted the modelling of SISO systems to

first and second order models. Overall, second order systems did not improve significantly the

fitness of models and resulted in a considerable increase of false positives (overfitting). Hence,

in this analysis of the circadian system, we restrict the model order to one. Mathematically, the

dynamics between two genes can be represented as:

dyðtÞ
dt
¼ a u tð Þ � b y tð Þ þ c

where u(t) and y(t) represent the time series of the regulatory gene and the regulated gene,

respectively. In addition, b y(t) corresponds to the degradation rate of gene y, a u(t) corre-

sponds to the influence of u(t) on the rate of y(t) and c is a constant offset. System identifica-

tion is performed using the function ‘pem’ implemented in MATLAB to minimize the

prediction error [37]. The model has a total of three parameters (a, b, and c), leading to effi-

cient solutions. We chose a subspace initialization algorithm since it performed similarly as

randomizing initial conditions–for the vast majority of models (99%), the final solution was

identical with either method. This suggests that the chances of being trapped into a local mini-

mum are negligible.

The estimation of parameters requires low computational time: a single system between a

pair of genes is typically identified within few seconds (Intel Core i5). This modeling is inde-

pendently repeated for all available pairwise genes, where each gene takes its turn as being an

input and then an output to another gene. This modeling approach, therefore, generates a

large amount of SISO LTI models (n2−n models, where n corresponds to the amount of genes,

and self-regulation is not considered) to describe the system. Each potential link between two

DyDE and the period control of the Arabidopsis circadian oscillator
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genes is validated if the corresponding model reproduces the dynamics involved with a suffi-

cient degree of precision, which is characterized by a high goodness of fit, defined as:

fitness ¼ 100 � ð
1 �

PN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � ŷk

p
Þ

2

PN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy � �yÞ2
q Þ

where y is the validation data, �y is the average value of the validation data, and ŷk is the esti-

mated output. MATLAB function compare can be used to compute the fitness of the model. A

fitness equal to 100% corresponds to a perfect identification. The choice of such metric is moti-

vated by the dependency of noise towards the abundance of gene expression. When the dis-

tance of the true data points towards the mean is large (represented by the denominator in the

above equation), the fitness conveniently penalizes less the error term, which lies in regions

where the intrinsic noise involved in the gene expression is potentially the largest.

The second step consists in identifying the effect of a treatment, NAM in our case, on the

biological network. While a treatment might affect the abundance of many transcripts, only a

few links are affected, as depicted in red in Fig 1. Hence, checking whether links are affected

before and after perturbation can potentially lead to the finding of the entry point of the treat-

ment. For this purpose, two cases are of particular interest. First, a link between two genes is

validated in the untreated system alone (i.e. it is not possible to find a combination of a, b and

c so that the model in the treated system provides a good match with the data anymore). Sec-

ond, a link is validated in both systems, but the way one gene regulates the other may change;

this is a much subtler change in the dynamics of the link. The latter case requires us to com-

pare the dynamics between both links. Here, we use a rigorous and well-established tool from

engineering known as the nu-gap [38]. Originally developed to address the stability properties

of closed loops systems defined in the same feedback loop, the nu-gap essentially measures the

distance, from a perturbation point of view, between linear models. This property is particu-

larly relevant in the context of circadian clock networks, which consist in regulatory networks

with several feedback loops. This then facilitates us to determine the significance of the dynam-

ical change of a link between experimental conditions. The nu-gap returns a value between 0

to 1, quantifying whether the models are similar or very different, respectively. [39] have sug-

gested that values above ~0.2 could be used to infer the main target of a perturbation. The nu-

gap is computed using the gapmetric function in MATLAB. It should be applied to all models

that have been estimated in both networks. If the signals are concentrated around a particular

range of frequencies (such as oscillating signals), the gap should be measured ‘locally’ around

that range of frequencies only, since they dominated the model estimation in Step 1.

Next, we explain the key ideas behind DyDE through a small number of genes in the Arabi-

dopsis circadian oscillator. For example, the following model considers TOC1 as an input and

PRR9 as an output.

d½PRR9�t
dt

¼ a½TOC1�t � b½PRR9�t þ c

where b represents the strength of activation or repression induced by TOC1 on the expression

rate of PRR9, and a corresponds to the degradation rate of PRR9. These parameters are esti-

mated by minimizing the prediction error from the untreated time-series for both TOC1 and

PRR9.

In this case, we found a model in good agreement with the data (57% fitness), suggesting

that indeed TOC1 regulates PRR9 (Fig 3A). Moreover, the model demonstrates that the rate of

change of the concentration of PRR9 is proportional to the concentration of TOC1. Note that

the other way around (i.e., PRR9 regulating TOC1) could not be established since the

DyDE and the period control of the Arabidopsis circadian oscillator
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respective model has a low goodness of fit (16%, Fig 3B). These results are consistent with the

literature [40]. Hence, we would then establish a link from TOC1 to PRR9, but not the other

way around (Fig 3C).

Then, a model is estimated between TOC1 and PRR9 from the NAM-treated time-series.

From the untreated and treated time-series alone, it is unclear whether the link dynamics have

changed (Fig 3D). The optimal model parameters, however, have significantly changed. A nu-

gap of ~0.5 confirms that indeed the link has been affected. This result indicates that there is

large perturbation in the regulatory dynamics that links TOC1 to PRR9, which, therefore,

should be considered as a strong candidate for being an entry point for NAM in the system. If

true, knocking down either TOC1 or PPR9 would therefore lead to NAM no longer affecting

Fig 3. Network inference and analysis by dynamical differential expression (DyDE). (A) Ordinary Differential Equations (ODEs)

capture the dependence of the rate of the concentration of a transcript on the concentration of another transcript. First order linear models

are used to represent the dynamics between two genes. Here, a good agreement (plain line) with the data (dotted line) was found (57%

goodness of fit). (B) The inverse regulation is considered. In this case, it is not possible to find a combination of parameters so that a first

order linear model captures the dynamics involved. For this inverse regulation the model that best described the data obtained a goodness

of fit of only 16%. (C) A threshold by which each model is (in)validated is applied on the goodness of fit of the models. As an example, a

threshold of 46% would consider a link from TOC1 to PRR9 but not the other way around. The same threshold is applied to all models.

(D) A first order linear model is evaluated in the presence of nicotinamide between the same species. The nu gap is then applied to

compare models (A) and (D) to quantify whether the models are similar, or significantly affected by NAM.

https://doi.org/10.1371/journal.pcbi.1006674.g003
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the clock. This analysis is then repeated for all common links between untreated and treated

plants.

Results

We identified 3859 (18.4%) circadian-regulated transcripts for the untreated plants (Fig 2A).

These were enriched for Gorilla terms ‘Circadian Rhythm’ and ‘Rhythmic Process’ (p = 4.07E-

18; S2 Table; GEO No. GSE19271). A total of 2588 (12.3%) transcripts were identified as rhyth-

mic in NAM-treated plants (Fig 2A), with a mean increase in period from 24.0 ± 2.1 h

(-NAM) to 27.4 ± 2.6 h (+NAM) (Fig 2B) and without a noticeable change in amplitude (Fig

2C).

DyDE applied to the Arabidopsis circadian clock genes

We considered a total of 17 known clock genes: CCA1, LHY, PRR9, PRR7, PRR5, RVE8, GI,
TOC1, ZTL, ELF4, ELF3, PHYA, PHYB, CRY1, CRY2, CHE and PRR3. However, the core oscil-

lator genes ZTL, ELF3, PHYB, CRY1, PRR3 and CHE were identified as non-rhythmic in the

presence of NAM, which was confirmed by visual inspection (S1 Fig). Hence, these genes are

excluded from the modeling of NAM targets as they cannot be contributing to the rhythmic

dynamics of the remaining oscillator components that are measured in the presence of NAM.

As a first step, we computed models for all available pairs of the clock genes for both condi-

tions, totaling 220 SISO models (110 in untreated and 110 in NAM). We kept only those mod-

els with good agreement with the data, i.e. above a fitness threshold. On one hand, the user-

defined threshold has to be set large enough to reliably capture the dynamics involved between

genes, and provide the nu-gap analysis with comparable models. On the other hand, the

threshold has to be set sufficiently low to consider enough gene-to-gene relationships to detect

a dynamical perturbation in the network. Here, the fitness threshold was set to 46% as we

noted that below this threshold, the amount of unknown regulations dramatically raised (S3

Fig; S3 Table).

In total, 70 regulatory links were retained for untreated plants and 55 links for NAM-

treated plants between the 11 clock genes. The untreated models describe 70% of the known

regulatory pathways among these 11 genes (S3 Table; S3 and S4 Figs [40]). 64% of which, had

the expected activation or inhibition effect. These numbers are remarkable, taking into

account the model simplicity, and confirms that the majority of clock links can be represented

by simple linear dynamics [35,41,42].

In particular, 28 links were present in the untreated samples but not in the NAM-treated

samples. These 28 links form a network from now on referred to as “regulation loss” network,

which captures the links abolished by NAM. In addition, 42 links are present in both condi-

tions which form a network, so called “common” network that is common to both treated and

untreated plants (S3 Table).

We used the nu-gap to identify those links among the common network whose dynamics

were significantly affected by NAM. Fig 4A and S4 Table depict the comparison of the dynam-

ics of each link with the nu-gap. All regulatory interactions are somehow affected by the treat-

ment, which is expected from the interconnected circadian network. Let us then consider the

highest nu-gap values, which are associated with the following links: TOC1 to PRR9 (0.5),

those originating from CRY2 to ELF4 (0.47), LHY (0.42) and RVE8 (0.37) and PRR9 to CRY2
(0.35). Interestingly, the only inferred interaction originating from CRY2 that does not seem

affected connects to TOC1 (nu-gap of 0.06). These results suggest that a major dynamical

change is induced to CRY2 in the dynamical response of the circadian clock to NAM. In addi-

tion, the largest nu-gap value suggests that the causality within the time course data of TOC1
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and PRR9 has changed significantly differently towards the treatment, as compared to the

other parts of the circadian network.

We then used a standard network topology metric to identify the genes that are central to

the drastic changes in dynamics captured by the regulation loss network. This topology metric

Fig 4. DyDE applied to the Arabidopsis circadian oscillator genes. (A) Common network and nu-gap analysis. The

common network displays the models that have been validated in both untreated and NAM-treated plants. A directed

arrow from gene a to gene b (blue circles), therefore, represents a dynamical model that captures the dependency of b
on a. Red arrows represent the models associated with the top five highest nu-gap values. (B) Bar plot comparing the

connectivity loss (%) associated to each gene. For a particular gene, the connectivity loss corresponds to the total

amount of incoming and outgoing links that were validated in untreated plants but not in NAM-treated plants. Error

bars represent the standard deviation of connectivity loss for ± 5% change in fitness threshold selection.

https://doi.org/10.1371/journal.pcbi.1006674.g004
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accounts for the connectivity of a gene, i.e. the number of its incoming and outgoing links.

This measure is estimated for each gene of the regulation loss network. As an example, PRR7
has six incoming links and nine outgoing links for untreated plants. The connectivity of PRR7
in untreated plants is then equal to 15. Among those, only six of were present in NAM-treated

plants. PRR7, therefore, has a connectivity of nine in the regulation loss network, which corre-

spond to a loss of 60% of its connectivity from untreated to NAM treated plants. As a result,

CCA1 (61%), PRR7 (60%), TOC1 (57%) exhibit the highest connectivity drop (Fig 4B; S5

Table). This result identifies the biological functions of CCA1, PRR7 and TOC1 as being highly

affected by NAM in the regulation of the circadian clock.

DyDE, therefore, identifies the regulatory dynamics of TOC1-CRY2-CCA1-PRR7 as being

predominately affected by NAM as a result of both nu-gap and connectivity analysis. Accord-

ingly, the strong emergence of the blue light receptor CRY2 in the nu-gap analysis suggests

that nicotinamide alters the regulation of the interactions between light signaling and the cir-

cadian oscillator. These findings are further examined through mutant analysis and single

wavelength light experiments.

PRR7/PRR9 inter-regulation together with TOC1 are targets of

nicotinamide

To test the predictions that TOC1, CRY2, CCA1 and PRR7 are associated with the effect of

NAM on the circadian oscillator, we experimentally investigated the sensitivity of circadian

mutants to NAM. All mutants responded to NAM with increased circadian periods, with the

exception of two independent lines of the same T-DNA insertion allele of PRR7, which were

insensitive (prr7-3 p> 0.95; prr7-11 p> 0.95 Fig 5A and 5B; S5 Fig; S6 Table). The insensitiv-

ity of prr7-11 to NAM was confirmed by measuring circadian rhythms of leaf movement (S6

Fig). prr7-11 was not affected by NAM at any tested concentration, contrasting with a dose-

dependent effect of NAM on circadian period in other prr mutants and associated back-

grounds (R2 > 0.9; Fig 5C).

In contrast, toc1-2 and TOC1-ox had significantly greater responses to NAM than wild type

(Fig 5A; S6 Table). These results support our predictions that NAM induces dynamical

changes specifically to PRR7 and TOC1. No dramatic changes of period, however, were

observed for cry2-1 and cca1-11, suggesting that these might not contribute directly to the

response to NAM.

Finally, derived from the nu-gap analysis, the possible change in the dynamical behavior of

PRR9 in mediating the effect of NAM on the clock was evaluated with a prr7-3 and prr9-10
double mutant. prr7-3 and prr9-10 had an epistatic interaction, with the double mutant

responding to NAM by a 5.3 ± 1.6 h increase of period, more than either the insensitive prr7-3
or the oversensitive prr9-10 alone (Fig 5A). The epistasis of prr9-10 to prr7-3 was confirmed at

all concentrations of NAM tested (Fig 5C).

Nicotinamide-induced changes in period are associated with a blue light

signaling pathway

The mutant analysis did not confirm the modeling dynamical perturbation of CRY2 in the

response to NAM. However, CRY2 is one of a pair of cryptochrome blue light photoreceptors

and so mutant analysis might not be the most appropriate tool to investigate the role of the

blue light photoreceptor. To investigate further we also investigated the role of blue light in the

response to NAM using monochromatic light conditions. High frequency measurements of

the circadian promoter fusions PRR9:LUC, PRR7:LUC, TOC1:LUC, CCA1:LUC, LHY:LUC and

DyDE and the period control of the Arabidopsis circadian oscillator
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Fig 5. Reverse genetic analysis validates the prediction that TOC1 and PRR7 are associated with the effect of

nicotinamide on circadian period. (A) The change in circadian period caused by 20 mM NAM (period difference) in

DyDE and the period control of the Arabidopsis circadian oscillator
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GI:LUC were collected in the presence or absence of 20 mM nicotinamide under constant blue

or red light (S7 Fig).

In the absence of blue light, NAM was without effect on the circadian period or amplitude

of CCA1:LUC (Fig 6A) and other promoter:luciferase fusions (Fig 6B). This demonstrates that

input pathways associated with blue light are sensitive to NAM. Under blue light exposure, all

promoter:luciferase fusions considered had an increase in period in the presence of NAM (Fig

6B). Under red light exposure, the period response was either negligible (PRR9:LUC, CCA1:

LUC, LHY:LUC, GI:LUC) or negative (PRR7:LUC, TOC1:LUC). These results suggest that blue

light increase the response of circadian period to NAM, while red light decrease its

responsiveness.

Having previously proposed that the effects of NAM on the circadian system are due to the

inhibition of the production of the Ca2+-agonist cADPR [12], we tested if the response to NAM

of prr7-11 is due to altered Ca2+ signaling. We investigated, therefore, the inhibitory effects of

NAM on circadian [Ca2+]cyt oscillations in prr7-11 and in light signaling mutants in red and

blue light. 20 mM NAM was equally effective in abolishing circadian rhythms of [Ca2+]cyt in

both Col-0, prr7-11 and prr7-3 prr9-10 (Fig 6C). This suggests either that there are multiple sites

of action of NAM or that PRR7 is downstream of the effects of NAM on [Ca2+]cyt.

In constant blue light, there were robust oscillations of [Ca2+]cyt in plants with functional

CRY1 photoreceptors, being abolished in cry1 and, cry1cry2 but unaffected by cry2, phototropins
and Phy loss-of-function mutants (Fig 6D, S8 Fig). Under blue light, NAM abolished [Ca2+]cyt

oscillations but did not reduce oscillations further in cry1 or cry1cry2 (Fig 6D, S9 Fig). High

amplitude oscillations of [Ca2+]cyt were dependent on blue light because in constant red light,

[Ca2+]cyt increased early in each cycle but without a subsequent decrease (Fig 6E; S8 Fig). This

red light-induced increase in [Ca2+]cyt was dependent on PHYB (S8 Fig).

To examine the role of PHYB further we measured [Ca2+]cyt in PhyB-ox (Fig 6F, S8 Fig)

and determined that in these plants [Ca2+]cyt was rhythmic with a sinusoidal period of

25.0 ± 0.5 h in constant red light (Fig 6F). NAM was without effect on [Ca2+]cyt in constant red

light, even in the PHYB-ox background (Fig 6E and 6F, S6 and S7 Figs) demonstrating that

blue light regulates circadian oscillations of [Ca2+]cyt through a NAM-sensitive pathway. This

pathway appears to be required for the major oscillatory dynamics of [Ca2+]cyt.

Extension of DyDE to the rhythmic transcriptome

DyDE was further adapted to explore the rhythmic genome for additional targets for NAM

and novel clock genes. For this purpose, models were computed between each pair of the 988

genes that were scored rhythmic in both untreated and NAM treated conditions, resulting in 2

million models corresponding to potential interactions.

We selected the models that exhibit the highest goodness of fit (over 80%) in both untreated

and NAM-treated plants to minimize the identification of erroneous interactions and com-

puted their nu-gap value to investigate dynamics affected by NAM. As a result, out of ten, two

models only were retained with a nu-gap > 0.2. These models identified the regulation of

AT5G35970 (P-loop containing nucleoside triphosphate hydrolases superfamily protein) by

AT2G21860 (violaxanthin de-epoxidase-like protein) and the regulation of ATG21660 (GRP7/

circadian mutants measured using CCA1:LUC, TOC1:LUC, and CAB2:LUC. (B) CCA1:LUC activity for Col-0 and

prr7-3 in the presence (yellow) and absence (white) of 20 mM NAM. (C) Dose response of circadian period to NAM

for prr7-11, prr9-10, prr7-3prr9-10, prr3-1, prr5-1 and toc1-2. Bars ±SD. N>16 from> 2 technical replicates. Open

symbols indicate minus NAM. Mean time courses for these data are shown in S5 Fig. Statistical analysis is detailed in

S6 Table.

https://doi.org/10.1371/journal.pcbi.1006674.g005
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CCR2) by AT1G78600 (LZF1/BBX22) as being altered by NAM. The regulation of AT5G35970
by AT2G21860 may be important as AT5G35970 is identified by DyDE as being a hub regu-

lated by four circadian oscillator genes (S8 and S9 Tables). The second link is easier to explain

because GRP7 along with GRP8 forms a slave oscillator driven by the circadian clock that regu-

lates ABA responses [43]. GRP7 is an RNA binding protein regulated by ADP ribosylation

[44]. As the enzymes that perform ADP ribosylation are inhibited by NAD, this could suggest

Fig 6. The effect of nicotinamide on circadian period requires blue light. (A) CCA1:LUC rhythms in monochromatic blue or red light ± 20

mM NAM. (B) The change in circadian period ± 20 mM NAM in constant white (grey) and monochromatic red or blue light for a range of

reporters. (C) 20 mM NAM abolishes circadian rhythms of [Ca2+]cyt in both Col-0, prr7-11 and prr7-prr9. (D) Robust circadian rhythms of

[Ca2+]cyt in monochromatic blue light are abolished by 20 mM NAM. (E) Red light induced elevations of [Ca2+]cyt early in the photoperiod

are not abolished by nicotinamide. (F) PHYB-ox enhances circadian rhythms of [Ca2+]cyt in monochromatic red light. Light conditions are

indicated by the colored boxes on the X axes. White is red/blue mix, black is dark, monochromatic light is represented by the appropriate

color with subjective night shaded darker than subjective day. NAM indicated by yellow. Bars are SD. n> 7.

https://doi.org/10.1371/journal.pcbi.1006674.g006
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a role for nicotinamide inhibiting ADP ribosylation of an oscillator or slave oscillator

component.

Then, the fitness threshold was released to 60% to further investigate novel clock compo-

nents. For this purpose, we searched for those genes for which models can be computed from/

to clock components (S8 Table). Models with a nu-gap value above 0.2 were discarded as a

consistency criterion. Finally, candidates were ranked according to their connectivity with the

clock. As a result, 20 high potential genes were isolated (S9 Table). The whole genome analysis

of clock input and output hubs and the nu-gap analysis suggest interesting roles for previously

characterized genes, including AT3G47500 (CYCLING DOF FACTOR3) [45], AT4G38960
(BBX19) [46], AT1G78600 (BBX22) [47,48], AT3G22840 (CRY3) [49], AT1G28330 (DRM1),

AT2G33830 (DRM2) [50,51] and uncharacterized genes including AT5G35970.

Discussion

The quantity and relevance of experimental measurements as well as a priori biological knowl-

edge of the system are the two mains factors that determine the choice of appropriate model

complexity. Here, we considered the problem of inferring the entry point of a treatment in an

organism from limited time-series data (in this case, the circadian clock in Arabidopsis). For

this purpose, we used simple dynamical models to capture gene regulatory dynamics and com-

pare those under different scenarios without making a priori assumptions on the structure of

the network. Subsequently, we showed that simple dynamical models have the potential to

identify crucial dynamical perturbations for complex systems such as the circadian clock.

However, it should be stressed that, as for the sole purpose of identifying the topology of the

underlying network, our method competes well with the current state-of-the-art of network

inference strategies. To provide a more comprehensive picture, we further conducted a com-

parative analysis of the network reconstruction performances of our algorithm with four dif-

ferent methodologies [25,28,30,52] on a widely used circadian benchmark dataset generated

from the Pokhilko 2010 model [25,53]. The simulations were carried to replicate the experi-

mental conditions of our dataset (constant light, 48h of observational time, 4h sampling rate)

[54,55]. S10 Fig and S10 Table displays the respective performance of each algorithm in terms

of the resulting Area Under the ROC Curve and the Precision-Recall Curve. Precision-Recall

curves allow for a more accurate picture of algorithms performances for sparse GRNs (such as

the plant circadian clock) and are commonly used for such task. As a result, it can be seen that

the performances of our methodology approach those of an adaptation of the best performer

of the Dialogue for Reverse Engineering Assessments and Methods (DREAM) [26] to time-

series data: the semi-parametric method dynGENIE3. The nonlinear parametric approach

(GESBL) and the semi-mechanistic methodology (iCheMA) both seem to underperform.

However, the non-parametric approach (GDPM) significantly outperformed all methods pro-

vided. This result is consistent with the currently available literature, which seems to favour

the use of nonparametric nonlinear equations for the inference of network topology from

short-time series data. However, as mentioned above, comparison of nonlinear dynamics is

not trivial, and require further mathematical developments. Hence, as a future work, it would

be interesting to address the development of such suitable mathematical tools.

We further devised a learning algorithm to capture the specific pattern of oscillating wave

forms of genes affected by NAM. Since the period of oscillations of central clock genes

increases from 24 (wildtype) to roughly 28 (NAM) hours, we focused on those genes. For a rel-

atively small number of genes, DyDE efficiently narrowed down possible targets of NAM that

could then be verified experimentally. Since it is likely that other genes may be targets of

DyDE and the period control of the Arabidopsis circadian oscillator
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NAM, we further applied DyDE to all 988 circadian genes that were scored rhythmic in both

untreated and NAM treated conditions.

DyDE identified important changes in the regulatory dynamics of PRR7, TOC1, CCA1 and

the blue light photoreceptor, CRY2, resulting from the treatment of plants to NAM as well as

suggesting a mediating role of PRR9. Mutants analysis confirmed DyDE predictions of altered

activity of PRR7, TOC1 and PRR9 and blue/red light experiments demonstrated that the effect

of NAM is blue light dependent. The latter also demonstrated that blue light regulates circa-

dian oscillations of [Ca2+]cyt through a NAM-sensitive pathway.

The involvement of PRR7 with the dynamic adjustment of circadian period in response to

nicotinamide, revealed by the insensitivity of prr7-11 and prr7-3 to NAM and confirmed by

leaf movements analysis, is interesting because PRR7 is also required for the response of the

circadian oscillator to sugars [10,56]. PRR7, however, is not a direct target for NAM in the cir-

cadian oscillator because PRR7 is not required for the response to NAM, as demonstrated by

the hyper-sensitivity to NAM of the prr7-3 prr9-10 double mutant. Together, the insensitivity

of prr7-3 and prr7-11 to NAM and hypersensitivity in the prr7-3 prr9-10 double mutant indi-

cates that PRR7 and PRR9 regulate a component or pathway influenced by NAM and that

PRR7 might act upstream of PRR9 in this regulation. The levels of expression of PRR7 and 9
appear to regulate the pace of the circadian oscillator through feedback with CCA1/LHY and

by acting as toggle switching the oscillator from a morning state when CCA1/LHY are high to

an evening state when TOC1 is high [57,58].

Additionally, the blue-light dependency of both circadian oscillations of [Ca2+]cyt and

NAM regulation of circadian period might suggest that Ca2+ is associated with the response of

the oscillator to NAM. Furthermore, we recently reported that CALMODULIN-LIKE 24

(CML24), is a Ca2+-dependent regulator of circadian period and that its effects are NAM sensi-

tive [59]. A caveat to this argument is that our methodology identified CRY2 regulation of the

transcriptional network being altered by NAM but the circadian oscillations of [Ca2+]cyt were

dependent on CRY1. NAM can also affect the oscillator through Ca2+-independent mecha-

nisms [14]. We propose that a module of circadian oscillator components PRR7 and 9, TOC1
and a Ca2+ signaling network contribute to the blue light-dependent response of the circadian

oscillator to NAM that regulates circadian period (Fig 7).

Then, extension of DyDE to the whole circadian genome has also identified components

outside the core oscillator that might also be involved in response to NAM, including the regu-

lation of GRP7/CCR2 by LZF1/BBX22 and these will be candidates for future investigation.

Remarkably, five genes out of 22 that were isolated in our genome analysis are known to inter-

act with circadian regulators (BX19, CYCLING DOF FACTOR3) [45,46], have been previously

implicated in circadian regulation (BBX22) [47,48], in blue light signaling (CRY3) [49] or are

being downregulated by ABA/cADPR (GRP7, BBX19, BBX22) [43,44,60]. This result is

encouraging and opens the door to the identification of novel drivers of circadian rhythms in

Arabidopsis.

Overall, we suggest that the description of gene regulatory dependencies and the quantifica-

tion of changes in dynamics computed by DyDE provide reliable hypotheses for the investiga-

tion of drug targets in complex gene regulatory networks, which has a broad range of

applications in systems biology.

Experimental procedures

Plant material and growth conditions. Arabidopsis thaliana C24 ecotype untreated plant

carrying pCHLOROPHYLL A/B BINDING-PROTEIN2:LUCIFERASE (CAB2:LUC) and

p35SCAMV:AEQUORIN (35S:AEQ) and photoreceptors mutants carrying 35S:AEQ were

DyDE and the period control of the Arabidopsis circadian oscillator

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006674 January 31, 2019 17 / 26

https://doi.org/10.1371/journal.pcbi.1006674


previously reported [61]. All other plant lines were previously reported [10]. Prr7-3 and prr7-
11 are the same T-DNA insertion loss-of-function mutation being independently character-

ised as prr7-3 [62] and prr7-11 [63]. These were maintained as separate populations. Growth

conditions were as previously described [10].

Microarray datasets. C24 seeds were grown for 10 days. On the 11th day the seedlings

were exposed to constant light (70 μmol m-2 s-1). 50% of C24 plants were treated with 50 mM

NAM (Sigma, U.K.) every two hours as previously described [41]. Aerial tissue from 100 seed-

lings was sampled every 4 hours from ZT 49 to 93. RNA extraction was performed as described

[12]. Three independent experiments were carried out and 100 ug of RNA from two of these

was sent to NASC (Nottingham, UK) for microarray analysis using the ATH1 array. Note

that PRR9 and LUX probes on the ATH1 microarray also measure the expression levels of

AT2G46670 and AT5G59570, respectively. Comparing other datasets [40] shows that the

probe with PRR9 agrees with PRR9 on other datasets while the one with LUX does not. Hence,

we used this probe to represent PRR9, but not LUX.

All modeling and analysis was carried out in MATLAB unless stated otherwise. Microarray

data was normalised using gcRMA. Go enrichment was determined using Gorilla [64]. Pro-

moter motif enrichment was calculated using AtCOECIS [65].

Fig 7. A blue light dependent module regulates the response of the circadian oscillator to NAM. NAM might

regulate the circadian oscillator through regulation of cADPR dependent circadian oscillations of [Ca2+]. CCA1 is a

repressor of ADPRc. ADPRc generation of cADPR and [Ca2+] oscillations is inhibited by NAM. Both the effects of

NAM on the circadian oscillator and circadian oscillations of [Ca2+]i are blue-light dependent. The regulation of [Ca2+]

on the circadian oscillator is indicated by a dotted line. NAM could also regulate the circadian oscillator by Ca2

+-independent events. We determined that the NAM-induced changes in circadian period are mediated principally by

the interaction between PRR7 and PRR9, as well as TOC1.These interactions are shown in red in the model.

https://doi.org/10.1371/journal.pcbi.1006674.g007
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Validation of microarray data sets. The microarrays were validated by RT–qPCR using

aliquots of the RNA extracted for microarray hybridization as described previously [10]. CCA1
and TOC1 were analysed and quantified as detailed previously [10].

Luminescence time course experiments. Photon counting imaging of aequorin or lucif-

erase activity in constant light of 60–70 μmol-2 s-1 monochromatic blue, monochromatic red

or equal blue-red LED light was performed as described [12]. Circadian period estimates were

calculated using the MS Excel BRASS plugin (http://amillar.org/downloads).

Supporting information

S1 Fig. Detrended time-series of circadian transcript in both untreated and NAM condi-

tion. Data were gathered for 44 hours every 4 hours, 2 replicates, starting from 49 hours after

the switch to constant light (i.e., third day of constant light). Data showed are detrended, so

that the rhythmic pattern is clear. LUX does not appear on this list, as the probe also measured

the expression of AT5G59570. CRY1, PHYB, ELF3, ZTL and CHE were not considered for the

network inference step.

(EPS)

S2 Fig. Assessment of circadian regulated transcripts from both the learning methodology

and standard tools. (A) Results correspond to untreated plants. The trained algorithm,

COSOPT [33] and JTK [32] respectively identified 3859, 1856 and 3698 circadian regulated

transcripts. JTK and the trained algorithm identified most of the genes labelled as periodic by

COSOPT (resp. 87% and 81% of them). The rhythmicity of 75% of the genes labelled rhythmic

by JTK was confirmed by the learning strategy. (B) Results corresponding to NAM-treated

plants. The rhythmicity of 60% of the genes labelled rhythmic by JTK was confirmed by the

learning strategy while 1636 novel genes were identified as rhythmic with a typical non-sinu-

soidal profile.

(EPS)

S3 Fig. Coverage and false positive curves of the known regulatory links involved in the cir-

cadian oscillator of Arabidopsis Thaliana, as inferred by DyDE. In DyDE, linear Ordinary

Differential equations (ODEs) of order one are computed between each pair of genes to

describe the dynamics of the whole system. To be further considered as a good approximation

of the dynamics involved, each dynamical model needs to pass a validation criterion based on

its agreement to the data (i.e. a user-defined threshold on the goodness of fit). Decreasing the

fitness threshold leads to a better coverage (upper panel) of the system dynamics but increase

the amount of false positives (lower panel). The coverage describes the amount of links

inferred over the amount of total true links in the system (as defined by Fogelmark et al, 2014).

The number of false positive corresponds to links that are not represented in Fogelmark et al.

The maximum amount of possible false positives is 32, while the total amount of links in the

true system is of 40. The threshold of 46% (represented by a red cross) is chosen for this analy-

sis with a coverage of 70% (which corresponds to 28 true positives and 21 false positives).

(EPS)

S4 Fig. Networks inferred by DyDE in both untreated and NAM-treated plants, with the

regulation loss networks. (A) Network inferred in absence of NAM. (B) Network inferred in

presence of NAM. (C) Regulation loss network. (D) Common regulation network. On these

graphs, genes are organized by their peaking time during diel cycles. Genes that are repre-

sented by a yellow filled circle peak in the morning, dark brown filled circles stand for an

evening peaking time and grey for a night peaking time. White filled circles correspond to

photoreceptors. Networks are made of the conjunction of identified LTI models for which
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respective fitness values are above 46%. Blue arrows correspond to activation whereas red

arrows correspond to an identified inhibition (S3 Table). On (D), the highlighted links repre-

sent the models with the five highest nu-gap values.

(EPS)

S5 Fig. The effect of nicotinamide on circadian rhythms in circadian, light and ABA signal-

ing mutants. Rhythms of luciferase activity were measured in the presence (grey) or absence

(white) of 20 mM NAM. Col-0 CCA1:LUC, Col-0 TOC1:LUC, WS CAB:LUC+ and C24 CAB:

LUC backgrounds are shown with respective mutants. Traces represent mean values of n > 16

biological replicates from > 2 technical replicates in the presence (grey) or absence (clear) of

20 mM NAM

(EPS)

S6 Fig. Circadian rhythms of leaf movement are insensitive to nicotinamide in prr7-11.

Rhythms of leaf movement were measured in constant white light for 120 h in the presence

(yellow) or absence (white) of 20 mM NAM. n = 22 Col-0, and n = 30 prr7-11.

(EPS)

S7 Fig. Circadian rhythms of CCA1:LUC, LHY:LUC, PRR7:LUC, PRR9:LUC, TOC1:LUC
and GI:LUC activity in constant red and blue mixed light, constant red or constant blue

light (70 umol m-2 s-1). Grey indicates the presence and white indicates the absence of 20

mM NAM. Light conditions indicated by the colored boxes on the X axes. White is red/blue

mix, monochromatic light is indicated by the appropriate color with subjective night shaded

darker than subjective day.

(EPS)

S8 Fig. Phytochrome and cryptochrome modulate [Ca2+]cyt under monochromatic light.

35S:AEQ luminescence measured over 96 hours in constant 65 umol m-2 s-1 monochromatic

red or blue light in light signaling mutants. Bars on the X axis indicate red and blue mixed

light (white), dark (black), monochromatic red (red), or monochromatic blue (blue). Darker

boxes indicate subjective night in constant light. N = 8. Error bars SEM.

(EPS)

S9 Fig. Blue light-sensitive circadian [Ca2+]cyt oscillations are inhibited by nicotinamide.

35S:AEQ luminescence measured over 96 hours in constant 65 umol m-2 s-1 monochromatic

red or blue light in light signaling mutants in the presence (grey circles) and absence (open cir-

cles) of 20 mM NAM. Bars on the X axis indicate light treatment of red and blue mixed light

(white), dark (black), monochromatic red (red) or monochromatic blue (blue). Darker boxes

indicate subjective night in constant light. n = 8. Error bars SEM.

(EPS)

S10 Fig. Comparative analysis of the network reconstruction accuracy of our algorithm

with state-of-the-art network inference methodologies. The Area Under the ROC Curve

and the Precision-Recall Curve are shown for each algorithm and simulation run. For this

comparison, only 10 stochastic simulations were carried to limit the overall computation

time of methodologies that involve a Markov Chain Monte Carlo (MCMC) sampling scheme.

Each box on these graphs represents the 50th– 95th percentile around the median. Dynamical

GENIE3 (dynGENIE3, [28]) is an adaptation of the GENIE3 [S1] method for time series data,

which was the best performer of the DREAM4 Multifactorial Network challenge and the

DREAM5 Network Inference Challenge [26,S2]. Like our approach, the temporal evolution of

genes in dynGENIE3 is based on an ODE model. However, in this specific case, the transcrip-

tion function in each ODE is represented by ensembles of regression trees and is therefore not
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fixed a priori. This semi-parametric approach provides a greater flexibility to the inference

framework but complicates the comparison of dynamical properties between experimental

conditions. In contrast, Continuous-time Gaussian process dynamical model (GPDM) is a

non-parametric, Gaussian process-based GRN inference algorithm for which the perfor-

mances were compared to the best performers of the DREAM challenge and consistently

shown superior in dealing with short time series data generated from the 10-genes challenge

[30]. A parametric approach, so-called Sparse Bayesian Learning (GSBL) has also been investi-

gated to identify a sparse representation of GRN topology with nonlinear multivariate ARX

models and showed promising performances on a repressilator model of gene regulation [52].

Finally, a semi-mechanistic model based on gradient matching and nonlinear Hill-type tran-

scription function such as the iCheMA [25] algorithm have been developed and was revealed

as the best performer of a set of established state-of-the-art network reconstruction methods

applied to the inference of circadian-type regulatory networks. Our algorithm reached an

AUROC of 0.6426 +- 0.0448 and an AUPREC of 0.5124 +- 0.049. dynGENIE3 obtained an

AUROC of 0.6709 +- 0.0427 and an AUPREC of 0.512 +- 0.049. GPDM obtained an AUROC

of 0.7119 +- 0.0538 and an AUPREC of 0.6759 +- 0.0745. GESBL obtained an AUROC of

0.5801 +- 0.0542 and an AUPREC of 0.4999 +- 0.707 while iCheMA obtained an AUROC of

0.5523 +- 0.0874 and an AUPREC of 0.2848 +- 0.0397. Details of the results for each run are

presented on the S10 Table.

(EPS)

S1 Table. Circadian transcriptomes of untreated and nicotinamide-treated plants. Circa-

dian time-series for the transcripts on the ATH1 microarray for the untreated and nicotin-

amide-treated (NAM) datasets are presented on three separate sheets. Gene lists are provided

describing the genes that were identified by PEAL to be circadian-regulated, along with the

estimated period, amplitude and phase, and confidence of estimation for C24, NAM and

toc1-1. The final two sheets describe the genes common between the C24 and NAM, and the

C24 and toc1-1 circadian-regulated subsets.

(XLSX)

S2 Table. GO enrichment terms of transcripts rhythmic. The tables list the most enriched

terms in the rhythmic transcripts, split in to the three ontologies: Biological process, Molecular

function, and Cellular component. The analysis is split in eight categories, each corresponding

to a column in the table: GO term (unique identifier in the GO database), GO description,

p-value (likelihood of enrichment), False Discovery Rate q-value, a measure of Enrichment, a

link to the full list of enriched genes, and whether the GO term is also enriched in the NAM

datasets.

(XLSX)

S3 Table. Details of the dynamical interactions inferred by DyDE between the genes of the

Arabidopsis thaliana circadian oscillator. The tables describe the connections modelled for

the circadian oscillator in the untreated plants, NAM treated, regulation loss and common net-

works. Network connections are described gene by gene and a comparison with the known

regulatory interactions is provided. The fitness value is displayed, as well as the sign of the reg-

ulation (activation or inhibition).

(XLSX)

S4 Table. Sorted v-gap values corresponding to common links between untreated and

NAM. Nu-gaps values computed for each link inferred in both untreated and NAM-treated

networks. This table ranks the nu-gap values from the largest to the smallest.

(XLSX)
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S5 Table. Connectivity loss corresponding to each gene, for untreated and NAM-treated

networks. Values are displayed for a fitness threshold of 46%.

(XLSX)

S6 Table. The effect of nicotinamide on circadian period in circadian oscillator mutants.

The period of circadian rhythms of luciferase activity were measured in the presence absence

of 20 mM NAM in Col-0 CCA1:LUC, Col-0 TOC1:LUC, WS CAB:LUC+ and C24. CAB:LUC
backgrounds are reported with the respective mutants. n> 16 biological replicates from > 2

technical replicates.

(XLSX)

S7 Table. Cost functions and parameters optimization of the P2012 model. These tables

sort the cost function scores obtained by sequentially optimizing a single and two parameters

simultaneously to the best fit of TOC1 and CCA1 time-series profile in the presence of NAM.

Best performances for single parameter tuning are achieved for m14 and m15 respectively

while the best performances for two simultaneous parameters are obtained through a mixture

of LHY and PRR7 parameters.

(XLSX)

S8 Table. Extension of the DyDE methodology to the whole genome: List of potential

novel candidates involved in clock regulation. The list of models that have been validated

(> 60% fitness, nu-gap < 0.2) between the genome and the known clock genes. The lists are

split in four sheets, displaying separately the analysis of the genome to the main clock genes

and vice versa. The genes are sorted in alphabetical order. Their function and the sign of the

identified regulation are provided, as well as the count of appearance of each gene in their

respective list.

(XLSX)

S9 Table. Summary of the novel potential clock genes identified. The list of genes identified

as input/output hubs to the clock as well as their functions is represented together with their

potential regulation by cADPR.

(XLSX)

S10 Table. Details of the performances of state-of-the-art network inference methodolo-

gies against our approach. This table summarize the Area Under the ROC Curve and the

Precision-Recall curve obtained by each algorithm, for each run. Highlighted is the best per-

former for each run.

(XLSX)
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39. Carignano A, Webb AAR, Gonçalves J, Jin J. Assessing the effect of unknown widespread perturba-

tions in complex systems using the nu-gap. Proceedings of the 54th IEEE Conference Decision and

Control, 2015; 3193–3198.

40. Fogelmark K, Troein C. Rethinking transcriptional activation in the Arabidopsis circadian clock. PLoS

Comput Biol, 2014; 10, e1003705. https://doi.org/10.1371/journal.pcbi.1003705 PMID: 25033214

41. Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jas-

kolski M, Webb AA, Goncalves J, Davis Seth J. EARLY FLOWERING4 recruitment of EARLY FLOW-

ERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell, 2012; 24: 428–443. https://

doi.org/10.1105/tpc.111.093807 PMID: 22327739

DyDE and the period control of the Arabidopsis circadian oscillator

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006674 January 31, 2019 24 / 26

https://doi.org/10.1016/j.copbio.2010.07.010
http://www.ncbi.nlm.nih.gov/pubmed/20709523
https://doi.org/10.1126/science.1219075
http://www.ncbi.nlm.nih.gov/pubmed/22403178
https://doi.org/10.1186/1471-2105-14-91
http://www.ncbi.nlm.nih.gov/pubmed/23497356
https://doi.org/10.1038/nrmicro2419
http://www.ncbi.nlm.nih.gov/pubmed/20805835
https://doi.org/10.1038/nrd2748
https://doi.org/10.1038/nrd2748
http://www.ncbi.nlm.nih.gov/pubmed/18974740
https://doi.org/10.1016/j.tips.2009.11.006
http://www.ncbi.nlm.nih.gov/pubmed/20117850
https://doi.org/10.1038/nmeth.2016
http://www.ncbi.nlm.nih.gov/pubmed/22796662
https://doi.org/10.1098/rsfs.2011.0053
http://www.ncbi.nlm.nih.gov/pubmed/23226586
https://doi.org/10.1038/s41598-018-21715-0
https://doi.org/10.1038/s41598-018-21715-0
http://www.ncbi.nlm.nih.gov/pubmed/29467401
https://doi.org/10.1038/srep07464
http://www.ncbi.nlm.nih.gov/pubmed/25501646
https://doi.org/10.1177/0748730410379711
https://doi.org/10.1177/0748730410379711
http://www.ncbi.nlm.nih.gov/pubmed/20876817
https://doi.org/10.1016/S0076-6879(04)83007-6
https://doi.org/10.1016/S0076-6879(04)83007-6
http://www.ncbi.nlm.nih.gov/pubmed/15063650
https://doi.org/10.1111/j.1469-8137.2011.04004.x
http://www.ncbi.nlm.nih.gov/pubmed/22212235
https://doi.org/10.1371/journal.pcbi.1003705
http://www.ncbi.nlm.nih.gov/pubmed/25033214
https://doi.org/10.1105/tpc.111.093807
https://doi.org/10.1105/tpc.111.093807
http://www.ncbi.nlm.nih.gov/pubmed/22327739
https://doi.org/10.1371/journal.pcbi.1006674


42. Trejo Banos D, Millar AJ, Sanguinetti G. A Bayesian approach for structure learning in oscillating regula-

tory networks. Bioinformatics, 2015; 31(22), 3617–3624. https://doi.org/10.1093/bioinformatics/btv414

PMID: 26177966

43. Cao S, Jiang L, Song S, Jing R and Xu G. AtGRP7 is involved in the regulation of abscisic acid and

stress responses in Arabidopsis. Cellular & Molecular Biology Letters, 2006; 11(May), 526–535.

44. Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR. A type III effector ADP-

ribosylates RNA-binding proteins and quells plant immunity. Nature, 2007; 447(7142), 284–288.

https://doi.org/10.1038/nature05737 PMID: 17450127

45. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKF1 F-box protein mediates cyclic degradation

of a repressor of CONSTANS in Arabidopsis. Science, 2005; 309(5732), 293–297. https://doi.org/10.

1126/science.1110586 PMID: 16002617

46. Wang CQ, Sarmast MK, Jiang J, Dehesh K. The transcriptional regulator BBX19 promotes hypocotyl

growth by facilitating COP1-mediated EARLY FLOWERING3 degradation in Arabidopsis. The Plant

Cell, 2015; 27(4), 1128–1139. https://doi.org/10.1105/tpc.15.00044 PMID: 25841036

47. Chang C-J, Li Y-H, Chen L-T, Chen W-C, Hsieh W-P, Shin J, Jane W-N, Chou S-J, Choi G, Hu J-M,

Somerville S and Wu S-H. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-eti-

olation. The Plant Journal, 2008; 54: 205–219. https://doi.org/10.1111/j.1365-313X.2008.03401.x

PMID: 18182030

48. Kumagai T, Ito S, Nakamichi N, Niwa Y, Murakami M, Yamashino T, Mizuno T. The common function of

a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabi-

dopsis thaliana. Bioscience, biotechnology, and biochemistry, 2008; 72(6), 1539–1549. https://doi.org/

10.1271/bbb.80041 PMID: 18540109
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