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7

Main Text8

Summary9

Mathematical models provide a rational basis to inform how, where and when to control disease. Assuming10

an accurate spatially-explicit simulation model can be fitted to spread data, it is straightforward to use it to test11

the performance of a range of management strategies. However, the typical complexity of simulation models12

and the vast set of possible controls mean that only a small subset of all possible strategies can ever be tested.13

An alternative approach – optimal control theory – allows the best control to be identified unambiguously.14

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/186326266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


However, the complexity of the underpinning mathematics means that disease models used to identify this15

optimum must be very simple. We highlight two frameworks for bridging the gap between detailed epidemic16

simulations and optimal control theory: open-loop and model predictive control. Both these frameworks17

approximate a simulation model with a simpler model more amenable to mathematical analysis. Using an18

illustrative example model we show the benefits of using feedback control, in which the approximation and19

control are updated as the epidemic progresses. Our work illustrates a new methodology to allow the insights20

of optimal control theory to inform practical disease management strategies, with the potential for application21

to diseases of humans, animals and plants.22

1 Introduction23

Mathematical modelling plays an increasingly important role in informing policy and management decisions24

concerning invading diseases [1, 2]. However, model-based identification of effective and cost-efficient controls25

can be difficult, particularly when models include highly detailed representations of disease transmission26

processes. There is a variety of mathematical tools for designing optimal strategies, but no standard for putting27

the results frommathematicallymotivated simplifications into practice. An open question is how to incorporate28

enough realism into a model to allow accurate predictions of the impact of control measures, whilst ensuring29

that the truly optimal strategy can still be identified [3]. In this paper we identify the difficulties – as well as30

potential solutions – in achieving a practically useful optimal strategy, highlighting the potential roles of open31

loop and model predictive control by way of a simple example.32
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Realistic simulation models33

The optimisation of disease management involves determining the most appropriate control method(s), e.g.34

vaccination, quarantine or roguing, and the best deployment strategy for that method or combination of35

methods to minimise impacts of the disease. This minimisation can be difficult when resources are limited36

and there are economic costs associated with both control measures and disease. Methods that simulate the37

expected course of an epidemic and explicitly model effects of interventions can rapidly quantify the potential38

impact of a given strategy [4]. These simulation models accurately capture the dynamics of the real system39

and so have become important tools for assessing policy decisions relating to real-time management responses40

as well as to increased preparedness for future threats. Examples include vaccination policies for human41

papillomavirus in the UK [5, 6], livestock culling policies [7, 8] and vaccination optimisation [9, 10] for foot-42

and-mouth disease, and optimal host removal strategies for tree diseases of citrus [11–14] and sudden oak43

death [15].44

Various complexities of disease dynamics, for example spatial heterogeneities and inherent individual45

differences in susceptibility and pathogen transmission (risk structure), have been shown to be important46

determinants of patterns and rates of epidemic spread [16–18]. To ensure accurate epidemic predictions,47

these factors must be included in simulation models designed to aid decision making. However, inclusion of48

these heterogeneities typically results in highly complex models with many possible control measures, making49

optimisation computationally infeasible when interventions can be combined, and particularly when control50

measures can also vary over time, in space or according to disease risk [19]. For most simulation models the51

only viable option is then to use the model to evaluate a small subset of plausible strategies that remain fixed52
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during the epidemic, potentially scanning over a single parameter such as a culling radius. We shall refer53

to this approach as ‘Strategy Testing’. Using this approach makes it difficult to have high confidence in the54

best-performing strategy, since with no framework for choosing it, the set of strategies under test is likely to be55

biased. Further to this, as the set to test cannot span the entire space of control options, it is unlikely that the56

true optimum will be found.57

Optimal control of epidemiological models58

Many mathematical techniques exist for characterising the true optimal control for a disease, such as equi-59

librium or final size analysis, depending on the system being analysed [16]. We here focus on optimising60

time-varying control of dynamical systems, for which optimal control theory (OCT) is widely used [20]. By61

analysing a set of equations describing the disease dynamics, OCT canmathematically characterise the optimal62

deployment strategy for a given control method and provide insight into the underlying dynamics, without63

the repeated simulation required to optimise simulation models. However, because of the underlying mathe-64

matical complexity, little progress can be made with OCT unless the underpinning models for disease spread65

are highly simplified. Early work in OCT focussed on optimal levels of vaccination and treatment [21], with66

extensions to consider further interventions including quarantine, screening, and health-promotion campaigns67

appearing later [22]. Disease models can also be coupled with economic effects [23–25], and within OCT this68

has been used to balance multiple costs, such as surveillance and control [26], or prophylactic versus reactive69

treatment [27].70

Theoptimal strategies identifiedbyOCTcanbevery complex, often specifying controls that switch strategies71

at specific times during the course of an epidemic. The added complexity of these switching controls can72
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significantly improve disease management when tested on a spatially explicit model, but can lead to poor73

performance if the exact time of the switch is not known [28], for example when parameter uncertainty gives74

a wide range of possible switch times. This demonstrates that uncertainties and additional complexities often75

prohibit OCT from being directly applicable to the real world. It is also unclear how insight from OCT alone76

could be translated into practical advice. To move towards robust strategies that could be used practically,77

more recent work has focussed on including additional features and heterogeneities into the models used in78

OCT, in particular spatial dynamics. Space is usually only included to a limited extent, for example by using79

metapopulation models (e.g. [29, 30]), or partial differential equations (e.g. [31]) to optimise spatial strategies,80

so whether the heterogeneities added are sufficient to identify robust and practical control strategies remains81

an open question.82

Moving towards practical control83

Despite finding the mathematically optimal control strategy, major simplifications to the system as modelled84

are required to allow progress to be made using OCT. It is therefore often unclear how these strategies would85

perform if adopted by policy makers. On the other hand, models with sufficient realism to inform policy86

directly are often impossible to optimise fully. Therefore, a framework is needed to combine the optimisation87

capabilities of OCT with the accurate predictions of simulation type models as required in policy making. The88

question is then how should we make practical use of OCT?89

In §2 we describe two methods from control systems engineering for applying OCT results, and compare90

these versus Strategy Testing using a simple illustrative model in §3. We seek to answer how, under current91

computational constraints, results fromOCTcanbeappliedwhilstmaintaining the realismrequired forpractical92
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application.93

2 Applying optimal control to realistic systems94

Outside of epidemiology, OCT has had wider use on approximate models of complex systems. A recent study95

reviews the use of OCT for agent-based models (ABMs) [32], a type of model that simulates the individual96

behaviour of autonomous agents. An et al. [32] suggest the use of a model that approximates the dynamics97

of the ABM, designed to be simple enough to allow mathematical analysis of the optimal control. A suitable98

approximate model is chosen and fitted either to real data, or to synthetic data from the ABM. The OCT results99

from the approximating model are then mapped onto the ABM to be tested: a process referred to as ‘lifting’,100

which could equally well apply to the detailed epidemic simulation models considered in this paper. We101

now describe two possible frameworks from control systems engineering for making use of this control lifting102

approach.103

Open-loop control104

The first method is the simplest application of control lifting, and the framework implicitly suggested by An105

et al. [32]. Control is optimised on the approximate model once using the initial conditions of the simulation106

model. The resulting optimal control strategy is lifted to the simulator and applied for the full simulation run107

time (figure 1). Repeated simulation of the OCT strategy on the simulation model allows assessment against108

other possible control strategies. The optimisation gives a single, time dependent strategy for all simulation109

realisations, and so does not incorporate any feedback. It is therefore referred to as ‘open-loop’ control, as it is110

fully specified by the simulation initial conditions and the trajectory predicted by the approximate model. Use111
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in epidemiology is uncommon, although Clarke et al. [33] use OCT in an approximate model to find optimal112

levels of Chlamydia screening and contact tracing which are then mapped onto a network simulation.113

Model predictive control114

Open-loop control requires the approximatemodel to remain accurate over the time scale of the entire epidemic.115

However, for tractability the approximate model must necessarily omit many heterogeneities present in the116

simulation model, such as spatial effects and risk structure. When strategies resulting from OCT are then117

applied to the simulation model or to the real system, the disease progress is likely to deviate systematically118

from the trajectory predicted by the approximate model. Model predictive control (MPC) is an optimisation119

technique incorporating system feedback that can take such perturbations into account [34, 35]. At regular120

update times the values of the state variables in the approximatemodel are reset tomatch those in the simulation121

at that time. The control is then re-optimised and the new control strategy is applied to the simulation until122

the next update time. The approximate and simulation models are therefore run concurrently, with multiple123

optimisations per realisation, to ensure that the approximate model and control strategy closely match each124

individual simulation realisation (figure 1). These multiple optimisations are computationally costly but125

tractable, unlike performing optimisation on the full simulation model.126

MPC has had some use within the epidemiological literature, the majority being for control of drug ap-127

plications for single individuals rather than control of epidemics at the population level. Examples include128

findingmanagement strategies for HIV that are robust tomeasurement noise andmodelling errors [36, 37], and129

control of insulin delivery in patients with diabetes [38]. These studies highlight the benefits of MPC for robust130

control, i.e. control that remains effective despite system perturbations. However, only one study concentrates131
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on epidemic management [39], and that does not explicitly test the feedback control on simulations.132

3 Optimising strategies on an illustrative network model133

Methods134

Todemonstrate open-loop andMPC for epidemicmanagementweuse a stochastic SIRnetworkmodel including135

host demography and risk structure. The model is deliberately kept simple to show how the underpinning136

idea is broadly applicable across human, animal and plant diseases. Whilst the model and its parameters are137

arbitrary and do not represent a specific disease, we use it to represent a scenario in which a simulation model138

has already been fitted to a real disease system; the network model is therefore used here as a proxy for a139

potentially very detailed simulation model.140

Simulation Model141

In our model, infection spreads stochastically across a network of nodes that are clustered into three distinct142

regions (figure 2a). Each node contains a host population stratified into high and low risk groups. The infection143

can spread between individuals within nodes and between connected nodes. The net rate of infection of risk144

group r in node i is given by:145

Sr
i

∑
j

σi j

(
ρrH IH

j + ρrLIL
j

)
, (1)146

where S and I are numbers of susceptible and infected hosts respectively, subscripts identify the node, and147

superscripts specify high (H) or low (L) risk group. The sum is over all connected nodes including the focal148

node itself, with the relative transmission strength into node i from node j given by σi j , and risk structure given149
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by the 2 × 2 matrix ρ. Full details of the model are given in the supplementary material. Although not limited150

to these applications, the model in Equation 1 could represent crop or livestock diseases spreading through151

farms, or sexually transmitted infections spreading through towns, cities or countries.152

Mass vaccination is the only intervention we consider, with the potential to target based on both risk group153

and region but randomised across host infection status (i.e. the vaccine is given to all hosts but is only effective154

on susceptibles). Logistical and economic constraints are included through a maximum total vaccination rate155

(ηmax) that can be divided between risk groups and regions. Within each group susceptibles are vaccinated156

at rate: f ηmaxS/N , where f is the proportion of control allocated to that group, and N is the total group157

population.158

Optimal allocation of the vaccination resources minimises an epidemic cost J representing the disease159

burden of the epidemic across all infected hosts over the simulation time (T): J �
∫ T

t�0 I(t)dt. In common with160

the particular control we consider and the risk and spatial structures, this simple choice of objective function161

was made merely to illustrate our methods, but the framework generalises immediately to more complex162

settings.163

Approximate Models164

Exhaustive optimisation of control using the simulationmodel, across space, risk group and time, is clearly very165

computationally expensive. To assess the best level of approximation, we consider two different deterministic166

approximate models of the simulator. The first model is purely risk structured, factoring out all spatial167

information and leaving one high risk and one low risk population group. This model is deterministic and168

based on the assumption that all nodes are spatially well-mixed with each other. The second approximate169
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model is more complex, in as much as it is also deterministic and risk structured, but additionally includes a170

first approximation to the host spatial structure by including the regional host information. Spatial dynamics171

are included between but not within the three regions to maintain enough simplicity to obtain optimal control172

results, thereby assuming that nodes are spatially well-mixed within each region. This could represent, for173

example, optimising control at the country level, but not at the regional level. We refer to this model as the174

spatial approximate model. A single set of parameters is fitted for each model to data from an ensemble of175

simulation model runs. We then test which of the two approximate models is the more useful for control176

optimisation. Full details of the approximate models, fitting and optimisation procedures are given in the177

supplementary material.178

Control Scenarios179

Wetest sixdifferent control scenarios,which compareStrategyTestingof controls basedpurelyon the simulation180

model (scenarios 1 and 2) with open-loop and MPC applied using both of our approximate models (scenarios181

3 to 6):182

1. ‘High’: exclusively vaccinate high risk individuals183

2. ‘Split’: partition control resources between high and low risk groups based on an optimisation performed184

in advance185

3. ‘Risk OL’: open-loop control using the risk based approximate model186

4. ‘Risk MPC’: MPC using the risk based approximate model187

5. ‘Space OL’: open-loop control using the spatial approximate model188
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6. ‘Space MPC’: MPC using the spatial approximate model189

The optimal constant allocation for the ‘Split’ strategy was found by running many simulation model190

realisations for each of a range of partition values, as in [11], and selecting the value that gave the lowest191

average epidemic cost (supplementary figure S8). The six strategies are assessed by repeatedly running the192

simulation model under each control scenario.193

Results194

The OCT results for optimising the vaccination strategy in the risk based approximate model lead to initial195

vaccination of high risk individuals only, before switching priorities and treating the more populous low risk196

group almost exclusively. The OCT results from the spatial approximate model show this same switch (figure197

2b), but a number of spatial switches are also seen, allowing control to track the epidemic as it progresses198

through the three regions (supplementary figure S9). The spatial strategies are therefore much more complex199

than the risk based controls.200

Applying the control scenarios to the simulation model and comparing epidemic costs shows that incor-201

porating greater realism, through a more complex approximate model as well as by using MPC, allows for202

improved disease management (figure 3 and supplementary figure S10). Of the constant and purely simula-203

tion based ‘user-defined’ strategies, splitting control between risk groups is slightly more effective than just204

vaccinating the high risk group. The optimal allocation to the high risk group used in the ‘Split’ strategy is205

63% of vaccination resources, with the rest used to vaccinate low risk individuals, although this does occur in206

a broad minimum of epidemic cost (supplementary figure S8). Applying the optimisations from the risk based207

approximate model to the simulation model gives an improvement over either of the ‘user-defined’ strategies,208
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although there is little difference in epidemic cost between the open-loop and MPC frameworks (see below).209

Adding space into the approximate model improves control further, leading to the smallest epidemic costs210

when the spatial MPC framework is used.211

The illustrative model demonstrates the management improvements that can be achieved by combining212

OCT with both open-loop and MPC. The key results of the OCT analyses are the control switching times.213

Using the switching controls from either approximate model with open-loop control gives lower epidemic214

costs than the naively chosen ‘user-defined’ strategies. The feedback present in the MPC controllers allows215

further reductions to the epidemic cost. By re-evaluating the timing of the switches during the epidemic,216

and potentially including additional switches, the control can respond more closely to the exact trajectory of217

the current simulation realisation (figures 2b–d). This gives control that is more robust to uncertainty and218

systematic errors in the approximate model, and hence performs better on the complex simulation model.219

In the risk based strategies there is little difference between open-loop andMPC. This is because the precise220

timing of the switch from high to low risk group vaccination does not significantly affect the epidemic cost221

(supplementary figure S11). The timings of disease introduction into regions B and C are highly variable222

between simulation runs (supplementary figure S2). The potential for additional switches in the spatial223

approximate model gives more flexibility for the MPC controller to respond to this variability, and so spatial224

MPC shows a significant improvement over open-loop which cannot adapt to perturbations. The performance225

of the control is closely linked to the accuracy of the approximate model. In our example, spatial dynamics are226

clearly important because of the timing of spread between regions, and so the more informed controls of the227

spatial model outperform the risk based strategies.228
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4 Discussion229

Our results show that the choice of approximate model affects the performance of both open-loop and MPC230

strategies. Here we have found a suitable approximate model in an ad hoc manner, but a key challenge for the231

future is to develop a more formal method for choosing the most appropriate approximate model. A more232

accurate model may give better predictions, and hence control that is closer to the true optimum, but simpler233

models are often sufficient [40] and accuracy must be balanced with added complexity and optimisation234

constraints. One difficulty in doing this is that it is not always clear where the boundary of mathematical235

or computational feasibility is, and so how complex the model can be made in practice. It is also difficult236

to determine mathematically, in a systematic way, which aspects of the dynamics are important to capture237

accurately. This key issue must be considered though, since the implications relate directly to applications in238

the real world.239

Practical disease control requires surveys of the real system to assess the state of the epidemic. Both open-240

loop and MPC optimise control using predictions of the future dynamics, making them both feed-forward241

controllers. The approximate model underlying these frameworks allows more informed decisions between242

surveys, resulting in control that is closer to the true optimum. Accurate predictions can avoid continuous243

or very frequent surveys which may be expensive or logistically challenging. As discussed previously, the244

repeated updates in the feedback loop of MPC improve these predictions and hence the performance of the245

control. However, each update will require surveillance of the real system, so the frequency of updates must246

be chosen so as to balance improved knowledge of the system with any surveillance constraints.247

In this paper we have focussed on a top-down approach, finding robust, practically-applicable strategies by248
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making use of OCT to optimise simulationmodels. Equally, many studies use OCTwithout simulationmodels,249

rarely considering practical application of the resulting optimal controls. With this bottom-up approach, a250

system for testing the results on realistic systems is vital to ensure that these results are robust to additional251

realism. Using an MPC framework as considered here could be one way in which OCT researchers could252

demonstrate the potential impact of their work to a wider audience.253

Exhaustive testing of alternative simulation model parameterisations is beyond the scope of this study, but254

we generally find that spatial MPC also performs best across other reasonable parameter sets (supplementary255

material §3). We have assumed throughout that an accurate simulation model of the real system in question256

can be built, and that a single set of parameters can be fitted for the chosen deterministic approximate model.257

In reality there may be considerable uncertainty in parameters for the simulator so fitting a single deterministic258

model may be challenging. A question for future study would be how to handle these uncertainties, perhaps259

also incorporating improved knowledge of parameters as the simulation proceeds [41].260

The strategies found by OCT are highly dependent on the exact form of the objective function, which we261

have here chosen to be very simple. Extending the objective to include costs associated with control as well as262

with each switch in strategy would allow a more detailed assessment of the practicality of implementing these263

complex strategies. More research is needed into how to quantify the balancing of very different costs though,264

for example treatment costs and disease burden [29]. In human disease, cost-effectiveness analyses are usually265

based on quality adjusted life years [42]. A similar concept could perhaps be used for plant and animal diseases,266

including calculations of yield losses [43] as well as effects on welfare, biodiversity and tourism for example267

[44]. The methods we have described however, are not dependent on the form of the control or objective268

function. For an appropriate approximate model, the feedback in MPC ensures accurate predictions and so269
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should always improve performance over open-loop. The frameworks we describe can be used to provide an270

additional, unbiased control scenario to the Strategy Testing process that is already in common use.271

In this paper we have shown that coupling feedback control with simulation models and OCT can help272

to design effective and robust intervention strategies for managing pathogens of human, animal and plant273

populations. Whilst these techniquesmaybe able to transfer optimal control results tomore realistic simulations274

and so to practical application, it does raise the issue of communicability of results. With complex feedback275

strategies between two models, one complex in structure and the other mathematically complex, the overall276

result is no longer simple to explain. Future research must therefore focus on improving the accuracy of277

simulation models, and analysing their reliability, so that simulations can be used to establish conclusively the278

benefit of these complex OCT based strategies.279
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Figure and table captions369

Figure 1370

Open-loop and model predictive control (MPC). The model hierarchy is shown, with optimised controls from371

the approximate model directly lifted to the simulation model. The real system is in green, the models and372

fitting processes are in blue, and the control framework is in orange. Without the orange dashed feedback373

loop, this is open-loop control. MPC resets the state of the approximate model at regular update steps, before374

re-optimising and lifting controls to the simulation model until the next update time.375

Figure 2376

(a) shows the network used for the illustrative simulation model, including region labels. The epidemic is377

seeded in the red node in region A, and can spread between connected nodes (grey lines). In (b) the control378
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allocation is shown for a single space based MPC run, with the corresponding open-loop allocation indicated379

by the black dotted line. (c) shows the total number of infected individuals under a single run of space based380

open-loop control. Control is based on the prediction of the approximate model starting from the initial381

conditions. (d) shows the number of infected individuals in the simulation and space based approximate382

model corresponding to theMPC control carried out in (b). Here the prediction is reset to match the simulation383

at every update step (0.5 time units) and the control is re-optimised. By repeatedly correcting for differences384

between short-term model predictions and realised numbers of infected individuals – rather than relying on385

a potentially increasingly inaccurate prediction made at the initial time – MPC gives better predictions of the386

simulation state as well as improved control when compared to open-loop (note different y axis scales).387

Figure 3388

Results of different control optimisation schemes on the illustrative simulation model. Spatial MPC performs389

best, showing an improvement over both open-loop and user-defined strategies.390

Figures391

Figure 1392

393
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Figure 2394
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Figure 3396
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